
User Mode Linux®

Dike.book Page i Wednesday, March 15, 2006 8:16 PM

B

RUCE

 P

ERENS

’ O

PEN

 S

OURCE

 S

ERIES

www.prenhallprofessional.com/perens

Bruce Perens’ Open Source Series

 is a definitive series of books on Linux and open
source technologies, written by many of the world’s leading open source professionals. It is
also a voice for up-and-coming open source authors. Each book in the series is published
under the Open Publication License (www.opencontent.org), an open source compatible
book license, which means that electronic versions will be made available at no cost after the
books have been in print for six months.

◆

Java™ Application Development on Linux

®

Carl Albing and Michael Schwarz

◆

C++ GUI Programming with Qt 3

Jasmin Blanchette and Mark Summerfield

◆

Managing Linux Systems with Webmin: System Administration and Module Development

Jamie Cameron

◆

Understanding the Linux Virtual Memory Manager

Mel Gorman

◆

PHP 5 Power Programming

Andi Gutmans, Stig Bakken, and Derick Rethans

◆

Linux

®

 Quick Fix Notebook

Peter Harrison

◆

Implementing CIFS: The Common Internet File System

Christopher Hertel

◆

Open Source Security Tools: A Practical Guide to Security Applications

Tony Howlett

◆

Apache Jakarta Commons: Reusable Java™ Components

Will Iverson

◆

Linux

®

 Patch Management: Keeping Linux

®

 Systems Up To Date

Michael Jang

◆

Embedded Software Development with eCos

Anthony Massa

◆

Rapid Application Development with Mozilla

Nigel McFarlane

◆

Subversion Version Control: Using the Subversion Version Control System in Development
Projects

William Nagel

◆

Intrusion Detection with SNORT: Advanced IDS Techniques Using SNORT, Apache, MySQL,
PHP, and ACID

Rafeeq Ur Rehman

◆

Cross-Platform GUI Programming with wxWidgets

Julian Smart and Kevin Hock with Stefan Csomor

◆

Samba-3 by Example, Second Edition: Practical Exercises to Successful Deployment

John H. Terpstra

◆

The Official Samba-3 HOWTO and Reference Guide, Second Edition

 John H. Terpstra and Jelmer R. Vernooij, Editors

◆

Self-Service Linux

®

: Mastering the Art of Problem Determination

Mark Wilding and Dan Behman

perens_series_7x9_25.fm Page 1 Wednesday, March 1, 2006 3:43 PM

User Mode Linux®

Jeff Dike

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Dike.book Page iii Wednesday, March 15, 2006 8:16 PM

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

This Book Is Safari Enabled

The Safari® Enabled icon on the cover of your favorite technology book means the book is
available through Safari Bookshelf. When you buy this book, you get free access to the
online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical books,
find code samples, download chapters, and access technical information whenever and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.prenhallprofessional.com/safarienabled

• Complete the brief registration form

• Enter the coupon code 84J7-DAEK-ZNZP-2JK4-FMBD

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-
service@safaribooksonline.com.

Library of Congress Cataloging-in-Publication Data

Dike, Jeff.
User Mode Linux / Jeff Dike.

p. cm.
Includes bibliographical references and index.
ISBN 0-13-186505-6 (pbk. : alk. paper)

1. Linux. 2. Operating systems (Computers) 3. Application software
porting. I. Title.

QA76.76.O63D545 2006
005.4'32--dc22

2006004225

Copyright © 2006 Pearson Education, Inc.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication
License, v1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

ISBN 0-13-186505-6
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April 2006

Dike.book Page iv Wednesday, March 15, 2006 8:16 PM

v

Contents

Preface..ix
Acknowledgments ..xi
About the Author .. xiii

1 Introduction ...1
What Is UML?...1
Comparison with Other Virtualization Technologies ...2
Why Virtual Machines? ..3
A Bit of History ...4
What Is UML Used For? ..8

Server Consolidation ..8
Education ..10
Development ...12
Disaster Recovery Practice ..13

The Future ..14

2 A Quick Look at UML.. 17
Booting UML for the First Time ..20
Booting UML Successfully ...24
Looking at a UML from the Inside and Outside ...29
Conclusion ...37

3 Exploring UML ... 39
Logging In as a Normal User ...39
Consoles and Serial Lines ..40
Adding Swap Space ..47
Partitioned Disks ..49
UML Disks as Raw Data..53

Dike.book Page v Wednesday, March 15, 2006 8:16 PM

vi Contents

Networking... 54
Shutting Down ... 59

4 A Second UML Instance .. 61
COW Files... 61

Booting from COW Files.. 67
Moving a Backing File... 69
Merging a COW File with Its Backing File.. 70

Networking the UML Instances.. 71
A Virtual Serial Line ... 79

5 Playing with a UML Instance .. 83
Use and Abuse of UML Block Devices .. 83
Networking and the Host .. 87

6 UML Filesystem Management ... 101
Mounting Host Directories within a UML.. 101

hostfs ... 104
humfs ... 108

Host Access to UML Filesystems .. 114
Making Backups... 116
Extending Filesystems... 117
When to Use What ... 118

7 UML Networking in Depth... 121
Manually Setting Up Networking... 121

TUN/TAP with Routing... 121
Bridging.. 136

The UML Networking Transports .. 142
Access to the Host Network .. 143
Isolated Networks.. 145
pcap.. 145
How to Choose the Right Transport ... 146
Configuring the Transports... 147

An Extended Example ... 155
A Multicast Network ... 155
A Second Multicast Network... 156
Adding a uml_switch Network ... 160
Summary of the Networking Example ... 166

8 Managing UML Instances from the Host .. 167
The Management Console ... 167

MConsole Queries.. 168
The uml_mconsole Client.. 182
The MConsole Protocol .. 183

Dike.book Page vi Wednesday, March 15, 2006 8:16 PM

Contents vii

The MConsole Perl Library..185
Requests Handled in Process and Interrupt Contexts186
MConsole Notifications ..186

Controlling a UML Instance with Signals ..188

9 Host Setup for a Small UML Server... 191
Host Kernel Version ...192
UML Execution Modes ...194

tt Mode...197
skas3 Mode ..198
skas0 Mode ..200
To Patch or Not to Patch? ..201
Vanderpool and Pacifica...202

Managing Long-Lived UML Instances ..203
Networking..206
UML Physical Memory...206
Host Memory Consumption ...208
umid Directories ...209
Overall Recommendations ...209

10 Large UML Server Management .. 211
Security ...212

UML Configuration ..212
Jailing UML Instances ...216
Providing Console Access Securely..223
skas3 versus skas0 ...225
Future Enhancements..226

sysemu ..226
PTRACE_FAULTINFO ..227
MADV_TRUNCATE ...227
remap_file_pages ..230
VCPU ..231

Final Points...232

11 Compiling UML from Source... 233
Downloading UML Source ...234
Configuration ..235

Useful Configuration Options..240
Compilation...249

12 Specialized UML Configurations ... 251
Large Numbers of Devices ...252

Network Interfaces...252
Memory ...257

Dike.book Page vii Wednesday, March 15, 2006 8:16 PM

viii Contents

Clusters... 265
Getting Started .. 265
Booting the Cluster.. 268
Exercises .. 272
Other Clusters ... 273

UML as a Decision-Making Tool for Hardware.. 273

13 The Future of UML... 275
The externfs Filesystem... 277
Virtual Processes.. 282
Captive UML.. 283

Secure mod_perl... 283
Evolution .. 286
Application Administration... 287
A Standard Application Programming Interface ... 289
Application-Level Clustering .. 289

Virtualized Subsystems ... 295
Conclusion .. 298

A UML Command-Line Options .. 301
Device and Hardware Specifications .. 301
Debugging Options... 303
Management Options... 304
Informational Options ... 305

B UML Utilities Reference ... 307
humfsify ... 307
uml_moo ... 308
uml_mconsole... 308
tunctl.. 310
uml_switch ... 311
Internal Utilities .. 312

Index.. 313

Dike.book Page viii Wednesday, March 15, 2006 8:16 PM

ix

Preface

When I started the User Mode Linux (UML) project in 1999, I had no
idea how large a project it would become or how much of my time it
would end up consuming. As time went on, the UML user base grew,
and people found new ways to use it. As a result of their requests, UML
contains a number of features that would never have occurred to me.

This book concentrates on the use of UML rather than its inter-
nals or plans for the future. I’ve tried to make it as easy as possible to
get started with UML and put to good use all of the features my users
induced me to add. Of course, I couldn’t resist going into how UML
works and what I have planned for its future. That would be too much
to ask of any developer of any project. I hope this content adds to the
book and the readers’ understanding and appreciation of UML.

Dike.book Page ix Wednesday, March 15, 2006 8:16 PM

Dike.book Page x Wednesday, March 15, 2006 8:16 PM

xi

Acknowledgments

It is not much of an exaggeration to say that the User Mode Linux
(UML) project would not exist without its users. They provide testing,
bug reports, and suggestions for improvements. Therefore, I would first
like to thank everyone who has used UML for taking part, especially
those who have tested bleeding-edge versions and who have provided
feedback, good or bad. I would especially like to thank Bill Stearns,
who has supported UML in innumerable ways since its early days.

A number of people have made contributions to the UML code
base by fixing bugs or by contributing new features. Some important
features were contributed by users who saw a need and wrote the code.
My thanks go out to them. Most significant are the contributions of
Paolo Giarrusso, who has become my right-hand man during the last
year or so. His contributions include bug fixes and features, documen-
tation and support, and improvements to the hosts in order to allow
them to better support UML.

The UML project has been supported financially by a number of
organizations, some of whom contracted for specific improvements; oth-
ers provided more general support. Among these, I would especially
like to thank the Dartmouth Institute for Security Technology Studies,
which saw in UML the potential for a new and powerful security tool.

Thanks also go to Intel Corporation for hiring me to work on UML
full time, and especially for tolerating a significant amount of that time
going toward writing this book.

Dike.book Page xi Wednesday, March 15, 2006 8:16 PM

Dike.book Page xii Wednesday, March 15, 2006 8:16 PM

xiii

About the Author

Jeff Dike grew up in rural northwest Connecticut. He graduated from
MIT and went to work at Digital Equipment Corporation in New
Hampshire. There he met several people who became prominent in the
Linux world, including Jon Hall and a large contingent that now works
at Red Hat. Jeff left Digital in 1993 during the implosion of the mini-
computer market. He spent the next decade as an independent contrac-
tor and became a Linux kernel developer in 1999 after conceiving of
and implementing UML. Since then, UML has been his job, becoming a
full-time paid one in mid-2004 when Intel hired him.

Dike.book Page xiii Wednesday, March 15, 2006 8:16 PM

Dike.book Page xiv Wednesday, March 15, 2006 8:16 PM

1

C H A P T E R 1

Introduction

WHAT IS UML?

User Mode Linux (UML) is a virtual Linux machine that runs on
Linux. Technically, UML is a port of Linux to Linux. Linux has been
ported to many different processors, including the ubiquitous x86,
Sun’s SPARC, IBM and Motorola’s PowerPC, DEC’s (then Compaq’s
and HP’s) Alpha, and a variety of others. UML is a port of Linux in
exactly the same sense as these. The difference is that it is a port to the
software interface defined by Linux rather than the hardware interface
defined by the processor and the rest of the physical computer.

UML has manifold uses for system administrators, users, and
developers. UML virtual machines are useful for test environments
that can be set up quickly and thrown away when no longer needed,
production environments that efficiently use the available hardware,
development setups that can make it much more convenient to test
software, plus a surprising number of other things.

Dike.book Page 1 Wednesday, March 15, 2006 8:16 PM

2 Chapter 1 Introduction

COMPARISON WITH OTHER VIRTUALIZATION TECHNOLOGIES

UML differs from other virtualization technologies in being more of a
virtual operating system (OS) rather than a virtual machine. In spite of
this, I will stick to the common terminology and call UML a virtual
machine technology rather than a virtual OS, which would be some-
what more accurate.

Technologies such as VMWare really are virtual machines. They
emulate a physical platform, from the CPU to the peripherals, well
enough that any OS that runs on the physical platform also runs on the
emulated platform provided by VMWare. This has the advantage that
it is fairly OS-agnostic—in principle, any OS that runs on the platform
can boot under VMWare. In contrast, UML can be only a Linux guest.
On the other hand, being a virtual OS rather than a virtual machine
allows UML to interact more fully with the host OS, which has advan-
tages we will see later.

Other virtualization technologies such as Xen, BSD jail, Solaris
zones, and chroot are integrated into the host OS, as opposed to UML,
which runs in a process. This gives UML the advantage of being inde-
pendent from the host OS version, at the cost of some performance.
However, a lot (maybe all) of this performance can be regained without
losing the flexibility and manageability that UML gains from being in
userspace.

As we will see later, the benefits of virtualization accrue largely
from the degree of isolation between users and processes inside the vir-
tual machine or jail and those outside it. Most of these technologies
(excluding Xen and VMWare) provide only partial virtualization and,
thus, partial isolation.

The least complete virtualization is provided by chroot, which
only jails processes into a directory. In all other respects, the processes
are unconfined. Even then, on Linux, chroot can’t confine a process
with root privileges, since its design allows superuser processes to
escape.

BSD jail and vserver (a Linux-based project with roughly the
same properties) provide stronger confinement. They confine processes
to a subset of the filesystem and don’t allow them to see processes out-
side the jail. A jail is also restricted to using a single IP address, and it
can’t manipulate its firewall rules. Jailed processes are not restricted
in their use of CPU time or I/O. The jails on a system are implemented
within the system’s kernel and therefore share the kernel, along with

Dike.book Page 2 Wednesday, March 15, 2006 8:16 PM

Why Virtual Machines? 3

the bugs and security holes it contains. The inability to change firewall
rules is a consequence of incomplete virtualization, as is the require-
ment to share the kernel with the host.

Solaris zones are much closer to full-blown virtual machines and
complete isolation. Processes within a zone can’t see outside files or
processes, as is the case with a jail. Zones have their own logical
devices, with some restrictions on their access to the network. For
example, raw access to packets isn’t allowed. A zone can be assigned a
certain number of shares within the global fair share scheduler, limit-
ing the share of CPU that the processes within a zone can consume. We
will see this concept later in the form of virtual processors in a multi-
processor virtual machine. Zones, like the other technologies described
so far, are implemented within the kernel and share the kernel version
and configuration with each other and the host.

Finally, technologies such as VMWare, Xen, and UML implement
full virtualization and isolation. They all have fully virtualized devices
with no restrictions on how they may be used. They also confine their
processes with respect to CPU consumption by virtue of having a cer-
tain number of virtual processors they may use. They also all run sepa-
rate instances of the OS, which may be different versions (and even a
completely different OS in the case of VMWare) than the host.

WHY VIRTUAL MACHINES?

A UML instance is a full-fledged Linux machine running on the host
Linux. It runs all the software and services that any other Linux
machine does. The difference is that UML instances can be conjured up
on demand and then thrown away when not needed. This advantage
lies behind the large range of applications that I and other people have
found for UML.

In addition to the flexibility of being able to create and destroy vir-
tual machines within seconds, the instances themselves can be dynam-
ically reconfigured. Virtual peripherals, processors, and memory can be
added and removed arbitrarily to and from a running UML instance.

There are also much looser limits on hardware configurations for
UML instances than for physical machines. In particular, they are not
limited to the hardware they are running on. A UML instance may
have more memory, more processors, and more network interfaces,
disks, and other devices than its host, or even any possible host. This

Dike.book Page 3 Wednesday, March 15, 2006 8:16 PM

4 Chapter 1 Introduction

makes it possible to test software for hardware you don’t own, but have
to support, or to configure software for a network before the network is
available.

In this book, I will describe the many uses of UML and provide
step-by-step instructions for using it. In doing so, I will provide you, the
reader, with the information and techniques needed to make full use of
UML. As the original author and current maintainer of UML, I have
seen UML mature from its decidedly cheesy beginnings to its current
state where it can do basically everything that any other Linux
machine can do (see Table 1.1).

A BIT OF HISTORY

I started working on UML in earnest in February 1999 after having the
idea that porting Linux to itself might be practical. I tossed the idea
around in the back of my head for a few months in late 1998 and early
1999. I was thinking about what facilities it would need from the host
and whether the system call interface provided by Linux was rich
enough to provide those facilities. Ultimately, I decided it probably was,
and in the cases where I wasn’t sure, I could think of workarounds.

So, around February, I pulled a copy of the 2.0.32 kernel tree off of
a Linux CD (probably a Red Hat source CD) because it was too painful
to try to download it through my dialup. Within the resulting kernel
tree, I created the directories my new port was going to need without
putting any files in them. This is the absolute minimum amount of infra-
structure you need for a new port. With the directories present, the ker-
nel build process can descend into them and try to build what’s there.

Table 1.1 UML Development Timeline

Date Event

Late 1998 to early 1999 I think about whether UML is possible.

Feb. 1999 I start working on UML.

June 3, 1999 UML is announced to the Linux kernel mailing list.

Sept. 12, 2002 UML is merged into 2.5.34.

June 21, 2004 I join Intel.

Dike.book Page 4 Wednesday, March 15, 2006 8:16 PM

A Bit of History 5

Needless to say, with nothing in those directories, the build didn’t
even start to work. I needed to add the necessary build infrastructure,
such as Makefiles. So, I added the minimal set of things needed to get
the kernel build to continue and looked at what failed next. Missing were
a number of header files used by the generic (hardware-independent)
portions of the kernel that the port needs to provide. I created them as
empty files, so that the #include preprocessor directives would at
least succeed, and proceeded onward.

At this point, the kernel build started complaining about missing
macros, variables, and functions—the things that should have been
present in my empty header files and nonexistent C source files. This
told me what I needed to think about implementing. I did so in the
same way as before: For the most part, I implemented the functions as
stubs that didn’t do anything except print an error message. I also started
adding real headers, mostly by copying the x86 headers into my include
directory and removing the things that had no chance of compiling.

After defining many of these useless procedures, I got the UML
build to “succeed.” It succeeded in the sense that it produced a program
I could run. However, running it caused immediate failures due to the
large number of procedures I defined that didn’t do what they were
supposed to—they did nothing at all except print errors. The utility of
these errors is that they told me in what order I had to implement
these things for real.

So, for the most part, I plodded along, implementing whatever
function printed its name first, making small increments of progress
through the boot process with each addition. In some cases, I needed to
implement a subsystem, resulting in a related set of functions.

Implementation continued in this vein for a few months, inter-
rupted by about a month of real, paying work. In early June, I got UML
to boot a small filesystem up to a login prompt, at which point I could
log in and run commands. This may sound impressive, but UML was
still bug-ridden and full of design mistakes. These would be rooted out
later, but at the time, UML was not much more than a proof of concept.

Because of design decisions made earlier, such fundamental things
as shared libraries and the ability to log in on the main console didn’t
work. I worked around the first problem by compiling a minimal set of
tools statically, so they didn’t need shared libraries. This minimal set of
tools was what I populated my first UML filesystem with. At the time
of my announcement, I made this filesystem available for download
since it was the only way anyone else was going to get UML to boot.

Dike.book Page 5 Wednesday, March 15, 2006 8:16 PM

6 Chapter 1 Introduction

Because of another design decision, UML, in effect, put itself in
the background, making it impossible for it to accept input from the
terminal. This became a problem when you tried to log in. I worked
around this by writing what amounted to a serial line driver, allowing
me to attach to a virtual serial line on which I could log in.

These are two of the most glaring examples of what didn’t work at
that point. The full list was much longer and included other things
such as signal delivery and process preemption. They didn’t prevent
UML from working convincingly, even though they were fairly funda-
mental problems, and they would get fixed later.

At the time, Linus was just starting the 2.3 development kernel
series. My first “UML-ized” kernel was 2.0.32, which, even at the time,
was fairly old. So, I bit the bullet and downloaded a “modern” kernel,
which was 2.3.5 or so. This started the process, which continues to this
day, of keeping in close touch with the current development kernels
(and as of 2.4.0, the stable ones as well).

Development continued, with bugs being fixed, design mistakes
rectified (and large pieces of code rewritten from scratch), and drivers
and filesystems added. UML spent a longer than usual amount of time
being developed out of pool, that is, not integrated into the mainline
Linus’ kernel tree. In part, this was due to laziness. I was comfortable
with the development methodology I had fallen into and didn’t see
much point in changing it.

However, pressure mounted from various sources to get UML into
the main kernel tree. Many people wanted to be able to build UML
from the kernel tree they downloaded from http://www.kernel.org or
got with their distribution. Others, wanting the best for the UML
project, saw inclusion in Linus’ kernel as being a way of getting some
public recognition or as a stamp of approval from Linus, thus attract-
ing more users to UML. More pragmatically, some people, who were
largely developers, noted that inclusion in the official kernel would
cause updates and bug fixes to happen in UML “automatically.” This
would happen as someone made a pass over the kernel sources, for
example, to change an interface or fix a family of bugs, and would cover
UML as part of that pass. This would save me the effort of looking
through the patch representing a new kernel release, finding those
changes, figuring out the equivalent changes needed in UML, and
making them. This had become my habit over the roughly four years of
UML development before it was merged by Linus. It had become a rou-
tine part of UML development, so I didn’t begrudge the time it took,

Dike.book Page 6 Wednesday, March 15, 2006 8:16 PM

A Bit of History 7

but there is no denying that it did take time that would have been bet-
ter spent on other things.

So, roughly in the spring of 2002, I started sending updated UML
patches to Linus, requesting that they be merged. These were ignored
for some months, and I was starting to feel a bit discouraged, when out
of the blue, he merged my 2.5.34 patch on September 12, 2002. I had
sent the patch earlier to Linus as well as the kernel mailing list and
one of my own UML lists, as usual, and had not thought about it fur-
ther. That day, I was idling on an Internet Relay Chat (IRC) channel
where a good number of the kernel developers hang around and talk.
Suddenly, Arnaldo Carvalho de Melo (a kernel contributor from Brazil
and the CTO of Conectiva, the largest Linux distribution in South
America) noticed that Linus had merged my patch into his tree.

The response to this from the other kernel hackers, and a little
later, from the UML community and wider Linux community, was grat-
ifying positive. A surprisingly (to me) large number of people were gen-
uinely happy that UML had been merged, and, in doing so, got the
recognition they thought it deserved.

At this writing, it is three years later, and UML is still under very
active development. There have been ups and downs. Some months
after UML was merged, I started finding it hard to get Linus to accept
updated patches. After a number of ignored patches, I started main-
taining UML out of tree again, with the effect that the in-tree version
of UML started to bit-rot. It stopped compiling because no one was
keeping it up to date with changes to internal kernel interfaces, and of
course bugs stopped being fixed because my fixes weren’t being merged
by Linus.

Late in 2004, an energetic young Italian hacker named Paolo Gia-
rrusso got Andrew Morton, Linus’ second-in-command, to include UML
in his tree. The so-called “-mm” tree is a sort of purgatory for kernel
patches. Andrew merges patches that may or may not be suitable for
Linus’ kernel in order to give them some wider exposure and see if they
are suitable. Andrew took patches representing the current UML at the
time from Paolo, and I followed that up with some more patches. Pres-
ently, Andrew forwarded those patches, along with many others, to Linus,
who included them in his tree. All of a sudden, UML was up to date in
the official kernel tree, and I had a reliable conduit for UML updates.

I fed a steady stream of patches through this conduit, and by the
time of the 2.6.9 release, you could build a working UML from the offi-
cial tree, and it was reasonably up to date.

Dike.book Page 7 Wednesday, March 15, 2006 8:16 PM

8 Chapter 1 Introduction

Throughout this period, I had been working on UML on a volun-
teer basis. I took enough contracting work to keep the bills paid and
the cats fed. Primarily, this was spending a day a week at the Institute
for Security Technology Studies at Dartmouth College, in northern
New Hampshire, about an hour from my house. This changed around
May and June of 2004, when, nearly simultaneously, I got job offers
from Red Hat and Intel. Both were very generous, offering to have me
spend my time on UML, with no requirements to move. I ultimately
accepted Intel’s offer and have been an Intel employee in the Linux OS
group since.

Coincidentally, the job offers came on the fifth anniversary of
UML’s first public announcement. So, in five years, UML went from
nothing to a fully supported part of the official Linux kernel.

WHAT IS UML USED FOR?

During the five years since UML began, I have seen steady growth in
the UML user base and in the number and variety of applications and
uses for UML. My users have been nothing if not inventive, and I have
seen uses for UML that I would never have thought of.

Server Consolidation

Naturally, the most common applications of UML are the obvious ones.
Virtualization has become a hot area of the computer industry, and
UML is being used for the same things as other virtualization technol-
ogies. Server consolidation is a major one, both internally within orga-
nizations and externally between them. Internal consolidation usually
takes the form of moving several physical servers into the same num-
ber of virtual machines running on a single physical host. External
consolidation is usually an ISP or hosting company offering to rent
UML instances to the public just as they rent physical servers. Here,
multiple organizations end up sharing physical hardware with each other.

The main attraction is cost savings. Computer hardware has
become so powerful and so cheap that the old model of one service, or
maybe two, per machine now results in hardware that is almost totally
idle. There is no technical reason that many services, and their data
and configurations, couldn’t be copied onto a single server. However, it
is easier in many cases to copy each entire server into a virtual machine

Dike.book Page 8 Wednesday, March 15, 2006 8:16 PM

What Is UML Used For? 9

and run them all unchanged on a single host. It is less risky since the
configuration of each is the same as on the physical server, so moving it
poses no chance of upsetting an already-debugged environment.

In other cases, virtual servers may offer organizational or political
benefits. Different services may be run by different organizations, and
putting them on a single physical server would require giving the root
password to each organization. The owner of the hardware would natu-
rally tend to feel queasy about this, as would any given organization
with respect to the others. A virtual server neatly solves this by giving
each service its own virtual machine with its own root password. Hav-
ing root privileges in a virtual machine in no way requires root privi-
leges on the host. Thus, the services are isolated from the physical
host, as well as from each other. If one of them gets messed up, it won’t
affect the host or the other services.

Moving from production to development, UML virtual machines
are commonly used to set up and test environments before they go live
in production. Any type of environment from a single service running
on a single machine to a network running many services can be tested
on a single physical host. In the latter case, you would set up a virtual
network of UMLs on the host, run the appropriate services on the vir-
tual hosts, and test the network to see that it behaves properly.

In a complex situation like this, UML shines because of the ease of
setting up and shutting down a virtual network. This is simply a mat-
ter of running a set of commands, which can be scripted. Doing this
without using virtual machines would require setting up a network of
physical machines, which is vastly more expensive in terms of time,
effort, space, and hardware. You would have to find the hardware, from
systems to network cables, find some space to put it in, hook it all
together, install and configure software, and test it all. In addition to
the extra time and other resources this takes, compared to a virtual
test environment, none of this can be automated.

In contrast, with a UML testbed, this can be completely auto-
mated. It is possible, and fairly easy, to full automate the configuration
and booting of a virtual network and the testing of services running on
that network. With some work, this can be reduced to a single script
that can be run with one command. In addition, you can make changes
to the network configuration by changing the scripts that set it up,
rather than rewiring and rearranging hardware. Different people can
also work independently on different areas of the environment by booting
virtual networks on their own workstations. Doing this in a physical

Dike.book Page 9 Wednesday, March 15, 2006 8:16 PM

10 Chapter 1 Introduction

environment would require separate physical testbeds for each person
working on the project.

Implementing this sort of testbed using UML systems instead of
physical ones results in the near-elimination of hardware requirements,
much greater parallelism of development and testing, and greatly
reduced turnaround time on configuration changes. This can reduce
the time needed for testing and improve the quality of the subsequent
deployment by increasing the amount and variety of testing that’s pos-
sible in a virtual environment.

A number of open source projects, and certainly a much larger
number of private projects, use UML in this way. Here are a couple
that I am aware of.

☞ Openswan (http://www.openswan.org), the open source IPSec project,
uses a UML network for nightly regression testing and its kernel
development.

☞ BusyBox (http://www.busybox.net), a small-footprint set of Linux
utilities, uses UML for its testing.

Education

Consider moving the sort of UML setup I just described from a corpo-
rate environment to an educational one. Instead of having a temporary
virtual staging environment, you would have a permanent virtual envi-
ronment in which students will wreak havoc and, in doing so, hopefully
learn something.

Now, the point of setting up a complicated network with inter-
related services running on it is simply to get it working in the virtual
environment, rather than to replicate it onto a physical network once
it’s debugged. Students will be assigned to make things work, and once
they do (or don’t), the whole thing will be torn down and replaced with
the next assignment.

The educational uses of UML are legion, including courses that
involve any sort of system administration and many that involve pro-
gramming. System administration requires the students to have root
privileges on the machines they are learning on. Doing this with physi-
cal machines on a physical network is problematic, to say the least.

As root, a student can completely destroy the system software
(and possibly damage the hardware). With the system on a physical
network, a student with privileges can make the network unusable by,

Dike.book Page 10 Wednesday, March 15, 2006 8:16 PM

What Is UML Used For? 11

wittingly or unwittingly, spoofing IP addresses, setting up rogue DNS
or DHCP servers, or poisoning ARP (Address Resolution Protocol)1

caches on other machines on the network.
These problems all have solutions in a physical environment.

Machines can be completely reimaged between boots to undo whatever
damage was done to the system software. The physical network can be
isolated from any other networks on which people are trying to do real
work. However, all this takes planning, setup, time, and resources that
just aren’t needed when using a UML environment.

The boot disk of a UML instance is simply a file in the host’s file-
system. Instead of reimaging the disk of a physical machine between
boots, the old UML root filesystem file can be deleted and replaced with
a copy of the original. As will be described in later chapters, UML has a
technology called COW (Copy-On-Write) files, which allow changes to a
filesystem to be stored in a host file separate from the filesystem itself.
Using this, undoing changes to a filesystem is simply a matter of delet-
ing the file that contains the changes. Thus, reimaging a UML system
takes a fraction of a second, rather than the minutes that reimaging a
disk can take.

Looking at the network, a virtual network of UMLs is by default
isolated from everything else. It takes effort, and privileges on the host,
to allow a virtual network to communicate with a physical one. In addi-
tion, an isolated physical network is likely to have a group of students
on it, so that one sufficiently malign or incompetent student could pre-
vent any of the others from getting anything done. With a UML
instance, it is feasible (and the simplest option) to give each student a
private network. Then, an incompetent student can’t mess up anyone
else’s network.

1. ARP is used on an Ethernet network to convert IP addresses to Ethernet ad-
dresses. Each machine on an Ethernet network advertises what IP addresses
it owns, and this information is stored by the other machines on the net-
work in their ARP caches. A malicious system could advertise that it owns
an IP address that really belongs to a different machine, in effect, hijacking
the address. For example, hijacking the address of the local name server
would result in name server requests being sent to the hijacking machine
rather than the legitimate name server. Nearly all Internet operations be-
gin with a name lookup, so hijacking the address of the name server gives
an enormous amount of control of the local network to the attacker.

Dike.book Page 11 Wednesday, March 15, 2006 8:16 PM

12 Chapter 1 Introduction

UML is also commonly used for learning kernel-level program-
ming. For novice to intermediate kernel programming students, UML
is a perfect environment in which to learn. It provides an authentic
kernel to modify, with the development and debugging tools that
should already be familiar. In addition, the hardware underneath this
kernel is virtualized and thus better behaved than physical hardware.
Failures will be caused by buggy software, not by misbehaving devices.
So, students can concentrate on debugging the code rather than diag-
nosing broken or flaky hardware.

Obviously, dealing with broken, flaky, slightly out-of-spec, not-
quite-standards-compliant devices are an essential part of an expert
kernel developer’s repertoire. To reach that exalted status, it is neces-
sary to do development on physical machines. But learning within a
UML environment can take you most of the way there.

Over the years, I have heard of education institutions teaching
many sort of Linux administration courses using UML. Some commer-
cial companies even offer system administration courses over the Inter-
net using UML. Each student is assigned a personal UML, which is
accessible over the Internet, and uses it to complete the coursework.

Development

Moving from system administration to development, I’ve seen a num-
ber of programming courses that use UML instances. Kernel-level pro-
gramming is the most obvious place for UMLs. A system-level
programming course is similar to a system administration course in
that each student should have a dedicated machine. Anyone learning
kernel programming is probably going to crash the machine, so you
can’t really teach such a course on a shared machine.

UML instances have all the advantages already described, plus a
couple of bonuses. The biggest extra is that, as a normal process run-
ning on the host, a UML instance can be debugged with all the tools
that someone learning system development is presumably already
familiar with. It can be run under the control of gdb, where the student
can set breakpoints, step through code, examine data, and do every-
thing else you can do with gdb. The rest of the Linux development
environment works as well with UML as with anything else. This
includes gprof and gcov for profiling and test coverage and strace
and ltrace for system call and library tracing.

Dike.book Page 12 Wednesday, March 15, 2006 8:16 PM

What Is UML Used For? 13

Another bonus is that, for tracking down tricky timing bugs, the
debugging tool of last resort, the print statement, can be used to dump
data out to the host without affecting the timing of events within the
UML kernel. With a physical machine, this ranges from extremely
hard to impossible. Anything you do to store information for later
retrieval can, and probably will, change the timing enough to obscure
the bug you are chasing. With a UML instance, time is virtual, and it
stops whenever the virtual machine isn’t in the host’s userspace, as it
is when it enters the host kernel to log data to a file.

A popular use for UML is development for hardware that does not
yet exist. Usually, this is for a piece of embedded hardware—an appli-
ance of some sort that runs Linux but doesn’t expose it. Developing the
software inside UML allows the software and hardware development to
run in parallel. Until the actual devices are available, the software can
be developed in a UML instance that is emulating the hardware.

Examples of this are hard to come by because embedded develop-
ers are notoriously close-lipped, but I know of a major networking
equipment manufacturer that is doing development with UML. The
device will consist of several systems hooked together with an internal
network. This is being simulated by a script that runs a set of UML
instances (one per system in the device) with a virtual network run-
ning between them and a virtual network to the outside. The software
is controlling the instances in exactly the same that it will control the
systems within the final device.

Going outside the embedded device market, UML is used to simu-
late large systems. A UML instance can have a very large amount of
memory, lots of processors, and lots of devices. It can have more of all
these things than the host can, making it an ideal way to simulate a
larger system than you can buy. In addition to simulating large systems,
UML can also simulate clusters. A couple of open source clustering sys-
tems and a larger number of cluster components, such as filesystems
and heartbeats, have been developed using UML and are distributed in
a form that will run within a set of UMLs.

Disaster Recovery Practice

A fourth area of UML use, which is sort of a combination of the previ-
ous two, is disaster recovery practice. It’s a combination in the sense
that this would normally be done in a corporate environment, but the
UML virtual machines are used for training.

Dike.book Page 13 Wednesday, March 15, 2006 8:16 PM

14 Chapter 1 Introduction

The idea is that you make a virtual copy of a service or set of ser-
vices, mess it up somehow, and figure out how to fix it. There will likely
be requirements beyond simply fixing what is broken. You may require
that the still-working parts of the service not be shut down or that the
recovery be done in the least amount of time or with the smallest num-
ber of operations.

The benefits of this are similar to those mentioned earlier. Virtual
environments are far more convenient to set up, so these sorts of exer-
cises become far easier when virtual machines are available. In many
cases, they simply become possible since hardware can’t be dedicated to
disaster recovery practice. The system administration staff can prac-
tice separately at their desks, and, given a well-chosen set of exercises,
they can be well prepared when disaster strikes.

THE FUTURE

This chapter provided a summary of the present state of UML and its
user community. This book will also describe what I have planned for
the future of UML and what those plans mean for its users.

Among the plans is a project to port UML into the host kernel so
that it runs inside the kernel rather than in a process. With some
restructuring of UML, breaking it up into independent subsystems
that directly use the resources provided by the host kernel, this in-ker-
nel UML can be used for a variety of resource limitation applications
such as resource control and jailing.

This will provide highly customizable jailing, where a jail is con-
structed by combining the appropriate subsystems into a single pack-
age. Processes in such a jail will be confined with respect to the
resources controlled by the jail, and otherwise unconfined. This struc-
ture of layering subsystems on top of each other has some other advan-
tages as well. It allows them to be nested, so that a user confined
within a jail could construct a subjail and put processes inside it. It
also allows the nested subsystems to use different algorithms than the
host subsystems. So, a workload with unusual scheduling or memory
needs could be run inside a jail with algorithms suitable for it.

However, the project I’m most excited about is using UML as a
library, allowing other applications to link against it and thereby gain a
captive virtual machine. This would have a great number of uses:

☞ Managing an application or service from the inside, by logging in
to the embedded UML

Dike.book Page 14 Wednesday, March 15, 2006 8:16 PM

The Future 15

☞ Running scripts inside the embedded UML to control, monitor,
and extend the application

☞ Using clustering technology to link multiple embedded UMLs into
a cluster and use scripts running on this cluster to integrate the
applications in ways that are currently not possible

Dike.book Page 15 Wednesday, March 15, 2006 8:16 PM

Dike.book Page 16 Wednesday, March 15, 2006 8:16 PM

17

C H A P T E R 2

A Quick Look at UML

This chapter will take a quick look at the inside of a UML. I will con-
centrate on the relationship between the UML and the host. For many
people, encountering a virtual machine for the first time can be confus-
ing because it may not be clear where the host ends and the virtual
machine starts.

For example, the virtual machine obviously is part of the host
since it can’t exist without the host. However, it is totally separate from
the host in other ways. You can be root inside the UML and have no
privileges1 whatsoever on the host. When UML is run, it is provided
some host resources to use as its own. The root user within UML has
absolute control over those, but no control, not even access, to anything
else on the host. It’s this extremely sharp distinction between what the
UML has access to and what it doesn’t that makes UML useful for a
large number of applications.

1. In order to run a process, you obviously need some level of privilege on the
system. However, a UML host can be set up such that the user that owns
the UML processes on the host can do nothing but run the UML process.

Dike.book Page 17 Wednesday, March 15, 2006 8:16 PM

18 Chapter 2 A Quick Look at UML

A second common source of confusion is the duality of UML. It is
both a Linux kernel and a Linux process. It is useful, and instructive,
to look at UML from both perspectives. However, to many people, a ker-
nel and a process are two completely different things, and there can be
no overlap between them. So, we will look at a UML from both inside
and outside, on the host, in order to compare the two views to each
other. We will see different views of the same things. They will look dif-
ferent but will both be correct in their own ways. Hopefully, by the end
of the chapter, it will be clear how something can be both a Linux ker-
nel and a Linux process.

Figure 2.1 shows the relationship among a UML instance, the host
kernel, and UML processes. To the host kernel, the UML instance is a
normal process. To the UML processes, the UML instance is a kernel.
Processes interact with the kernel by making system calls, which are
like procedure calls except that they request the kernel do something
on their behalf.

Like all other processes on the host, UML makes system calls to
the host kernel in order to do its work. Unlike the other host processes,
UML has its own system call interface for its processes to use. This is
the source of the duality of UML. It makes system calls to the host,
which makes it a process, and it implements system calls for its own
processes, making it a kernel.

Let’s take a look at the UML binary, which is normally called
linux:

host% ls -l linux
-rwxrw-rw- 2 jdike jdike 23346513 Jan 27 12:16 linux

Figure 2.1 UML as both a process and a kernel

Host kernel

System calls

System calls

Hardware

UMLpsls

ls ps

Dike.book Page 18 Wednesday, March 15, 2006 8:16 PM

A Quick Look at UML 19

This is a normal Linux ELF binary, as you can see by running file on
it:

host% file linux
linux: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), \
for GNU/Linux 2.2.5, statically linked, not stripped

It is also a Linux kernel, so it may be instructive to compare it to the
kernel running on this machine:

host% ls -l /boot/vmlinuz-2.4.26
-rw-r--r-- 1 root root 945800 Sep 18 17:12 /boot/vmlinuz-2.4.26

The UML binary is quite a bit larger than the kernel on the host,
but it has a full symbol table, as you can see from the output of file
above. So, let’s strip it and see what that does:

host% ls -l linux
-rwxrw-rw- 2 jdike jdike 2236936 Jan 27 15:01 linux

It’s a bit more than twice as large as the host kernel, possibly
because the configurations are different. I tend to build options into
UML, which on the host are modules. Checking this by adding up the
sizes of the modules loaded on the host yields this:

host% lsmod
Module Size Used by
usblp 17473 0
parport_pc 31749 1
lp 16713 0
parport 39561 2 parport_pc,lp
autofs4 23493 2
sunrpc 145541 1
...
host% lsmod | awk '{n += $2} END {print n}'
1147092

Adding that to the file size of vmlinuz-2.4.26 gives us some-
thing close to the size of the UML binary after the symbol table has
been stripped off.

What is the point of this comparison? It is to introduce the fact
that UML is both a Linux kernel and a Linux process. As a Linux pro-
cess, it can be run just like any other executable on the system, such as
bash or ls.

Dike.book Page 19 Wednesday, March 15, 2006 8:16 PM

20 Chapter 2 A Quick Look at UML

BOOTING UML FOR THE FIRST TIME

Let’s boot UML now:

host% ./linux

Checking for /proc/mm...not found
Checking for the skas3 patch in the host...not found
Checking PROT_EXEC mmap in /tmp...OK
Linux version 2.6.11-rc1-mm1 (jdike@tp.user-mode-linux.org) (gcc version 3.3.2

20031022 (Red Hat Linux 3.3.2-1)) #83 Thu Jan 27 12:16:00 EST 2005
Built 1 zonelists
Kernel command line: root=98:0
PID hash table entries: 256 (order: 8, 4096 bytes)
Dentry cache hash table entries: 8192 (order: 3, 32768 bytes)
Inode-cache hash table entries: 4096 (order: 2, 16384 bytes)
Memory: 29368k available
Mount-cache hash table entries: 512 (order: 0, 4096 bytes)
Checking for host processor cmov support...Yes
Checking for host processor xmm support...No
Checking that ptrace can change system call numbers...OK
Checking syscall emulation patch for ptrace...missing
Checking that host ptys support output SIGIO...Yes
Checking that host ptys support SIGIO on close...No, enabling workaround
Checking for /dev/anon on the host...Not available (open failed with errno 2)
NET: Registered protocol family 16
mconsole (version 2) initialized on /home/jdike/.uml/3m3vDd/mconsole
VFS: Disk quotas dquot_6.5.1
Dquot-cache hash table entries: 1024 (order 0, 4096 bytes)
io scheduler noop registered
io scheduler anticipatory registered
io scheduler deadline registered
io scheduler cfq registered
NET: Registered protocol family 2
IP: routing cache hash table of 512 buckets, 4Kbytes
TCP established hash table entries: 2048 (order: 2, 16384 bytes)
TCP bind hash table entries: 2048 (order: 1, 8192 bytes)
TCP: Hash tables configured (established 2048 bind 2048)
NET: Registered protocol family 1
NET: Registered protocol family 17
Initialized stdio console driver
Console initialized on /dev/tty0
Initializing software serial port version 1
VFS: Waiting 19sec for root device...
VFS: Waiting 18sec for root device...
VFS: Waiting 17sec for root device...
VFS: Waiting 16sec for root device...

Figure 2.2 Output from the first boot of UML

Dike.book Page 20 Wednesday, March 15, 2006 8:16 PM

Booting UML for the First Time 21

VFS: Waiting 15sec for root device...
VFS: Waiting 14sec for root device...
VFS: Waiting 13sec for root device...
VFS: Waiting 12sec for root device...
VFS: Waiting 11sec for root device...
VFS: Waiting 10sec for root device...
VFS: Waiting 9sec for root device...
VFS: Waiting 8sec for root device...
VFS: Waiting 7sec for root device...
VFS: Waiting 6sec for root device...
VFS: Waiting 5sec for root device...
VFS: Waiting 4sec for root device...
VFS: Waiting 3sec for root device...
VFS: Waiting 2sec for root device...
VFS: Waiting 1sec for root device...
VFS: Cannot open root device “98:0” or unknown-block(98,0)
Please append a correct “root=” boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(98,0)

EIP: 0023:[<a015a751>] CPU: 0 Not tainted ESP: 002b:40001fa0 EFLAGS: 00000206
 Not tainted
EAX: 00000000 EBX: 00002146 ECX: 00000013 EDX: 00002146
ESI: 00002145 EDI: 00000000 EBP: 40001fbc DS: 002b ES: 002b
Call Trace:
a0863af0: [<a0030446>] printk+0x12/0x14
a0863b00: [<a003ff32>] notifier_call_chain+0x22/0x40
a0863b30: [<a002f9f2>] panic+0x56/0x108
a0863b40: [<a003c0f6>] msleep+0x42/0x4c
a0863b50: [<a0002d96>] mount_block_root+0xd6/0x188
a0863bb0: [<a0002e9c>] mount_root+0x54/0x5c
a0863bc0: [<a0002f07>] prepare_namespace+0x63/0xa8
a0863bd0: [<a0002ebb>] prepare_namespace+0x17/0xa8
a0863bd4: [<a000e190>] init+0x0/0x108
a0863be4: [<a000e190>] init+0x0/0x108
a0863bf0: [<a000e291>] init+0x101/0x108
a0863c00: [<a0027131>] run_kernel_thread+0x39/0x40
a0863c18: [<a000e190>] init+0x0/0x108
a0863c28: [<a0027117>] run_kernel_thread+0x1f/0x40
a0863c50: [<a0013211>] unblock_signals+0xd/0x10
a0863c70: [<a002c51c>] finish_task_switch+0x24/0xa4
a0863c84: [<a000e190>] init+0x0/0x108
a0863c90: [<a002c5ad>] schedule_tail+0x11/0x124
a0863cc4: [<a000e190>] init+0x0/0x108
a0863cd0: [<a001ad58>] new_thread_handler+0xb0/0x104
a0863cd4: [<a000e190>] init+0x0/0x108
a0863d20: [<a015a508>] __restore+0x0/0x8
a0863d60: [<a015a751>] kill+0x11/0x20

Figure 2.2 Output from the first boot of UML (continued)

Dike.book Page 21 Wednesday, March 15, 2006 8:16 PM

22 Chapter 2 A Quick Look at UML

Notice two obvious things about the results, shown in Figure 2.2.

1. The output resembles the boot output of a normal Linux machine.
2. The boot was not very successful, as you can see from the panic

and stack dump at the end.

It’s worth comparing this to the boot output of a Linux system,
which is normally available by running dmesg. You’ll see a lot of simi-
larities—many of the messages, such as the ones from the filesystem
and network subsystems, are identical. Much of the rest are totally dif-
ferent, although they should seem similar in purpose. This is largely
due to hardware drivers initializing. UML doesn’t have the same hard-
ware or drivers as the host, so their bootup messages will be different.

If you have access to Linux on several different architectures, such as
x86 and x86_64 or ppc, you’ll see the same sorts of differences between
their boot output. In fact, this is a very apt comparison because UML is
a different architecture from the Linux kernel running on the host.

Let’s look at the output in more detail.

Checking for /proc/mm...not found
Checking for the skas3 patch in the host...not found
Checking PROT_EXEC mmap in /tmp...OK

These are checking the environment on the host to see if it can run
at all (the executable /tmp check) and whether the host kernel has
capabilities that allow UML to run more efficiently. You’ll see more of
this below, but these particular checks need to be done very early.

Checking for host processor cmov support...Yes
Checking for host processor xmm support...No
Checking that ptrace can change system call numbers...OK

These are checking some more capabilities of the host. The first
two are checking processor capabilities, and the last is checking
whether the host has a feature that’s absolutely needed for UML to run
(which all modern hosts do).

mconsole (version 2) initialized on /home/jdike/.uml/3m3vDd/mconsole
...
Initialized stdio console driver
...
Initializing software serial port version 1

Here, UML is initializing its drivers. A UML boot has much less
output of this sort compared with a boot of a physical Linux system.

Dike.book Page 22 Wednesday, March 15, 2006 8:16 PM

Booting UML for the First Time 23

This is because UML uses resources on the host to support its virtual
hardware, and there are many fewer types of these resources than
there are different types of devices on a physical system. For example,
every possible sort of block device within UML can be accessed as a
host file, so block devices require a single UML driver. In contrast, the
host has multitudes of block drivers, for IDE disks, SCSI disks, SATA
disks, and so on. Because of the uniform interface provided by the host,
UML requires many fewer drivers in order to access these devices and
the data on them.

The first driver is the mconsole2 driver, which allows a UML to be
controlled and managed from the host. This has no hardware equiva-
lent on most Linux systems. The last two are the console and serial line
drivers, which obviously do have hardware equivalents, except that the
UML drivers will communicate using virtual devices such as pseudo-
terminals rather than physical devices such as a graphics card or serial
line.

VFS: Waiting 1sec for root device...
VFS: Cannot open root device "98:0" or unknown-block(98,0)
Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on \
 unknown-block(98,0)

Here is the panic that killed off this attempted run of UML. The
problem is that we didn’t provide UML with a root device, so it couldn’t
mount its root filesystem. This is fatal and causes the panic and the
stack trace. You can make a physical Linux machine do exactly the
same thing by putting a bogus root= option on the kernel command
line using LILO or GRUB.3

Finally, an important point is that we just panicked a UML kernel,
and the only result was that we were dropped back to the shell prompt.
The host system itself, and everything else on the system, was totally
unaffected by the crash. This demonstrates the basis of many of the
advantages of UML over a physical system—it can be used in ways
that may cause system crashes or other software malfunctions, but the

2. MConsole stands for “Management Console” and is a mechanism for con-
trolling and monitoring a UML instance from the host.

3. UML needs no bootloader like the host needs LILO or GRUB. As it is run from
the command line, you can think of the host as being the UML bootloader.

Dike.book Page 23 Wednesday, March 15, 2006 8:16 PM

24 Chapter 2 A Quick Look at UML

damage is limited to the virtual machine. As we will see later, even this
damage can be undone quite easily.

That may have been interesting, but not very useful. Now, we will
boot UML successfully and see how it looks inside.

BOOTING UML SUCCESSFULLY

The problem was that we didn’t tell UML what its root device was. This
is an important special case of a more general property of UML—its
hardware is configured on the fly. In contrast to a physical system,
whose hardware is fixed, a virtual system can be different every time it
is booted. So, it expects to be told, either on the command line or later
via the mconsole interface, what hardware it possesses.

Here, we will configure UML on the command line. The first order
of business is to give it a proper root device so that it has something it
can boot. As I mentioned earlier, UML devices are virtual and con-
structed from host resources. Specifically, UML’s disks are generally
(but not always, as we will see later) files in the host’s filesystem.

For example, here is the filesystem we will boot:

host% ls -l ~/roots/debian_22
-rw-rw-r-- 1 jdike jdike 1074790400 Jan 27 18:31 \
 /home/jdike/roots/debian_22

One obvious thing here is that the filesystem image is very large.
file will tell us a bit more about it:

host% file ~/roots/debian_22
/home/jdike/roots/debian_22: Linux rev 1.0 ext2 filesystem data

This tells us that the data in this file is an ext2 filesystem image.
In other words, we can loopback-mount it and see that it contains a full
filesystem:

host# mount ~/roots/debian_22 ~/mnt -o loop
host% ls ~/mnt
bfs boot dev floppy initrd lib mnt root tmp var
bin cdrom etc home kernel lost+found proc sbin usr

In fact, when mounting this as its root filesystem, UML will do
something very similar to a loopback mount. The UML block driver
operates by calling read and write on this file on the host, analogous to
a block driver on the host doing reads and writes on a physical disk.

Dike.book Page 24 Wednesday, March 15, 2006 8:16 PM

Booting UML Successfully 25

The loopback driver on the host is doing exactly the same thing, except
from within the host kernel, rather than from a process, where the
UML block driver is.

So, in order to provide this file to UML as its root device, we need
to tell the UML block driver (the ubd or UML Block Device driver) to
attach itself to it. This is done with this option:

ubda=~/roots/debian_22

This is the easiest way to initialize a UML block device, and it simply
says that the first UML block device is to be attached to the file ~/roots/
debian_22. Internally, UML tells the kernel initialization code to use
the ubda device as its default root device (this can be overridden by
specifying a different device with the root= switch, as the panic mes-
sage suggested).

I’m going to add one more option to the command line to make the
virtual machine’s configuration more explicit:

mem=128M

This makes UML believe it has 128MB of physical memory but
does not actually allocate 128MB on the host. Rather, this creates a
128MB sparse file on the host. Being sparse, this file will occupy very
little space until data starts being written to it. As the UML instance
uses its memory, it will start putting data in the memory backed by
this file. As that happens, the host will start allocating memory to hold
that data. Since the file is fixed in size, the UML instance is limited to
that amount of memory. Its memory consumption will approach this
limit asymptotically as it reads file data from its own disks and caches
it in its memory.

Since the host will be allocating memory for the UML instance
dynamically, as needed, the actual consumption will be less than the
maximum for a time. This conserves memory, making it possible to run
a greater number of not-too-active UML instances than would be possi-
ble otherwise.

The host memory consumption will, in this case, be at most
128MB. Even if the UML instance is fully using its memory, the host
memory consumption may be less, as it may have swapped out some of
the UML memory. The UML instance, like any other process that has
been swapped out, will be unaware of this and will use its memory as
though it is present in the host’s memory. The host kernel is responsible
for swapping data back in as needed in order to maintain this illusion.

Dike.book Page 25 Wednesday, March 15, 2006 8:16 PM

26 Chapter 2 A Quick Look at UML

The UML instance will also swap if its workload exceeds its physi-
cal memory. This is entirely independent from the host swapping the
UML instance’s memory. Each system will swap when it needs more
memory, so if the host is short of memory and the UML instance has
plenty, the host will swap and the UML instance won’t. Conversely, if
the UML instance is short of memory and the host isn’t, the UML
instance will swap and the host won’t. The case where both are swap-
ping at the same time is interesting and can lead to pathological perfor-
mance problems.4

So, the UML command ends up looking like this:

~/linux mem=128M ubda=/home/jdike/roots/debian_22

Figure 2.3 shows the results.
This is much more interesting than the last attempt. We get to see

the filesystem booting. Note that it’s almost exactly the same as it
would be if the same filesystem were booted on the host. The under-
lying virtual machine shows through in only a couple of places. One is
when the root filesystem is checked5:

/dev/ubd0: clean, 9591/131328 files, 64611/262144 blocks

where we see the UML device name, /dev/ubd0, rather than hda1 or
sda1 as on a physical machine.

4. Consider the case where both the host and the UML instance are swapping
at the same time. They may both choose the same page to swap out. If the
host swaps it out first, then when the UML instance swaps it, the host will
need to read it back from disk so that the UML instance can write it to its
own swap device. This will cause the page to be read and written a total of
three times, when only once was desirable. This will increase the I/O load
on the host at a time when it is already under stress. Solutions for this sort
of situation are under investigation and will be described in Chapter 10.

5. The fsck message refers to /dev/ubd0 rather than /dev/ubda. Devices
can be specified with either numbers or letters. Using letters is generally fa-
vored since it is similar to current practice with other drivers, such as nam-
ing IDE disks hda, hdb, and so on. It also makes the use of multiple ubd
devices within UML less confusing. There’s less expectation that ubdb on
the command line corresponds to minor number 1 inside the UML instance,
as the use of ubd1 does. In fact, ubdb has minor number 16 (to allow for par-
titions on ubda). The one case where numbers are needed is when you are
plugging a large number of disks into a UML instance. There is no letter
equivalent of ubd512, so you’d have to use a number to describe this device.

Dike.book Page 26 Wednesday, March 15, 2006 8:16 PM

Booting UML Successfully 27

~/linux/2.6/2.6.10 22849: ./linux mem=128M ubda=/home/jdike/roots/debian_22
Checking for /proc/mm...not found
Checking for the skas3 patch in the host...not found
Checking PROT_EXEC mmap in /tmp...OK
Linux version 2.6.11-rc1-mm1 (jdike@tp.user-mode-linux.org) (gcc version 3.3.2

20031022 (Red Hat Linux 3.3.2-1)) #83 Thu Jan 27 12:16:00 EST 2005
Built 1 zonelists
Kernel command line: mem=128M ubda=/home/jdike/roots/debian_22 root=98:0
PID hash table entries: 1024 (order: 10, 16384 bytes)
Dentry cache hash table entries: 32768 (order: 5, 131072 bytes)
Inode-cache hash table entries: 16384 (order: 4, 65536 bytes)
Memory: 126720k available
Mount-cache hash table entries: 512 (order: 0, 4096 bytes)
Checking for host processor cmov support...Yes
Checking for host processor xmm support...No
Checking that ptrace can change system call numbers...OK
Checking syscall emulation patch for ptrace...missing
Checking that host ptys support output SIGIO...Yes
Checking that host ptys support SIGIO on close...No, enabling workaround
Checking for /dev/anon on the host...Not available (open failed with errno 2)
NET: Registered protocol family 16
mconsole (version 2) initialized on /home/jdike/.uml/igpn9r/mconsole
VFS: Disk quotas dquot_6.5.1
Dquot-cache hash table entries: 1024 (order 0, 4096 bytes)
io scheduler noop registered
io scheduler anticipatory registered
io scheduler deadline registered
io scheduler cfq registered
NET: Registered protocol family 2
IP: routing cache hash table of 512 buckets, 4Kbytes
TCP established hash table entries: 8192 (order: 4, 65536 bytes)
TCP bind hash table entries: 8192 (order: 3, 32768 bytes)
TCP: Hash tables configured (established 8192 bind 8192)
NET: Registered protocol family 1
NET: Registered protocol family 17
Initialized stdio console driver
Console initialized on /dev/tty0
Initializing software serial port version 1
 ubda: unknown partition table
VFS: Mounted root (ext2 filesystem) readonly.
line_ioctl: tty0: ioctl KDSIGACCEPT called
INIT: version 2.78 booting
Activating swap...
Checking root file system...
Parallelizing fsck version 1.18 (11-Nov-1999)
/dev/ubd0: clean, 9591/131328 files, 64611/262144 blocks
Calculating module dependencies... depmod: get_kernel_syms: Function not

implemented
done.
Loading modules: cat: /etc/modules: No such file or directory

(continues)

Figure 2.3 Output from the first successful boot of UML

Dike.book Page 27 Wednesday, March 15, 2006 8:16 PM

28 Chapter 2 A Quick Look at UML

The other is when the boot scripts try to synchronize the internal
kernel clock with the system’s hardware clock:

Setting the System Clock using the Hardware Clock as reference...
line_ioctl: tty1: unknown ioctl: 0x4b50
hwclock is unable to get I/O port access: the iopl(3) call \
 failed.

The UML serial line driver is complaining about an ioctl it
doesn’t implement, and the hwclock program inside UML is complain-

modprobe: Can’t open dependencies file /lib/modules/2.6.11-rc1-mm1/modules.dep
(No such file or directory)

Checking all file systems...
Parallelizing fsck version 1.18 (11-Nov-1999)
Setting kernel variables.
Mounting local filesystems...
mount: devpts already mounted on /dev/pts
none on /tmp type tmpfs (rw)
Setting up IP spoofing protection: rp_filter.
Configuring network interfaces: done.

Setting the System Clock using the Hardware Clock as reference...
line_ioctl: tty1: unknown ioctl: 0x4b50
hwclock is unable to get I/O port access: the iopl(3) call failed.
System Clock set. Local time: Thu Jan 27 18:51:28 EST 2005

Cleaning: /tmp /var/lock /var/run.
Initializing random number generator... done.
Recovering nvi editor sessions... done.
INIT: Entering runlevel: 2
Starting system log daemon: syslogd syslogd: /dev/xconsole: No such file or

directory
 klogd.
Starting portmap daemon: portmap.
Starting NFS common utilities: statd lockdlockdsvc: Function not implemented
.
Starting internet superserver: inetd.
Starting MySQL database server: mysqld.
Not starting NFS kernel daemon: No exports.
Starting OpenBSD Secure Shell server: sshd.
Starting web server: apache.
/usr/sbin/apachectl start: httpd started

Debian GNU/Linux 2.2 usermode tty0

usermode login:

Figure 2.3 Output from the first successful boot of UML (continued)

Dike.book Page 28 Wednesday, March 15, 2006 8:16 PM

Looking at a UML from the Inside and Outside 29

ing that it tried to execute the iopl instruction and failed. These are
both symptoms of hwclock trying different methods of accessing the
hardware system clock and failing because the device doesn’t exist in
UML. The UML kernel does have access to a clock, but it is not one
that hwclock will recognize. Rather, it is simply a call to the host’s
gettimeofday.

After that, you’ll notice that a relatively small number of services
are started, but they do include such things as NFS, MySQL, and
Apache. All of these run just as they would on a physical machine. This
boot process took about 5 seconds on my laptop, demonstrating one of
the conveniences of UML—the ability to quickly create and destroy vir-
tual machines.

LOOKING AT A UML FROM THE INSIDE AND OUTSIDE

Finally, we’ll see a login prompt. Actually, I see three on my screen.
One is in the xterm window in which I ran UML. The other two are in
xterm windows run by UML in order to hold the second console and the
first serial line, which are configured to have gettys running on them.
We’ll log in as root (using the highly secure default root password of
root that most of my UML filesystems have) and get a shell:

usermode login: root
Password:
Last login: Thu Jan 27 18:51:35 2005 on tty0
Linux usermode 2.6.11-rc1-mm1 #83 Thu Jan 27 12:16:00 EST 2005 \
 i686 unknown
usermode:~#

Again, this is identical to what you’d see if you logged in to a phys-
ical machine booted on this filesystem.

Now it’s time to start poking around inside this UML and see
what it looks like. First, we’ll look at what processes are running, as
shown in Figure 2.4.

There’s not much to comment on except the total normality of this
output. What’s interesting here is to look at the host. Figure 2.5 shows
the corresponding processes on the host.

Each of the nameless host processes corresponds to an address
space inside this UML instance. Except for application and kernel
threads, there’s a one-to-one correspondence between UML processes
and these host processes.

Dike.book Page 29 Wednesday, March 15, 2006 8:16 PM

30 Chapter 2 A Quick Look at UML

Notice that the properties of the UML processes and the corre-
sponding host processes don’t have much in common. All of the host
processes are owned by me, whereas the UML processes have various
owners, including root. The process IDs are totally different, as are the
virtual and resident memory sizes.

This is because the host processes are simply containers for UML
address spaces. All of the properties visible inside UML are maintained
by UML totally separate from the host. For example, the owner of the
host processes will be whoever ran UML. However, many UML pro-
cesses will be owned by root. These processes have root privileges

usermode:~# ps uax
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.3 1100 464 ? S 19:17 0:00 init [2]
root 2 0.0 0.0 0 0 ? RWN 19:17 0:00 [ksoftirqd/0]
root 3 0.0 0.0 0 0 ? SW< 19:17 0:00 [events/0]
root 4 0.0 0.0 0 0 ? SW< 19:17 0:00 [khelper]
root 5 0.0 0.0 0 0 ? SW< 19:17 0:00 [kthread]
root 6 0.0 0.0 0 0 ? SW< 19:17 0:00 [kblockd/0]
root 7 0.0 0.0 0 0 ? SW 19:17 0:00 [pdflush]
root 8 0.0 0.0 0 0 ? SW 19:17 0:00 [pdflush]
root 10 0.0 0.0 0 0 ? SW< 19:17 0:00 [aio/0]
root 9 0.0 0.0 0 0 ? SW 19:17 0:00 [kswapd0]
root 96 0.0 0.4 1420 624 ? S 19:17 0:00 /sbin/syslogd
root 98 0.0 0.3 1084 408 ? S 19:17 0:00 /sbin/klogd
daemon 102 0.0 0.3 1200 420 ? S 19:17 0:00 /sbin/portmap
root 105 0.0 0.4 1128 548 ? S 19:17 0:00 /sbin/rpc.statd
root 111 0.0 0.4 1376 540 ? S 19:17 0:00 /usr/sbin/inetd
root 120 0.0 0.6 1820 828 ? S 19:17 0:00 /bin/sh /usr/bin/
mysql 133 0.1 1.2 19244 1540 ? S 19:17 0:00 /usr/sbin/mysqld
mysql 135 0.0 1.2 19244 1540 ? S 19:17 0:00 /usr/sbin/mysqld
mysql 136 0.0 1.2 19244 1540 ? S 19:17 0:00 /usr/sbin/mysqld
root 144 0.9 0.9 2616 1224 ? S 19:17 0:00 /usr/sbin/sshd
root 149 0.0 1.0 2588 1288 ? S 19:17 0:00 /usr/sbin/apache
root 152 0.0 0.9 2084 1220 tty0 S 19:17 0:00 -bash
root 153 0.0 0.3 1084 444 tty1 S 19:17 0:00 /sbin/getty 38400
root 154 0.0 0.3 1084 444 tty2 S 19:17 0:00 /sbin/getty 38400
root 155 0.0 0.3 1084 444 ttyS0 S 19:17 0:00 /sbin/getty 38400
www-data 156 0.0 1.0 2600 1284 ? S 19:17 0:00 /usr/sbin/apache
www-data 157 0.0 1.0 2600 1284 ? S 19:17 0:00 /usr/sbin/apache
www-data 158 0.0 1.0 2600 1284 ? S 19:17 0:00 /usr/sbin/apache
www-data 159 0.0 1.0 2600 1284 ? S 19:17 0:00 /usr/sbin/apache
www-data 160 0.0 1.0 2600 1284 ? S 19:17 0:00 /usr/sbin/apache
root 162 2.0 0.5 2384 736 tty0 R 19:17 0:00 ps uax
usermode:~#

Figure 2.4 Output from ps uax inside UML

Dike.book Page 30 Wednesday, March 15, 2006 8:16 PM

Looking at a UML from the Inside and Outside 31

inside UML, but they have no special privileges on the host. This
important fact means that root can do anything inside UML without
being able to do anything on the host. A user logged in to a UML as
root has no special abilities on the host and, in fact, may not have any
abilities at all on the host.

Now, let’s look at the memory usage information in /proc/mem-
info, shown in Figure 2.6.

The total amount of memory shown, 126796K, is close to the
128MB we specified on the command line. It’s not exactly 128MB
because some memory allocated during early boot isn’t counted in the
total. Going back to the host ps output in Figure 2.5, notice that the
linux processes have a virtual size (the VSZ column) of almost exactly
128MB. The difference of 50K is due to a small amount of memory in
the UML binary, which isn’t counted as part of its physical memory.

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
jdike 9938 0.1 3.1 131112 16264 pts/3 R 19:17 0:03 ./linux [ps]
jdike 9942 0.0 3.1 131112 16264 pts/3 S 19:17 0:00 ./linux [ps]
jdike 9943 0.0 3.1 131112 16264 pts/3 S 19:17 0:00 ./linux [ps]
jdike 9944 0.0 0.0 472 132 pts/3 T 19:17 0:00
jdike 10036 0.0 0.5 8640 2960 pts/3 S 19:17 0:00 xterm -T Virtual
jdike 10038 0.0 0.0 1368 232 ? S 19:17 0:00 /usr/lib/uml/port
jdike 10039 0.0 1.5 131092 8076 pts/6 S 19:17 0:00 ./linux [hwclock]
jdike 10095 0.0 0.1 632 604 pts/3 T 19:17 0:00
jdike 10099 0.0 0.0 416 352 pts/3 T 19:17 0:00
jdike 10107 0.0 0.0 428 332 pts/3 T 19:17 0:00
jdike 10113 0.0 0.1 556 516 pts/3 T 19:17 0:00
jdike 10126 0.0 0.0 548 508 pts/3 T 19:17 0:00
jdike 10143 0.0 0.0 840 160 pts/3 T 19:17 0:00
jdike 10173 0.0 0.2 1548 1140 pts/3 T 19:17 0:00
jdike 10188 0.0 0.1 1232 780 pts/3 T 19:17 0:00
jdike 10197 0.0 0.1 1296 712 pts/3 T 19:17 0:00
jdike 10205 0.0 0.0 452 452 pts/3 T 19:17 0:00
jdike 10207 0.0 0.0 452 452 pts/3 T 19:17 0:00
jdike 10209 0.0 0.0 452 452 pts/3 T 19:17 0:00
jdike 10210 0.0 0.5 8640 2960 pts/3 S 19:17 0:00 xterm -T Virtual
jdike 10212 0.0 0.0 1368 232 ? S 19:17 0:00 /usr/lib/uml/port
jdike 10213 0.0 2.9 131092 15092 pts/7 S 19:17 0:00 ./linux [/sbin/ge
jdike 10214 0.0 0.1 1292 688 pts/3 T 19:17 0:00
jdike 10215 0.0 0.1 1292 676 pts/3 T 19:17 0:00
jdike 10216 0.0 0.1 1292 676 pts/3 T 19:17 0:00
jdike 10217 0.0 0.1 1292 676 pts/3 T 19:17 0:00
jdike 10218 0.0 0.1 1292 676 pts/3 T 19:17 0:00
jdike 10220 0.0 0.1 1228 552 pts/3 T 19:17 0:00

Figure 2.5 Partial output from ps uax on the host

Dike.book Page 31 Wednesday, March 15, 2006 8:16 PM

32 Chapter 2 A Quick Look at UML

Now, let’s go back to the host ps output and pick one of the UML
processes:

jdike 9938 0.1 3.1 131112 16264 pts/3 R 19:17 0:03 \
 ./linux [ps]

We can look at its open files by looking at the /proc/9938/fd direc-
tory, which shows an entry like this:

lrwx------ 1 jdike jdike 64 Jan 28 12:48 3 -> \
 /tmp/vm_file-AwBs1z (deleted)

This is the host file that holds, and is the same size (128MB in our
case) as, the UML “physical” memory. It is created in /tmp and then
deleted. The deletion prevents something else on the host from opening
it and corrupting it. However, this has the somewhat undesirable side
effect that /tmp can become filled with invisible files, which can con-
fuse people who don’t know about this aspect of UML’s behavior.

To make matters worse, it is recommended for performance reasons
to use tmpfs on /tmp. UML performs noticeably better when its memory

usermode:~# cat /proc/meminfo
MemTotal: 126796 kB
MemFree: 112952 kB
Buffers: 512 kB
Cached: 7388 kB
SwapCached: 0 kB
Active: 6596 kB
Inactive: 3844 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 126796 kB
LowFree: 112952 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
Mapped: 5424 kB
Slab: 2660 kB
CommitLimit: 63396 kB
Committed_AS: 23100 kB
PageTables: 248 kB
VmallocTotal: 383984 kB
VmallocUsed: 24 kB
VmallocChunk: 383960 kB

Figure 2.6 The UML /proc/meminfo

Dike.book Page 32 Wednesday, March 15, 2006 8:16 PM

Looking at a UML from the Inside and Outside 33

file is on tmpfs rather than on a disk-based filesystem such as ext3.
However, a tmpfs mount is smaller than the disk-based filesystem /tmp
would normally be on and thus more likely to run out of space when
running multiple UML instances. This can be handled by making the
tmpfs mount large enough to hold the maximum physical memories of
all the UML instances on the host or by creating a tmpfs mount for
each UML instance that is large enough to hold its physical memory.

Take a look at the root directory:

UML# ls /
bfs boot dev floppy initrd lib mnt root tmp var
bin cdrom etc home kernel lost+found proc sbin usr

This looks strikingly similar to the listing of the loopback mount
earlier and somewhat different from the host. Here UML has done the
equivalent of a loopback mount of the ~/roots/debian_22 file on the
host.

Note that making the loopback mount on the host required root
privileges, while I ran UML as my normal, nonroot self and accom-
plished the same thing. You might think this demonstrates that either
the requirement of root privileges on the host is unnecessary or that
UML is some sort of security hole for not requiring root privileges to do
the same thing. Actually, neither is true because the two operations,
the loopback mount on the host and UML mounting its root filesystem,
aren’t quite the same thing. The loopback mount added a mount point
to the host’s filesystem, while the mount of / within UML doesn’t. The
UML mount is completely separate from the host’s filesystem, so the
ability to do this has no security implications.

However, from a different point of view, some security implications do
arise. There is no access from the UML filesystem to the host filesystem.
The root user inside the UML can do anything on the UML filesystem,
and thus, to the host file that contains it, but can’t do anything outside
it. So, inside UML, even root is jailed and can’t break out.6

6. We will talk about this in greater detail in Chapter 10, but UML is secure
against a breakout by the superuser only if it is configured properly. Most
important, module support and the ability to write to physical memory
must be disabled within the UML instance. The UML instance is owned by
some user on the host, and the UML kernel has the same privileges as that
user. So, the ability for root to modify kernel memory and inject code into it
would allow doing anything on the host that the host user can do. Disallow-
ing this ensures that even the superuser inside UML stays jailed.

Dike.book Page 33 Wednesday, March 15, 2006 8:16 PM

34 Chapter 2 A Quick Look at UML

This is a general property of UML—a UML is a full-blown Linux
machine with its own resources. With respect to those resources, the
root user within UML can do anything. But it can do nothing at all to
anything on the host that’s not explicitly provided to the UML. We’ve
just seen this with disk space and files, and it’s also true for network-
ing, memory, and every other type of host resource that can be made
accessible within UML.

Next, we can see some of UML’s hardware support by looking at
the mount table:

UML# mount
/dev/ubd0 on / type ext2 (rw)
proc on /proc type proc (rw)
devpts on /dev/pts type devpts (rw,gid=5,mode=620)
none on /tmp type tmpfs (rw)

Here we see the ubd device we configured on the command line
now mounted as the root filesystem. The other mounts are normal vir-
tual filesystems, procfs and devpts, and a tmpfs mount on /tmp.

df will show us how much space is available on the virtual disk:

UML# df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/ubd0 1032056 242108 737468 25% /
none 63396 0 63396 0% /tmp

Compare the total size of /dev/ubd0 (1032056K) to that of the
host file:

-rw-rw-r-- 1 jdike jdike 1074790400 Jan 27 18:31 \
 /home/jdike/roots/debian_22

They are nearly the same,7 with the difference probably being the
ext2 filesystem overhead. The entire UML filesystem exists in and is
confined to that host file. This is another way in which users inside the
UML are confined or jailed. A UML user has no way to consume more
disk space than is in that host file.

However, on the host, it is possible to extend the filesystem file,
and the extra space becomes available to UML. In Chapter 6 we will
see exactly how this is done, but for now, it’s just important to note that
this is a good example of how much more flexible virtual hardware is in

7. The difference between the 1074790400 byte host file and 1032056K
(1056825344 bytes) is 1.7%.

Dike.book Page 34 Wednesday, March 15, 2006 8:16 PM

Looking at a UML from the Inside and Outside 35

comparison to physical hardware. Try adding extra space to a physical
disk or a physical disk partition. You can repartition the disk in order
to extend a partition, but that’s a nontrivial, angst-ridden operation
that potentially puts all of the data on the disk at risk if you make a
mistake. You can also add a new volume to the volume group you wish
to increase, but this requires that the volume group be set up before-
hand and that you have a spare partition to add to it. In comparison,
extending a file using dd is a trivial operation that can be done as a
normal user, doesn’t put any data at risk except that in the file, and
doesn’t require any prior setup.

We can poke around /proc some more to compare and contrast
this virtual machine with the physical host it’s running on. For some
similarities, let’s look at /proc/filesystems:

UML# more /proc/filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev sockfs
nodev pipefs
nodev futexfs
nodev tmpfs
nodev eventpollfs
nodev devpts
 reiserfs
 ext3
 ext2
nodev ramfs
nodev mqueue

There’s no sign of any UML oddities here at all. The reason is that
the filesystems are not hardware dependent. Anything that doesn’t
depend on hardware will be exactly the same in UML as on the host.
This includes things such as virtual devices (e.g., pseudo-terminals,
loop devices, and TUN/TAP8 network interfaces) and network proto-
cols, as well as the filesystems.

So, in order to see something different from the host, we have to
look at hardware-specific stuff. For example, /proc/interrupts con-
tains information about all interrupt sources on the system. On the

8. The TUN/TAP driver is a virtual network interface that allows packets to
be handled by a process, in order to create a tunnel (the origin of “TUN”) or
a virtual Ethernet device (“TAP”).

Dike.book Page 35 Wednesday, March 15, 2006 8:16 PM

36 Chapter 2 A Quick Look at UML

host, it contains information about devices such as the timer, keyboard,
and disks. In UML, it looks like this:

UML# more /proc/interrupts
 CPU0
 0: 211586 SIGVTALRM timer
 2: 87 SIGIO console, console, console
 3: 0 SIGIO console-write, console-write, \
 console-write
 4: 2061 SIGIO ubd
 6: 0 SIGIO ssl
 7: 0 SIGIO ssl-write
 9: 0 SIGIO mconsole
 10: 0 SIGIO winch, winch, winch
 11: 56 SIGIO write sigio

The timer, keyboard, and disks are here (entries 0, 2 and 6, and 4,
respectively), as are a bunch of mysterious-looking entries. The -write
entries stem from a weakness in the host Linux SIGIO support. SIGIO
is a signal generated when input is available, or output is possible, on a
file descriptor. A process wishing to do interrupt-driven I/O would set
up SIGIO support on the file descriptors it’s using. An interrupt when
input is available on a file descriptor is obviously useful. However, an
interrupt when output is possible is also sometimes needed.

If a process is writing to a descriptor, such as one belonging to a
pipe or a network socket, faster than the process on the other side is
reading it, then the kernel will buffer the extra data. However, only a
limited amount of buffering is available. When that limit is reached,
further writes will fail, returning EAGAIN. It is necessary to know when
some of the data has been read by the other side and writes may be
attempted again. Here, a SIGIO signal would be very handy. The trou-
ble is that support of SIGIO when output is possible is not universal.
Some IPC mechanisms support SIGIO when input is available, but not
when output is possible.

In these cases, UML emulates this support with a separate thread
that calls poll to wait for output to become possible on these descrip-
tors, interrupting the UML kernel when this happens. The interrupt
this generates is represented by one of the -write interrupts.

The other mysterious entry is the winch interrupt. This appears
because UML wants to detect when one of its consoles changes size, as
when you resize the xterm in which you ran UML. Obviously this is not
a concern for the host, but it is for a virtual machine. Because of the
interface for registering for SIGWINCH on a host device, a separate
thread is created to receive SIGWINCH, and it interrupts UML itself

Dike.book Page 36 Wednesday, March 15, 2006 8:16 PM

Conclusion 37

whenever one comes in. Thus, SIGWINCH looks like a separate device
from the point of view of /proc/interrupts.

/proc/cpuinfo is interesting:

UML# more /proc/cpuinfo
processor : 0
vendor_id : User Mode Linux
model name : UML
mode : skas
host : Linux tp.user-mode-linux.org 2.4.27 #6 \
 Thu Jan 13 17:06:15 EST 2005 i686
bogomips : 1592.52

Much of the information in the host’s /proc/cpuinfo makes no
sense in UML. It contains information about the physical CPU, which
UML doesn’t have. So, I just put in some information about the host,
plus some about the UML itself.

CONCLUSION

At this point, we’ve seen a UML from both the inside and the outside.
We’ve seen how a UML can use host resources for its hardware and
how it’s confined to whatever has been provided to it.

A UML is both very similar to and very different from a physical
machine. It is similar as long as you don’t look at its hardware. When
you do, it becomes clear that you are looking at a virtual machine with
virtual hardware. However, as long as you stay away from the hard-
ware, it is very hard to tell that you are inside a virtual machine.

Both the similarities and the differences have advantages. Obvi-
ously, having a UML run applications in exactly the same way as on
the host is critical for it to be useful. In this chapter we glimpsed some
of the advantages of virtual hardware. Soon we will see that virtualized
hardware can be plugged, unplugged, extended, and managed in ways
that physical hardware can’t. The next chapter begins to show you
what this means.

Dike.book Page 37 Wednesday, March 15, 2006 8:16 PM

Dike.book Page 38 Wednesday, March 15, 2006 8:16 PM

39

C H A P T E R 3

Exploring UML

LOGGING IN AS A NORMAL USER

In this chapter we will explore a UML instance in more detail, looking
at how it is similar to and how it differs from a physical Linux machine.
While doing a set of fairly simple, standard system administration
chores in the instance, we will see some UML twists to them. For exam-
ple, we will add swap space and mount filesystems. The twist is that
we will do these things by plugging the required devices into the UML
at runtime, from the host, without rebooting the UML.

First, let’s log in to the UML instance, as we did in the previous
chapter. When the UML boots, we see a login prompt in the window in
which we started it. Some xterm windows pop up on the screen, which
we ignore. They also contain login prompts. We could log in as root, but
let’s log in as a normal user, username user, with the very secure pass-
word user:

Debian GNU/Linux 2.2 usermode tty1

usermode login: user
Password:
Last login: Sun Dec 22 21:50:44 2002 from uml on pts/0

Dike.book Page 39 Wednesday, March 15, 2006 8:16 PM

40 Chapter 3 Exploring UML

Linux usermode 2.6.11-rc3-mm1 #2 Tue Feb 8 15:41:40 EST 2005 \
i686 unknown
UML% pwd
/home/user

This is basically the same as a physical system. In this window, we
are a normal, unprivileged user, in a normal home directory. We can
test our lack of privileges by trying to do something nasty:

UML% rm -f /bin/ls
rm: cannot unlink `/bin/ls': Permission denied

CONSOLES AND SERIAL LINES

In addition to the xterm consoles that made themselves visible, some
others have attached themselves less visibly to other host resources.
You can attach UML consoles to almost any host device that can be
used for that purpose. For example, they can be (and some, by default,
are) attached to host pseudo-terminals. They announce themselves in
the kernel log, which we can see by running dmesg:

UML% dmesg | grep "Serial line"
Serial line 0 assigned device '/dev/pts/13'

This tells us that one UML serial line has been configured in /etc/
inittab to have a login prompt on it. The serial line has been config-
ured at the “hardware” level to be attached to a host pseudo-terminal,
and it has allocated the host’s /dev/pts/13.

Now we can run a terminal program, such as screen or minicom,
on the host, attach it to /dev/pts/13, and log in to UML on its one
serial line. After running

host% screen /dev/pts/13

we see a blank screen session. Hitting return gives us another UML
login prompt, as advertised:

Debian GNU/Linux 2.2 usermode ttyS0

usermode login:

Notice the ttyS0 in the banner, in comparison to the tty0 we saw
while logging in as root in the previous chapter and the tty1 we just
saw while logging in as user. The tty0 and tty1 devices are UML

Dike.book Page 40 Wednesday, March 15, 2006 8:16 PM

Consoles and Serial Lines 41

consoles, while ttyS0 is the first serial line. On a physical machine,
the consoles are devices that are displayed on the screen, and the serial
lines are ports coming out of the back of the box. There’s a clear differ-
ence between them.

In contrast, there is almost no difference between the consoles and
serial lines in UML. They plug themselves into the console and serial
line infrastructures, respectively, in the UML kernel. This is the cause of
the different device names. However, in all other ways, they are identical
in UML. They share essentially all their code, they can be configured to
attach to exactly the same host devices, and they behave in the same ways.

In fact, the serial line driver in UML owes its existence to a histor-
ical quirk. Because of a limitation in the first implementation of UML,
it was impossible to log in on a console in the window in which you ran
it. To allow logging in to UML at all, I implemented the serial line
driver to connect itself to a host device, and you would attach to this
using something like screen.

As time went on and limitations disappeared, I implemented a
real console driver. After a while, it dawned on me that there was no
real difference between it and the serial line driver, so I started merg-
ing the two drivers, making them share more and more code. Now
almost the only differences between them are that they plug them-
selves into different parts of the kernel.

UML consoles and serial lines can be attached to the same devices
on the host, and we’ve seen a console attached to stdin and stdout of
the linux process, consoles appearing in xterms, and a serial line
attached to a host pseudo-terminal. They can also be attached to host
ports, allowing you to telnet to the specified port on the host and log in
to the UML from there. This is a convenient way to make a UML acces-
sible from the network without enabling the network within UML.

Finally, UML consoles and serial lines can be attached to host ter-
minals, which can be host consoles, such as /dev/tty*, or the slave
side of pseudo-terminals. Attaching a UML console to a host virtual
console has the interesting effect of putting the UML login prompt on
the host console, making it appear (to someone not paying sufficient
attention) to be the host login.

Let’s look at some examples. First, let’s attach a console to a host
port. We need to find an unused console to work with, so let’s use the
UML management console tool to query the UML configuration:

host% uml_mconsole debian config con0
OK fd:0,fd:1

Dike.book Page 41 Wednesday, March 15, 2006 8:16 PM

42 Chapter 3 Exploring UML

host% uml_mconsole debian config con1
OK none
host% uml_mconsole debian config con2
OK pts:/dev/pts/10
host% uml_mconsole debian config con3
OK pts

We will cover the full capabilities of uml_mconsole in Chapter 8,
but this gives us an initial look at it. The first argument, debian, spec-
ifies which UML we wish to talk to. A UML can be named and given a
unique machine ID, or umid. When I ran this UML, I added
umid=debian to the command line, giving this instance the name
debian. uml_mconsole knows how to use this name to communicate
with the debian UML.

If you didn’t specify the umid on the command line, UML gives
itself a random umid. There are a couple of ways to tell what it chose.
First, look through the boot output or output from dmesg for a line that
looks like this:

mconsole (version 2) initialized on /home/jdike/.uml/3m3vDd/mconsole

In this case, the umid is 3m3vDd. You can communicate with this
instance by using that umid on the uml_mconsole command line.

Second, UML puts a directory with the same name as the umid in
a special parent directory, by default, ~/.uml. So, you could also look
at the subdirectory1 of your ~/.uml directory for the umid to use.

The rest of the uml_mconsole command line is the command to
send to the specified UML. In this case, we are asking for the configu-
rations of the first few consoles. Console names start with con; serial
line names begin with ssl.

I will describe as much of the output format as needed here; Fig-
ure 3.1 contains a more complete and careful description.

Looking at the output about the UML configuration, we see an OK
on each response, which means that the command succeeded in com-
municating with the UML and getting a response. The con0 response
says that console 0 is attached to stdin and stdout. This bears some
explaining, so let’s pull apart that response. There are two pieces to it,
fd:0 and fd:1, separated by a comma. In a comma-separated configu-
ration like this, the first part refers to input to the console (or serial
line), and the second part refers to output from it.

1. At this point, there should be only one.

Dike.book Page 42 Wednesday, March 15, 2006 8:16 PM

Consoles and Serial Lines 43

A UML console or serial line configuration can consist of separate input and output configura-
tions, or a single configuration for both. If both are present, they are separated by a colon. For
example, fd:0,fd:1 specifies that console input comes from UML's file descriptor 0 and that
output goes to file descriptor 1. In contrast, fd:3 specifies that both input and output are
attached to file descriptor 3, which should have been set up on the UML command line with
something like 3<>filename.

A single device configuration consists of a device type (fd in the examples above) and
device-specific information separated by a colon. The possible device types and additional infor-
mation are as follows.

• fd—A host file descriptor belonging to the UML process; specify the file descriptor number
after the colon.

• pty—A BSD pseudo-terminal; specify the /dev/ptyxx name of the pseudo-terminal you
wish to attach the console to. To access it, you will attach a terminal program, such as
screen or minicom, to the corresponding /dev/ttyxx file.

• pts—A devpts pseudo-terminal; there is no pts-specific data you need to add. In order
to connect to it, you will need to find which pts device it allocated by reading the UML ker-
nel log through dmesg or by using uml_mconsole to query the configuration.

• port—A host port; specify the port number. You access the port by telnetting to it. If you’re
on the host, you will telnet to localhost:

host% telnet localhost port-number

You can also telnet to that port from another machine on the network:

host% telnet uml-host port-number

• xterm—No extra information needed. This will display an xterm on your screen with the
console in it. UML needs a valid DISPLAY environment variable and xterm installed on the
host, so this won’t work on headless servers. This is the default for consoles other than
console 0, so for headless servers, you will need to change this.

• null—No extra information needed. This makes the console available inside UML, but out-
put is ignored and there is never any input. This would be very similar to attaching the con-
sole to the host’s /dev/null.

• none—No extra information needed. This removes the device from UML, so that attempts
to access it will fail with “No such device.”

When requesting configuration information through uml_mconsole for pts consoles, it
will report the actual device that it allocated after the colon, as follows:

host% uml_mconsole debian config con2
OK pts:/dev/pts/10

The syntax for specifying console and serial line configurations is the same on the UML
and uml_mconsole command lines, except that the UML command line allows giving all
devices the same configuration. A specific console or serial line is specified as either con n or
ssl n.

(continues)

Figure 3.1 Detailed description of UML console and serial line configuration

Dike.book Page 43 Wednesday, March 15, 2006 8:16 PM

44 Chapter 3 Exploring UML

The fd:0 part also has two pieces, fd and 0, separated by a colon.
fd says that the console input is to be attached to a file descriptor of
the linux process, and 0 says that file descriptor will be stdin, file
descriptor zero. Similarly, the output is specified to be file descriptor
one, stdout.

When the console input and output go to the same device, as we
can see with con2 being attached to pts:/dev/pts/10, input and output
are not specified separately. There is only a single colon-separated
device description. As you might have guessed, pts refers to a devpts
pseudo-terminal, and /dev/pts/10 tells you specifically which pseudo-
terminal the console is attached to.

The con1 configuration is one we haven’t seen before. It simply
says that the console doesn’t exist—there is no such device.

The configuration for con3 is the one we are looking for. pts says
that this is a pts console, and there’s no specific pts device listed, so it
has not yet been activated by having a UML getty running on it. We
will reconfigure this one to be attached to a host port:

host% uml_mconsole debian config con3=port:9000
OK

On the UML command line, all consoles or serial lines may be given the same configuration
with just con= configuration or ssl= configuration.

Any specific device configurations that overlap this will override it. So

con=pts con0=fd:0,fd:1

attaches all consoles to pts devices, except for the first one, which is attached to stdin and
stdout.

Console input and output can be specified separately. They are completely independent—
the host device types don’t even need to match. For example,

ssl2=pts,xterm

will attach the second serial line’s input to a host pts device and the output to an xterm. The
effect of this is that when you attach screen or another terminal program to the host pts
device, that’s the input to the serial line. No output will appear in screen—that will all be directed
to the xterm. Most input will also appear in the xterm because that is echoed in the shell.

This can have unexpected effects. Repeating a configuration for both the input and output
will, in some cases, attach them to distinct host devices of the same type. For example,

con2=xterm,xterm

will create two xterms—one will accept console input, and the other will display the console’s
output. The same is true for pts.

Figure 3.1 Detailed description of UML console and serial line configuration (continued)

Dike.book Page 44 Wednesday, March 15, 2006 8:16 PM

Consoles and Serial Lines 45

port:9000 says that the console should be attached to the host’s port
9000, which we will access by telnetting to that port.

We can double-check that the change actually happened:

host% uml_mconsole debian config con3
OK port:9000

So far, so good. Let’s try telnetting there now:

host% telnet localhost 9000
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Connection refused

This failed because UML hasn’t run a getty on its console 3. We can
fix this by editing its /etc/inittab. Looking there on my machine, I
see:

#3:2345:respawn:/sbin/getty 38400 tty3

I had enabled this one in the past but since disabled it. You may
not have a tty3 entry at all. You want to end up with a line that looks
like this:

3:2345:respawn:/sbin/getty 38400 tty3

I’ll just uncomment mine; you may have to add the line in its
entirety, so fire up your favorite editor on /etc/inittab and fix it.
Now, tell init it needs to reread the inittab file:

UML# kill -HUP 1

Let’s go back to the host and try the telnet again:

host% telnet localhost 9000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Fedora Core release 1 (Yarrow)
Kernel 2.4.27 on an i686

Debian GNU/Linux 2.2 usermode tty3

usermode login:

Here we have the UML’s console, as advertised. Notice the discrep-
ancy between the telnet banner and the login banner. Telnet is telling
us that we are attaching to a Fedora Core 1 (FC1) system running a
2.4.27 kernel, while login is saying that we are attaching to a Debian

Dike.book Page 45 Wednesday, March 15, 2006 8:16 PM

46 Chapter 3 Exploring UML

system. This is because the host is the FC1 system, and telnetd run-
ning on the host and attaching us to the host’s port 9000 is telling us
about the host. There is some abuse of telnetd’s capabilities going on
in order to allow the redirection of traffic between the host port and
UML, and this is responsible for the confusion.

Now, let’s stick a UML console on a host console. First, we need to
make sure there’s no host getty or login running on the chosen console.
Looking at my host’s /etc/inittab, I see:

6:2345:respawn:/sbin/mingetty tty6

for the last console, and hitting Ctrl-Alt-F6 to switch to that virtual
console confirms that a getty is running on it. I’ll comment it out, so it
looks like this:

#6:2345:respawn:/sbin/mingetty tty6

I tell init to reread inittab:

host# kill -HUP 1

and switch back to that console to make sure it is not being used by the
host any more. I now need to make sure that UML can open it:

host% ls -l /dev/tty6
crw------- 1 root root 4, 6 Feb 17 16:26 /dev/tty6

This not being the case, I’ll change the permissions so that UML
has both read and write access to it:

host# chmod 666 /dev/tty6

After you make any similar changes needed on your own machine,
we can tell UML to take over the console. We used the UML tty3 for
the host port console, so let’s look at tty4:

host% uml_mconsole debian config con4
OK pts

So, let’s assign con4 to the host’s /dev/tty6 in the usual way:

host% uml_mconsole debian config con4=tty:/dev/tty6
OK

After enabling tty4 in the UML /etc/inittab and telling init
to reread the file, we should be able to switch to the host’s virtual console

Dike.book Page 46 Wednesday, March 15, 2006 8:16 PM

Adding Swap Space 47

6 and see the UML login prompt. Taken to extremes, this can be some-
what mind bending. Applying this technique to the other virtual con-
soles results in them all displaying UML, not host, login prompts.

For the security conscious, this sort of redirection and fakery can
be valuable. It allows potential attacks on the host to be redirected to a
jail, where they can be contained, logged, and analyzed. For the rest of
us, it serves as an example of the flexibility of the UML consoles.

Now that we’ve seen all the ways to access our UML console, it’s
time to stay logged in on the console and see what we can do inside the
UML.

ADDING SWAP SPACE

UML is currently running everything in the memory that it has been
assigned since it has no swap space. Normal Linux machines have
some swap, so let’s fix that now.

We need some sort of disk to swap onto, and since UML disks are
generally host files, we need to make a file on the host to be the swap
device:

host% dd if=/dev/zero of=swap bs=1024 seek=$[1024 * 1024] count=1
1+0 records in
1+0 records out
host% ls -l swap
-rw-rw-rw- 1 jdike jdike 1073742848 Feb 18 12:31 swap

This technique uses dd to create a 1GB sparse file on the host by
seeking 1 million 1K blocks and then writing a 1K block of zeros there.
The use of sparse files is pretty standard with UML since it allows host
disk space to be allocated only when it is needed. So, this swap device
file consumes only 1K of disk space, even though it is technically 1GB
in length.

We can see the true size, that is, the actual disk space consump-
tion, of the file by adding -s to the ls command line:

host% ls -ls swap
12 -rw-rw-r-- 1 jdike jdike 1073742848 Oct 27 17:27 swap

The 12 in the first column is the number of disk blocks actually occu-
pied by the file. A disk block is 512 bytes, so this file that looks like it’s
1GB in length is taking only 6K of disk space.

Dike.book Page 47 Wednesday, March 15, 2006 8:16 PM

48 Chapter 3 Exploring UML

Now, we need to plug this new file into the UML as an additional
block device, which we will do with the management console:

host% uml_mconsole debian config ubdb=swap
OK

We can check this by asking for the configuration of ubdb in the
same way we asked about consoles earlier:

host% uml_mconsole debian config ubdb
OK /home/jdike/swap

Now, back in the UML, we have a brand-new second block device,
so let’s set it up for swapping, then swap on it, and look at /proc/
meminfo to check our work:

UML# mkswap /dev/ubdb
Setting up swapspace version 1, size = 1073737728 bytes
UML# swapon /dev/ubdb
UML# grep Swap /proc/meminfo
SwapCached: 0 kB
SwapTotal: 1048568 kB
SwapFree: 1048568 kB

Let’s further check our work by forcing the new swap device to be
used. The following command creates a large amount of data by repeat-
edly converting the contents of /dev/mem (the UML’s memory) into
readable hex and feeds that into a little perl script that turns it into a
very large string. We will use this string to fill up the system’s memory
and force it into swap.

UML# while true; do od -x /dev/mem ; done | perl -e 'my $s ; \
while(<STDIN>){ $s .= $_; } print length($s);'

At the same time, let’s log in on a second console and watch the
free memory disappear:

UML# while true; do free; sleep 10; done

You’ll see the system start with almost all of its memory free:

 total used free shared buffers \
cached
Mem: 126696 21624 105072 0 536 \
7808
-/+ buffers/cache: 13280 113416
Swap: 1048568 0 1048568

Dike.book Page 48 Wednesday, March 15, 2006 8:16 PM

Partitioned Disks 49

The free memory will start disappearing, until we see a nonzero
entry under used for the Swap row:

 total used free shared buffers cached
Mem: 126696 124548 2148 0 76 7244
-/+ buffers/cache: 121823 9468
Swap: 1048568 6524 1042044

Here UML is behaving exactly as any physical system would—it is
swapping when it is out of memory. Note that the host may have plenty
of free memory, but the UML instance is confined to the memory we
gave it.

PARTITIONED DISKS

You may have noticed another difference between the way we’re using
disks in UML and the way they are normally used on a physical
machine. We haven’t been partitioning them and putting filesystems
and swap space on the partitions. This is a consequence of the ease of
creating and adding new virtual disks to a virtual machine. With a
physical disk, it’s much less convenient, and sometimes impossible, to
add more disks to a system. Therefore, you want to make the best of
what you have, and that means being able to slice a physical disk into
partitions that can be treated separately.

When UML was first released, there was no partition support for
exactly this reason. I figured there was no need for partitions, given
that if you want more disk space in your UML, you just create a new
host file for it, and away you go.

This was a mistake. I underestimated the desire of my users to
treat their UMLs exactly like their physical machines. In part, this
meant they wanted to be able to partition their virtual disks. So, parti-
tion support for UML block devices ultimately appeared, and everyone
was happy.

However, my original mistake resulted in some naming conven-
tions that can be extremely confusing to a UML newcomer. Initially,
UML block devices were referred to by number, for example, ubd0,
ubd1, and so on. At first, these numbers corresponded to their minor
device numbers, so when you made a device node for ubd1, the com-
mand was:

UML# mknod /dev/ubd1 b 98 1

Dike.book Page 49 Wednesday, March 15, 2006 8:16 PM

50 Chapter 3 Exploring UML

When partition support appeared, this style of device naming was
wrong in a couple of respects. First, you want to refer to the partition
by number, as with /dev/hda1 or /dev/sdb2. But does ubd10 refer to
block device 10 or partition 0 on device 1? Second, there is support for
16 partitions per device, so each block device gets a chunk of 16 device
minor numbers to refer to them. For example, block device 0 has minor
numbers 0 through 15, device 1 has minors 16 though 31, and so on.
This breaks the previous convention that device numbers correspond to
minor numbers, leading people to specify ubd1 on the UML command
line and not realize that it has minor device number 16 inside UML.

These two problems led to a naming convention that should have
been present from the start. We name ubd devices in the same way as
hd or sd devices—the disk number is specified with a letter (a, b, c, and
so on), and the partition is a number. So, partition 1 on virtual disk 1 is
ubdb1. When you add a second disk on the UML command line or via
mconsole, it is ubdb, not ubd1. This eliminates the ambiguity of
multidigit device numbers and the naming confusion. In this book, I
will adhere to this convention, although my fingers still use ubd0,
ubd1, and so on when I boot UML. In addition, the filesystems I’m
using have references to ubd0, so commands such as mount and df will
refer to names such as ubd0 rather than ubda.

So, let’s partition a ubd device just to see that it’s the same as on a
physical machine. First, let’s make another host file to hold the device
and plug it into the UML:

host% dd if=/dev/zero of=partitioned bs=1024 \
seek=$[1024 * 1024] count=1
1+0 records in
1+0 records out
host% uml_mconsole debian config ubdc=partitioned
OK

Now, inside the UML, let’s use fdisk to chop this into partitions.
Figure 3.2 shows my dialog with fdisk to create two equal-size parti-
tions on this disk.

Now, I don’t happen to have device nodes for these partitions, so
I’ll create them:

UML# mknod /dev/ubdc1 b 98 33
UML# mknod /dev/ubdc2 b 98 34

Dike.book Page 50 Wednesday, March 15, 2006 8:16 PM

Partitioned Disks 51

usermode:~# fdisk /dev/ubdc
Device contains neither a valid DOS partition table, nor Sun, SGI, or OSF

disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won’t be recoverable.

Command (m for help): p

Disk /dev/ubdc: 128 heads, 32 sectors, 512 cylinders
Units = cylinders of 4096 * 512 bytes

 Device Boot Start End Blocks Id System

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-512, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-512, default 512): 256

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 2
First cylinder (257-512, default 257):
Using default value 257
Last cylinder or +size or +sizeM or +sizeK (257-512, default 512):
Using default value 512

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.
usermode:~#

Figure 3.2 Using fdisk to create two partitions on a virtual disk

Dike.book Page 51 Wednesday, March 15, 2006 8:16 PM

52 Chapter 3 Exploring UML

For some variety, let’s make one a swap partition and the other a
filesystem:

UML# mkswap /dev/ubdc1
Setting up swapspace version 1, size = 536850432 bytes
UML# mke2fs /dev/ubdc2
mke2fs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
131072 inodes, 262144 blocks
13107 blocks (5.00%) reserved for the super user
First data block=0
8 block groups
32768 blocks per group, 32768 fragments per group
16384 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376

Writing inode tables: done

And let’s put them into action to see that they work as advertised:

UML# swapon /dev/ubdc1
UML# free
 total used free shared buffers \
 cached
Mem: 125128 69344 55784 0 448 \
 49872
-/+ buffers/cache: 19024 106104
Swap: 1572832 0 1572832
UML# mount /dev/ubdc2 /mnt
UML# df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/ubd0 1032056 259444 720132 26% /
none 62564 0 62564 0% /tmp
/dev/ubdc2 507748 13 481521 0% /mnt

So, we do, in fact, have another 512MB of swap space and a brand-
new empty 512MB filesystem.

Rather than calling swapon by hand whenever we want to add
some swap space to our UML, we can also just add the device to the
UML’s /etc/fstab. In our case, the relevant lines would be:

/dev/ubdb swap swap defaults 0 0
/dev/ubdc1 swap swap defaults 0 0

However, if you do this, you must remember to configure the
devices on the UML command line since they must be present early in
boot when the filesystems are mounted.

Dike.book Page 52 Wednesday, March 15, 2006 8:16 PM

UML Disks as Raw Data 53

UML DISKS AS RAW DATA

Normally, when you add a new block device to a UML, it will be used as
either a filesystem or a swap device. However, some other possibilities are
also useful with a UML. These work equally well on a physical machine
but aren’t used because of the lower flexibility of physical disks.

For example, you can copy files into a UML by creating a tar file
on the host that contains them, plug that tar file into the UML as a
virtual disk, and, inside the UML, untar the files directly from that
device. So, on the host, let’s create a tar file with some useful files in it:

host% tar cf etc.tar /etc
tar: Removing leading `/' from member names

When I did this on my machine, I got a bunch of errors about files
that I, as a normal user, couldn’t read. Since this is just a demo, that’s
OK, but if you were really trying to copy your host’s /etc into a UML,
you’d want to become root in order to get everything.

host% ls -l etc.tar
-rw-rw-rw- 1 jdike jdike 24535040 Feb 19 13:54 etc.tar

I did get about 25MB worth of files, so let’s plug this tar file into
the UML as device number 4, or ubdd:

host% uml_mconsole debian config ubdd=etc.tar

Now we can untar directly from the device:

UML# tar xf /dev/ubdd

This technique can also be used to copy a single file into a UML.
Simply configure that file as a UML block device and use dd to copy it
from the device to a normal file inside the UML filesystem. The draw-
back of this approach is that the block device will be an even multiple
of the device block size, which is 512 bytes. So, a file whose size is not
an even multiple of 512 bytes will have some padding added to it. If
this matters, that excess will have to be trimmed in order to make the
UML file the same size as the host file.

UML block devices can be attached to anything on the host that
can be accessed as a file. Formally, the underlying host file must be
seekable. This rules out UNIX sockets, character devices, and named
pipes but includes block devices. Devices such as physical disks, parti-
tions, CD-ROMs, DVDs, and floppies can be passed to UML as block
devices and accessed from inside as ubd devices. If there is a filesystem

Dike.book Page 53 Wednesday, March 15, 2006 8:16 PM

54 Chapter 3 Exploring UML

on the host block device, it can be mounted inside UML in exactly the
same way as on the host, except for the different device name.

The UML must have the appropriate filesystem, either built-in or
available as a module. For example, in order to mount a host CD-ROM
inside a UML, it must have ISO-96602 filesystem support.

The properties of the host file show through to the UML device to
a great extent. We have already seen that the host file’s size deter-
mines the size of the UML block device. Permissions also control what
can be done inside UML. If the UML user doesn’t have write access to
the host file, the resulting device will be only mounted read-only.

NETWORKING

Let’s take a quick look at networking with UML. This large subject
gets much more coverage in Chapter 7, but here, we will put our UML
instance on the network and demonstrate its basic capabilities.

As with all other UML devices, network interfaces are virtual.
They are formed from some host network interface that allows proc-
esses to send packets either to the host network stack or to another
UML instance without involving the host network. Here, we will do the
former and communicate with the host.

Processes can send and receive frames from the host in a variety
of ways, including TUN/TAP, Ethertap, SLIP, and PPP.3 All of these,
except for PPP, are supported by UML. We will use TUN/TAP since it is
intended for this purpose and doesn’t have the limitations of the oth-
ers. TUN/TAP is a driver on the host that creates a pipe, which is
essentially a strand of Ethernet, between a process and the host net-
working system. The host end of this pipe is a network interface, typi-
cally named tap<n>, which can be seen using ifconfig just like the
system’s normal Ethernet device:

host% ifconfig tap0
tap0 Link encap:Ethernet HWaddr 00:FF:9F:DF:40:D3
 inet addr:192.168.0.254 Bcast:192.168.0.255 \

2. The standard filesystem for a CD.
3. SLIP (Serial Line IP) and PPP (Point-to-Point Protocol) are protocols used

for dialup Internet access. PPP has largely supplanted SLIP for this pur-
pose. They are useful for UML because they provide virtual network inter-
faces that allow processes to send and receive network frames.

Dike.book Page 54 Wednesday, March 15, 2006 8:16 PM

Networking 55

Mask:255.255.255.255
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:61 errors:0 dropped:0 overruns:0 frame:0
 TX packets:75 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:10931 (10.6 Kb) TX bytes:8198 (8.0 Kb)
 RX bytes:15771 (15.4 Kb) TX bytes:13466 (13.1 Kb)

This output resulted from a short UML session in which I logged
in to the UML from the host, ran a few commands, and logged back out.
Thus, the packet counters reflect some network activity.

It looks just like a normal network interface, and, in most
respects, it is. It is just not attached to a physical network card.
Instead, it is attached to a device file, /dev/net/tun:

host% ls -l /dev/net/tun
crw-rw-rw- 1 root root 10, 200 Sep 15 2003 /dev/net/tun

This file and the tap0 interface are connected such that any pack-
ets routed to tap0 emerge from the /dev/net/tun file and can be
read by whatever process has opened it. Conversely, any packets writ-
ten to this file by a process will emerge from the tap0 interface and be
routed to their destination by the host network system. Within UML,
there is a similar pipe between this file and the UML Ethernet device.
Here is the ifconfig output for the UML eth0 device corresponding
to the same short network session as above:

UML# ifconfig eth0
eth0 Link encap:Ethernet HWaddr FE:FD:C0:A8:00:FD
 inet addr:192.168.0.253 Bcast:192.168.0.255 \
Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:75 errors:0 dropped:0 overruns:0 frame:0
 TX packets:61 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 Interrupt:5

Notice that the received and transmitted packet counts are mirror
images of each other—the number of packets received by the host tap0
interface is the same as the number of packets transmitted by the
UML eth0 device. This is because these two interfaces are hooked up
to each other back to back, with the connection being made through the
host’s /dev/net/tun file.

With this bit of theory out of the way, let’s put our UML instance
on the network. If we look at the interfaces present in our UML, we see
only a loopback device, which isn’t going to be too useful for us:

Dike.book Page 55 Wednesday, March 15, 2006 8:16 PM

56 Chapter 3 Exploring UML

UML# ifconfig -a
lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:6 errors:0 dropped:0 overruns:0 frame:0
 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

Clearly, this needs to be fixed before we can do any sort of real net-
working. As you might guess from our previous work, we can simply
plug a network device into our UML from the host:

host% uml_mconsole debian config eth0=tuntap,,,192.168.0.254
OK

This uml_mconsole command is telling the UML to create a new
eth0 device that will communicate with the host using its TUN/TAP
interface, and that the IP address of the host side, the tap0 interface,
will be 192.168.0.254. The repeated commas are for parameters we
aren’t supplying; they will be provided default values by the UML net-
work driver.

My local network uses the 192.168.0.0 network, on which only
about the first dozen IP addresses are in regular use. That leaves the
upper addresses free for my UML instances. I usually use
192.168.0.254 for the host side of my TUN/TAP interface and
192.168.0.253 for the UML side. When I have multiple instances
running, I use 192.168.0.252 and 192.168.0.251, respectively, and
so on.

Here, and everywhere else that you put UML instances on the net-
work, you will need to choose IP addresses that work on your local net-
work. They can’t already be in use, of course. If suitable IP addresses
are in short supply, you may be looking askance at my use of two
addresses per UML instance. You can cut this down to one—the UML
IP address—by reusing an IP address for the host side of the TUN/TAP
interface. You can reuse the IP address already assigned to your host’s
eth0 for this and everything will be fine.

Now we can look at the UML network interfaces and see that we
have an Ethernet device as well as the previous loopback interface:

UML# ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:00:00:00:00:00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 Interrupt:5

Dike.book Page 56 Wednesday, March 15, 2006 8:16 PM

Networking 57

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:6 errors:0 dropped:0 overruns:0 frame:0
 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

The eth0 interface isn’t running, nor is it configured with an IP
address, so we need to fix that:

UML# ifconfig eth0 192.168.0.253 up
* modprobe tun
* ifconfig tap0 192.168.0.254 netmask 255.255.255.255 up
* bash -c echo 1 > /proc/sys/net/ipv4/ip_forward
* route add -host 192.168.0.253 dev tap0
* bash -c echo 1 > /proc/sys/net/ipv4/conf/tap0/proxy_arp
* arp -Ds 192.168.0.253 eth1 pub

This is more output than you normally expect to see from ifconfig,
and in fact, it came from the kernel rather than ifconfig. This tells
us exactly how the host side of the interface was set up and what com-
mands were used to do it. If there had been any problems, the error
output would have shown up here, and this would be the starting point
for debugging the problem.

This setup enables the UML to communicate with the world out-
side the host and configures the host to route packets to and from the
UML. In order to get UML on the network with the host, only the first
two commands, modprobe and ifconfig, are needed. The modprobe
command is precautionary since the host kernel may have TUN/TAP
compiled or the tun module already loaded. Once TUN/TAP is availa-
ble, the tap0 interface is brought up and given an IP address, and it is
ready to go.

The bash command tells the host to route packets rather than just
dropping packets it receives that aren’t intended for it. The route com-
mand adds a route to the UML through the tap0 interface. This tells the
host that any packet whose destination IP address is 192.168.0.253
(the address we gave to the UML eth0 interface) should be sent to the
tap0 interface. Once there, it pops out of the /dev/net/tun file,
which the UML network driver is reading, and from there to the UML
eth0 interface.

The final two lines set up proxy arp on the host for the UML
instance. This causes the instance to be visible, from an Ethernet proto-
col point of view, on the local LAN. Whenever one Ethernet host wants
to send a packet to another, it starts by knowing only the destination

Dike.book Page 57 Wednesday, March 15, 2006 8:16 PM

58 Chapter 3 Exploring UML

IP address. If that address is on the local network, then the host needs
to find out what Ethernet address corresponds to that IP address. This
is done using Address Resolution Protocol (ARP). The host broadcasts a
request on the Ethernet for any host that owns that IP address. The
host in question will answer with its hardware Ethernet address,
which is all the source host needs in order to build Ethernet frames to
hold the IP packet it’s trying to send.

Proxy arp tells the host to answer arp requests for the UML IP
address just as though it were its own. Thus, any other machine on the
network wanting to send a packet to the UML instance will receive an
arp response from the UML host. The remote host will send the packet
to the UML host, which will forward it through the tap0 interface to
the UML instance.

So, the host routing and the proxy arp work together to provide a
network path from anywhere on the network to the UML, allowing it to
participate on the network just like any other machine.

We can start to see this by using the simplest network tool, ping.
First, let’s make sure we can communicate with the host by pinging the
tap0 interface IP, 192.168.0.254:

UML# ping 192.168.0.254
PING 192.168.0.254 (192.168.0.254): 56 data bytes
64 bytes from 192.168.0.254: icmp_seq=0 ttl=64 time=2.7 ms
64 bytes from 192.168.0.254: icmp_seq=1 ttl=64 time=0.2 ms

This works fine. For completeness, let’s go the other way and ping
from the host to the UML:

host% ping 192.168.0.253
PING 192.168.0.253 (192.168.0.253) 56(84) bytes of data.
64 bytes from 192.168.0.253: icmp_seq=0 ttl=64 time=0.130 ms
64 bytes from 192.168.0.253: icmp_seq=1 ttl=64 time=0.069 ms

Now, let’s try a different host on the same network:

UML# ping 192.168.0.10
PING 192.168.0.10 (192.168.0.10): 56 data bytes
64 bytes from 192.168.0.10: icmp_seq=0 ttl=63 time=753.2 ms
64 bytes from 192.168.0.10: icmp_seq=1 ttl=63 time=6.3 ms

Here the routing and arping that I described above is coming into
play. The other system, 192.168.0.10, believes that the UML host
owns the 192.168.0.253 address along with its regular IP and sends
packets intended for the UML to it.

Dike.book Page 58 Wednesday, March 15, 2006 8:16 PM

Shutting Down 59

Now, let’s try something real. Let’s log in to the UML from that
outside system:

host% ssh user@192.168.0.253
user@192.168.0.253's password:
Linux usermode 2.4.27-1um #6 Sun Jan 23 16:00:39 EST 2005 i686 unknown
Last login: Tue Feb 22 23:05:13 2005 from uml
UML%

Now, except for things like the fact we logged in as user, and the
kernel version string and node name, we can’t really tell that this isn’t
a physical machine. This UML is on the network in exactly the same
way that all of the physical systems are, and it can participate on the
network in all the same ways.

SHUTTING DOWN

The initial exploration of our UML is finished. We will cover everything in
much more detail later, but this chapter has provided a taste of how UML
works and how to use it. There is one final task: to shut down the UML.
Figure 3.3 shows the output of the halt command run on the UML.

usermode:~# halt

Broadcast message from root (tty0) Wed Feb 23 00:00:32 2005...

The system is going down for system halt NOW !!
INIT: Switching to runlevel: 0
INIT: Sending processes the TERM signal
INIT: Sending processes the KILL signal
Stopping web server: apache.
/usr/sbin/apachectl stop: httpd (no pid file) not running
Stopping internet superserver: inetd.
Stopping MySQL database server: mysqld.
Stopping OpenBSD Secure Shell server: sshd.
Saving the System Clock time to the Hardware Clock...
hwclock: Can’t open /dev/tty1, errno=19: No such device.
hwclock is unable to get I/O port access: the iopl(3) call failed.
Hardware Clock updated to Wed Feb 23 00:00:38 EST 2005.
Stopping portmap daemon: portmap.
Stopping NFS kernel daemon: mountd nfsd.
Unexporting directories for NFS kernel daemon...done.

(continues)

Figure 3.3 Output from halting a UML

Dike.book Page 59 Wednesday, March 15, 2006 8:16 PM

60 Chapter 3 Exploring UML

Just as with a physical system, this is a mirror image of the boot.
All the services that were running are shut down, followed by the ker-
nel shutting itself down. The only things you don’t see on a physical
system are the networking messages, which are the mirror images of
the ones we saw when bringing up the network. These are cleaning up
the routing and the proxy arp that were set up when we configured
UML networking.

Once all this has happened, the UML exits, and we are back to the
shell prompt from which we started. The UML has simply vanished,
just like any other process that has finished its work.

Stopping NFS common utilities: lockd statd.
Stopping system log daemon: klogd syslogd.
Sending all processes the TERM signal... done.
Sending all processes the KILL signal... done.
Saving random seed... done.
Unmounting remote filesystems... done.
Deconfiguring network interfaces: done.
Deactivating swap... done.
Unmounting local filesystems... done.
* route del -host 192.168.0.253 dev tap0
* bash -c echo 0 > /proc/sys/net/ipv4/conf/tap0/proxy_arp
* arp -i eth1 -d 192.168.0.253 pub
Power down.
* route del -host 192.168.0.253 dev tap0
* bash -c echo 0 > /proc/sys/net/ipv4/conf/tap0/proxy_arp
* arp -i eth1 -d 192.168.0.253 pub

~ 27056:

Figure 3.3 Output from halting a UML (continued)

Dike.book Page 60 Wednesday, March 15, 2006 8:16 PM

61

C H A P T E R 4

A Second UML Instance

Now that we’ve seen a single UML instance in action, we will run two
of them and see how they can interact with each other. First, we’ll boot
the two instances from a single filesystem, which should cause them to
interact with each other by corrupting it, but we’ll use a method that
avoids that problem. Then, we’ll continue the networking we started in
the previous chapter by having the two instances communicate with
each other in a couple of different ways. Finally, we’ll look at some more
unusual ways for UMLs to communicate that take advantage of the
fact that, as virtual machines, they can do things that physical
machines can’t.

COW FILES

First, let’s fire up our UML instances with basically the same com-
mand line as before, with a couple of changes:

linux mem=128M ubda=cow1,/home/jdike/roots/debian_22 \
umid=debian1

Dike.book Page 61 Wednesday, March 15, 2006 8:16 PM

62 Chapter 4 A Second UML Instance

and, in another window:

linux mem=128M ubda=cow2,/home/jdike/roots/debian_22 \
umid=debian2

The main difference is that we included the ubda switch on both
command lines to add what is called a COW file to the UML block
device. COW stands for Copy-On-Write, a mechanism that allows mul-
tiple UML instances to share a host file as a filesystem, mounting it
read-write without seeing each others’ changes or otherwise interfering
with each other.

This has a number of benefits, including saving disk space and
memory and simplifying the management of multiple instances.

COW works by attaching a second file to the UML block device
that captures all of the changes made to the filesystem. A good analogy
for this is a sheet of clear plastic placed over a painting. You can
“change” the artwork by painting on the plastic without changing the
underlying painting. When you look at it, you see your changes in the
places where you painted on the plastic sheet, and you see the underly-
ing work of art in the places you haven’t touched. This is shown in Fig-
ure 4.1, where we give Mona Lisa a moustache.1 We paint the mustache
on a plastic sheet and place it over the Mona Lisa. We have committed
artistic blasphemy without breaking any actual laws.

The COW file is the analog of the clear plastic sheet, and the orig-
inal file that contains the UML filesystem is the analog of the painting.

1. Which is one of my secret fantasies, and probably one of yours, too.

+

Figure 4.1 Using COW to give Mona Lisa a mustache without getting arrested

COW file + Backing file =

+ =

ubd device

Dike.book Page 62 Wednesday, March 15, 2006 8:16 PM

COW Files 63

The COW is placed “over” the filesystem in the same way that the clear
sheet is placed over the painting. When you modify a file on a COWed
block device, the changed blocks are written to the COW file, not the
underlying, “backing” file. This is the equivalent of painting on the
sheet rather than on the painting. When you read a modified file, this
is like looking at a spot on the painting that you’ve painted over on the
plastic, and the driver reads the data from the COW file rather than
the backing file.

Figure 4.2 shows how this works. We start with a COW file with
no valid blocks and a fully populated backing file. If a process reads a
block from this device, it will get the data that’s in the backing file. If it
then writes that block back, the new data will be written to the corre-
sponding block in the COW file. At this point, the original block in the
backing file is covered and will never be read again. All subsequent
reads of that block will get the data from the COW file.

Thus, the backing file is never modified since all changes are
stored in the COW file. The backing file can be treated as read-only, but
the device as a whole is still read-write.

On a host with multiple UML instances, this has a number of
advantages. First, all the instances can boot from the same backing
file, as long as they have private COW files. This saves disk space.
Since no instance is likely to change every file on its root filesystem,
most of the data it uses will come from the shared backing file, and
there will be only one copy of that on the host rather than one copy per

Figure 4.2 COW and backing files

COW file

Read block 2

Backing file

Write block 2

COW file

Read block 2
again

Backing file

Dike.book Page 63 Wednesday, March 15, 2006 8:16 PM

64 Chapter 4 A Second UML Instance

instance. This may not seem like a big deal since disks are so big and so
cheap these days, but system memory, as large as it is, is finite. Disk
space savings will translate directly into host memory savings since, if
there’s only one block on disk that’s shared by all the instances, it can
be present in the host’s page cache only once. Host memory is often the
factor limiting the number of instances that a host can support, so this
memory savings translates directly into greater hosting capacity.

Second, because the data that an instance has changed is in a sep-
arate file from the backing file, it is a lot easier to make backups. The
only data that needs saving is in the COW file, which is generally much
smaller than the backing file. In Chapter 6, we will see how to back up
an instance’s data in a few seconds for a reasonably-sized filesystem,
without having to reboot it.

Third, using COW files for multiple instances on a host can
improve the instances’ performance. The reason is the elimination of
data duplication described earlier. If an instance needs data that
another instance has already used, such as the contents of bash or
libc, it will likely already be in the host’s memory, in its page cache.
So, access to that data will be much faster than when it is still on disk.
The first instance to access a certain block from the backing file will
have to wait for it to be read from disk, but later instances won’t since
the host will likely still have it in memory.

Finally, there is a fairly compelling use for COW files even when
you’re just running a single UML instance. They make it possible to
test changes to a filesystem and back them out if they don’t work. For
example, you can reconfigure a service, storing the changes in a COW
file. If the changes were wrong, you can revert them simply by throw-
ing out the COW file. If they are good, you can commit them by merg-
ing them into the backing file. We will look at how to do this later in the
chapter.

Along with these advantages, there is one major disadvantage,
which stems from the fact that the backing file is read-only. If the back-
ing file is modified after it has COW files, those COW files will become
invalid. The reason is that if one of the blocks on the backing file that
changed was also changed in a COW file, reading that block would
result in the COW data being read, rather than the new data in the
backing file. This means that this ubd device would appear to be a com-
bination of old data and new, resulting in data corruption for blocks

Dike.book Page 64 Wednesday, March 15, 2006 8:16 PM

COW Files 65

that contain file data and filesystem corruption for blocks that contain
filesystem metadata.

The most common reason for wanting to modify the backing file is
to upgrade the filesystem on it. This is understandable, but for backing
files that have COW files based on them, this can’t work. The right way
to do upgrades in this case is to upgrade the COW files individually.

Going back to our two UML instances, which we booted from the
same backing file, we see that they have almost exactly the same boot
sequence. One exception is this from the first instance:

Creating "cow1" as COW file for "/home/jdike/roots/debian_22"

and this from the second:

Creating "cow2" as COW file for "/home/jdike/roots/debian_22"

You can specify, as we just did, a nonexistent file for the COW file,
and the ubd driver will create the file when it starts up. Now that we
have two UMLs booted, on the host, we can look at them:

host% ls -l cow*
-rw-r--r-- 1 jdike jdike 1075064832 Apr 24 17:33 cow1
-rw-r--r-- 1 jdike jdike 1075064832 Apr 24 17:34 cow2

Looking at those sizes, you may think I was fibbing when I went on
about saving disk space. These files seem about the same size as the
backing file. In fact, they look a bit larger than the backing file:

host% ls -l /home/jdike/roots/debian_22
-rw-rw-r-- 1 jdike jdike 1074790400 Apr 23 21:40
 /home/jdike/roots/debian_22

I was not, in fact, fibbing, and therein lies an important fact about
UML COW files. They are sparse, which means that even though their
size implies that they occupy a certain number of blocks on disk (a disk
block is 512 bytes, so the number of blocks occupied by a file is gener-
ally its size divided by 512, plus possibly another for the fragment at
the end), many of those blocks are not occupied or allocated on disk.

There are two definitions for a file size here, and they conflict when
it comes to sparse files. The first is how much data can be read from the
file. The second is how much disk space the file occupies. Usually, these
sizes are close. They won’t be exactly the same because the fragment of
the file at the end may occupy a full block. However, for a sparse file,

Dike.book Page 65 Wednesday, March 15, 2006 8:16 PM

66 Chapter 4 A Second UML Instance

many data blocks will not be allocated on disk. When they are read, the
read operation will produce zeros, but those zeros are not stored on disk.
Only when a hitherto untouched block is written is it allocated on disk.

So, for our purposes, the “true” file size is its disk allocation, which
you can see by adding the s switch to ls:

host% ls -ls cow*
540 -rw-r--r-- 1 jdike jdike 1075064832 Apr 24 17:53 cow1
540 -rw-r--r-- 1 jdike jdike 1075064832 Apr 24 17:54 cow2

The number in the first column is the number of disk blocks actually
allocated to the file. This implies that the two COW files are actually
using 270K of disk space, rather than the 1GB implied by the ls -l
output. This space is occupied by data that the instances modified as
they booted, generally log files and the like, which are touched by dae-
mons and other system utilities as they start up.

We will talk more fully about COW file management later in this
chapter, but here I will point out that the sparseness of COW files requires
us to take some care when dealing with them. Primarily, this means
being careful when copying them. The most common methods of copy-
ing a sparse file result in it becoming nonsparse—all the parts of the
file that were previously unallocated on disk become allocated and that
disk space filled with zeros. So, to avoid this, copying a COW file must
be done in a sparseness-aware way. The main file copying utilities have
switches for preserving sparseness when copying a file. For example,
cp has --sparse=auto and --sparse=always, and tar has -S and
--sparse.

Also, in order to detect that a backing file has been changed, thus
invalidating any COW files based on it, the ubd driver compares the
current modification time of the backing file to the modification time at
the point that the COW file was created (which is stored in the COW
file header). If they differ, the backing file has been modified, and a
mount of the COW file may result in a corrupt filesystem.

Merely copying the backing file after restoring or moving it for
some reason will change the modification time, even though the con-
tents are unchanged. In this case, it is safe to mount a COW file that’s
based on it, but the ubd driver will refuse to do the mount. For this rea-
son, it is important to also preserve the modification time of backing
files, as well as sparseness, when copying them. However, everyone will
forget once in a while, and later in this chapter, we will discuss some
ways to recover from this.

Dike.book Page 66 Wednesday, March 15, 2006 8:16 PM

COW Files 67

Booting from COW Files

Now, we should look at what these COW files really mean from the per-
spective of the UML instances. First, we will make some changes in the
two filesystems. In the first instance, let’s copy /lib to /tmp:

UML1 # cp -r /lib /tmp

In the second, let’s copy /usr/bin to /tmp:

UML2 # cp -r /usr/bin /tmp

In each, let’s look at /tmp to see that the changes in one instance
are not reflected in the other. First, the one where we copied /lib:

UML1 # ls -l /tmp
total 0
drwxr-xr-x 4 root root 1680 Apr 25 13:02 lib

And next, the one with the copy of /usr/bin:

UML2 # ls -l /tmp
total 0
drwxr-xr-x 3 root root 7200 Apr 25 13:07 bin

Here we can see that, even though they are booted off the same
root filesystem, any changes they make are private. They can’t be seen by
other instances that have been booted from the same backing filesystem.

We can check this in another way by seeing how the sizes of the
COW files on the host have changed:

host% ls -ls cow*
936 -rw-r--r-- 1 jdike jdike 1075064832 Apr 25 13:22 cow0
1060 -rw-r--r-- 1 jdike jdike 1075064832 Apr 25 13:22 cow1

Recall that after they booted, they both had 540 blocks allocated
on disk. Now, they both have more than that—396 and 520 more,
respectively. I chose to copy /lib and /usr/bin for this example
because /usr/bin is noticeably larger than /lib, and making a copy
of it should cause a significantly larger number of blocks to change in
the COW file. This is exactly what happened.

So, at this point, we have two instances each booted on a 1GB file-
system, something that would normally take 2GB of disk space. With the
use of COW files, this is taking 1GB plus 1MB, since together, the UMLs
have made about 1MB worth of changes in this filesystem. There is a

Dike.book Page 67 Wednesday, March 15, 2006 8:16 PM

68 Chapter 4 A Second UML Instance

commensurate saving of memory on the host because the data that
both instances read from the filesystem will be present only once in the
host’s page cache instead of twice, as would be the case if they were
booted from separate filesystems. Each new UML instance booted from
the same filesystem similarly requires only enough host disk space to
store its modifications, so the more instances you have booted from the
same COWed filesystem, the more host disk space and memory you save.

I have one final remark on the subject of sharing filesystem
images. Doing it using COW files is the only safe mechanism for shar-
ing. If you booted two instances on the same filesystem, you would end
up with a hopelessly corrupted filesystem. This is basically the same
thing as booting two physical machines from the same disk, when both
have direct access to the disk, as when it is dual-ported to both
machines. Each instance will flush out data from memory to the file-
system file in such a way as to keep its own data consistent, but with-
out regard to anything else that might be doing the same thing.

The only way for two machines to access the same data directly is
for them to coordinate with each other, as happens with a clustering
filesystem. They have to cooperate to maintain the consistency of the
data they are sharing. We will see an example of such a UML cluster in
Chapter 12.

In fact, you can’t boot two UML instances from the same filesys-
tem because UML locks the files it uses according to the access it needs
to those files. It gets exclusive locks on filesystems it is going to write and
nonexclusive read-only locks on files it will access but not write. So,
when using a COW file, the UML instance will get an exclusive, read-
write lock on the COW file and a nonexclusive read-only lock on the
backing file. If another instance tries to get any lock on that COW file
or a read-write lock on the backing file, it will fail. If that’s the UML’s
root filesystem, the result will be an error message followed by a panic:

F_SETLK failed, file already locked by pid 21238
Failed to lock '/home/jdike/roots/debian_22', err = 11
Failed to open '/home/jdike/roots/debian_22', errno = 11
VFS: Cannot open root device "98:0" or unknown-block(98,0)
Please append a correct "root=" boot option
Kernel panic - not syncing: VFS: Unable to mount root fs on
 unknown-block(98,0)

This prevents people from accidentally booting two instances from
the same filesystem and protects them from the filesystem corruption
that would certainly follow.

Dike.book Page 68 Wednesday, March 15, 2006 8:16 PM

COW Files 69

Moving a Backing File

In order to avoid some basic mistakes, the UML block driver performs
some sanity checks on the COW file and its backing file before mount-
ing them. The COW file stores some information about the backing file:

☞ The filename
☞ Its size
☞ Its last modification time

Without these, the user would have to specify both the COW file and
the backing file on the command line. If the backing file were wrong,
without any checks, the result would be a hopelessly corrupted filesys-
tem. The COW file is a block-level image of changes to the backing file.
As such, it is tightly tied to a particular backing file and makes no
sense with any other backing file.

If the backing file were modified, that would invalidate any
already-existing COW files. This is the reason for the check of the mod-
ification time of the backing file.

However, this check gets in the way of moving the backing file
since the file, in its new location, would normally have its modification
time updated. So, it is important to preserve the timestamp on a back-
ing file when moving it. A number of utilities have the ability to do this,
including

☞ cp with the -a or -p switch
☞ tar with the -p switch

After you have carefully moved the backing file, you still need to
get the COW file header to contain the new location. You do this by
booting an instance on the COW file, specifying both filenames in the
device description:

ubda=cow-file,new-backing-file

The UML block driver will notice the mismatch between the command
line and the COW file header, make sure the size and timestamp of the
new location are what it expects, and update the backing file location.
When this happens, you will see a message such as this:

Backing file mismatch - "debian30" requested,
"/home/jdike/linux/debian30" specified in COW header of "cow2"
Switching backing file to 'debian30'

Dike.book Page 69 Wednesday, March 15, 2006 8:16 PM

70 Chapter 4 A Second UML Instance

However, at some point, you will forget to preserve the timestamp,
and the COW file will appear to be useless. If it’s a UML root device,
the boot will fail like this:

mtime mismatch (1130814229 vs 1130970724) of COW header vs \
 backing file
Failed to open 'cow2', errno = 22
VFS: Cannot open root device "98:0" or unknown-block(98,0)
Please append a correct "root=" boot option

All is not lost. You need to restore the timestamp on the new back-
ing file by hand, taking the proper timestamp from the error message
above:

host% date --date="1970-01-01 UTC 1130814229 seconds"
Mon Oct 31 22:03:49 EST 2005
host% touch --date="Mon Oct 31 22:03:49 EST 2005" debian30

The date command converts the timestamp, which is the number of
seconds since January 1, 1970, into a form that touch will accept. In
turn, the touch command applies that timestamp as the modification
time of the backing file.

To minimize the amount of typing, you can abbreviate this opera-
tion as follows:

touch --date="`date --date='1970-01-01 UTC 1130814229 seconds'`" \
 debian30

You may wonder why this isn’t automated like the filename opera-
tion. When both the backing filename and timestamp don’t match the
information in the COW header, the only thing left is the file size. And
there aren’t enough common file sizes to have any sort of reasonable
guarantee that you’re associating the COW file with the correct back-
ing file. I require that you update the timestamp by hand so you look at
the file in question and can catch a mistake before it happens.

Merging a COW File with Its Backing File

Sometimes you want to merge the modified data in a COW file back
into the backing file. For example, you may have created a COW file in
order to test a modification of the filesystem, such as the installation or
modification of a service. If the results are bad, you can back out to the
original filesystem merely by throwing out the COW file. If the results

Dike.book Page 70 Wednesday, March 15, 2006 8:16 PM

Networking the UML Instances 71

are good, you want to keep them by merging them back into the back-
ing file—in essence, committing them.

The tool used to do this is called uml_moo.2 Using it is simple. You
just need to decide whether you want to do an in-place merge or create
a new file, leaving the original COW and backing files unchanged. The
second option is recommended if you’re feeling paranoid, although
making a copy of the backing file before doing an in-place merge is just
as safe. Most often, people choose based on the amount of disk space
available on the host—if it’s low, they do an in-place merge.

Create a new file by doing this:

host% uml_moo COW-file new-backing-file

Do an in-place merge like this:

host% uml_moo -d COW-file

You can use the -b switch to specify the true location of the backing file
in the event that the name stored in the COW file header is incorrect.
This happens most often when the COW file was created inside a
chroot jail. In this case, the backing file specified in the COW file will
be relative to the jail and thus wrong outside the jail. For example, if you
had a COW file created by a UML instance that was jailed to /jail
and contains /rootfs as the backing file, you would do an in-place
merge like this:

host% uml_moo -b /jail/rootfs -d /jail/cow-file

NETWORKING THE UML INSTANCES

After seeing the example of two UML instances not interacting (i.e.,
not corrupting each other’s filesystems) when you might expect them
to, let’s make them interact when we want them to. We will create a
small private network with just these two instances on it and see that
they can use it to communicate with each other in the same way that
physical machines communicate on a physical network.

2. I can only offer my deep and humble apologies for the name—a bovine
theme pervades the COW file support in UML.

Dike.book Page 71 Wednesday, March 15, 2006 8:16 PM

72 Chapter 4 A Second UML Instance

For a pair of virtual machines, the basic requirement for setting
up a network between them is some method of exchanging packets.
Since packets are just hunks of data, albeit specially formatted ones, in
principle, any interprocess communication (IPC) mechanism will suf-
fice. All that’s needed in UML is a network driver that can send and
receive packets over that IPC mechanism.

This is enough to set up a private network that the UML instances
can use to talk to each other, but it will not let them communicate with
anything else, such as the host or anything on the Internet. Communi-
cating with the outside world, including the host, requires root privileges
at some point. The instance needs to send packets to the host and have
them be handled by its network subsystem. This ability requires root
privileges because it implies that the instance is a networking peer of the
host and could foul up the network through misconfiguration or malice.

Here, we will introduce UML networking by setting up a two-
machine private network with no access to the outside world. We will
cover networking fully in Chapter 7, including access to the host and
the Internet.

As I said earlier, in principle, any IPC mechanism can be used to
construct a virtual network. However, they differ in their convenience,
which is strongly related to how well they map onto a network. Funda-
mentally, Ethernet is a broadcast medium in which a message sent by
one host is seen by all the others on the same Ethernet, although, in
practice, the broadcasting is often suppressed by intelligent hardware
such as switches. Most IPC mechanisms, on the other hand, are point
to point. They have two ends, with one process at each end, and a mes-
sage sent by a process at one end is seen by the host at the other.

This mismatch makes most IPC mechanisms not well suited for
setting up a network. Each host would need a connection to each other
host, including itself, so the total number of connections in the network
would grow quadratically with the number of hosts. Further, each
packet would need to be sent individually to each host, rather than
having it sent once and received by all the other hosts.

However, one broadcast IPC mechanism is available: multicasting.
This little-used networking mechanism allows processes to join a
group, called a multicast group. When a message is sent to this group,
it is received by all the processes that have joined the group. This
nicely matches the semantics needed by a broadcast medium, with one
caveat—it matches an Ethernet device that’s connected by a hub, not a
switch. A hub repeats every packet to every host connected to it, while
a switch knows which Ethernet MAC addresses are associated with

Dike.book Page 72 Wednesday, March 15, 2006 8:16 PM

Networking the UML Instances 73

each of its ports and sends each packet only to the hosts it’s intended
for. With a multicast virtual network, as with a hub, each host will see
all of the packets on the network and will have to discard the ones not
addressed to it.

To start things off, we need Ethernet interfaces in our UML
instances. To do this, we need to plug them in:

host% uml_mconsole debian1 config eth0=mcast
OK
host% uml_mconsole debian2 config eth0=mcast
OK

This hot-plugs an Ethernet device into each instance. If you were start-
ing them from the shell here, you would simply add eth0=mcast to
their command lines.

Now, if you go back to one of the instances and run ifconfig, you
will notice that it has an eth0:

UML1# ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:00:00:00:00:00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 Interrupt:5

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:6 errors:0 dropped:0 overruns:0 frame:0
 TX packets:6 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

You’ll see the same thing has happened in the other UML.
Now we need to bring them up, so we’ll assign IP addresses to

them. We’ll use 192.168.0.1 for one instance:

UML1# ifconfig eth0 192.168.0.1 up

and similarly in the other instance, we’ll assign 192.168.0.2:

UML2# ifconfig eth0 192.168.0.2 up

Don’t worry if you are already using these addresses on your own
network—we have set up an isolated network, so there can’t be any
conflicts between IP addresses if they can’t exchange packets with each
other.

Dike.book Page 73 Wednesday, March 15, 2006 8:16 PM

74 Chapter 4 A Second UML Instance

Running ifconfig again shows that both interfaces are now up
and running:

UML1# ifconfig eth0
eth0 Link encap:Ethernet HWaddr FE:FD:C0:A8:00:01
 inet addr:192.168.0.1 Bcast:192.168.0.255
 \Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 Interrupt:5

No packets have been transmitted or received, so we need to fix that.
Let’s ping the second UML from the first:

UML1# ping 192.168.0.2
PING 192.168.0.2 (192.168.0.2): 56 data bytes
64 bytes from 192.168.0.2: icmp_seq=0 ttl=64 time=9.3 ms
64 bytes from 192.168.0.2: icmp_seq=1 ttl=64 time=0.2 ms
64 bytes from 192.168.0.2: icmp_seq=2 ttl=64 time=0.2 ms

--- 192.168.0.2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.2/3.2/9.3 ms

This establishes that we have basic network connectivity. To see some
more interesting network action, let’s request a Web page from the
other UML. Since we don’t have any ability to run a graphical Web
browser inside the UML yet, we’ll use the command-line tool wget:

UML1# wget -O - http://192.168.0.2
--15:51:10-- http://192.168.0.2:80/
 => `-'
Connecting to 192.168.0.2:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 4,094 [text/html]

 0K -><!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>

Following that snippet, you’ll see the rest of the default Apache
home page as shipped by Debian. If you want a more interactive Web
experience at this point, you can just run lynx, the text-mode Web
browser, with the same URL, and you’ll see a pretty good text represen-
tation of that page. The external links (those that point to debian.org,
apache.org, and the like) will not work because these instances don’t

Dike.book Page 74 Wednesday, March 15, 2006 8:16 PM

Networking the UML Instances 75

have access to the outside network. However, any links internal to the
other UML instance, such as the Apache documentation, should work fine.

Now that we have basic networking between the two instances, I
am going to complicate the configuration as much as possible, given
that we have only two hosts, and add them both to what amounts to a
second Ethernet network. I’m going to keep this network separate from
the current one, and to do so, I need to specify a different port from the
default. We specified no multicast parameters when we set up the first
network, so the UML network driver assigned default values. To keep
this new network separate from the old one, we will provide a full spec-
ification of the multicast group:

host% uml_mconsole debian1 config eth0=mcast,,239.192.168.1,1103,1
OK
host% uml_mconsole debian2 config eth0=mcast,,239.192.168.1,1103,1
OK

We are separating this network from the previous one by using the
next port. You can see how things are set up by looking at the kernel
message log:

UML# dmesg | grep mcast
Configured mcast device: 239.192.168.1:1102-1
Netdevice 0 : mcast backend multicast address: \
 239.192.168.1:1102, TTL:1
Configured mcast device: 239.192.168.1:1103-1
Netdevice 1 : mcast backend multicast address: \
 239.192.168.1:1103, TTL:1

We used the same default IP address, but used port 1103 instead
of the default 1102. We are still defaulting the second parameter, which
is the hardware MAC address that will be assigned to the adapters.
Since we’re not providing one, it will be derived from the first IP
assigned to the interface.

Again, if you run ifconfig, you will see that another interface
has materialized on the system:

UML1# ifconfig -a
eth0 Link encap:Ethernet HWaddr FE:FD:C0:A8:00:01
 inet addr:192.168.0.1 Bcast:192.168.0.255
 \Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:1363 errors:0 dropped:0 overruns:0 frame:0
 TX packets:1117 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 Interrupt:5

Dike.book Page 75 Wednesday, March 15, 2006 8:16 PM

76 Chapter 4 A Second UML Instance

eth1 Link encap:Ethernet HWaddr 00:00:00:00:00:00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 Interrupt:5

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:546 errors:0 dropped:0 overruns:0 frame:0
 TX packets:546 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

We’ll bring these up with IP addresses on a different subnet:

UML1# ifconfig eth0 192.168.1.1 up

and:

UML2# ifconfig eth0 192.168.1.2 up

As before, we can verify that we have connectivity by pinging one from
the other:

UML# ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes
64 bytes from 192.168.1.1: icmp_seq=0 ttl=64 time=18.6 ms
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.4 ms

--- 192.168.1.1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.4/9.5/18.6 ms

Now that we have two networks, we can do some routing experi-
ments. We have two interfaces on each UML instance, on two different
networks, with correspondingly different IP addresses. We can pretend
that the 192.168.1.0/24 network is the only one working and set up
one instance to reach the 192.168.0.0/24 interface on the other. So,
let’s first look at the routing table on one of the instances:

UML# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref \
 Use Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 \
 0 eth1
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 \
 0 eth0

Dike.book Page 76 Wednesday, March 15, 2006 8:16 PM

Networking the UML Instances 77

We will delete the 192.168.0.0/24 route on both instances to pretend
that network doesn’t work any more:

UML1# route del -net 192.168.0.0 netmask 255.255.255.0 dev eth0

and identically on the other:

UML2# route del -net 192.168.0.0 netmask 255.255.255.0 dev eth0

Now, let’s add the route back in, except we’ll send those packets
through eth1:

UML1# route add -net 192.168.0.0 netmask 255.255.255.0 dev eth1

and on the other:

UML2# route add -net 192.168.0.0 netmask 255.255.255.0 dev eth1

Now, the routing table looks like this:

UML# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref
 Use Iface
192.168.1.0 0.0.0.0 255.255.255.0 U 0 0
 0 eth1
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0
 0 eth1

Before we ping the other side to make sure that the packets are
traveling the desired path, let’s look at the packet counts on eth0 and
eth1 before and after the ping. Running ifconfig shows this output
for eth0:

RX packets:3597 errors:0 dropped:0 overruns:0 frame:0
TX packets:1117 errors:0 dropped:0 overruns:0 carrier:0

and this for eth1:

RX packets:8 errors:0 dropped:0 overruns:0 frame:0
TX packets:4 errors:0 dropped:0 overruns:0 carrier:0

The rather large packet count for eth0 comes from my playing
with the network without recording here everything I did. Also, notice
that the receive count for eth1 is double the transmit count. This is
because of the hublike nature of the multicast network that I mentioned
earlier. Every packet is seen by every host, including the ones the host

Dike.book Page 77 Wednesday, March 15, 2006 8:16 PM

78 Chapter 4 A Second UML Instance

itself sent. The UML received its own transmitted packets and the
replies. Since there was one reply for each packet sent out, the number
of packets received will be exactly double the number transmitted.

Now, let’s test our routing by pinging one instance from the other:

UML# ping 192.168.0.251
PING 192.168.0.251 (192.168.0.251): 56 data bytes
64 bytes from 192.168.0.251: icmp_seq=0 ttl=64 time=19.9 ms
64 bytes from 192.168.0.251: icmp_seq=1 ttl=64 time=0.4 ms
64 bytes from 192.168.0.251: icmp_seq=2 ttl=64 time=0.4 ms

--- 192.168.0.251 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.4/6.9/19.9 ms

This worked, so we didn’t break anything. Let’s check the packet
counters for eth0 again:

RX packets:3597 errors:0 dropped:0 overruns:0 frame:0
TX packets:1117 errors:0 dropped:0 overruns:0 carrier:0

and for eth1:

RX packets:18 errors:0 dropped:0 overruns:0 frame:0
TX packets:9 errors:0 dropped:0 overruns:0 carrier:0

Nothing went over eth0, as planned, and the pings went over
eth1 for both UMLs. So, even though the 192.168.0.0/24 network is
still up and running, we persuaded the UMLs to pretend it wasn’t
there and to use the 192.168.1.0/24 network instead.

Although this is a simple demonstration, we just simulated a sce-
nario you could run into in real life, and dealing with it incorrectly in
real life could seriously mess up a network.

For example, say you have two parallel networks, with one acting
as a backup for the other. If one goes out of commission, you want to
fail over to the other. Our scenario is similar to having the
192.168.0.0/24 network fail. Leaving the eth0 interfaces running is
consistent with this because they would remain up on a physical
machine on a physical Ethernet—they would just have 100% packet
loss. Having somehow seen the network fail, we reset the routes so that
all traffic would travel over the backup network, 192.168.1.0/24.
And we did it with no extra hardware and no Ethernet cables, just a
standard Linux box and some software.

Setting this up and doing the failover without having tested the
procedure ahead of time would risk fouling up an entire network, with

Dike.book Page 78 Wednesday, March 15, 2006 8:16 PM

A Virtual Serial Line 79

its many potentially unhappy users, some of whom may have influence
over the size of your paycheck and the duration of your employment.
Developing the procedure without the use of a virtual network would
involve setting up two physical test networks, with physical machines
and cables occupying space somewhere. Simply setting this up to the
point where you can begin simulating failures would require a noticeable
amount of time, effort, and equipment. In contrast, we just did it with no
extra hardware, in less than 15 minutes, and with a handful of commands.

A VIRTUAL SERIAL LINE

We are going to round out this chapter with another example of the two
UML instances communicating over simulated hardware. This time,
we will use a virtual serial line running between them to log in from
one to the other.

This serial line will be constructed from a host pseudo-terminal,
namely, a UNIX 98 pts device. Pseudo-terminals on UNIX are pipes—
whatever goes in one end comes out the other, possibly with some pro-
cessing in between, such as line editing. This processing distinguishes
pseudo-terminals from normal UNIX pipes. The end that’s opened first
is the pty end, and it’s the master side—the device doesn’t really exist
until this side is opened. So, the instance to which we are going to log
in will open the master side of the device, and later, the slave side will
be opened by the other instance when we log in over it.

We are going to make both ends of the device appear inside the
instances as normal, hardwired terminals. One instance is going to run
a getty on it, and we will run a screen session inside the other instance
attached to its terminal.

To get started, we need to identify an unused terminal in both
instances. There are two ways to do this—read /etc/inittab to find
the first terminal that has no getty running on it, or run ps to discover
the same thing. The relevant section of inittab looks like this:

/sbin/getty invocations for the runlevels.
#
The "id" field MUST be the same as the last
characters of the device (after "tty").
#
Format:
<id>:<runlevels>:<action>:<process>
0:2345:respawn:/sbin/getty 38400 tty0
1:2345:respawn:/sbin/getty 38400 tty1

Dike.book Page 79 Wednesday, March 15, 2006 8:16 PM

80 Chapter 4 A Second UML Instance

2:2345:respawn:/sbin/getty 38400 tty2
3:2345:respawn:/sbin/getty 38400 tty3
4:2345:respawn:/sbin/getty 38400 tty4
5:2345:respawn:/sbin/getty 38400 tty5
6:2345:respawn:/sbin/getty 38400 tty6
7:2345:respawn:/sbin/getty 38400 tty7
c:2345:respawn:/sbin/getty 38400 ttyS0

It appears that tty8 is unused. ps confirms this:

UML1# ps uax | grep getty
root 153 0.0 0.3 1084 444 tty1 S 14:07 0:00
 /sbin/getty 38400 tty1
root 154 0.0 0.3 1088 448 tty2 S 14:07 0:00
 /sbin/getty 38400 tty2
root 155 0.0 0.3 1084 444 tty3 S 14:07 0:00
 /sbin/getty 38400 tty3
root 156 0.0 0.3 1088 448 tty4 S 14:07 0:00
 /sbin/getty 38400 tty4
root 157 0.0 0.3 1088 452 tty5 S 14:07 0:00
 /sbin/getty 38400 tty5
root 158 0.0 0.3 1088 452 tty6 S 14:07 0:00
 /sbin/getty 38400 tty6
root 159 0.0 0.3 1088 452 tty7 S 14:07 0:00
 /sbin/getty 38400 tty7
root 160 0.0 0.3 1084 444 ttyS0 S 14:07 0:00
 /sbin/getty 38400 ttyS0

This is the same on both instances, as you would expect, so we will use
tty8 as the serial line on both.

First we need to plug in a properly configured tty8 to the master
UML instance, the one to which we will be logging in. We do this with
uml_mconsole on the host, configuring con8, which is the mconsole
name for the device that is tty8 inside UML:

host% uml_mconsole debian2 config con8=pts
OK

Now, the master UML instance has a tty8, and we need to know
which pseudo-terminal on the host it allocated so that we can connect
the other instance’s tty8 to the other end of it. Right now, it’s not con-
nected to anything, as it waits until the device is opened before allocating
a host terminal. So, to get something to open it, we’ll run getty on it:

UML2# /sbin/getty 38400 tty8

Now we need to know what the other end of the pts device is, since
that’s determined dynamically for these devices:

Dike.book Page 80 Wednesday, March 15, 2006 8:16 PM

A Virtual Serial Line 81

host% uml_mconsole debian2 config con8
OK pts:/dev/pts/28

This tells us how to configure con8 on the slave UML:

host% uml_mconsole debian1 config con8=tty:/dev/pts/28
OK

Here we are using tty instead of pts as the device type because
the processes of opening the two sides of the device are slightly differ-
ent, and we are opening the slave side here.

This will just sit there, so we now go to the slave UML instance
and attach screen to its tty8:

UML1# screen /dev/tty8

Figure 4.3 shows what we have constructed. The two UML consoles
are connected to opposite ends of the host’s /dev/pts/28 and commu-
nicate through it. From inside the UML instances, it appears that the
two UML /dev/tty8 devices are connected directly to each other.

Figure 4.3 A virtual serial line. The two UML /dev/tty8 devices are connected to
the host’s /dev/pts/28 pseudo-terminal, the master side connected to the UML
instance that will be logged into and the slave side connected to the UML instance
that will be logging in. The master side is connected to the UML instance’s getty,
login, and bash as the login proceeds. On the other side, screen is connected to the
UML instance’s /dev/tty8, which is attached to the slave side of the host pseudo-
terminal. The solid lines show the actual flow of data through the UML consoles and
the host pseudo-terminal. The dashed line shows the flow of data apparent to the
UML users, who see the two UML consoles directly connected to each other.

Slave Master

UML
instances

Host

Perceived data flow

screen

/dev/tty8

getty

/dev/tty8

/dev/pts/28

login bash

Actual data flow

Dike.book Page 81 Wednesday, March 15, 2006 8:16 PM

82 Chapter 4 A Second UML Instance

Now you should see a login prompt in the screen session. Log in
and determine that it really is the other instance. During the examples
in this chapter, we’ve copied different things into /tmp, assigned differ-
ent IP addresses to their network interfaces, and played with their
routing tables, so this should not be hard to verify.

Once you log out, you’ll notice that the getty exits back to the
shell, and you get no login prompt in the screen session. This is the
purpose of the respawn on the getty lines in /etc/inittab. If you
wrapped the getty command in an infinite loop, you would be doing a
passable imitation of init. However, we will just exit the screen session
(^A K) to get back to the prompt in the other instance.

We are done with these UMLs, so you can just halt them and
remove their COW files if you want to reclaim whatever disk space
they consumed.

The point of this exercise was not to demonstrate that two UML
instances can be used to simulate a serial line—physical serial lines
are not hard to come by and not that hard to set up. Rather, it was to
demonstrate how easily a virtual device on the host can be pressed into
service as a physical device inside UML. A serial line is probably the
simplest example of this, which is why I used it. Out of the box, UML
can emulate many other sorts of hardware, and for other types, it is
fairly simple to write a UML driver that emulates the device. Other
examples include using shared memory on the host to emulate a device
with memory-mapped I/O, which some embedded systems developers
have done, and using shared memory to emulate a cluster interconnect,
with multiple UML instances on the host being the emulated cluster.

More prosaic, and more common, is the need to emulate a network
environment for purposes such as setting it up, reconfiguring it, and
testing fault handling. We saw an example of testing failover from a
failed network to a hot spare network. This only scratches the surface
of what can be done with a virtual network. A network of UMLs can be
configured in any way that a physical network can and a lot of ways
that a physical network can’t, making UML an ideal way to set up,
develop, and test networks before physically building them.

Dike.book Page 82 Wednesday, March 15, 2006 8:16 PM

83

C H A P T E R 5

Playing with a UML Instance

By now, you have at least a basic idea of what UML is and how it can
be used. In this chapter, we will see a wider variety of things we can do
with UML. We will set up a basic network and use it to gain access to
the host and to the outside network, and also access the UML instance
from the outside. We will continue playing with virtual devices, seeing
how they can be used like physical devices and what they can do that
physical devices can’t.

USE AND ABUSE OF UML BLOCK DEVICES

First, let’s look at ways to copy data into a UML instance from the host
without using the network. We will use UML block devices for this,
tying them to files containing the data that we want to access inside
the instance. Until now, we have used UML block devices only for file-
systems. However, like physical disks, block devices can contain any
data whatsoever, and that data can be accessed by anything that
understands its format. Putting a filesystem on a disk formats the
disk’s data in a particular way that can be understood by the filesystem

Dike.book Page 83 Wednesday, March 15, 2006 8:16 PM

84 Chapter 5 Playing with a UML Instance

that will mount it. However, if you don’t need to mount the disk as a
filesystem, the data on it can be anything you want.

For example, let’s say that we want to copy a directory from the
host to the instance. In this example, we will create a tar file on the
host containing the directory, attach a UML block device to the file, and
untar the directory inside the instance. We saw this in Chapter 3, but I
will go into more depth here.

To start, we need the tar file. I will use the host’s /etc here:

host% tar cpf etc.tar /etc
host% ls -l etc.tar
-rw-rw-rw- 1 jdike jdike 25149440 May 13 22:28 etc.tar

I ran tar as a normal user and got a bunch of errors from files I
didn’t have permission to read. That’s fine for an example, but if you
really wanted all those files, you would run tar as root to ensure that
they all end up in the tar file.

At the end of the previous chapter, we shut down our UML
instances, so if you don’t have one running now, start one up.

We now have a 25MB file that we will turn into a UML block
device, using uml_mconsole:

host% uml_mconsole debian config ubdb=etc.tar
OK

This causes a second block device, /dev/ubdb, to come into exist-
ence inside our instance. Rather than mounting it as a filesystem, as
we have done before, we will treat it as a tape drive. These days, tar is
often used to archive data in files and to retrieve files from those files.
It used to be more common to use tar to write the data directly to a
device, usually a tape drive. We are going to treat our new block device
similarly and tar the directory off the device directly.

First, let’s go to the UML, see if /dev/ubdb contains something
that tar recognizes, and ask it to show us what’s on the device:

UML# tar tf /dev/ubdb | head
etc/
etc/sysconfig/
etc/sysconfig/network-scripts/
etc/sysconfig/network-scripts/ifdown-aliases
etc/sysconfig/network-scripts/ifcfg-lo
etc/sysconfig/network-scripts/ifdown
etc/sysconfig/network-scripts/ifdown-ipsec
etc/sysconfig/network-scripts/ifdown-ippp
etc/sysconfig/network-scripts/ifup-aliases
etc/sysconfig/network-scripts/ifdown-ipv6

Dike.book Page 84 Wednesday, March 15, 2006 8:16 PM

Use and Abuse of UML Block Devices 85

That looks a lot like a /etc, so let’s pull it off for real:

UML# tar xpf /dev/ubdb

Now you will see an /etc directory in your current directory. If you
run ls on it, you will see that it is, in fact, the same as what you copied
on the host.

This should make it clear that the data on a UML block device can
be any format and that all you need to pull the data off the device
inside the UML instance is a utility that understands the format.

Let’s pull the data off in a way that assumes nothing about the for-
mat. We will just make a raw copy of the device in a file inside UML
and see that it contains what we expect. To start, remove the /etc
directory we just made:

UML# rm -rf etc

Now, let’s use dd to copy the device into a file:

UML# dd if=/dev/ubdb of=etc.tar
49120+0 records in
49120+0 records out

We can check whether tar still thinks it contains a copy of /etc:

UML# tar xpf etc.tar

That finishes successfully, and you can again check with ls that you
extracted the same directory as before.

As a final example using this tar file, we will compress the file
before attaching it to a block device, and then uncompress and untar it
inside UML. Again, let’s remove our copy of /etc:

UML# rm -rf etc

Now, back on the host, we compress the tar file and attach it to
UML block device 2:

host% gzip etc.tar
host% uml_mconsole debian config ubdc=etc.tar.gz
OK

Back inside the UML instance, we now uncompress the com-
pressed tar file to stdout and pipe that into tar, hopefully extracting
the same directory that we did before:

UML# gunzip -c < /dev/ubdc | tar xf -

Dike.book Page 85 Wednesday, March 15, 2006 8:16 PM

86 Chapter 5 Playing with a UML Instance

Again, you can check that etc is the same as in the previous
examples.

When copying files into UML using this method, you need to be
careful about lengths. We are mapping a host file, which can be any
length, onto a block device, which is expected to be a multiple of 512
bytes long—the size of a disk sector in Linux. Block devices are
expected to contain sectors, with no bytes left over. To see how this
affects files copied into UML, let’s copy a single, odd-length file through
a block device.

Locate a file on the host whose length is not an even multiple of
512 bytes.

On my system, /etc/passwd is suitable:

host% ls -l /etc/passwd
-rw-r--r-- 1 root root 1575 Dec 10 18:38 /etc/passwd

Let’s attach this file to UML:

host% uml_mconsole debian config ubdd=/etc/passwd
OK

Here’s what we get when we copy it inside UML:

UML# dd if=/dev/ubdd of=passwd
4+0 records in
4+0 records out
UML# ls -l passwd
-rw-r--r-- 1 root root 2048 May 13 23:48 passwd

Notice that the size changed. If you look at the file with a suitable
utility, such as od, you will see that the extra bytes are all zeros.

There is a mismatch between a file with no size restrictions being
mapped to a device that must be an even number of sectors. The UML
block driver has to bridge this gap somehow. When it reaches the end of
a host file and has read only a partial sector, it pads the sector with
zeros and pretends that it read the entire thing. This is a necessary fic-
tion in order to generally handle the end of a file, but it results in the
block driver copying more data than it should.

To deal with this problem, we need to tell dd exactly how much
data to copy. The UML block driver will still pad the last sector with
zeros, but dd won’t copy them.

My /etc/passwd is 1575 bytes long, so this is what we will tell dd
to copy:

Dike.book Page 86 Wednesday, March 15, 2006 8:16 PM

Networking and the Host 87

UML# dd if=/dev/ubdd of=passwd bs=1 count=1575
1575+0 records in
1575+0 records out
UML# ls -l passwd
-rw-r--r-- 1 root root 1575 May 13 23:56 passwd

The bs=1 argument to dd tells it to copy data in units of a single
byte, and the count argument tells it to copy 1575 of those units.

Now, the size is what we expect, and if you check the contents, you
will see that they are, in fact, the same.

Some file formats are self-documenting in terms of their length—
it is possible to tell whether extra data has been added to the length of
the file. tar and bzip files are two examples—tar and bunzip2 can
tell when they’ve reached the end of the data they are supposed to pro-
cess, and bunzip2 will complain about the extra data. If you are copy-
ing data from a ubd device that is in one of these formats, you can use
the device directly as the data source. You don’t need to copy the correct
number of bytes from the device into a file in order to recreate the orig-
inal data.

NETWORKING AND THE HOST

Now, let’s move to a more conventional method of transferring data
between machines. Pluggable block devices are cute and sometimes
invaluable, but a network is more conventional, more flexible, and usu-
ally easier to use. We saw a bit of UML networking in the previous
chapter, which showed that UML instances can be used to construct an
isolated network. But the value of networking lies in accessing the out-
side world. Let’s do this now.

We will plug a network interface into the UML as we did before,
but we are going to use a different host mechanism to transfer the
packets:

host% uml_mconsole debian config eth0=tuntap,,,192.168.0.254
OK

At this point, the IP addresses we use will be visible to the outside
network, so choose ones that aren’t used on your network. If you are using
192.168.0.254 already, change the uml_mconsole command to
specify an unused IP address (or one that is already used by a different

Dike.book Page 87 Wednesday, March 15, 2006 8:16 PM

88 Chapter 5 Playing with a UML Instance

interface on the host, if IP addresses are scarce on your network).
Inside the UML, you should see a message similar to this:

Netdevice 0 : TUN/TAP backend - IP = 192.168.0.254

If it doesn’t appear on the main console, you will be able to see it
by running dmesg. Some distributions don’t have their logging config-
ured so that kernel messages appear on the main console. In this case,
running dmesg is the most convenient way to see the recent kernel log.

In this example, we are setting up a virtual network interface on
the host that will be connected to the UML’s eth0. There are a number
of mechanisms for doing this, such as SLIP, PPP, Ethertap, and TUN/
TAP. TUN/TAP is the newest and most general-purpose one of the
bunch. It provides a file that, when opened by a process, allows that
process to receive and transmit Ethernet frames to the system’s net-
work stack.

Figure 5.1 shows an example of using TUN/TAP. Here we have a
system with eth0, a wired Ethernet interface; eth1, a wireless interface;
and tap0, a TUN/TAP interface. Frames that are routed to eth0 or eth1
are sent to a hub or switch, or to a wireless router, respectively, for deliv-
ery to their destination. In contrast, a frame that’s routed to the tap0
device is sent to whatever process on the system opened the /dev/
net/tun file and associated that file descriptor with the tap0 interface.

This process may do anything with the frames it receives. UML
will send the frames through its own network stack, which could do
almost anything with them, including delivering the data to a local pro-

Figure 5.1 TUN/TAP provides an interface for processes to receive and trans-
mit network frames

Wireless
network

Outside host Process (UML, vtund)

eth0

/dev/net/tun

eth1 tap0

Wired switch

Dike.book Page 88 Wednesday, March 15, 2006 8:16 PM

Networking and the Host 89

cess, forwarding them to another host that it’s connected to, or just
dropping them.

UML isn’t the only process that can attach itself to a TUN/TAP
interface—vtund is another example. vtund is used to construct a Vir-
tual Private Network (VPN)—it will read frames from a TUN/TAP
interface, encrypt them, and forward them to another vtund instance
on a remote host. The remote vtund will decrypt the frames and inject
them into the network on its host by writing them to its TUN/TAP
interface. So, the TUN/TAP interface provides a general-purpose mech-
anism for processes to receive and transmit network traffic and do any
sort of processing on it.

This is unlike the mcast transport we saw in the previous chapter
in that frames sent to a TUN/TAP device are interpreted and routed by
the host’s network stack. With mcast, the frames were simply hunks of
data to be sent from one process to another. Since frames sent to a
TUN/TAP device are seen as network frames by the host, they will be
routed to whatever host owns the frame’s destination IP address. That
could be the host itself, another machine on the local network, or a host
on the Internet.

Similarly, if the IP address given to the UML is visible to the out-
side world (the ones we’re using will be visible on the local net, but not
to the Internet as a whole), people in the outside world will be able to
make network connections to it. It will appear to be a perfectly normal
network host.

A TUN/TAP device is very similar to a strand of Ethernet connect-
ing the host and the UML. Each end of the strand plugs into a network
device on one of the systems. As such, the device at each end needs an
IP address, and the two ends need different IP addresses. The address
we specified on the uml_mconsole command line, 192.168.0.254, is
the address of the host end of the TUN/TAP device.

The fact that a TUN/TAP interface is like a strand of Ethernet has
an important implication: The TUN/TAP interface and the UML eth0
form their own separate Ethernet broadcast domain, as shown in Fig-
ure 5.2. This means that any Ethernet broadcast protocols, such as
ARP and DHCP, will be restricted to those two interfaces and the hosts
they belong to. In contrast, the local Ethernet on which the host resides
is a broadcast domain with many hosts on it. Without some extra work,
protocols like ARP and DHCP can’t cross between these two domains.
This means that a UML instance can’t use the DHCP server on your
local network to acquire an IP address and that it can’t use ARP to figure

Dike.book Page 89 Wednesday, March 15, 2006 8:16 PM

90 Chapter 5 Playing with a UML Instance

out the MACs of other hosts in order to communicate with them. In
Chapter 7, we will discuss this problem in detail and see several meth-
ods for fixing it.

Returning to our exercise, the next step is to bring up the UML
eth0, which is the other end of the strand, and to assign an IP address
to it. Since it’s a different system, it will need a different unused IP
address. Here, I will use 192.168.0.253:

UML# ifconfig eth0 192.168.0.253 up
* modprobe tun
* ifconfig tap0 192.168.0.254 netmask 255.255.255.255 up
* bash -c echo 1 > /proc/sys/net/ipv4/ip_forward
* route add -host 192.168.0.253 dev tap0
* bash -c echo 1 > /proc/sys/net/ipv4/conf/tap0/proxy_arp
* arp -Ds 192.168.0.253 eth1 pub

Again, if the output above doesn’t appear on your console, run
dmesg to see it. The UML network driver is running a helper process
on the host in order to set up the host side of the network, and this out-
put shows what commands the helper is running. We will go into much
more detail in Chapter 7, but, briefly, these are making sure that TUN/
TAP is available on the host, configuring the TUN/TAP interface, tap0,
and setting up routing and proxy arp so that the instance will be visi-
ble on your local network.

At this point, we have the network running between the host and
the UML instance, and you should be able to ping back and forth:

UML# ping 192.168.0.254
PING 192.168.0.254 (192.168.0.254): 56 data bytes
64 bytes from 192.168.0.254: icmp_seq=0 ttl=64 time=19.6 ms

Figure 5.2 TUN/TAP interfaces form their own Ethernet networks

UML

Broadcast domains

eth0

eth0eth0

host2

host1

host3

eth0
tap0

Dike.book Page 90 Wednesday, March 15, 2006 8:16 PM

Networking and the Host 91

--- 192.168.0.254 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 19.6/19.6/19.6 ms

host% ping 192.168.0.253
PING 192.168.0.253 (192.168.0.253) 56(84) bytes of data.
64 bytes from 192.168.0.253: icmp_seq=0 ttl=64 time=0.209 ms

--- 192.168.0.253 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.209/0.209/0.209/0.000 ms, pipe 2

This is the most basic level of networking. The next step is to
access the outside world. We need to do two things—give our UML
instance a route to the outside, and give it a name server. First, look at
the UML routing table:

UML# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref \
 Use Iface
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 \
 0 eth0

This tells us we have a route to the local network, but nothing
else. So, we need a default route:

UML# route add default gw 192.168.0.254
UML# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref \
 Use Iface
192.168.0.0 0.0.0.0 255.255.255.0 U 0 0 \
 0 eth0
0.0.0.0 192.168.0.254 0.0.0.0 UG 0 0 \
 0 eth0

This new route just tells the UML network to send all packets it
doesn’t know what to do with (in this case, those not destined for the
local network) to the host tap interface and let it deal with them. Pre-
sumably, the host has access to the Internet and knows how to route
packets to it.

Second, we need to give the UML instance an /etc/
resolv.conf. This is normally set up by DHCP, but since we are set-
ting up the network by hand, this must be done by hand, too. I nor-
mally just copy the host’s /etc/resolv.conf:

UML# cat > /etc/resolv.conf
; generated by /sbin/dhclient-script

Dike.book Page 91 Wednesday, March 15, 2006 8:16 PM

92 Chapter 5 Playing with a UML Instance

search user-mode-linux.org
nameserver 192.168.0.3

I just cut the host’s resolv.conf from one xterm window and
pasted it into another that has UML running in it. You should do some-
thing similar here. Definitely don’t use my resolv.conf since that
won’t work on your network.

We need to set up one thing on the host. Since I am using the
192.168.x.x address block, the host will need to do masquerading for
it. This address block and the 10.x.x.x one are nonroutable, so they
can’t be used by any machine that has direct access to the Internet.
Masquerading, or Network Address Translation (NAT), on the host will
solve this problem by having the host use its own address for outgoing
UML network traffic.

If you are using normal, routable IP addresses, you don’t need to
worry about masquerading. But if you are using a nonroutable IP address
for your instance, you need to NAT it. So, as root on the host, run:

host# iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

If eth0 is not the device used to access the Internet, change that
part of the code to the correct device. For example, if you’re a dialup
user with Internet access through the ppp0 device, you would use ppp0
instead of eth0.

It is common for the firewall on the host to interfere with UML’s
ability to communicate with any machines other than the host. To see
if your host has a potentially interfering firewall, run iptables -L as
root. If you have no firewall, you will see this:

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain RH-Firewall-1-INPUT (0 references)
target prot opt source destination

If you see anything else, it’s a good idea to poke a hole in the fire-
wall for the UML instance’s traffic like this, again as root:

host# iptables -I FORWARD -d 192.168.0.253 -j ACCEPT
host# iptables -I FORWARD -s 192.168.0.253 -j ACCEPT

Dike.book Page 92 Wednesday, March 15, 2006 8:16 PM

Networking and the Host 93

This tells the host to allow all traffic being forwarded to and from
192.168.0.253, the IP address that we’ve assigned to the UML
instance, through the firewall. You might imagine that there are security
implications to this, since a firewall is an important part of any network’s
security infrastructure, and there are. This means that any attacks aimed
at the UML IP address will reach it. Whether they succeed is a differ-
ent question altogether. But this is simply making a new host accessi-
ble to the outside network, including anything malicious out there.

If the host is masquerading the UML IP, that provides a degree of
protection because it is invisible to the outside network, except for con-
nections that it initiates itself. For example, if you ran a Web browser
in the UML instance and loaded a Web page from a malicious Web site,
the instance could be attacked by that site, through the browser. How-
ever, the instance is invisible to everything else, including worms and
other malicious software scanning the network for victims. The downside
of this is that it would be unusable as a server, since that would require
that it be visible enough for outside clients to make connections to it.

The situation is somewhat different if you are using a real,
routable IP for your UML. In this case, it is visible on the outside net-
work and to whatever nasty things are scanning it.

In either case, you want the UML to be a full-fledged member of
the network, so you need to take the same care with its security as you
do with any physical machine. Make sure that the distribution you are
booting in it is reasonably up to date and that you take the same pre-
cautions here as you take elsewhere.

With masquerading set up, and a hole poked in the host firewall if
necessary, the UML should now be a full member of your network. We
can do another simple test to make sure the UML has name service:

UML# host www.user-mode-linux.org
www.user-mode-linux.org A 66.59.111.166

Now that this works, we can check that we have full Internet
access by pinging http://www.user-mode-linux.org:

UML# ping www.user-mode-linux.org
PING www.user-mode-linux.org (66.59.111.166): 56 data bytes
64 bytes from 66.59.111.166: icmp_seq=0 ttl=52 time=223.7 ms
64 bytes from 66.59.111.166: icmp_seq=1 ttl=52 time=38.9 ms

--- www.user-mode-linux.org ping statistics ---
3 packets transmitted, 2 packets received, 33% packet loss
round-trip min/avg/max = 38.9/131.3/223.7 ms

Dike.book Page 93 Wednesday, March 15, 2006 8:16 PM

94 Chapter 5 Playing with a UML Instance

At this point, we can start playing with the UML from the outside.
There should be an Apache running inside it, and you should now be
able to access it at http://192.168.0.253 with your favorite browser. This
is what wget shows from the host:

host% wget http://192.168.0.253
--16:40:43-- http://192.168.0.253/
 => `index.html'
Connecting to 192.168.0.253:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 4,110 [text/html]

100%[====================================>] 4,110 3.92M/s \
 ETA 00:00

16:40:43 (3.92 MB/s) - `index.html' saved [4110/4110]

This is the default Apache install page. You can now turn your
UML instance into a Web server by installing some real content into
Apache’s html directory. You can figure out where this is by finding
httpd.conf under either /etc/apache or /etc/httpd and looking
at how it defines DocumentRoot:

UML# grep DocumentRoot /etc/apache/conf/httpd.conf
DocumentRoot: The directory out of which you will serve your
DocumentRoot /var/www
This should be changed to whatever you set DocumentRoot to.
DocumentRoot /www/docs/host.some_domain.com

In this case, Apache expects HTML content to be put in /var/www.
If you put some Web pages there, they would be visible in your browser
on the host.

The next thing many people like to do is remotely log in to their
instance. ssh is the usual way to do this, and it works exactly as you’d
expect:

host% ssh root@192.168.0.253
Password:
Last login: Mon May 23 19:56:28 2005

Here, I logged in as root since that’s how I normally log in to a
UML instances. If you create an account for yourself and put your ssh
public key in it, you’ll be able to log in to your instance as yourself,
without needing a password, just as you do with any physical machine.

Obviously ssh in the other direction will work just as well. I con-
tinue this session by logging back in on the host as myself:

Dike.book Page 94 Wednesday, March 15, 2006 8:16 PM

Networking and the Host 95

UML# ssh jdike@192.168.0.254
jdike@192.168.0.254's password:
host%

You’ll want to substitute your own username for mine in the ssh com-
mand line.

With Web and ssh access working, it should be clear that the net-
work is operating just as it does with any Linux machine. Now, let’s
look at another use of the network, X, and how it can be virtualized.

First, let’s see that X clients running inside UML can be displayed
on the host display. There are several authorization mechanisms in use
by X and Xlib to ensure that X applications can connect only to displays
they’re allowed on. The two most common are xhost and Xauthority.
Xauthority authorization relies on a secret (a magic cookie) stored in
~/.Xauthority by the session manager when you log in. A client is
expected to read that file; if it can, that is considered evidence that it
has sufficient permissions to connect to your display. It presents the
contents of the file to the X server, which checks that it really is the
contents of your .Xauthority file.

The other mechanism is xhost, which is a simple access control
list (ACL) naming remote machines that are allowed to connect to your
display. This is less fine-grained than Xauthority since it would allow
someone else logged in to a remote machine in your xhost list to open
windows on your display. Despite this disadvantage, I will use xhost
authorization here.

First, on whatever machine you’re sitting in front of (which may
not be the UML host, as it is not for me), run xhost:

X-host% xhost
access control enabled, only authorized clients can connect

This tells us that xhost access is enabled, which is good, and that
no one has xhost access to this display. So, let’s give access to the
UML:

X-host% xhost 192.168.0.253
192.168.0.253 being added to access control list
X-host% xhost
access control enabled, only authorized clients can connect
INET:192.168.0.253

Your X server may be configured to not accept remote connections.
You can check this by running ps to see the full X server command line:

Dike.book Page 95 Wednesday, March 15, 2006 8:16 PM

96 Chapter 5 Playing with a UML Instance

X-host% ps uax | grep X
root 4215 1.6 2.4 59556 12672 ? S 10:29 7:44 \
 /usr/X11R6/bin/X :0 -audit 0 -auth /var/gdm/:0.Xauth \
 -nolisten tcp vt7

-nolisten tcp causes any attempts to make X client connections
fail with “connection refused.” This causes the X server to accept local
connections only by accepting them through a UNIX-domain socket. It
is not listening to a TCP socket, and it is inaccessible to the network.

To change this, I ran gdmsetup, selected the Security tab, and
turned off the “Always disallow TCP connections to X server” option.
Other display managers, such as xdm or the KDE display manager,
probably have similar setup applications. Then, it’s necessary to
restart the X server. Logging out usually suffices. You should recheck
the X command line after logging back in to see that -nolisten has
disappeared. If it hasn’t, it may be necessary to kill the display man-
ager to force it to restart.

Now, we need to set our DISPLAY environment variable inside
UML to point at our display:

UML# export DISPLAY=192.168.0.254:0

Here I’m assuming that the machine you’re using is the UML host
and that you chose the IP address we assigned to the host end of the
tap device. Any IP address associated with that host, or its name,
would work equally well.

Now you should be able to run any X client on the UML and see it
display on your screen. Starting with xdpyinfo or xload to see that it
basically works is a good idea. What’s more fun is xterm. This gives
you a terminal on the UML without needing to log into it anymore.

Now that we have X working between the UML and the rest of the
world, let’s introduce a new sort of virtualization, in keeping with the
spirit of this book. It is possible to virtualize X by running a process
that appears to be an X server to X clients, and a client to an X server.
This application is called Xnest,1 and its name pretty well describes it.
It creates a window on its own X server, which is its own root window,

1. You likely don’t have Xnest (or other X packages) installed in your UML file-
system. On Fedora, Xnest comes in the xorg-x11-Xnest package and re-
quires the fonts-xorg-75dpi package, which doesn’t get pulled in
automatically because of a missing dependency. You also will likely want
the xorg-x11-tools package, which has the common X11 utilities in it.

Dike.book Page 96 Wednesday, March 15, 2006 8:16 PM

Networking and the Host 97

then accepts connections from other clients, displaying their windows
on this root window.

This little root window is a totally different display from the main
one. There can and generally will be separate session and window
managers running on it. They will be completely confined to that win-
dow and will not be able to tell that there’s anything outside it.

Xnest has nothing to do with UML, but it’s easy to draw parallels
between them. A good one is between this little root window inside the
main one, on the one hand, and the UML filesystem in a host file on the
host filesystem, on the other. In both cases, the host sees something,
either a file or a window, that, unbeknownst to it, contains a full uni-
verse, either the filesystem run by UML or the X session run by Xnest.

Running Xnest is simple:

UML# Xnest :0 &
[2] 1785

:0 tells Xnest to become display 0 on the UML instance. On a
physical machine with a display already attached to it, you would nor-
mally use display 1 or greater. The instance has no incumbent displays,
so Xnest can use display 0.

You should now see a largish blank window on your screen. This is
the new virtual display. Next, set the DISPLAY environment variable
inside UML to use the Xnest display:

UML# export DISPLAY=:0

At this point, you can run some X clients, and you will see their
windows appear within this virtual X display. You will also notice that
they have no borders and can’t be moved, resized, or otherwise
adjusted. The thing to do now is run a window manager so that these
windows become controllable. Here, I’m using fvwm, a lightweight,
minority window manager:

UML# fvwm &
[5] 2067

Now you should see borders around the windows within the Xnest
display, and you should be able to move them around just as on your
normal display.

To get a bit surreal, let’s run an X client on the host, displaying
over the network to the UML Xnest, which is displaying back over the
network to the host. First, we need to do the same X security things

Dike.book Page 97 Wednesday, March 15, 2006 8:16 PM

98 Chapter 5 Playing with a UML Instance

inside the UML instance as we did on the host earlier. For this step,
make sure there is some X client attached to the Xnest display through
the entire process. The X server reinitializes itself whenever the last
client disconnects, and this reinitialization includes resetting the
xhost list. This is a problem because xhost itself is a client, and if it is
the only one, when it disconnects, it triggers this reinitialization, which
unfortunately throws out the permission changes it added.

Running xhost on the UML now shows:

UML# xhost
access control enabled, only authorized clients can connect
INET:192.168.0.253
LOCAL:

So, right now, the UML allows connections from local clients,
either connecting over a UNIX domain socket (LOCAL:) or over a local
TCP connection. We need to add the host from which we will be run-
ning clients and to which we will be ultimately displaying them back:

UML# xhost 192.168.0.254
192.168.0.254 being added to access control list
UML# xhost
access control enabled, only authorized clients can connect
INET:192.168.0.254
INET:192.168.0.253
LOCAL:

Now, if we go back to the host and display to the UML display 0,
we should see those clients within the virtual X display:

host% export DISPLAY=192.168.0.253:0
host% xhost
access control enabled, only authorized clients can connect
INET:192.168.0.254
INET:192.168.0.253
LOCAL:
host% xterm &
[1] 7535
host% fvwm &
[2] 7654

Now, as expected, we have a host window manager and xterm win-
dow displaying within the virtual X display running on the UML. Fig-
ure 5.3 shows a partial screenshot of a display with an Xnest running
from a UML instance. I have xhost set up as described earlier, and the
xterm window inside the Xnest is running over the network from a

Dike.book Page 98 Wednesday, March 15, 2006 8:16 PM

Networking and the Host 99

third host. There is also a local xload window and window manager
running inside the Xnest.

Now, strictly speaking, none of this Xnest stuff required UML.
Everything we just did could have been done on the host, with Xnest
providing a second display that happens to be shown on part of the
first. However, it is a nice example of providing a virtual machine with
a new piece of virtualized hardware that behaves just like the equiva-
lent piece of physical hardware. It also shows another instance of con-
structing this virtual device with part of the equivalent physical
hardware. As I pointed out earlier, the analogy of Xnest with other
UML devices is more than skin deep. Xnest does have a role to play
with UML, even if it was created independent of and earlier than UML,
and even if it is rarely required for day-to-day work.

Figure 5.3 UML running Xnest

Dike.book Page 99 Wednesday, March 15, 2006 8:16 PM

Dike.book Page 100 Wednesday, March 15, 2006 8:16 PM

101

C H A P T E R 6

UML Filesystem Management

In this chapter, we will talk about filesystems from the perspectives of
both the UML instance and the host. There are a few different ways to
store files on the host so they can be mounted as a filesystem inside a
UML instance. The one we’ve already seen, and the most popular, is to
use a block device within a host file. The others involve mounting a
host directory hierarchy inside the instance. This has the advantage
that the UML files are visible on the host and can be managed from
there. The usefulness of this becomes obvious when you have a UML
user who lost the root password and needs it reset. It’s much easier to
do that when the UML instance’s /etc/passwd is a normal file on the
host than when the /etc/passwd is hidden inside a filesystem image
in a large host file.

MOUNTING HOST DIRECTORIES WITHIN A UML

There are two ways to mount a host directory as a UML directory—
hostfs and humfs. hostfs is the older and more limited method, but
it does have the advantage of greater convenience. Both are virtual file-

Dike.book Page 101 Wednesday, March 15, 2006 8:16 PM

102 Chapter 6 UML Filesystem Management

systems, in the sense that they are not stored within a UML block
device. You can think of them as nondevice filesystems whose data is
maintained without benefit of a storage device that’s known to UML.
In many cases, the data is simply stored inside the kernel. If you look
at /proc/filesystems on any modern Linux system, UML or physi-
cal, you will see a great number of these:

host% cat /proc/filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev sockfs
nodev binfmt_misc
nodev debugfs
nodev usbfs
nodev pipefs
nodev futexfs
nodev tmpfs
nodev eventpollfs
nodev devpts
 ext2
nodev ramfs
nodev hugetlbfs
 iso9660
nodev mqueue
nodev selinuxfs
 ext3
nodev rpc_pipefs
nodev autofs

All of the nodev entries are virtual filesystems. Most of these
make internal kernel information available as a filesystem. Probably
the most familiar example is proc, which is normally mounted on /proc.
This filesystem makes internal kernel variables and data structures
visible as files. Most of the others do, as well, with the exception of
tmpfs. This is a normal filesystem, in the sense that it can be mounted
and arbitrary files created within it. Those files are temporary, disap-
pearing when the filesystem is unmounted, rather than being stored
permanently on a disk, and written to the system’s swap when memory
is tight, rather than to a dedicated disk partition. Figure 6.1 illustrates
the differences between the various kinds of Linux filesystems.

hostfs and humfs are similar to these in that the filesystem data
seems to be fabricated from within the kernel, but different in that the
data is permanently stored. They are conceptually most similar to a net-
work filesystem, such as NFS. In both cases, the data is stored outside

Dike.book Page 102 Wednesday, March 15, 2006 8:16 PM

103

F
ig

u
re

 6
.1

T
h

e
va

ri
ou

s
ty

pe
s

of
 f

il
es

ys
te

m
s

av
ai

la
bl

e
in

 U
M

L
. /

 is
 a

 t
ra

di
ti

on
al

 d
is

k-
ba

se
d

fi
le

sy
st

em
 c

on
ta

in
ed

in
 t

h
e

U
M

L
 d

ev
ic

e
/
d
e
v
/
u
b
d
a

, w
h

ic
h

 i
ts

el
f

is
 c

on
ta

in
ed

 i
n

 a
 f

il
e

on
 t

h
e

h
os

t.
 /
p
r
o
c

 a
n

d
/
t
m
p

 a
re

 v
ir

tu
al

 f
il

e-
sy

st
em

s
w

ho
se

 d
at

a
is

 c
on

ta
in

ed
 e

nt
ir

el
y

w
it

hi
n

th
e

U
M

L
 k

er
ne

l.
/
p
r
o
c

 e
xp

or
ts

 i
nt

er
na

l
ke

rn
el

 d
at

a
st

ru
ct

ur
es

,
so

 i
ts

 d
at

a
is

 a
lw

ay
s

w
it

h
in

 t
h

e
ke

rn
el

.
/
t
m
p

 i
s

a
t
m
p
f
s

 m
ou

n
t,

 w
h

ic
h

 l
oo

ks
 l

ik
e

a
n

or
m

al
 f

il
es

ys
te

m
,

bu
t

it
s

da
ta

 is
 s

to
re

d
in

 t
h

e
ke

rn
el

’s
 fi

le
sy

st
em

 c
ac

h
e

an
d

sw
ap

pe
d

to
 t

h
e

U
M

L
 in

st
an

ce
’s

 s
w

ap
 s

pa
ce

 if
 n

ec
es

sa
ry

. /
n
f
s

is
 a

ls
o

vi
rt

u
al

 i
n

 t
h

e
se

n
se

 t
h

at
 t

h
e

da
ta

 c
on

ta
in

ed
 i

n
 t

h
e

fi
le

sy
st

em
 i

sn
’t

st
or

ed
 o

n
 t

h
is

 s
ys

te
m

. I
t

re
si

de
s

on
 a

re
m

ot
e

sy
st

em
 a

n
d

re
m

ot
e

pr
oc

ed
u

re
 c

al
ls

 (R
P

C
s)

 a
re

 m
ad

e
in

 o
rd

er
 t

o
ac

ce
ss

 it
. /
h
o
s
t

 is
 a

n
ot

h
er

 s
or

t
of

 v
ir

tu
al

fi
le

sy
st

em
,

ex
ce

pt
 t

h
at

 i
ts

 d
at

a
co

m
es

 f
ro

m
 a

 d
ir

ec
to

ry
 h

ie
ra

rc
h

y
on

 t
h

e
h

os
t.

 T
h

is
 i

s
fa

ir
ly

 s
im

il
ar

 t
o

an
 n
f
s

m
ou

n
t,

 e
xc

ep
t

th
at

 t
h

e
re

m
ot

e
fi

le
s

ar
e

ac
ce

ss
ed

 u
si

n
g

sy
st

em
 c

al
ls

 t
o

th
e

h
os

t
ra

th
er

 t
h

an
 a

 n
et

w
or

k
pr

ot
oc

ol
.

In
te

rn
al

ke
rn

el
va

ria
bl

es

U
M

L
ke

rn
el

H
os

t

R
em

ot
e

ho
st

/
h
o
s
t

h
o
s
t
f
s

t
m
p
f
s

/
d
e
v
/
u
b
d
a

n
f
s

/
h
o
m
e
/
u
s
e
r
/
r
o
o
t
f
s

/
t
m
p

/
h
o
m
e
/
u
s
e
r

/
p
r
o
c

/
/
n
f
s

Dike.book Page 103 Wednesday, March 15, 2006 8:16 PM

104 Chapter 6 UML Filesystem Management

the machine and transparently made available by a filesystem that
knows how to access it.

With a network filesystem, file accesses are translated into net-
work requests to the server, which sends data and status back. With
hostfs and humfs, file accesses are translated into file accesses on the
host. You can think of this as a one-to-one translation of requests—a
read, write, or mkdir within UML translates directly into a read,
write, or mkdir to the host. This is actually not true in the most literal
sense. An operation such as mkdir within one of these filesystems
must create a directory on the host; therefore, it must translate into a
mkdir there, but won’t necessarily do so immediately. Because of cach-
ing with the filesystem, the operation may not happen until a long time
later. Operations such as a read or write may not translate into a host
read or write at all. They may, in fact translate into an mmap followed
by directly reading or writing memory. And in any case, the lengths of
the read and write operations will certainly change when they reach the
host. Linux filesystem operations typically have page granularity—the
minimum I/O size is a machine page, 4K on most extant systems. For
example, a sequence of 1-byte reads will be converted into a single
page-length read to the host followed by simply passing out bytes one
at a time from the buffer into which that page was read.

So, while it is conceptually true that hostfs and humfs opera-
tions correspond one-to-one to host operations, the reality is somewhat
different. This difference will become relevant later in this chapter
when we look at simultaneous access to data from a UML and the host,
or from two UMLs.

hostfs

hostfs is the older and simpler of the two ways to mount a host direc-
tory as a UML directory. It uses the most obvious mapping of UML file
operations to host operations in order to provide access to the host files.
This is complicated only by some technical aspects, such as making use
of the UML page cache. This simplicity results in a number of limita-
tions, which we will see shortly and which I will use to motivate humfs.

So, let’s get a UML instance and make a hostfs mount inside it:

UML# mount none /mnt -t hostfs

Dike.book Page 104 Wednesday, March 15, 2006 8:16 PM

Mounting Host Directories within a UML 105

Now we have a new filesystem mounted on /mnt:

UML# mount
/dev/ubd0 on / type ext3 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,gid=4,mode=620)
shm on /dev/shm type tmpfs (rw)
none on /mnt type hostfs (rw)

Its contents show that it looks a lot like the host’s root filesystem:

UML# ls /mnt
bin etc lib media opt sbin sys usr
boot home lib64 misc proc selinux tmp var
dev initrd lost+found mnt root srv tools

You can do the same ls on the host’s / to verify this. Basically, we
have mounted the host’s root on the UML instance’s /mnt, creating a
completely normal Linux filesystem within the UML. For getting access
to files on the host within UML, this is very convenient. You can do
anything within this filesystem that you can do with a disk-based file-
system, with some restrictions that we will talk about later.

By default, when you make a hostfs mount, you get the host’s
root filesystem. This isn’t always desirable, so there is an option to
mount a different host directory:

UML# mkdir /mnt-home
UML# mount none /mnt-home/ -t hostfs -o /home
UML# ls /mnt-home/
jdike lost+found

The -o option specifies the host directory to mount. From that mount
point, it is impossible to access any files outside that directory. In our
case, the /mnt-home mount point gives us access to the host’s /home,
but, from there, we can’t access anything outside of that. The obvious
trick of using .. to try to access files outside of /home won’t work
because it’s the UML that will interpret the .., not the host. Trying to
“dotdot” your way out of this will get you to the UML instance’s /, not
the host’s /.

Using -o is at the option of the user within the instance. Many
times, the host administrator wants all hostfs mounts confined to a
host subdirectory and makes it impossible to access the host’s /. There
is a command-line option to UML to allow this, hostfs=/path/to/
UML/jail. With this enabled, hostfs mounts within the UML will be

Dike.book Page 105 Wednesday, March 15, 2006 8:16 PM

106 Chapter 6 UML Filesystem Management

restricted to the specified host subdirectory. If the UML user does a
mount specifying a mount path with -o, that path will be appended to
the directory on the command line. So, -o can be used to mount subdi-
rectories of whatever directory the UML’s hostfs has been confined to,
but can’t be used to escape it.

Now, let’s create a file within the host mount:

UML# touch /mnt/tmp/uml-file
UML# ls -l /mnt/tmp/uml-file
-rw-r--r-- 1 500 500 0 Jun 10 13:02 /mnt/tmp/uml-file

The ownerships on this new file are somewhat unexpected. We are
root inside the UML, and thus expect that any new files we create will
be owned by root. However, we are creating files on the host, and the
host is responsible for the file, including its ownerships. The UML
instance is owned by user ID (UID) 500, so from its point of view, a pro-
cess owned by UID 500 created a file in /tmp. It’s perfectly natural that
it would end up being owned by that UID. The host doesn’t know or
care that the process contains another Linux kernel that would like
that file to be owned by root.

This seems perfectly reasonable and innocent, but it has a number
of consequences that make hostfs unusable for a number of purposes.
To demonstrate this, let’s become a different, unprivileged user inside
UML and see how hostfs behaves:

UML# su user
UML% cd /mnt/tmp
UML% echo foo > x
UML% ls -l x
-rw-r--r-- 1 500 500 4 Jun 10 14:31 x
UML% echo bar >> x
sh: x: Permission denied
UML% rm x
rm: remove write-protected regular file `x'? y
rm: cannot remove `x': Operation not permitted
UML% chmod 777 x
chmod: changing permissions of `x': Operation not permitted

Here we see a number of unexpected permission problems arising
from the ownership of the new file. We created a file in the host’s /tmp
and found that we couldn’t subsequently append to it, remove it, or
change its permissions.

It is created with the owner UID 500 on the host and is writable
by that UID. However, I became user, with UID 1001, inside the UML
instance, so my attempts to modify the file don’t even make it past the

Dike.book Page 106 Wednesday, March 15, 2006 8:16 PM

Mounting Host Directories within a UML 107

UML’s permission checking. When the file was created on the host, it
was given its ownership and permissions by the host. hostfs shows
those permissions, rather than the ones the UML instance provided,
because they are more “real.”

The ownership and permissions are interpreted locally by the
UML when seeing whether a file operation should succeed. The fact
that the file ownerships are set by the host to something different from
what the UML expects can cause files to be unmodifiable by their
owner within UML.

This isn’t a problem for the root user within UML because the
superuser doesn’t undergo the same permission checks as a normal
user, so the permission checks occur on the host.

However, this issue does make it impossible for multiple users
within the UML to use hostfs. In fact, only root within the UML can
realistically use it. The only way for a normal UML user to use hostfs
is for its UID to match the host UID that the UML is running as. So, if
user within UML had UID 500 (matching the UML instance’s UID on
the host), the previous example would have been more successful.

Let’s look at another problem, in which root within the UML
doesn’t have permission to do some things that it should be able to do:

UML# mknod ubda b 0 98
mknod: `ubda': Operation not permitted

Here, creating a device node for ubda doesn’t work, even for root.
Again, the reason is that the operation is forwarded to the host, where
it is attempted as the nonroot UML user, and fails because this opera-
tion requires root privileges. You will see similar problems with creat-
ing a couple of other types of files.

If you experiment long enough with hostfs, you will discover
other problems, such as accessing UNIX sockets. If the hostfs mount
contains sockets, they were created by processes on the host. When one
is opened on the host, it can be used to communicate with the process
that created it. However, they are visible within a hostfs mount, but a
UML process opening one will fail to communicate with anything. The
UML kernel, not the host kernel, will interpret the open request and
attempt to find the process that created it. Within the UML kernel,
this will fail because there is no such process.

Creating a directory on the host with a UML root filesystem in it,
and booting from it, is also problematic. The filesystem, by and large,
should be owned by root, and it won’t be. All of the files are owned by
whoever created them on the host. At this writing, there is a kludge in

Dike.book Page 107 Wednesday, March 15, 2006 8:16 PM

108 Chapter 6 UML Filesystem Management

the hostfs code that changes (internally to the UML kernel) the own-
erships of these files to root when the hostfs filesystem is the UML
root filesystem. This makes booting from hostfs work, more or less,
but all the problems described above are still there. Other kernel devel-
opers have objected to this ownership changing, and this kludge likely
won’t be available much longer. When this “feature” does disappear,
booting from a hostfs root filesystem likely won’t work anymore.

I’ve spent a good amount of time describing the deficiencies of
hostfs, but I’d like to point out that, for a common use case, hostfs is
exactly what you want. If you have a private UML instance, are logged
in to it as root, and want access to your own files on the host, hostfs is
perfect. The filesystem semantics will be exactly what you expect, and
no prior host setup is needed. Just run the hostfs mount command,
and you have all of your files available.

Most of the problems with hostfs that I’ve described stem from
the fact that all hostfs file operations go through both the UML’s and
the host’s permission checking. This is because both systems look at
the same data, the file metadata on the host, in order to decide what’s
allowed and what’s not.

UNIX domain sockets and named pipes are sort of a reflection of a
process within the filesystem—there is supposed to be a process at the
other end of it. When the filesystem (including the sockets) is exported
to another system, whether a UML instance with a hostfs mount or
another system with an NFS mount, the process isn’t present on the
other system. In this case, the file doesn’t have the meaning it does on
its home system.

humfs

We can fix these problems by making sure we see, inside UML, distinct
file ownerships, permissions, and types from the host. To achieve this,
UML can store these in a separate place, freeing itself from the host’s
permission checks. This is what humfs does. The actual file data is
stored in exactly the same way that hostfs does—in a directory hier-
archy on the host. However, permissions information is stored sepa-
rately, by default, in a parallel directory hierarchy.

For example, here are the data and metadata for a file stored in
this way:

host% ls -l data/usr/bin/ls

Dike.book Page 108 Wednesday, March 15, 2006 8:16 PM

Mounting Host Directories within a UML 109

-rwxr-x--x 1 jdike jdike 201642 May 1 10:01 data/usr/bin/ls
host% ls -l file_metadata/usr/bin/ls
-rw-r--r-- 1 jdike jdike 8 Jun 10 18:04 file_metadata/usr/bin/ls
host% cat file_metadata/usr/bin/ls
493 0 0

The actual ls binary is stored in data/usr/bin/ls, while its
ownership and permissions are stored in file_metadata/usr/bin/
ls. Notice that the permissions on the binary are wide open for the
file’s owner. This, in effect, disables permission checking on the host,
allowing UML’s ideas about what’s allowed and what’s not to prevail.

Next, notice the contents of the metadata file. For a normal file,
such as /usr/bin/ls, the permissions and ownerships are stored
here. In the last line of the output, 493 is the decimal equivalent of
0755, and the zeros are UID root and group ID (GID) root.

We can see this by looking at this file inside UML:

UML# ls -l usr/bin/ls
-rwxr-xr-x 1 root root 201642 May 1 10:01 usr/bin/ls

The humfs filesystem has taken the file size and date from data/
usr/bin/ls and merged the ownership and permission information
from file_metadata/usr/bin/ls.

By storing this metadata as the contents of a file on the host, UML
may modify it in any way it sees fit. We can go through the list of
hostfs problems I described earlier and see why this approach fixes
them all.

In the case of a new file having unexpected ownerships, we can see
that this just doesn’t happen in humfs. The data file’s ownership will,
in fact, be determined by the UID and GID of the UML process, but
this doesn’t matter since the ownerships you will see inside UML will
be determined by the contents of the file_metadata file.

So, you will be able to create a file on a humfs mount and do any-
thing with it, such as append to it, remove it, or change permissions.

Now, let’s try to make a block device:

UML# mknod ubda b 98 0
UML# ls -l ubda
brw-r--r-- 2 root root 98, 0 Jun 10 18:46 ubda

This works, and it looks as we would expect. To see why, let’s look
at what occurred on the host:

host% ls -l data/tmp/ubda
-rwxrw-rw- 1 jdike jdike 0 Jun 10 18:46 data/tmp/ubda

Dike.book Page 109 Wednesday, March 15, 2006 8:16 PM

110 Chapter 6 UML Filesystem Management

host% ls -l file_metadata/tmp/ubda
-rw-r--r-- 1 jdike jdike 15 Jun 10 18:46 file_metadata/tmp/ubda
host% cat file_metadata/tmp/ubda
420 0 0 b 98 0

The file is empty, just a token to let the UML filesystem know a
file is there. Almost all of the device’s data is in the metadata file. The
first three elements are the same permissions and ownership informa-
tion that we saw earlier. The rest, which don’t appear for normal files,
describe the type of file, namely, a block device with major number 98
and minor number 0.

The host definitely won’t recognize this as a block device, which is
why this works. Creating a device requires root privileges, so hostfs
can’t create one unless the UML is run by root. Under humfs, creating
a device is simply a matter of creating this new file with contents that
describe the device.

It is apparent that the host socket and named pipe problem can’t
happen on this filesystem. Everything in this directory on the host is a
normal file or directory. Host sockets and named pipes just don’t exist.
If a UML process makes a UNIX domain socket or a named pipe, that
will cause the file’s type to appear in the metadata file.

Along with these advantages, humfs has one disadvantage: It
needs to be set up beforehand. You can’t just take an arbitrary host
subdirectory and mount it as a humfs filesystem. So, humfs is not
really useful for quick access to your files on the host.

In order to set up humfs, you need to decide what’s going to be in
your humfs mount, create an empty directory, copy the files to the data
subdirectory, and run a script that will create the metadata. As a quick
example, here’s how to create a humfs version of your host’s /bin.

host% mkdir humfs-test
host% cd humfs-test
host# cp -a /bin data
host# perl ..humfsify.pl jdike jdike 100M
host% ls -al
total 24
drwxrw-rw- 5 jdike jdike 4096 Jun 10 19:40 .
drwxrw-r-- 16 jdike jdike 4096 Jun 10 19:40 ..
drwxrwxrwx 2 jdike jdike 4096 May 23 12:12 data
drwxr-xr-x 2 jdike jdike 4096 Jun 10 19:40 dir_metadata
drwxr-xr-x 2 jdike jdike 4096 Jun 10 19:40 file_metadata
-rw-r--r-- 1 jdike jdike 58 Jun 10 19:40 superblock

Two of the commands, the creation of the data subdirectory and
the running of humfsify, have to be run as root. The copying of the

Dike.book Page 110 Wednesday, March 15, 2006 8:16 PM

Mounting Host Directories within a UML 111

directory needs to preserve file ownerships so that humfsify can
record them in the metadata, and humfsify needs to change those
ownerships so that you own all the files.

We now have two metadata directories, one for files and one for
directories, and a superblock file. This file contains information
about the filesystem as a whole, rather like the superblock on a disk-
based filesystem:

host% cat superblock
version 2
metadata shadow_fs
used 6877184
total 104857600

This tells the UML filesystem:

☞ What version of humfs it is dealing with
☞ What metadata format is being used
☞ How much disk space is used
☞ How much total disk space is available

The shadow_fs metadata format describes the parallel metadata
directories. There are some other possibilities, which will be described
later in this section. The total disk space amount is simply the number
given to humfsify. This number is used by the filesystem within UML
to enforce the limit on disk consumption. Quotas on the host can be
used, but they are not necessary.

You may have noticed that it would be particularly easy to change
the amount of disk space in this filesystem. Simply changing the
total field by editing this file would seem to do the trick, and it does.
At this writing, this ability is not implemented, but it is simple enough
and easy enough to do that it will be implemented at some point.

Now, having created the humfs directory, we can mount it within
the UML:

UML# mkdir /mnt-test
UML# mount none /mnt-test -t humfs -o \
 path=/home/jdike/linux/humfs-test
UML# cd /mnt-test

If you do an ls at this point, you’ll see your copy of the host’s /bin.
Note that the mount command is very similar to the hostfs

mount command. It’s a virtual filesystem, so we’re telling it to mount

Dike.book Page 111 Wednesday, March 15, 2006 8:16 PM

112 Chapter 6 UML Filesystem Management

none since there is no block device associated with it, and we specify
the filesystem type and the host mount point. In the case of humfs,
specifying the host mount point is mandatory because it must be prepared
ahead of time. humfs is passed the root of the humfs tree, which is the
directory in which the data and metadata directories were created.

You can now do all the things that didn’t work under humfs and
see that they do work here. humfs works as expected in all cases, with
no interference from the host’s permission checking. So, humfs is
usable as a UML root filesystem, whereas hostfs can be used only
with some trickery.

Now I’ll cover some aspects of humfs that I didn’t explain earlier.
First, version 2 of humfs was created because version 1 had a bug, and
fixing that bug led to the separate file_metadata and dir_metadata
directories. As we’ve seen, the metadata files for files are straightfor-
ward. Directories have ownerships and permissions and need meta-
data files, but they introduce problems in some corner cases.

The initial shadowfs design required a file called metadata in
each directory in the metadata tree that would hold the ownerships
and permissions for the parent directory. Of course, each file in the
original directory would have a file in the metadata tree with the same
name. But I missed this case: What metadata file should be used for a
file called metadata? Both the file and the parent directory would
want to use the same metadata file, metadata.

Another problem occurs with a subdirectory called metadata. In
this case, the metadata file will want to be both a directory (because
the metadata directory structure is identical to the data directory
structure) and a file (because the parent directory will want to put its
metadata there.

The solution I chose was to separate the file and directory meta-
data information from each other. With them in separate directory
trees, the first collision I described doesn’t exist. However, the second
does. The solution to that is to allow the metadata directory to be cre-
ated, and rename the parent directory’s metadata file. It turns out that
it can be renamed to anything that doesn’t collide with a subdirectory.
The reason is that in the dir_metadata tree, there will be only one
normal file in each directory. If metadata is a directory, the humfs file-
system will need to scan the directory for a normal file, and that will be
the metadata file for the parent directory.

The next question is this: Why do we specify the metadata format
in the superblock file? When I first introduced humfs, with the ver-
sion 1 shadow_fs format, there were a bunch of suggestions for alter-

Dike.book Page 112 Wednesday, March 15, 2006 8:16 PM

Mounting Host Directories within a UML 113

nate formats. They generally have advantages and disadvantages
compared to the shadow_fs format, and I thought it would be interest-
ing to support some of them and let system administrators choose
among them.

These proposals came in two classes—those that preserved some
sort of shadow metadata directory hierarchy, and those that put the
metadata in some sort of database. An interesting example of the first
class was to make all of the metadata files symbolic links, rather than
normal files, and store the metadata in the link target. This would
make them dangling links, as the targets would not exist, but it would
allow somewhat more efficient reading of the metadata.

Reading a file requires three system calls: an open, a read, and a
close. Reading the target of a symbolic link requires one—a readlink.
Against this slight performance gain, there would be some loss of man-
ageability, as system administrators and their tools expect to read con-
tents of files, not targets of symbolic links.

The second class of proposals, storing metadata in databases of
various sorts, is also interesting. Depending on the database, it could
allow for more efficient retrieval of metadata, which is nice. However,
what makes it more interesting to me is that the database could be
used on the host to do queries much more quickly than with a normal
filesystem. The host administrator could ask questions about what files
had been modified recently or what files are setuid root and could get
answers very quickly, without having to search the entire filesystem.

Even more interesting would be the ability to import this capabil-
ity into the UML, where the UML administrator, who probably cares
about the answers more than the host administrator does, could ask
these questions. I’m planning to allow this through yet another filesys-
tem, which would make a database look like a filesystem. The UML
admin would mount this filesystem inside the UML and query the
database underneath it this like:

UML# cat /sqlfs/"select name from root_fs where setuid = 1"
/usr/bin/newgrp
/usr/bin/traceroute6
/usr/bin/chfn
/usr/bin/chsh
/usr/bin/gpasswd
/usr/bin/passwd

Dike.book Page 113 Wednesday, March 15, 2006 8:16 PM

114 Chapter 6 UML Filesystem Management

The “file” associated with a query would contain the results of that
query. In the example above, we searched the database for all setuid
files, and the results came back as the contents of a file.

With humfs, only the file metadata would be indexed in the data-
base. It is possible to do the same thing with the contents of files. This
would take a different framework than that which enables humfs but
is still not difficult. It would be possible to load a UML filesystem into a
database, be it SQL, Glimpse, or Google, and have that database
imported into UML as a bootable filesystem. Queries to the database
would be provided by a separate filesystem, as described earlier. In this
way, UML users would have access to their files through any database
the host administrator is willing to provide.

An alternate use of this is to load some portion of your data, such
as your mail, into such a database-backed filesystem. These directories
and files will remain accessible in the normal way, but the database
interface to them will allow you to search the file contents more quickly
than is possible with utilities such as find and grep. For example,
loading your mail directory into a filesystem indexed by something like
Glimpse would give you a very fast way to search your mail. It would
still be a normal Linux filesystem, so mail clients and the like would
still work on it, and the index would be kept up to date constantly since
the filesystem sees all changes and feeds them into the index. This
means that you could search for something soon after it is created (and
find it) rather than waiting for the next indexing run, which would
probably be in the wee hours, making the change visible in the index
the following day.

HOST ACCESS TO UML FILESYSTEMS

To round out this discussion of UML filesystem options, we need to
take another look at the standard ubd block device. Both humfs and
hostfs allow easy access on the host to the UML’s file since both
mount host directory hierarchies into UML. With hostfs, these files
can be manipulated directly.

With humfs, some knowledge of the directory layout is necessary.
Changing the contents of a file is done in the expected way, while
changing metadata—permissions, ownerships, and file type in the case
of devices, sockets, and named pipes—requires that the contents of the
metadata file be changed, rather than simply using the usual tools

Dike.book Page 114 Wednesday, March 15, 2006 8:16 PM

Host Access to UML Filesystems 115

such as chmod and chown. In the case of a database representation of
the metadata, this would require a database update.

A ubd device allows even less convenient access to the UML’s files,
as a filesystem image is a rather opaque storage medium. However,
loop-mounting the image on the host provides hostfs-like access to the
files. This works as follows:

host# mount uml-root-fs host-mount-point -o loop

After this, the UML filesystem is available as a normal directory
hierarchy under host-mount-point. However, the UML should not be
running at this point, since there is no guarantee that the filesystem is
consistent. There may be data cached inside the UML that hasn’t been
flushed out to the filesystem image and that is needed in order for the
filesystem to be consistent. Second, any sort of mount requires root
privileges. So, while a loopback-mount makes a ubd device look like a
hostfs directory, it is necessary to be root on the host and, normally,
for the UML to not be running. In the next section, we’ll look at a way
around this last restriction and describe a method for getting a consis-
tent backup from a running UML instance.

This consistency problem is also present with hostfs and humfs.
By default, they cache changes to their files inside the UML page
cache, writing them out later. If you change a hostfs or humfs file,
you probably won’t see the change on the host immediately. When
hostfs is used as a file transfer mechanism between the UML
instance and the host, this can be a problem. It can be solved by mount-
ing the filesystem synchronously, so that all changes are written imme-
diately to the host. This is most easily done by adding sync to the
options field in the UML /etc/fstab file:

none /host hostfs sync 0 0

If the filesystem is already mounted, it can be remounted to be
synchronous without disturbing anything that might already be using it:

mount -o remount,sync /host

Doing this will decrease the performance of the filesystem, as the
amount of I/O that it does will be greatly increased.

hostfs is more likely to be used as a file transfer mechanism
between the UML instance and the host since the humfs directory
structure doesn’t lend itself as well to being used in this way. A host

Dike.book Page 115 Wednesday, March 15, 2006 8:16 PM

116 Chapter 6 UML Filesystem Management

directory can also be shared with hostfs between multiple UML
instances without problems because the filesystem consistency is main-
tained by the host. Delays in seeing file updates will happen with a
hostfs mount shared by multiple UML instances just as they happen
when the mount is shared by the host and UML instance. To avoid this,
the hostfs directories have to be mounted synchronously by all of the
UML instances.

The hostfs directory does not have to be mounted synchronously
on the host—changes made by the host are immediately visible.

MAKING BACKUPS

The final point of comparison between ubd devices, hostfs, and humfs
is how to back them up on the host. hostfs should normally be used
only for access to host files that don’t form a UML filesystem, so the
question of specifically backing them up shouldn’t arise. However, if a
directory on the host is expected to be mounted as a hostfs mount,
backing it up on the host can be done normally, using any backup util-
ity desired. The consistency of the hierarchy is guaranteed by the host
since it’s a normal host filesystem. Any changes that are still cached
inside the UML will obviously not be captured by a backup, but this
won’t affect the consistency of a backup.

humfs is a bit more difficult. Since file metadata is stored sepa-
rately from the file, a straightforward backup on the host could possi-
bly be inconsistent if the filesystem is active within the UML. For
example, when a humfs file is deleted, both the data file and the meta-
data file (in the case of the shadow_fs metadata format) must be
deleted. If the backup is taken between these two deletions, it will be
inconsistent, as it will show a partially deleted file. The obvious way
around this problem is to ensure that the humfs filesystem isn’t
mounted at the time of the backup, either by shutting down the UML
or by having it unmount the filesystem. This last option might be diffi-
cult if the humfs filesystem is the UML’s root.

However, there is a neat trick to get around this problem: a facility
within Linux called Magic SysRq. On a physical system, this involves
using the SysRq key in combination with some other key in order to get
the kernel to do one of a set of operations. This is normally used in
emergencies, to exercise some degree of control over the machine when
nothing else works. One of the functions provided by the facility is to

Dike.book Page 116 Wednesday, March 15, 2006 8:16 PM

Extending Filesystems 117

flush all filesystem changes to stable storage. On a physical machine,
this would normally be done prior to crashing it by turning off the
power or hitting the reset button. Flushing out dirty data ensures that
the filesystems will be in good shape when the system is rebooted.

In addition to this, UML’s mconsole facility provides the ability to
stop the virtual machine, so that it only listens to mconsole requests,
and later continue it.

The trick involves these three operations:

host% uml_mconsole umid stop
OK
host% uml_mconsole umid sysrq s
OK
host% uml_mconsole umid go
OK

Here, we stop the UML, force it to sync all data to disk (sysrq s),
and restart it.

When this is being done as part of a backup procedure, the actual
backup would take place between the sysrq s command and continu-
ing the UML.

Finally, backing up ubd filesystem images involves the same con-
siderations as humfs filesystems. Without taking care, you may back
up an inconsistent image, and booting a UML on it may not work. How-
ever, in lieu of shutting down the UML, the mconsole trick I just
described for a humfs filesystem will work just as well for a ubd image.
If the ubd filesystem uses a COW layer, this can be extremely fast. In
this case, only the COW file needs to be copied, and if it is largely
empty, and the backup tool is aware of sparse files, a multigigabyte
COW file can be copied to a safe place in a few seconds.

EXTENDING FILESYSTEMS

Sometimes you might set up a filesystem for a UML instance that sub-
sequently turns out to be too small. For the different types of file-
systems we have covered in this chapter, there are different options.

By default, the space available in a hostfs mount is the same as
in the host filesystem in which the data resides. Increasing this
requires either deleting files to increase the amount of free space or
increasing the size of the filesystem somehow. If the filesystem resides
on a logical volume, a free disk partition can be added to the corre-
sponding volume group. Otherwise, you will need to move the hostfs

Dike.book Page 117 Wednesday, March 15, 2006 8:16 PM

118 Chapter 6 UML Filesystem Management

data to a different partition or repartition the disk to increase the size
of the existing partition.

Another option is to control the space consumption on hostfs
mounts by using quotas on the host. By running different UML
instances as different UIDs and assigning disk quotas to those UIDs,
you can control the disk consumption independently of the space that’s
actually available on the host filesystem. In this case, increasing the
space available to a UML instance on a hostfs mount is a matter of
adjusting its disk quota on the host.

As we saw earlier, you can change the size of a humfs mount by
changing the value on the total line in the superblock file.

The situation with a ubd block device is more complicated.
Increasing the size of the host file is simple:

host% dd if=/dev/zero of=root_fs bs=1024 \
 seek=$[2 * 1024 * 1024] count=1

This increases the size of the root_fs file to 2GB. A more complicated
problem is making that extra space available within the UML filesys-
tem. Some but not all filesystems support being resized without mak-
ing a backup and recreating the filesystem from scratch. Fewer support
being resized without unmounting the filesystem. One that does is
ext2 (and ext3 since it has a nearly identical on-disk format). By
default, ext2online resizes the filesystem to fill the disk that it
resides on, which is what you almost always want:

UML# ext2online /dev/ubda

You can also specify the mount point rather than the block device,
which may be more intuitive and less error prone:

UML# ext2online /

With other filesystems, you may have to unmount the filesystem
before resizing it to fill the device. If the filesystem in question is the
UML instance’s root filesystem, you will likely need to halt the
instance and resize the filesystem on the host.

For filesystems that don’t support resizing at all, you have to copy
the data to someplace else and recreate the filesystem from scratch
using mkfs. Then you can copy your data back into it. Again, if this is
the root filesystem of the UML instance, you will need to shut it down
and then recreate the filesystem on the host.

Dike.book Page 118 Wednesday, March 15, 2006 8:16 PM

When to Use What 119

WHEN TO USE WHAT

Now that you have learned about these three mechanisms for provid-
ing filesystem data to a UML, the question remains: Under what cir-
cumstances should you use each of them? The answer is fairly easy for
hostfs—normally, it should be used only for access to host files that
belong to the user owning the UML or to files that are available read-
only. In the first case, the user should be logged in to the UML as root,
and there should be no other UML users accessing the hostfs mount.
In the second, the read-only restriction avoids all of the permission and
ownership issues with hostfs.

humfs hierarchies and ubd images can be used to provide general-
purpose filesystems, including root filesystems. humfs provides easier
access to the UML files, although some care is needed when changing
those files in order to ensure that the file metadata is updated properly.

There are also some potential efficiency advantages with both
humfs and ubd devices. An issue with host memory consumption is
that both the host and UML will generally cache file data separately.
As a result, the host’s memory will contain multiple copies of UML file
data, one in the host’s page cache and one for each UML that has read
the data.

ubd devices can avoid this double caching by using O_DIRECT I/O
on 2.6 hosts. O_DIRECT avoids the use of the host page cache, so the
only copies of the data will be in the UMLs that have read it. In order
to truly minimize host memory consumption, this should be used only
for data that’s private to the UML, such as a private filesystem image
or a COW file. For a COW file, the memory savings obtained by avoid-
ing the double caching are probably outweighed by the duplicate cach-
ing of the backing file data in the UMLs that are sharing it.

For shared data, humfs avoids the double caching by mapping the
data from the host. The data is cached on the host, but mapping it pro-
vides the UML with the same page of memory that’s in the host page
cache. Taking advantage of this would require a form of COW for
humfs, which currently doesn’t exist. A file-level form of COW is possi-
ble and may exist by the time you read this. With this, a humfs equiva-
lent of a backing file, in the form of a read-only host directory
hierarchy, would be mapped into the UMLs that share it. They would
all share the same memory, so there would be only one copy of it in the
host’s memory.

Dike.book Page 119 Wednesday, March 15, 2006 8:16 PM

In short, both ubd devices and humfs directories have a place in a
well-run UML installation. The use of one or the other should be driven
by the importance of convenient host access to the UML filesystem, the
ease and speed of making backups of the data, and avoidance of exces-
sive host memory consumption.

Dike.book Page 120 Wednesday, March 15, 2006 8:16 PM

121

C H A P T E R 7

UML Networking in Depth

MANUALLY SETTING UP NETWORKING

TUN/TAP with Routing

In earlier chapters we briefly looked at how to put a UML on the net-
work. Now we will go into this area in some depth. The most involved
part is setting up the host when the UML will be given access to the
physical network. The host is responsible for transmitting packets
between the network and the UML, so correct setup is essential for a
working UML network.

There are two different methods for configuring the host to allow a
UML access to the outside world: routing packets to and from the UML
and bridging the host side of the virtual interface to the physical Ether-
net device. First we will use the former method, which is more compli-
cated. We will start with a completely unconfigured host, on which a
UML will fail to get access to the network, and, step by step, we’ll
debug it until the UML is a fully functional network node. This will
provide a good understanding of exactly what needs to be done to the
host and will allow you to adapt it to your own needs. The step-by-step

Dike.book Page 121 Wednesday, March 15, 2006 8:16 PM

122 Chapter 7 UML Networking in Depth

debugging will also show you how to debug connectivity problems that
you encounter on your own.

Later in this chapter, we will cover the second method, bridging. It
is simpler but has disadvantages and pitfalls of its own.

Configuring a TUN/TAP Device
We are going to use the same host mechanism, TUN/TAP, as before.
Since we are doing this entirely by hand, we need to provide a TUN/TAP
device for the UML to attach to. This is done with the tunctl utility:

host% tunctl
Failed to open '/dev/net/tun' : Permission denied

This is the first of many roadblocks we will encounter and overcome. In
this case, we can’t manipulate TUN/TAP devices as a normal user
because the permissions on the control device are too restrictive:

host% ls -l /dev/net/tun
crw------- 1 root root 10, 200 Jul 30 07:36 /dev/net/tun

I am going to do something that’s a bit risky from a security stand-
point—change the permissions to allow any user to create TUN/TAP
devices:

host# chmod 666 /dev/net/tun

When the TUN/TAP control device is open like this, any user can
create an interface and use it to inject arbitrary packets into the host net-
working system. This sounds nasty, but the actual practicality of an attack
is doubtful. When you can construct packets and get the host to route
them, you can do things like fake name server, DHCP, or Web responses
to client requests. You could also take over an existing connection by fak-
ing packets from one of the parties. However, faking a server response
requires knowing there was a request from a client and what its contents
were. This is difficult because you have set yourself up to create pack-
ets, not receive them. Receiving packets still requires help from root.

Faking a server response without knowing whether there was an
appropriate request requires guessing and spraying responses out to
the network, hoping that some host has just sent a matching request
and will be faked out by the response. If successful, such an attack
could persuade a DHCP client to use a name server of your choice.
With a maliciously configured name server, this would allow the
attacker to see essentially all of the client’s subsequent network traffic
since nearly all transactions start with a name lookup.

Dike.book Page 122 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 123

Another possibility is to fake a name server response. If success-
ful, this would allow the attacker to intercept the resulting connection,
with the possibility of seeing sensitive data if the intercepted connec-
tion is to a bank Web site or something similar.

However, opening up /dev/net/tun as I have just done would
require that such an attack be done blind, without being able to see any
incoming packets. So, attacks on clients must be done randomly, which
would require very high amounts of traffic for even a remote chance of
success. Attacks on existing connections must similarly be done blind,
with the added complication that the attack must correctly guess a
random TCP sequence number.

So, normally, a successful attack would be remote. However, you
should take this possibility seriously. The permissions on /dev/net/
tun are a layer of protection against this sort of attack, and removing it
increases the possibility of being attacked using an unrelated vulnera-
bility. For example, if there was an exploit that allowed an attacker to
sniff the network, the arguments I just made about how unlikely a suc-
cessful attack would be go right out the window. Attacks would no
longer be blind, and the attacker could see DHCP and name requests
and try to respond to them through a TUN/TAP device, with good
chances of success. In this case, the /dev/net/tun permissions would
have likely stopped the attacker.

So, before opening up /dev/net/tun, consider whether you have
untrusted, and possibly malicious, users on the host and whether you
think there is any possibility of holes that would allow outsiders to gain
shell access to the host. If that is remotely possible, you may consider a
better option, which is used by Debian—create a uml-users group and
make /dev/net/tun accessible only to members of that group. This
reduces the number of accounts that could possibly be used to attack
your network. It doesn’t eliminate the risk, as one of those users could
be malicious, or an outsider could gain access to one of those accounts.

However you have decided to set up /dev/net/tun, you should
have read and write access to it, either as a normal user or as a mem-
ber of a uml-users group. Once this is done, you can try the tunctl
command again and it will succeed:

host% tunctl
Set 'tap0' persistent and owned by uid 500

This created a new TUN/TAP device and made it usable by the tunctl
user.

Dike.book Page 123 Wednesday, March 15, 2006 8:16 PM

124 Chapter 7 UML Networking in Depth

For scripting purposes, a -b option makes tunctl output only the
new device name:

host% tunctl -b
tap1

This eliminates the need to parse the relatively verbose output from
the first form of the command.

There are also -u and -t options, which allow you to specify, respec-
tively, which user the new TUN/TAP device will belong to and which
TUN/TAP device that will be:

host# tunctl -u jdike -t jeffs-uml
Set 'jeffs-uml' persistent and owned by uid 500

This demonstrates a highly useful feature: the ability to give arbitrary
names to the devices. Suitably chosen, these can serve as partial docu-
mentation of your UML network setup. We will use this jeffs-uml
device from now on.

For cleanliness, we should shut down all of the TUN/TAP devices
created by our playing with tunctl with commands such as the following:

host% tunctl -d tap0
Set 'tap0' nonpersistent

ifconfig -a will show you all the network interfaces on the system,
so you should probably shut down all of the TUN/TAP devices except
for the last one you made and any others created for some other specific
reason.

The first thing to do is to enable the device:

host# ifconfig jeffs-uml 192.168.0.254 up
host# ifconfig jeffs-uml
jeffs-uml Link encap:Ethernet HWaddr 2A:B1:37:41:72:D5
 inet addr:192.168.0.254 Bcast:192.168.0.255 \
Mask:255.255.255.0
 inet6 addr: fe80::28b1:37ff:fe41:72d5/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:5 overruns:0 carrier:0
 collisions:0 txqueuelen:500
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

As usual, choose an IP address that’s suitable for your network. If IP
addresses are scarce, you can reuse one that’s already in use by the
host, such as the one assigned to its eth0.

Dike.book Page 124 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 125

Basic Connectivity
Let’s add a new interface to a UML instance. If you have an instance
already running, you can plug a new network interface into it by using
uml_mconsole:

uml_mconsole debian config eth0=tuntap,jeffs-uml
OK

If you are booting a new UML instance, you can do the same thing on
the command line by adding eth0=tuntap,jeffs-uml.

This differs from the syntax we saw earlier. Before, we specified an
IP address and no device name. Here, we specify the device name but
not an IP address. When no device name is given, that signals the
driver to invoke the uml_net helper to configure the host. When a
name is given, the driver uses it and assumes that it has already been
configured appropriately.

Now that the instance has an Ethernet device, we can configure it
and bring it up:

UML# ifconfig eth0 192.168.0.253 up

Let’s try pinging the host:

UML# ping 192.168.0.254
PING 192.168.0.254 (192.168.0.254): 56 data bytes

--- 192.168.0.254 ping statistics ---
28 packets transmitted, 0 packets received, 100% packet loss

Nothing but silence. The usual way to start debugging problems like
this is to sniff the interface using tcpdump or a similar tool. With the
ping running again, we see this:

host# tcpdump -i jeffs-uml -l -n
tcpdump: verbose output suppressed, use -v or -vv for full \
 protocol decode
listening on jeffs-uml, link-type EN10MB (Ethernet), capture \
 size 96 bytes
18:12:34.115634 IP 192.168.0.253 > 192.168.0.254: icmp 64: echo \
 request seq 0
18:12:35.132054 IP 192.168.0.253 > 192.168.0.254: icmp 64: echo \
 request seq 256

Ping requests are coming out, but no replies are getting back to it. This
is a routing problem—we have not yet set any routes to the TUN/TAP

Dike.book Page 125 Wednesday, March 15, 2006 8:16 PM

126 Chapter 7 UML Networking in Depth

device, so the host doesn’t know where to send the ping replies. This is
easily fixed:

host# route add -host 192.168.0.253 dev jeffs-uml

Now, pinging from the UML instance works:

UML# ping 192.168.0.254
PING 192.168.0.254 (192.168.0.254): 56 data bytes
64 bytes from 192.168.0.254: icmp_seq=0 ttl=64 time=0.7 ms
64 bytes from 192.168.0.254: icmp_seq=1 ttl=64 time=0.1 ms
64 bytes from 192.168.0.254: icmp_seq=2 ttl=64 time=0.1 ms

--- 192.168.0.254 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.1/0.3/0.7 ms

It’s always a good idea to check connectivity in both directions, in
case there is a problem in one direction but not the other. So, check
whether the host can ping the instance:

host% ping 192.168.0.253
PING 192.168.0.253 (192.168.0.253) 56(84) bytes of data.
64 bytes from 192.168.0.253: icmp_seq=0 ttl=64 time=0.169 ms
64 bytes from 192.168.0.253: icmp_seq=1 ttl=64 time=0.077 ms

--- 192.168.0.253 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1000ms
rtt min/avg/max/mdev = 0.077/0.123/0.169/0.046 ms, pipe 2

So far, so good. The next step is to ping a host on the local network
by its IP address:

UML# ping 192.168.0.3
PING 192.168.0.3 (192.168.0.3): 56 data bytes

--- 192.168.0.3 ping statistics ---
7 packets transmitted, 0 packets received, 100% packet loss

No joy. Using tcpdump to check what’s happening shows this:

host# tcpdump -i jeffs-uml -l -n
tcpdump: verbose output suppressed, use -v or -vv for full \
 protocol decode
listening on jeffs-uml, link-type EN10MB (Ethernet), capture \
 size 96 bytes
18:20:29.522769 arp who-has 192.168.0.3 tell 192.168.0.253
18:20:30.524576 arp who-has 192.168.0.3 tell 192.168.0.253
18:20:31.522430 arp who-has 192.168.0.3 tell 192.168.0.253

Dike.book Page 126 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 127

The UML instance is trying to figure out the Ethernet MAC address of
the target. To this end, it’s broadcasting an arp request on its eth0
interface and hoping for a response. It’s not getting one because the
target machine can’t hear the request. arp requests, like other Ether-
net broadcast protocols, are limited to the Ethernet segment on which
they originate, and the UML eth0 to host TUN/TAP connection is
effectively an isolated Ethernet strand with only two hosts on it. So,
the arp requests never reach the physical Ethernet where the other
machine could hear it and respond.

This can be fixed by using a mechanism known as proxy arp and
enabling packet forwarding. First, turn on forwarding:

host# echo 1 > /proc/sys/net/ipv4/ip_forward

Then enable proxy arp on the host for the TUN/TAP device:

host# echo 1 > /proc/sys/net/ipv4/conf/jeffs-uml/proxy_arp

This will cause the host to arp to the UML instance on behalf of the
rest of the network, making the host’s arp database available to the
instance. Retrying the ping and watching tcpdump shows this:

host# tcpdump -i jeffs-uml -l -n tcpdump: verbose output \
 suppressed, use -v or -vv for full protocol decode
listening on jeffs-uml, link-type EN10MB (Ethernet), capture \
 size 96 bytes
19:25:16.465574 arp who-has 192.168.0.3 tell 192.168.0.253
19:25:16.510440 arp reply 192.168.0.3 is-at ae:42:d1:20:37:e5
19:25:16.510648 IP 192.168.0.253 > 192.168.0.3: icmp 64: echo \
 request seq 0
19:25:17.448664 IP 192.168.0.253 > 192.168.0.3: icmp 64: echo \
 request seq 256

There is still no pinging, but the arp request did get a response. We can
verify this by seeing what’s in the UML arp cache.

UML# arp
Address HWtype HWaddress Flags Mask \
 Iface
192.168.0.3 ether AE:42:D1:20:37:E5 C \
 eth0

If you see nothing here, it’s likely because too much time elapsed
between running the ping and the arp, and the arp entry got flushed
from the cache. In this case, rerun the ping, and run arp immediately
afterward.

Dike.book Page 127 Wednesday, March 15, 2006 8:16 PM

128 Chapter 7 UML Networking in Depth

Since the instance is now getting arp service for the rest of the
network, and ping requests are making it out through the TUN/TAP
device, we need to follow those packets to see what’s going wrong. On
my host, the outside network device is eth1, so I’ll watch that. On
other machines, the outside network will likely be eth0. It’s also a good
idea to select only packets involving the UML, to eliminate the noise
from other network activity:

host# tcpdump -i eth1 -l -n host 192.168.0.253
tcpdump: verbose output suppressed, use -v or -vv for full \
 protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size \
 96 bytes
19:36:14.459076 IP 192.168.0.253 > 192.168.0.3: icmp 64: echo \
 request seq 0
19:36:14.461960 arp who-has 192.168.0.253 tell 192.168.0.3
19:36:15.460608 arp who-has 192.168.0.253 tell 192.168.0.3

Here we see a ping request going out, which is fine. We also see an arp
request from the other host for the MAC address of the UML instance.
This is going unanswered, so this is the next problem.

We set up proxy arp in one direction, for the UML instance on
behalf of the rest of the network. Now we need to set it up in the other
direction, for the rest of the network on behalf of the instance, so that
the host will respond to arp requests for the instance:

host# arp -Ds 192.168.0.253 eth1 pub

Retrying the ping gets some good results:

UML# ping 192.168.0.3
PING 192.168.0.3 (192.168.0.3): 56 data bytes
64 bytes from 192.168.0.3: icmp_seq=0 ttl=63 time=133.1 ms
64 bytes from 192.168.0.3: icmp_seq=1 ttl=63 time=4.0 ms
64 bytes from 192.168.0.3: icmp_seq=2 ttl=63 time=4.9 ms

--- 192.168.0.3 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 4.0/47.3/133.1 ms

To be thorough, let’s make sure we have connectivity in the other
direction and ping the UML instance from the other host:

192.168.0.3% ping 192.168.0.254
PING 192.168.0.254 (192.168.0.254) from 192.168.0.3 : 56(84) \
 bytes of data.
64 bytes from 192.168.0.254: icmp_seq=1 ttl=64 time=6.48 ms
64 bytes from 192.168.0.254: icmp_seq=2 ttl=64 time=2.76 ms

Dike.book Page 128 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 129

64 bytes from 192.168.0.254: icmp_seq=3 ttl=64 time=2.75 ms

--- 192.168.0.254 ping statistics ---
3 packets transmitted, 3 received, 0% loss, time 2003ms
rtt min/avg/max/mdev = 2.758/4.000/6.483/1.756 ms

We now have basic network connectivity between the UML
instance and the rest of the local network. Here’s a summary of the
steps we took.

1. Create the TUN/TAP device for the UML instance to use to com-
municate with the host.

2. Configure it.
3. Set a route to it.
4. Enable packet forwarding on the host.
5. Enable proxy arp in both directions between the UML instance

and the rest of the network.

Thoughts on Security
At this point, the machinations of the uml_net helper should make
sense. To recap, let’s add another interface to the instance and let
uml_net set it up for us:

host% uml_mconsole debian config eth1=tuntap,,,192.168.0.252
OK

Configuring the new device in the instance shows us this:

UML# ifconfig eth1 192.168.0.251 up
* modprobe tun
* ifconfig tap0 192.168.0.252 netmask 255.255.255.255 up
* bash -c echo 1 > /proc/sys/net/ipv4/ip_forward
* route add -host 192.168.0.251 dev tap0
* bash -c echo 1 > /proc/sys/net/ipv4/conf/tap0/proxy_arp
* arp -Ds 192.168.0.251 jeffs-uml pub
* arp -Ds 192.168.0.251 eth1 pub

Here we can see the helper doing just about everything we just finished
doing by hand. The one thing that’s missing is actually creating the
TUN/TAP device. uml_net does that itself, without invoking an out-
side utility, so that doesn’t show up in the list of commands it runs on
our behalf.

Aside from knowing how to configure the host in order to support
a networked UML instance, this is also important for understanding

Dike.book Page 129 Wednesday, March 15, 2006 8:16 PM

130 Chapter 7 UML Networking in Depth

the security implications of what we have done and for customizing
this setup for a particular environment.

What uml_net does is not secure against a nasty root user inside
the instance. Consider what would happen if the UML user decided to
configure the UML eth0 with the same IP address as your local name
server. uml_net would set up proxy arp to direct name requests to the
UML instance. The real name server would still be there getting
requests, but some requests would be redirected to the UML instance.
With a name server in the UML instance providing bogus responses,
this could easily be a real security problem. For this reason, uml_net
should not be used in a serious UML establishment. Its purpose is to
make UML networking easy to set up for the casual UML user. For any
more serious uses of UML, the host should be configured according to
the local needs, security and otherwise.

What we just did by hand isn’t that bad because we set the route
to the instance and proxy arp according to the IP address we expected
it to use. If root inside our UML instance decides to use a different IP
address, such as that of our local name server, it will see no traffic. The
host will only arp on behalf of the IP we expect it to use, and the route
is only good for that IP. All other traffic will go elsewhere.

A nasty root user can still send out packets purporting to be from
other hosts, but since it can’t receive any responses to them, it would
have to make blind attacks. As I discussed earlier, this is unlikely to
enable any successful attacks on its own, but it does remove a layer of
protection that might prove useful if another exploit on the host allows
the attacker to see the local network traffic.

So, it is probably advisable to filter out any unexpected network
traffic at the iptables level. First, let’s see that the UML instance can
send out packets that pretend to be from some other host. As usual for
this discussion, these will be pings, but they could just as easily be any
other protocol.

UML# ifconfig eth0 192.168.0.100 up
UML# ping 192.168.0.3
PING 192.168.0.3 (192.168.0.3): 56 data bytes

--- 192.168.0.3 ping statistics ---
4 packets transmitted, 0 packets received, 100% packet loss

Here I am pretending to be 192.168.0.100, which we will consider to
be an important host on the local network. Watching the jeffs-uml
device on the host shows this:

Dike.book Page 130 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 131

host# tcpdump -i jeffs-uml -l -n
tcpdump: verbose output suppressed, use -v or -vv for full \
 protocol decode
listening on jeffs-uml, link-type EN10MB (Ethernet), capture \
 size 96 bytes
20:20:34.978090 arp who-has 192.168.0.3 tell 192.168.0.100
20:20:35.506878 arp reply 192.168.0.3 is-at ae:42:d1:20:37:e5
20:20:35.508062 IP 192.168.0.100 > 192.168.0.3: icmp 64: echo \
 request seq 0

We can see those faked packets reaching the host. Looking at the host’s
interface to the rest of the network, we can see they are reaching the
local network:

tcpdump -i eth1 -l -n
tcpdump: verbose output suppressed, use -v or -vv for full \
 protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size \
 96 bytes
20:23:30.741482 IP 192.168.0.100 > 192.168.0.3: icmp 64: echo \
 request seq 0
20:23:30.744305 arp who-has 192.168.0.100 tell 192.168.0.3

Notice that arp request. It will be answered correctly, so the ping
responses will go to the actual host that legitimately owns
192.168.0.100, which is not expecting them. That host will discard
them, so they will cause no harm except for some wasted network
bandwidth and CPU cycles. However, it would be preferable for those
packets not to reach the network or the host in the first place. This can
be done as follows:

host# iptables -A FORWARD -i jeffs-uml -s \! 192.168.0.253 -j \
 DROP
Warning: wierd character in interface `jeffs-uml' (No aliases, \
 :, ! or *).

iptables is apparently complaining about the dash in the interface
name, but it does create the rule, as we can see here:

host# iptables -L
Chain FORWARD (policy ACCEPT)
target prot opt source destination
DROP all -- !192.168.0.253 anywhere

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Dike.book Page 131 Wednesday, March 15, 2006 8:16 PM

132 Chapter 7 UML Networking in Depth

So, we have just told iptables to discard any packet it sees that:

☞ Is supposed to be forwarded
☞ Enters the host through the jeffs-uml interface
☞ Has a source address other than 192.168.0.253

After creating this firewall rule, you should be able to rerun the previ-
ous ping and tcpdump will show that those packets are not reaching
the outside network.

At this point, we have a reasonably secure setup. As originally
configured, the UML instance couldn’t see any traffic not intended for
it. With the new firewall rule, the rest of the network will see only traf-
fic from the instance that originates from the IP address assigned to it.
A possible enhancement to this is to log any attempts to use an unau-
thorized IP address so that the host administrator is aware of any such
attempts and can take any necessary action.

You could also block any packets from coming in to the UML
instance with an incorrect IP address. This shouldn’t happen because
the proxy arp we have set up shouldn’t attract any packets for IP
addresses that don’t belong somehow to the host, and any such packets
that do reach the host won’t be routed to the UML instance. However,
an explicit rule to prevent this might be a good addition to a layered
security model. In the event of a malfunction or compromise of this con-
figuration, such a rule could end up being the one thing standing in the
way of a UML instance seeing traffic that it shouldn’t. This rule would
look like this:

host# iptables -A FORWARD -o jeffs-uml -d \! 192.168.0.253 -j \
 DROP
Warning: wierd character in interface `jeffs-uml' (No aliases, \
 :, ! or *).

Access to the Outside Network
We still have a bit of work to do, as we have demonstrated access only
to the local network, using IP addresses rather than more convenient
host names. So, we need to provide the UML instance with a name service.
For a single instance, the easiest thing to do is copy it from the host:

host# cat > /etc/resolv.conf
; generated by /sbin/dhclient-script
search user-mode-linux.org
nameserver 192.168.0.3

Dike.book Page 132 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 133

I cut the contents of the host’s /etc/resolv.conf and pasted them
into the UML. You should do the same on your own machine, as my
resolv.conf will almost certainly not work for you.

We also need a default route, which hasn’t been necessary for the
limited testing we’ve done so far but is needed for almost anything else:

UML# route add default gw 192.168.0.254

I normally use the IP address of the host end of the TUN/TAP device as
the default gateway.

If you still have the unauthorized IP address assigned to your
instance’s eth0, reassign the original address:

ifconfig eth0 192.168.0.253

Now we should have name service:

UML# host 192.168.0.3
Name: laptop.user-mode-linux.org
Address: 192.168.0.3

That’s a local name—let’s check for a remote one:

UML# host www.user-mode-linux.org
www.user-mode-linux.org A 66.59.111.166

Now let’s try pinging it, to see if we have network access to the outside
world:

UML# ping www.user-mode-linux.org
PING www.user-mode-linux.org (66.59.111.166): 56 data bytes
64 bytes from 66.59.111.166: icmp_seq=0 ttl=52 time=487.2 ms
64 bytes from 66.59.111.166: icmp_seq=1 ttl=52 time=37.8 ms
64 bytes from 66.59.111.166: icmp_seq=2 ttl=52 time=36.0 ms
64 bytes from 66.59.111.166: icmp_seq=3 ttl=52 time=73.0 ms

--- www.user-mode-linux.org ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 36.0/158.5/487.2 ms

Copying /etc/resolv.conf from the host and setting the
default route by hand works but is not the right thing to do. The real
way to do these is with DHCP. The reason this won’t work here is the
same reason that ARP didn’t work—the UML is on a different Ether-
net strand than the rest of the network, and DHCP, being an Ethernet
broadcast protocol, doesn’t cross Ethernet broadcast domain boundaries.

Dike.book Page 133 Wednesday, March 15, 2006 8:16 PM

134 Chapter 7 UML Networking in Depth

DHCP through a TUN/TAP Device
Some tools work around the DHCP problem by forwarding DHCP
requests from one Ethernet domain to another and relaying whatever
replies come back. One such tool is dhcp-fwd. It needs to be installed
on the host and configured. It has a fairly scary-looking default config
file. You need to specify the interface from which client requests will
come and the interface from which server responses will come.

In the default config file, these are eth2 and eth1, respectively.
On my machine, the client interface is jeffs-uml and the server

interface is eth1. So, a global replace of eth2 with jeffs-uml, and
leaving eth1 alone, is sufficient to get a working dhcp-fwd.

Let’s get a clean start by unplugging the UML eth0 and plugging
it back in. First we need to bring the interface down:

UML# ifconfig eth0 down

Then, on the host, remove the device:

host% uml_mconsole debian remove eth0
OK

Now, let’s plug it back in:

host% uml_mconsole debian config eth0=tuntap,,fe:fd:c0:a8:00:fd,\
 192.168.0.254
OK

Notice that we have a new parameter to this command. We are
specifying a hardware MAC address for the interface. We never did this
before because the UML network driver automatically generates one
when it is assigned an IP address for the first time. It is important that
these be unique. Physical Ethernet cards have a unique MAC burned
into their hardware or firmware. It’s tougher for a virtual interface to
get a unique identity. It’s also important for its IP address to be unique,
and I have taken advantage of this in order to generate a unique MAC
address for a UML’s Ethernet device.

When the administrator provides an IP address, which is very
likely to be unique on the local network, to a UML Ethernet device, the
driver uses that as part of the MAC address it assigns to the device.
The first two bytes of the MAC will be 0xFE and 0xFD, which is a pri-
vate Ethernet range. The next four bytes are the IP address. If the IP
address is unique on the network, the MAC will be, too.

When configuring the interface with DHCP, the MAC is needed
before the DHCP server can assign the IP. Thus, we need to assign the

Dike.book Page 134 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 135

MAC on the command line or when plugging the device into a running
UML instance.

There is another case where you may need to supply a MAC on the
UML command line, which I will discuss in greater detail later in this
chapter. That is when the distribution you are using brings the inter-
face up before giving it an IP address. In this case, the driver can’t sup-
ply the MAC after the fact, when the interface is already up, so it must
be provided ahead of time, on the command line.

Now, assuming the dhcp-fwd service has been started on the
host, dhclient will work inside UML:

UML# dhclient eth0
Internet Software Consortium DHCP Client 2.0pl5
Copyright 1995, 1996, 1997, 1998, 1999 The Internet Software \
 Consortium.
All rights reserved.

Please contribute if you find this software useful.
For info, please visit http://www.isc.org/dhcp-contrib.html

Listening on LPF/eth0/fe:fd:c0:a8:00:fd
Sending on LPF/eth0/fe:fd:c0:a8:00:fd
Sending on Socket/fallback/fallback-net
DHCPREQUEST on eth0 to 255.255.255.255 port 67
DHCPACK from 192.168.0.254
bound to 192.168.0.9 -- renewal in 21600 seconds.

Final Testing
At this point, we have full access to the outside network. There is still
one thing that could go wrong. Ping packets are relatively small; in
some situations small packets will be unmolested but large packets,
contained in full-size Ethernet frames, will be lost. To check this, we
can copy in a large file:

UML# wget http://www.kernel.org/pub/linux/kernel/v2.6/\
 linux-2.6.12.3.tar.bz2
--01:35:56-- http://www.kernel.org/pub/linux/kernel/v2.6/\
 linux-2.6.12.3.tar.bz2 => `linux-2.6.12.3.tar.bz2'
Resolving www.kernel.org... 204.152.191.37, 204.152.191.5
Connecting to www.kernel.org[204.152.191.37]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 37,500,159 [application/x-bzip2]

100%[====================================>] 37,500,159 \
 87.25K/s ETA 00:00

01:43:04 (85.92 KB/s) - `linux-2.6.12.3.tar.bz2' saved \
 [37500159/37500159]

Dike.book Page 135 Wednesday, March 15, 2006 8:16 PM

136 Chapter 7 UML Networking in Depth

Copying in a full Linux kernel tarball is a pretty good test, and in
this case, it’s fine. If this does nothing for you, it’s likely that there’s a
problem with large packets. If so, you need to lower the Maximal
Transfer Unit (MTU) of the UML’s eth0:

UML# ifconfig eth0 mtu 1400

You can determine the exact value by experiment. Lower it until large
transfers start working.

The cases where I’ve seen this involved a PPPoE connection to the
outside world. PPPoE usually means a DSL connection, and I’ve seen
UML connectivity problems when the host was my DSL gateway. Lower-
ing the MTU to 1400 made the network fully functional. In fact, the MTU
for a PPPoE connection is 1492, so lowering it to 1400 was overkill.

Bridging

As mentioned at the start of this chapter, there are two ways to config-
ure a host to give a UML access to the outside world. We just explored
one of them. The alternative, bridging, doesn’t require the host to route
packets to and from the UML, and so doesn’t require new routes to be
created or proxy arp to be configured. With bridging, the TUN/TAP
device used by the UML instance is combined with the host’s physical
Ethernet device into a sort of virtual switch. The bridge interface for-
wards Ethernet frames from one interface to another based on their
destination MAC addresses. This effectively merges the broadcast
domains associated with the bridged interfaces. Since this caused
DHCP and arp to not work when we were doing IP forwarding, bridg-
ing provides a neat solution to these problems.

If you currently have an active UML network, you should shut it
down before continuing:

UML# ifconfig eth0 down

Then, on the host, remove the device:

host% uml_mconsole debian remove eth0
OK

Bring down and remove the TUN/TAP interface, which will delete the
route and one side of the proxy arp, and delete the other side of the
proxy arp:

Dike.book Page 136 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 137

host# ifconfig jeffs-uml down
host% tunctl -d jeffs-uml
Set 'jeffs-uml' nonpersistent
host# arp -i jeffs-uml -d 192.168.0.253 pub

Now, with everything cleaned up, we can start from scratch:

host% tunctl -u jdike -t jeffs-uml

Let’s start setting up bridging. The idea is that a new interface
will provide the host with network access to the outside world. The two
interfaces we are currently using, eth0 and jeffs-uml, will be added
to this new interface. The bridge device will forward frames from one
interface to the other as needed, so that both eth0 and jeffs-uml will
see traffic that’s intended for them (or that needs to be sent to the local
network, in the case of eth0).

The first step is to create the device using the brctl utility, which
is in the bridge-utilities package of your favorite distribution:

host# brctl addbr uml-bridge

In the spirit of giving interfaces meaningful names, I’ve called this
one uml-bridge.

Now we want to add the two existing interfaces to it. For the phys-
ical interface, choose a wired Ethernet—for some reason, wireless
interfaces don’t seem to work in bridges. The virtual interface will be
the jeffs-uml TUN/TAP interface.

We need to do some configuration to make it usable:

host# ifconfig jeffs-uml 0.0.0.0 up

These interfaces can’t have their own IP addresses, so we have to
clear the one on eth0. This is a step you want to think about carefully.
If you are logged in to the host remotely, this will likely kill your ses-
sion and any network access you have to it. If the host has two network
interfaces, and you know that your session and all other network activ-
ity you care about is traveling over the other, then it should be safe to
remove the IP address from this one:

host# ifconfig eth0 0.0.0.0

We can now add the two interfaces to the bridge:

host# brctl addif uml-bridge jeffs-uml
host# brctl addif uml-bridge eth0

Dike.book Page 137 Wednesday, March 15, 2006 8:16 PM

138 Chapter 7 UML Networking in Depth

And then we can look at our work:

host# brctl show
bridge name bridge id STP enabled \
 interfaces
uml-bridge 8000.0012f04be1fa no \
 eth0
 \
 jeffs-uml

At this point, the bridge configuration is done and we need to
bring it up as a new network interface:

host# dhclient uml-bridge
Internet Systems Consortium DHCP Client V3.0.2
Copyright 2004 Internet Systems Consortium.
All rights reserved.
For info, please visit http://www.isc.org/products/DHCP

/sbin/dhclient-script: configuration for uml-bridge not found. \
 Continuing with defaults.
Listening on LPF/uml-bridge/00:12:f0:4b:e1:fa
Sending on LPF/uml-bridge/00:12:f0:4b:e1:fa
Sending on Socket/fallback
DHCPDISCOVER on uml-bridge to 255.255.255.255 port 67 interval 4
DHCPOFFER from 192.168.0.10
DHCPREQUEST on uml-bridge to 255.255.255.255 port 67
DHCPACK from 192.168.0.10
/sbin/dhclient-script: configuration for uml-bridge not found. \
 Continuing with defaults.
bound to 192.168.0.2 -- renewal in 20237 seconds.

The bridge is functioning, but for any local connectivity to the
UML instance, we’ll need to set a route to it:

host# route add -host 192.168.0.253 dev uml-bridge

Now we can plug the interface into the UML instance and config-
ure it there:

host% uml_mconsole debian config eth0=tuntap,jeffs-uml,\
 fe:fd:c0:a8:00:fd
OK

UML# ifconfig eth0 192.168.0.253 up

Note that we plugged the jeffs-uml TUN/TAP interface into the
UML instance. The bridge is merely a container for the other two inter-
faces, which can actually send and receive frames.

Dike.book Page 138 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 139

Also note that we assigned the MAC address ourselves rather
than letting the UML driver do it. A MAC is necessary in order to make
a DHCP request for an IP address, while the driver requires the IP
address before it can construct the MAC. In order to break this circular
requirement, we need to assign the MAC that the interface will get.

Now we can see some benefit from the extra setup that the bridge
requires. DHCP within the UML instance now works:

UML# dhclient eth0
Internet Systems Consortium DHCP Client V3.0.2-RedHat
Copyright 2004 Internet Systems Consortium.
All rights reserved.
For info, please visit http://www.isc.org/products/DHCP

Listening on LPF/eth0/fe:fd:c0:a8:00:fd
Sending on LPF/eth0/fe:fd:c0:a8:00:fd
Sending on Socket/fallback
DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 5
DHCPOFFER from 192.168.0.10
DHCPREQUEST on eth0 to 255.255.255.255 port 67
DHCPACK from 192.168.0.10
bound to 192.168.0.253 -- renewal in 16392 seconds.

This requires no messing around with arp or dhcp-fwd. Binding
the TUN/TAP interface and the host’s Ethernet interface makes each
see broadcast frames from the other. So, DHCP and arp requests sent
from the TUN/TAP device are also sent through the eth0 device. Simi-
larly, arp requests from the local network are forwarded to the TUN/
TAP interface (and thus the UML instance’s eth0 interface), which can
respond on behalf of the UML instance.

The bridge also forwards nonbroadcast frames, based on their
MAC addresses. So, DHCP and arp replies will be forwarded as neces-
sary between the two interfaces and thus between the UML instance
and the local network. This makes the DHCP forwarding and the proxy
arp that we did earlier completely unnecessary.

The main downside to bridging is the need to remove the IP
address from the physical Ethernet interface before adding it to the
bridge. This is a rather pucker-inducing step when the host is accessi-
ble only remotely over that one interface. Many people will use IP for-
warding and proxy arp instead of bridging rather than risk taking
their remote server off the net. Others have written scripts that set up
the bridge, taking the server’s Ethernet interface offline and bringing
the bridge interface online.

Dike.book Page 139 Wednesday, March 15, 2006 8:16 PM

140 Chapter 7 UML Networking in Depth

Bridging and Security
Bridging provides access to the outside network in a different way than
we got with routing and proxy arp. However, the security concerns are
the same—we need to prevent a malicious root user from making the
UML instance pretend to be an important server. Before, we filtered
traffic going through the TUN/TAP device with iptables. This was
appropriate for a situation that involved IP-level routing and forward-
ing, but it won’t work here because the forwarding is done at the Ether-
net level.

There is an analogous framework for doing Ethernet filtering and
an analogous tool for configuring it: ebtables, with the “eb” standing
for “Ethernet Bridging.”

First, in order to demonstrate that we can do nasty things to our
network, let’s change our Ethernet MAC to one we will presume
belongs to our name server or DHCP server. Then let’s verify that we
still have network access:

UML# ifconfig eth0 hw ether fe:fd:ba:ad:ba:ad
ping -c 2 192.168.0.10
PING 192.168.0.10 (192.168.0.10) 56(84) bytes of data.
64 bytes from 192.168.0.10: icmp_seq=0 ttl=64 time=3.75 ms
64 bytes from 192.168.0.10: icmp_seq=1 ttl=64 time=1.85 ms

--- 192.168.0.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1018ms
rtt min/avg/max/mdev = 1.850/2.803/3.756/0.953 ms, pipe 2

We do, so we need to fix things so that the UML instance has network
access only with the MAC we assigned to it.

Precisely, we want any Ethernet frame leaving the jeffs-uml
interface on its way to the bridge that doesn’t have a source MAC of
fe:fd:c0:a8:00:fd to be dropped. Similarly, we want any frame
being forwarded from the bridge to the jeffs-uml interface without
that destination MAC to be dropped.

The ebtables syntax is very similar to iptables, and the follow-
ing commands do what we want:

host# ebtables -A INPUT --in-interface jeffs-uml \
 --source \! FE:FD:C0:A8:00:FD -j DROP
host# ebtables -A OUTPUT --out-interface jeffs-uml \
 --destination \! FE:FD:C0:A8:00:FD -j DROP
host# ebtables -A FORWARD --out-interface jeffs-uml \
 --destination \! FE:FD:C0:A8:00:FD -j DROP
host# ebtables -A FORWARD --in-interface jeffs-uml \
 --source \! FE:FD:C0:A8:00:FD -j DROP

Dike.book Page 140 Wednesday, March 15, 2006 8:16 PM

Manually Setting Up Networking 141

There is a slight subtlety here—my first reading of the ebtables
man page suggested that using the FORWARD chain would be sufficient
since that covers frames being forwarded by the bridge from one inter-
face to another. This works for external traffic but not for traffic to the
host itself. These frames aren’t forwarded, so we could spoof our iden-
tity to the host if the ebtables configuration used only the FORWARD
chain. To close this hole, I also use the INPUT and OUTPUT chains to
drop packets intended for the host as well as those that are forwarded.

At this point the ebtables configuration should look like this:

ebtables -L
Bridge table: filter

Bridge chain: INPUT, entries: 1, policy: ACCEPT
-s ! fe:fd:c0:a8:0:fd -i jeffs-uml -j DROP

Bridge chain: FORWARD, entries: 2, policy: ACCEPT
-d ! fe:fd:c0:a8:0:fd -o jeffs-uml -j DROP
-s ! fe:fd:c0:a8:0:fd -i jeffs-uml -j DROP

Bridge chain: OUTPUT, entries: 1, policy: ACCEPT
-d ! fe:fd:c0:a8:0:fd -o jeffs-uml -j DROP

We can check our work by trying to ping an outside host again:

host# ping -c 2 192.168.0.10
PING 192.168.0.10 (192.168.0.10) 56(84) bytes of data.
From 192.168.0.253 icmp_seq=0 Destination Host Unreachable
From 192.168.0.253 icmp_seq=1 Destination Host Unreachable

--- 192.168.0.10 ping statistics ---
2 packets transmitted, 0 received, +2 errors, 100% packet \
 loss, time 1018ms, pipe 3

We should also check that we haven’t made things too secure by
accidentally dropping all packets. Let’s reset our MAC to the approved
value and see that we have connectivity:

UML# ifconfig eth0 hw ether FE:FD:C0:A8:00:FD
UML# ping -c 2 192.168.0.10
PING 192.168.0.10 (192.168.0.10) 56(84) bytes of data.
64 bytes from 192.168.0.10: icmp_seq=0 ttl=64 time=40.4 ms
64 bytes from 192.168.0.10: icmp_seq=1 ttl=64 time=3.93 ms

--- 192.168.0.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1036ms
rtt min/avg/max/mdev = 3.931/22.190/40.449/18.259 ms, pipe 2

Dike.book Page 141 Wednesday, March 15, 2006 8:16 PM

142 Chapter 7 UML Networking in Depth

At this point, the UML instance can communicate with other
hosts using only the MAC that we assigned to it. We should also be con-
cerned with whether it can do harm by spoofing its IP.

UML# ifconfig eth0 192.168.0.100
UML# ifconfig eth0 hw ether FE:FD:C0:A8:00:FD
UML# ping -c 2 192.168.0.10
PING 192.168.0.10 (192.168.0.10) 56(84) bytes of data.
64 bytes from 192.168.0.10: icmp_seq=0 ttl=64 time=3.57 ms
64 bytes from 192.168.0.10: icmp_seq=1 ttl=64 time=1.73 ms

--- 192.168.0.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1017ms
rtt min/avg/max/mdev = 1.735/2.655/3.576/0.921 ms, pipe 2

It can, so we need to apply some IP filtering. Because the jeffs-
uml interface is part of a bridge, we need to use the physdev module of
iptables:

host# iptables -A FORWARD -m physdev --physdev-in jeffs-uml \
 -s \! 192.168.0.253 -j DROP
Warning: wierd character in interface `jeffs-uml' (No aliases, \
 :, ! or *).
host# iptables -A FORWARD -m physdev --physdev-out jeffs-uml \
 -d \! 192.168.0.253 -j DROP
Warning: wierd character in interface `jeffs-uml' (No aliases, \
 :, ! or *).
host# iptables -A INPUT -m physdev --physdev-in jeffs-uml \
 -s \! 192.168.0.253 -j DROP
Warning: wierd character in interface `jeffs-uml' (No aliases, \
 :, ! or *).
host# iptables -A OUTPUT -m physdev --physdev-out jeffs-uml \
 -d \! 192.168.0.253 -j DROP
Warning: wierd character in interface `jeffs-uml' (No aliases, \
 :, ! or *).

These take care of packets intended for both this host and other sys-
tems. Earlier, I didn’t include a rule to prevent packets with incorrect des-
tination IP addresses from reaching a UML instance because the proxy
arp and routing provided pretty good protection against that. I’m includ-
ing the equivalent rule here because we don’t have the same protection—
the bridging exposes the UML instances much more to the local network.

THE UML NETWORKING TRANSPORTS

Now that we’ve had an in-depth look at using TUN/TAP devices on the
host to get a UML instance on the network, it’s time to look at the other

Dike.book Page 142 Wednesday, March 15, 2006 8:16 PM

The UML Networking Transports 143

mechanisms that can be used. There are a total of six, probably two of
which are by far the most commonly used. However, there are situa-
tions in which you would choose to use one of the other four, albeit very
rare situations for some of them.

In order to classify them, we can first divide them between trans-
ports that can be used to connect a UML to the host and those that can
be used only to connect UML instances to each other. In the first group
are TUN/TAP, Ethertap, SLIP, and Slirp. In the second are the virtual
switch and multicast. Blurring this distinction somewhat is that
uml_switch has an option to attach itself to a host TUN/TAP device,
thereby providing access to the host. The final transport, pcap, is fun-
damentally different from the others and doesn’t really belong in either
group. It does connect to the host, but it can only receive packets, not
transmit them. pcap allows you to use a UML instance as a preconfig-
ured packet sniffer.

Access to the Host Network

TUN/TAP and Ethertap
Among the transports that can provide access to the host network,
TUN/TAP is very much the preferred option. Ethertap is an older inter-
face that does the same thing, only worse. Ethertap was the standard
for this on Linux version 2.2, and early in 2.4. At that point, TUN/TAP
entered the Linux kernel in its current form. It supplanted Ethertap
because it lacked various problems that made Ethertap hard to work with.

These problems are pretty well hidden by the uml_net helper and
the UML Ethertap driver, but they do affect performance and possibly
security. These effects are caused by the fact that there needs to be a
root helper to create the Ethertap device and to handle every packet
going through the device. It’s impossible for the helper to open a file
descriptor to the Ethertap interface and pass it to UML, as is the case
with TUN/TAP. So, UML sends and receives packets over a pipe to the
helper, which communicates with the interface. This extra step hurts
latency and throughput compared to TUN/TAP. Having a root helper
running continuously may also be a security issue, as it would be a con-
tinuous target for any attacks.

The one advantage that Ethertap has over TUN/TAP is that it’s
available on Linux kernels that predate early version 2.4. So, if you
have a host running such a kernel, and it can’t be updated, you have to
use Ethertap for your UML networking.

Dike.book Page 143 Wednesday, March 15, 2006 8:16 PM

144 Chapter 7 UML Networking in Depth

SLIP
The SLIP transport exists because it was the first networking mecha-
nism for UML. Ethertap was available on the first host on which I
developed UML, but SLIP was the first mechanism I learned about.
There is essentially no reason to use it now. The only one I can think of
is that maybe some UML hosts don’t have either TUN/TAP or Ethertap
available, and this can’t be changed. Then SLIP would be the mecha-
nism of choice, even though it’s a poor choice.

The following issues are among its disadvantages.

☞ It can carry only IP traffic. Important non-IP protocols such as
DHCP and ARP, and other lesser-known protocols from the likes of
Apple and Novell, can’t be carried over it.

☞ The encapsulation required by the SLIP protocol is a performance
drag.

☞ It can’t carry Ethernet frames, so it can’t talk directly to an Ether-
net network. All packets must be routed through the host, which
will convert them into Ethernet frames.

Slirp
Slirp is interesting but little used. The Slirp networking emulator pro-
vides network access without needing any root privileges or help what-
soever. It is unique in this regard, as all of the other transports require
some sort of root assistance.

However, it has a number of disadvantages.

☞ It is slow. Slirp contains a network stack of its own that is used to
parse the packets coming from the UML network stack. Slirp
opens a normal socket connection to the target and sends the
packet payload to it. When receiving packets, the process is
reversed. The data coming from the remote side is assembled into
a network packet that is immediately disassembled by the UML
network stack.

☞ It can’t receive connections on well-known ports. Since it receives
connections by attaching to host ports, as an unprivileged process,
it can only attach to ports greater than 1024. Since it doesn’t act
as a full network node, it can’t have its own ports that the host can
route packets to.

☞ The disadvantages of SLIP also apply, since Slirp provides an
emulated SLIP connection.

Dike.book Page 144 Wednesday, March 15, 2006 8:16 PM

The UML Networking Transports 145

Nevertheless, in some situations, Slirp is the only mechanism for
providing a UML instance access to the outside network. I’ve seen
cases where people are running UML instances on hosts on which they
have no privileges. In one case, the “host” was a vserver instance on
which the user had “root” privileges, but the vserver was so limited
that Slirp was the only way to get the UML instance on the network.
Cases like these are rare, but when they do happen, Slirp is invaluable,
despite its limitations.

Isolated Networks

There are two purely virtual transports, which can connect a UML only
to other UML instances: uml_switch and multicast.

uml_switch

uml_switch is a process that implements a virtual switch. UML
instances connect to it and communicate with it over a UNIX domain
socket on the host. It can act as a switch, which is its normal operation,
or as a hub, which is sometimes useful when you want to sniff the traf-
fic between two UML instances from a third. It also has the ability to
connect to a preconfigured TUN/TAP device, allowing the UML
instances attached to it to communicate with the host and outside net-
work.

Multicast
Multicast is the second purely virtual network transport for UML. As
its name suggests, it uses a multicast network on the host in order to
transmit Ethernet frames from one UML instance to another. The
UML instances all join the same multicast network, so that a packet
sent from any instance is seen by all of the others. This is somewhat
less efficient than the virtual switch because it behaves like a hub—all
packets are received by all nodes attached to it. So, the UML instances
will have to process and drop any packets that aren’t intended for it,
unnecessarily consuming host CPU time.

pcap

The last transport is unlike the others, in that it doesn’t provide two-
way network traffic. A UML interface based on pcap is read-only—it

Dike.book Page 145 Wednesday, March 15, 2006 8:16 PM

146 Chapter 7 UML Networking in Depth

receives packets but doesn’t transmit them. This allows UML to act as
a preconfigured network sniffer. A variety of network sniffing and traf-
fic analysis tools are available, and they can be complicated to config-
ure. This transport makes it possible to install a set of network
analysis tools in a UML root filesystem, configure them, and distribute
the filesystem.

Users can then boot UML on this filesystem and specify the pcap
interface on the command line or with uml_mconsole. The traffic
analysis will then work, with no further configuration needed.

As the name suggests, this transport is based on the pcap library,
which underlies tcpdump and other tools. Use of this may require some
familiarity with libpcap or tcpdump, especially if you want to filter
packets before the tools inside UML see them. In this case, you will
need to provide a filter expression to select the desired packets. Anyone
who has done anything similar with tcpdump will know how to write
an appropriate expression. For those who have not used tcpdump, the
man page contains a good reference to the expression language.

How to Choose the Right Transport

Now that we’ve seen all of the UML network transports, we can make
decisions about when to use each one. The advantages and disadvan-
tages discussed earlier should make this pretty clear, but it’s useful to
summarize them.

If you need to give the UML instances access to the outside net-
work, TUN/TAP is preferred. This has been standard in Linux kernels
since early version 2.4, so virtually all Linux machines that might host
UML instances should be sufficiently new to have TUN/TAP support. If
you have one that is not, upgrading would probably be a better idea
than falling back to Ethertap.

Once you’ve decided to use TUN/TAP, the next decision is whether
to give each UML its own TUN/TAP device or to connect them with
uml_switch and have it forward packets to the host through its own
TUN/TAP interface. Using the switch instead of individual TUN/TAP
devices has a number of trade-offs.

☞ The switch is a single point of control, meaning that bandwidth
tracking and management as well as filtering can be done at a sin-
gle interface, and it is a single point of failure.

☞ The switch is more efficient than individual TUN/TAP devices for
traffic between the UML instances because the packets experience

Dike.book Page 146 Wednesday, March 15, 2006 8:16 PM

The UML Networking Transports 147

only Ethernet routing by the switch rather than IP routing by the
host. However, for external traffic, there’s one more process han-
dling the packets, so that will introduce more latency.

☞ The switch may be less of a security worry. If you are concerned
about making /dev/net/tun world accessible (or even group
accessible by a uml-users group), you may be happier having it
owned by a user whose only purpose is to run uml_switch. In this
way, faked packets can be injected into the host only by an
attacker who has managed to penetrate that one account.

Against this, there is the UNIX socket that uml_switch uses to
set up connections with UML instances. This needs to be writable
by any users who are allowed to connect UML instances to the
switch. A rogue process could possibly connect to it and inject
packets to the switch, for forwarding to the UML instances or the
outside network.

This would seem to be a wash, where we are replacing a secu-
rity concern about /dev/net/tun with the same concern about
the UNIX socket used by the switch. However, access to /dev/
net/tun allows the creation of new interfaces, which aren’t sub-
ject to whatever filtering is applied to “authorized” TUN/TAP
interfaces. Any packets injected through the UNIX socket that go
to the outside network will need to pass through the filters on the
TUN/TAP interface used by the switch. On balance, I would have
to call this a slight security gain.

SLIP and Slirp are useful only in very limited circumstances.
Again, I would recommend fixing the host so that TUN/TAP can be
used before using either SLIP or Slirp. If you must get a UML with net-
work access, and you have absolutely no way to get root assistance, you
may need to use Slirp.

For an isolated network, the choice is between uml_switch and
multicast. Multicast is trivial to set up, as we will see in the next section.
However, the switch isn’t that difficult either. If you want a quick-and-
dirty isolated network, multicast is likely the better choice. However,
multicast is less efficient because of the hub behavior I mentioned earlier.

Configuring the Transports

We need to take care of one loose end. The usage of the transports var-
ies somewhat because of their differing configuration needs. In most

Dike.book Page 147 Wednesday, March 15, 2006 8:16 PM

148 Chapter 7 UML Networking in Depth

cases, these differences are confined to the configuration string pro-
vided to UML on the command line or to uml_mconsole. In the case of
uml_switch, we also need to look at the invocation of the switch.

Despite the differences, there are some commonalities. The
parameters to the device are separated by commas. Many parameters
are optional; to exclude one, just specify it as an empty string. Trailing
commas can be omitted. For example, a TUN/TAP interface that the
uml_net helper will set up can look like this:

eth0=tuntap,,fd:fe:1:2:3:4,192.168.0.1

Leaving out the Ethernet MAC would make it look like this:

eth0=tuntap,,,192.168.0.1

Omitted parameters will be provided with default values. In the
case above, the omitted MAC will be initialized as described below. The
omitted TUN/TAP interface name will be determined by the uml_net
helper when it configures the interface.

The transports that create an Ethernet device inside UML can
take an Ethernet MAC in the device specification. If not specified, it
will be assigned a MAC when it is first assigned an IP address. The
MAC will be derived from the IP—the first two bytes are 0xfd and
0xfe, and the last four are the IP address. This makes the MAC as
unique as the IP address. Normally, the MAC can be left out. However,
when you want the UML instance to be able to use DHCP, you must
specify a MAC because the device will not operate without one and it
must have a MAC in order for the DHCP server to provide an IP
address. When it is acceptable for the UML interface to not work until
it is assigned an IP address, you can let the driver assign the MAC.

However, if the interface is already up before it is assigned an IP
address, the driver cannot change the MAC address on its own. Some
distributions enable interfaces like this. In this case, the MAC will end
up as fd:fe:00:00:00:00. If you are running several UML
instances, it is likely that these MACs will conflict, causing mysterious
network failures. The easiest way to fix this problem is to provide the
MAC on the command line. You can also take the interface down and
bring it back up by hand. When you bring it back up, you should specify
the IP address on the ifconfig command line. This will ensure that
the driver knows the IP address when the interface is enabled, so it can
be assigned a reasonable MAC.

Whenever there is a network interface on the host that the trans-
port communicates through, such as a TUN/TAP or Ethertap device,

Dike.book Page 148 Wednesday, March 15, 2006 8:16 PM

The UML Networking Transports 149

the IP address of that interface, the host-side IP, can be included. As we
saw earlier in the chapter, when an IP address is specified in the device
configuration, the driver will run the uml_net helper in order to set up
the device on the host. When it is omitted, a preconfigured host device
should be included in the configuration string.

As we have already seen, the configuration syntax for a device is
identical whether it is being configured on the UML command line or
being hot-plugged with an MConsole client.

TUN/TAP
The TUN/TAP configuration string comes in two forms, depending on
whether you are assigning the UML interface a preconfigured host
interface or whether you want the uml_net helper to create and config-
ure the host interface.

In the first case, you specify

☞ tuntap
☞ The host interface name
☞ Optionally, the MAC of the UML interface

For example:

eth0=tuntap,my-uml-tap,fe:fd:1:2:3:4

or

eth0=tuntap,my-uml-tap

In the second case, you specify

☞ tuntap
☞ An empty parameter, in place of the host interface name
☞ Optionally, the MAC of the UML interface
☞ The IP address of the host interface to be configured

For example:

eth0=tuntap,,fe:fd:1:2:3:4,192.168.0.1

or

eth0=tuntap,,,192.168.0.1

Dike.book Page 149 Wednesday, March 15, 2006 8:16 PM

150 Chapter 7 UML Networking in Depth

The three commas mean that parameters two and three (the host
interface name and Ethernet MAC) are empty and will be assigned val-
ues by the driver.

Ethertap
The Ethertap configuration string is nearly identical, except that the
device type is ethertap and that you must specify a host interface
name. When the host interface doesn’t exist and you provide an IP
address, uml_net will configure that device. This example tells the
driver to use a preconfigured Ethertap interface:

eth0=ethertap,tap0

This results in the uml_net helper creating and configuring a new
Ethertap interface:

eth0=ethertap,tap0,,192.168.0.1

SLIP
The SLIP configuration is comparatively simple—only the IP address of
the host SLIP device needs to be specified. It must be there since uml_net
will always run in order to configure the SLIP interface. There is no
possibility of specifying a MAC since the UML interface will not be an
Ethernet device. This means that DHCP and other Ethernet protocols,
such as ARP, can’t be used with SLIP.

eth0=slip,192.168.0.1

Slirp
The Slirp configuration requires

☞ slirp
☞ Optionally, the MAC of the UML interface
☞ The command line of the Slirp executable

If you decide to try this, you should probably first configure and run
Slirp without UML. Once you can run it by hand, you can put the Slirp
command line in the configuration string and it will work as it did before.

Adding the Slirp command line requires that it be transformed
somewhat in order to not confuse the driver’s parser. First, the com-
mand and its arguments should be separated by commas rather than

Dike.book Page 150 Wednesday, March 15, 2006 8:16 PM

The UML Networking Transports 151

spaces. Second, any spaces embedded in an argument should be changed
to underscores. However, in the normal case Slirp takes no arguments,
and only the path to the Slirp executable needs to be specified.

If some arguments need to be provided, Slirp will read options
from your ~/.sliprc. Putting the requisite information there will sim-
plify the UML command line. It is also possible to pass the name of a
wrapper script that will invoke slirp with the correct arguments.

Multicast
Multicast is the simplest transport to configure, if you want the
defaults:

eth0=mcast

The full configuration contains

☞ mcast
☞ Optionally, the MAC of the UML interface
☞ Optionally, the address of the multicast network
☞ Optionally, the port to bind to in order to send and receive multi-

cast packets
☞ Optionally, the time to live (TTL) for transmitted packets

Specifying the MAC is the same with mcast as with all the other
transports.

The address determines which multicast group the UML instance
will join. You can have multiple, simultaneous, mcast-based virtual
networks by assigning the interfaces to different multicast groups. All
IP addresses within the range 224.0.0.0 to 239.255.255.255 are
multicast addresses. If a value isn’t specified, 239.192.168.1 will be
used.

The TTL determines how far the packets will propagate.

☞ 0: The packet will not leave the host.
☞ 1: The packet will not leave the local network and will not cross a

router.
☞ Less than 32: The packet will not leave the local organization.
☞ Less than 64: The packet will not leave the region.
☞ Less than 128: The packet will not leave the continent.
☞ All other values: The packet is unrestricted.

Dike.book Page 151 Wednesday, March 15, 2006 8:16 PM

152 Chapter 7 UML Networking in Depth

Obviously, the terms “local organization,” “region,” and “continent” are
not well defined in terms of networking hardware, even if they are
well-defined geographically, which they often aren’t. It is up to the
router administrators to decide whether or not their equipment is on
the border of one of these areas and configure it appropriately. Once
configured, the routers will drop any multicast packets that have insuf-
ficient TTLs to cross the border.

The default TTL is 1, so the packet can leave the host but not the
local Ethernet.

The port should be specified if there are multiple UML instances
on different multicast networks on the host so that instances on differ-
ent networks are attached to different ports. The default port is 1102.

However, not all hosts provide multicast support. The
CONFIG_IP_MULTICAST and CONFIG_IP_MROUTE (under “IP: Multi-
cast router” in the kernel configuration) must be enabled. Without
these, you’d see:

mcast_open: IP_ADD_MEMBERSHIP failed, error = 19
There appears not to be a multicast-capable network \
 interface on the host.
eth0 should be configured in order to use the multicast \
 transport.

uml_switch
The daemon transport differs from all the others in requiring a process
to be started before the network will work. The process is uml_switch,
which implements a virtual switch, as its name suggests. The simplest
invocation is this:

host% uml_switch
uml_switch attached to unix socket '/tmp/uml.ctl'

The corresponding UML device configuration would be:

eth0=daemon

The defaults of both uml_switch and the UML driver are such
that they will interoperate with each other. So, if you want a single
switch on the host, the configurations above will work.

If you want multiple switches on the host, then all but one of them,
and the UML instances that will connect to them, need to be configured
differently. The switch and the UML instances communicate with data-
grams over UNIX domain sockets. The default socket is /tmp/
uml.ctl, as the message from the switch indicates.

Dike.book Page 152 Wednesday, March 15, 2006 8:16 PM

The UML Networking Transports 153

A different socket can be specified with:

host% uml_switch -unix /tmp/uml-2.ctl

In order to attach to this switch, the same socket must be provided to
the UML network driver:

eth0=daemon,,unix,/tmp/uml-2.ctl

unix specifies the type of socket to use, and the following argument
specifies the socket address. At this writing, only UNIX domain sockets
are supported, but this is intended to extend to allowing communica-
tion over IP sockets as well. In this case, the socket address would con-
sist of an IP address or host name and a port number.

Some distributions (notably Debian) change the default location
of the pipe used by uml_switch (to /var/run/uml-utilities/
uml_switch.ctl2 in Debian’s case). If you use the defaults as
described above and there is no connection between the UML instance
and the uml_switch process, you need to figure out where the
uml_switch socket is and configure the UML interface to use it.

As I mentioned earlier, uml_switch normally acts as a switch, so
that it remembers what Ethernet MACs it has seen on what ports and
transmits packets only to the port that the UML instance with the des-
tination MAC is attached to. This saves the switch from having to for-
ward all packets to all its instances, and it also saves the UML
instances from having to receive and parse them and discard all pack-
ets not addressed to them.

uml_switch can be configured as a hub by using the -hub switch.
In this case, all instances attached to it will see all packets on the net-
work. This is sometimes useful when you want to sniff traffic between
two UML instances from a third.

Normally, the switch provides an isolated virtual network, with no
access to the host network. There is an option to have it connect to a
preconfigured TUN/TAP device, in which case, that device will be
another port on the switch, and packets will be forwarded to the host
through it as appropriate. The command line would look like this:

uml_switch -tap switch-tap

switch-tap must be a TUN/TAP device that has already been created
and configured as described in the TUN/TAP section earlier. Either
bridging or routing, IP packet forwarding, and proxy arp should
already be configured for this device.

Dike.book Page 153 Wednesday, March 15, 2006 8:16 PM

154 Chapter 7 UML Networking in Depth

The full UML device configuration contains

☞ daemon
☞ Optionally, the MAC of the UML interface
☞ Optionally, the socket type, which currently must be unix
☞ Optionally, the socket that the switch has attached to

pcap

The oddball transport, pcap, has a configuration unlike any of the oth-
ers. The configuration comprises

☞ pcap
☞ The host interface to sniff
☞ A filter expression that determines which packets the UML inter-

face will emit
☞ Up to two options from the set promisc, nopromisc, optimize,

and nooptimize

The host interface may be the special string any. This will cause all
host interfaces to be opened and sniffed.

The filter expression is a pcap filter program that specifies which
packets should be selected.

The promisc flag determines whether libpcap will explicitly set
the interface as promiscuous. The default is 1, so promisc has no
effect, except for documentation. Even if nopromisc is specified, the
pcap library may make the interface promiscuous for some other rea-
son, such as being required to sniff the network.

The optimize and nooptimize flags control whether libpcap
optimizes the filter expression.

Here is an example of configuring a pcap interface to emit only
TCP packets to the UML interface:

eth0=pcap,eth0,tcp

This configures a second interface that would emit only non-TCP
packets:

eth0=pcap,eth0,\!tcp

Dike.book Page 154 Wednesday, March 15, 2006 8:16 PM

An Extended Example 155

AN EXTENDED EXAMPLE

Now that we’ve covered most of what there is to know about setting up
UML networking, I am going to show off some of how it works. This
extended example involves multiple UML instances. To simplify their
launching, I will assign them unique filesystems by giving them differ-
ent COW files with the same backing file and by giving each a different
umid. So, the command line of the first one will have this:

ubda=cow1,../..debian30 umid=debian1

and the second will have this:

ubda=cow2,../..debian30 umid=debian2

You’ll probably want to do something similar as you follow along. I will
be hot-plugging all network interfaces, so those won’t be on the com-
mand lines.

A Multicast Network

To start, I’ll run two UML instances like this. We’ll begin the network-
ing with the simplest virtual network—a default multicast network.
So, let’s plug a multicast device into both:

host% uml_mconsole debian1 config eth0=mcast
OK
host% uml_mconsole debian2 config eth0=mcast
OK

The kernel log of each instance shows something like this:

Configured mcast device: 239.192.168.1:1102-1
Netdevice 0 : mcast backend multicast address: \
 239.192.168.1:1102, TTL:1

You can see this by running dmesg, and it may also appear on the main
console, depending on the distribution you are running.

Now, let’s bring up both UML instances. I’m using the
192.168.1.0/24 network to keep the virtual network separate from
my physical network since I intend to hook this network up to the host
later. So, the first one is 192.168.1.1:

UML1# ifconfig eth0 192.168.1.1 up

Dike.book Page 155 Wednesday, March 15, 2006 8:16 PM

156 Chapter 7 UML Networking in Depth

and the second is 192.168.1.2:

UML2# ifconfig eth0 192.168.1.2 up

Figure 7.1 shows what we have set up so far—two UML instances
on the 192.168.1.0 network connected by the host’s multicast network.

Now, check connectivity in one direction:

UML1# ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2): 56 data bytes
64 bytes from 192.168.1.2: icmp_seq=0 ttl=64 time=0.4 ms
64 bytes from 192.168.1.2: icmp_seq=1 ttl=64 time=0.3 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=64 time=0.3 ms

--- 192.168.1.2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.3/0.3/0.4 ms

Pinging in the other direction will show something similar.

A Second Multicast Network

Now, let’s set up a second, partially overlapping multicast network.
This will demonstrate the use of nondefault multicast parameters. It
will also make us set up some routing in order to get the two UMLs
that aren’t on the same network to talk to each other.

This calls for launching a third UML instance, which will get a
third COW file and umid, with this on its command line:

ubda=cow3,../..debian30 umid=debian3

Figure 7.1 A single multicast network

Host multicast
239.192.168.1:1102

eth0: 192.168.1.2

UML2

eth0: 192.168.1.1

UML1

Dike.book Page 156 Wednesday, March 15, 2006 8:16 PM

An Extended Example 157

Let’s put the second and third instances on the new multicast
network:

host% uml_mconsole debian2 config eth1=mcast,,239.192.168.2,1103
OK
host% uml_mconsole debian3 config eth0=mcast,,239.192.168.2,1103
OK

The second instance’s eth1 and the third instance’s eth0 are now
on this new network, which is defined by being on the next multicast IP
and the next port. Now, we configure them on a different subnet:

UML2# ifconfig eth1 192.168.2.2 up

and

UML3# ifconfig eth0 192.168.2.1 up

Figure 7.2 shows our network so far.

Figure 7.2 Two multicast networks

Host multicast
239.192.168.2:1102

Host multicast
239.192.168.1:1103

eth0: 192.168.1.2

eth1: 192.168.2.2

UML2

eth0: 192.168.2.1

UML3

eth0: 192.168.1.1

UML1

Dike.book Page 157 Wednesday, March 15, 2006 8:16 PM

158 Chapter 7 UML Networking in Depth

Testing connectivity here shows us what we expect:

UML3# ping 192.168.2.2
PING 192.168.2.2 (192.168.2.2): 56 data bytes
64 bytes from 192.168.2.2: icmp_seq=0 ttl=64 time=25.7 ms
64 bytes from 192.168.2.2: icmp_seq=1 ttl=64 time=0.4 ms

--- 192.168.2.2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.4/13.0/25.7 ms

Now, let’s ping the first UML from the third:

UML3# ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes
ping: sendto: Network is unreachable
ping: wrote 192.168.1.1 64 chars, ret=-1
ping: sendto: Network is unreachable
ping: wrote 192.168.1.1 64 chars, ret=-1

--- 192.168.1.1 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

The third UML has no idea how to reach that other network. So, we
need to do some routing:

UML3# route add -net 192.168.1.0/24 gw 192.168.2.2

Retrying the ping gives us different behavior—dead silence:

ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1): 56 data bytes

--- 192.168.1.1 ping statistics ---
4 packets transmitted, 0 packets received, 100% packet loss

Let’s watch tcpdump on the second UML instance to learn what
traffic it sees:

UML2# tcpdump -i eth1 -l -n
device eth1 entered promiscuous mode
tcpdump: listening on eth1
02:06:28.795435 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)
02:06:29.820703 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)
02:06:30.848753 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)

Dike.book Page 158 Wednesday, March 15, 2006 8:16 PM

An Extended Example 159

This is fine; ping requests are reaching the gateway between the two
networks. Next, the pings should be sent out through eth1 to the tar-
get UML instance:

tcpdump -i eth0 -l -n
device eth0 entered promiscuous mode
tcpdump: listening on eth0

0 packets received by filter
0 packets dropped by kernel
device eth0 left promiscuous mode

They’re not. This is a big clue to something we saw on the host—gener-
ally, Linux systems aren’t set up as gateways and need to be told to for-
ward packets when they can:

UML2# echo 1 > /proc/sys/net/ipv4/ip_forward

Let’s look at the gateway instance’s eth0 again while the ping is
running:

UML2# tcpdump -i eth0 -l -n
device eth0 entered promiscuous mode
tcpdump: listening on eth0
02:09:45.388353 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)
02:09:45.389009 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)
02:09:46.415998 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)
02:09:46.416025 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)
02:09:47.432823 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)
02:09:47.432854 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)

6 packets received by filter
0 packets dropped by kernel
device eth0 left promiscuous mode

Now pings are going out the gateway’s eth0. We should look at the tar-
get’s eth0:

UML1# tcpdump -i eth0 -l -n
device eth0 entered promiscuous mode
tcpdump: listening on eth0
02:12:36.599365 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)

Dike.book Page 159 Wednesday, March 15, 2006 8:16 PM

160 Chapter 7 UML Networking in Depth

02:12:37.631098 192.168.2.1 > 192.168.1.1: icmp: echo \
 request (DF)

2 packets received by filter
0 packets dropped by kernel
device eth0 left promiscuous mode

Nothing but requests here. There should be replies, but there aren’t.
This is the same problem we saw on the pinging UML—it doesn’t know
how to reply to the other network. A new route will fix this:

UML1# route add -net 192.168.2.0/24 gw 192.168.1.2

If you left the ping running, you’ll see it immediately start getting
replies at this point.

Now, we have three UML instances on two virtual networks, with
one UML acting as a gateway between the two and with routing set up
so that all three instances can communicate with each other. I’m run-
ning ping only to test connectivity, but it is fun to ssh between them
and to fetch Web pages from one to another.

Adding a uml_switch Network

Let’s bring the virtual switch into the action, and with it, the host.
First, we’ll set up a TUN/TAP device for the switch to communicate
with the host:

host% tunctl -t switch
Set 'switch' persistent and owned by uid 500
host# ifconfig switch 192.168.3.1 up

Now let’s run the switch using a nondefault socket:

host% uml_switch -unix /tmp/switch.sock -tap switch
uml_switch attached to unix socket '/tmp/switch.sock' \
 tap device 'switch'
New connection
 Addr: 86:e5:03:6f:7e:49 New port 5

It fakes a new connection to itself when it attaches to the TUN/TAP
device. You’ll see the same sorts of messages when we plug interfaces
into the UML instances. I’ll attach UML1 and UML3 to the switch:

host% uml_mconsole debian1 config eth1=daemon,,unix,\
 /tmp/switch.sock

Dike.book Page 160 Wednesday, March 15, 2006 8:16 PM

An Extended Example 161

OK
host% uml_mconsole debian3 config eth1=daemon,,unix,\
 /tmp/switch.sock
OK

You’ll see a message like this in each instance:

Netdevice 1 : daemon backend (uml_switch version 3) - \
 unix:/tmp/switch.sock

Let’s bring these up on the 192.168.3.0/24 network:

UML1# ifconfig eth1 192.168.3.2 up
UML3# ifconfig eth1 192.168.3.3 up

These are getting 192.168.3.2 and 192.168.3.3 because
192.168.3.1 was assigned to the TUN/TAP device.

Figure 7.3 shows our growing network.

Figure 7.3 Three networks

Host multicast
239.192.168.2:1102

Host multicast
239.192.168.1:1103

uml_switch

eth0: 192.168.1.2

eth1: 192.168.2.2

UML2

eth0: 192.168.2.1

eth1: 192.168.3.2

eth1: 192.168.3.3

switch: 192.168.3.1 UML3

Host

eth0: 192.168.1.1

UML1

Dike.book Page 161 Wednesday, March 15, 2006 8:16 PM

162 Chapter 7 UML Networking in Depth

As usual, let’s check connectivity, this time through the switch:

UML3# ping 192.168.3.2
PING 192.168.3.1 (192.168.3.1): 56 data bytes
64 bytes from 192.168.3.1: icmp_seq=0 ttl=64 time=26.8 ms
64 bytes from 192.168.3.1: icmp_seq=1 ttl=64 time=0.2 ms
64 bytes from 192.168.3.1: icmp_seq=2 ttl=64 time=0.2 ms
64 bytes from 192.168.3.1: icmp_seq=3 ttl=64 time=0.2 ms

--- 192.168.3.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max = 0.2/6.8/26.8 ms

You’ll get something similar if you ping in the other direction.
Some chatter from the switch occurs as you configure the devices

and run ping:

New connection
New connection
 Addr: fe:fd:c0:a8:03:02 New port 7
 Addr: fe:fd:c0:a8:03:01 New port 6
 Addr: d2:a1:c9:78:bd:d7 New port 5

The New connection message is printed whenever a new device is
attached to the switch, whether it’s a UML instance or a host TUN/
TAP interface. This is the equivalent of plugging something new into a
physical switch. The New connection message is more or less equiva-
lent to the link light on that port.

Messages such as Addr: fe:fd:c0:a8:03:02 New port 7 are
printed whenever the switch sees a new Ethernet MAC on a port. The
address is self-explanatory. The port is the file descriptor over which
the switch is communicating with the other device. Physical switches
have a fixed number of ports, but this virtual switch is limited only by
the number of file descriptors it can have open.

These messages will be repeated periodically as the switch does
garbage collection and throws out MACs that haven’t been seen
recently. When the connection later wakes up, as the UML refreshes its
arp cache or something similar, the switch will remember the MAC
again and print another message to that effect.

At this point, we should have access to the host from the first and
third UML instances through the TUN/TAP device attached to the
switch:

UML3# ping 192.168.0.2
PING 192.168.0.2 (192.168.0.2): 56 data bytes
ping: sendto: Network is unreachable

Dike.book Page 162 Wednesday, March 15, 2006 8:16 PM

An Extended Example 163

ping: wrote 192.168.0.2 64 chars, ret=-1

--- 192.168.0.2 ping statistics ---
1 packets transmitted, 0 packets received, 100% packet loss

Well, not quite, but we’ve seen this message before, and we know what
to do about it:

UML1# route add -net 192.168.0.0/24 gw 192.168.3.1
UML3# route add -net 192.168.0.0/24 gw 192.168.3.1

This is setting the gateway to the 192.168.3.0/24 network to be the
switch TUN/TAP device. This ensures that packets to this network
are addressed to the TUN/TAP device so that the switch routes them
appropriately. Once they’ve reached the TUN/TAP device, they are on
the host, and the host will deal with them as it sees fit.

At this point, the first and third UML instances have connectivity
with the host:

UML3# ping 192.168.0.2
PING 192.168.0.2 (192.168.0.2): 56 data bytes
64 bytes from 192.168.0.2: icmp_seq=0 ttl=64 time=26.4 ms
64 bytes from 192.168.0.2: icmp_seq=1 ttl=64 time=0.2 ms
64 bytes from 192.168.0.2: icmp_seq=2 ttl=64 time=0.2 ms

--- 192.168.0.2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.2/8.9/26.4 ms

The second UML instance has no access to the host because it is
attached only to the two virtual networks. So, let’s fix that by having it
route packets through the third UML. We’ve done part of this already.
We can finish it by enabling IP forwarding on the gateway and routing
on the second UML:

UML3# echo 1 > /proc/sys/net/ipv4/ip_forward
UML2# route add -net 192.168.3.0/24 gw 192.168.2.1
UML2# route add -net 192.168.0.0/24 gw 192.168.2.1

Rather than adding two routes, it would also work to specify
192.168.2.1 as the default gateway for UML2.

The gateway is set to 192.168.2.1 since that’s the IP address
that the gateway UML has on the 192.168.2.0/24 network.

The ping doesn’t work:

UML2# ping 192.168.0.2
PING 192.168.0.2 (192.168.0.2): 56 data bytes

Dike.book Page 163 Wednesday, March 15, 2006 8:16 PM

164 Chapter 7 UML Networking in Depth

--- 192.168.0.2 ping statistics ---
115 packets transmitted, 0 packets received, 100% packet loss

Now we have to go through the usual tcpdump exercise. Running
tcpdump on the gateway’s eth0 tells us whether the requests are
showing up:

UML3# tcpdump -i eth0 -l -n
device eth0 entered promiscuous mode
tcpdump: listening on eth0
16:37:19.634422 192.168.2.2 > 192.168.0.2: icmp: echo \
 request (DF)
16:37:20.654462 192.168.2.2 > 192.168.0.2: icmp: echo \
 request (DF)
16:37:21.683267 192.168.2.2 > 192.168.0.2: icmp: echo \
 request (DF)

3 packets received by filter
0 packets dropped by kernel

They are, so let’s make sure they are being forwarded to eth1 so they
reach the switch:

UML3# tcpdump -i eth1 -l -n
device eth1 entered promiscuous mode
tcpdump: listening on eth1
16:37:24.738960 192.168.2.2 > 192.168.0.2: icmp: echo \
 request (DF)
16:37:25.768702 192.168.2.2 > 192.168.0.2: icmp: echo \
 request (DF)
16:37:26.697330 arp who-has 192.168.3.1 tell 192.168.3.3
16:37:26.697483 arp reply 192.168.3.1 is-at d2:a1:c9:78:bd:d7
16:37:26.787541 192.168.2.2 > 192.168.0.2: icmp: echo \
 request (DF)
16:37:27.818978 192.168.2.2 > 192.168.0.2: icmp: echo \
 request (DF)
16:37:28.839216 192.168.2.2 > 192.168.0.2: icmp: echo \
 request (DF)

7 packets received by filter
0 packets dropped by kernel
device eth1 left promiscuous mode

So far, so good. The next interface the packets should reach is the
switch TUN/TAP interface, so let’s go to the host and tcpdump that:

host# tcpdump -i switch -l -n
tcpdump: verbose output suppressed, use -v or -vv for full \
 protocol decode
listening on switch, link-type EN10MB (Ethernet), capture \
 size 96 bytes

Dike.book Page 164 Wednesday, March 15, 2006 8:16 PM

An Extended Example 165

12:44:31.851022 arp who-has 192.168.3.1 tell 192.168.3.3
12:44:32.208988 arp reply 192.168.3.1 is-at d2:a1:c9:78:bd:d7
12:44:32.209001 IP 192.168.2.2 > 192.168.0.2: icmp 64: echo \
 request seq 0
12:44:32.817880 IP 192.168.2.2 > 192.168.0.2: icmp 64: echo \
 request seq 256
12:44:33.846666 IP 192.168.2.2 > 192.168.0.2: icmp 64: echo \
 request seq 512
12:44:34.875457 IP 192.168.2.2 > 192.168.0.2: icmp 64: echo \
 request seq 768

6 packets captured
6 packets received by filter
0 packets dropped by kernel

Here’s the problem—ping requests are reaching the host, but no replies
are being sent back. The reason is that the host doesn’t have a route
back to the 192.168.2.0/24 network:

host% route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric \
 Ref Use Iface
192.168.3.0 0.0.0.0 255.255.255.0 U 0 \
 0 0 switch
192.168.0.0 0.0.0.0 255.255.255.0 U 0 \
 0 0 eth0
169.254.0.0 0.0.0.0 255.255.0.0 U 0 \
 0 0 eth1
0.0.0.0 192.168.0.1 0.0.0.0 UG 0 \
 0 0 eth1

We didn’t need to add a route for 192.168.3.0/24 because we got one
automatically when we assigned the 192.168.3.1 address to the switch
TUN/TAP device. We need to manually add a route for the
192.168.2.0/24 network because that’s hidden behind the switch,
and the host can’t see it directly.

So, let’s add one and see if this changes anything:

host# route add -net 192.168.2.0/24 gw 192.168.3.3

UML2# ping 192.168.0.2
PING 192.168.0.2 (192.168.0.2): 56 data bytes
64 bytes from 192.168.0.2: icmp_seq=0 ttl=63 time=0.5 ms
64 bytes from 192.168.0.2: icmp_seq=1 ttl=63 time=0.4 ms

--- 192.168.0.2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.4/0.4/0.5 ms

Dike.book Page 165 Wednesday, March 15, 2006 8:16 PM

166 Chapter 7 UML Networking in Depth

For good measure, since this is the most complicated routing we
have done so far, let’s check pinging in the other direction:

ping 192.168.2.2
PING 192.168.2.2 (192.168.2.2) 56(84) bytes of data.
64 bytes from 192.168.2.2: icmp_seq=0 ttl=63 time=16.2 ms
64 bytes from 192.168.2.2: icmp_seq=1 ttl=63 time=0.369 ms

--- 192.168.2.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.369/8.295/16.221/7.926 ms, pipe 2

Summary of the Networking Example

We’ve grown a fairly complicated network during this example, so
before shutting everything down, it’s useful to recap what we’ve done.

We now have three UMLs and three two-node networks:

☞ 192.168.1.0/24 is a multicast network with UML1 and UML2.
☞ 192.168.2.0/24 is a second multicast network with UML2 and

UML3.
☞ 192.168.3.0/24 is a uml_switch network connecting UML1 and

UML3, with access to the host through a TUN/TAP device.

UML2 is acting as the gateway between the two multicast net-
works, 192.168.1.0/24 and 192.168.2.0/24.

UML3 is acting as the gateway between the 192.168.2.0/24 mul-
ticast network and the uml_switch network.

The gateway UMLs need to have IP forwarding enabled so they
will forward packets that are not addressed to them.

The UMLs that are not directly attached to a network need a
route to that network through the gateway UML. Finally, the host
needs a route for any networks it is not directly attached to.

Dike.book Page 166 Wednesday, March 15, 2006 8:16 PM

167

C H A P T E R 8

Managing UML Instances from
the Host

One of the major advantages of a virtual machine over a physical one is
that it is far more manageable. It is possible to provide access to it
when it has been mismanaged or misconfigured and to control it in
ways that are otherwise impossible. We’ve seen some examples of this
already, with hot-plugging of devices and querying their configurations
with the uml_mconsole utility. This chapter covers the full suite of
UML management tools.

THE MANAGEMENT CONSOLE

The UML Management Console (MConsole) support comes in two dis-
tinct pieces—a protocol and the clients that support the protocol. All
we’ve seen so far is the default MConsole client, uml_mconsole. The
protocol determines how uml_mconsole (and other clients) send requests
to the MConsole driver in the UML kernel and get responses back.

We will talk more about the MConsole protocol later in this chap-
ter. For now, it suffices to say that the protocol is dead simple, and it
takes much less than a day of work to implement a basic client for it in
any reasonable language such as C or a scripting language such as Perl.

Dike.book Page 167 Wednesday, March 15, 2006 8:16 PM

168 Chapter 8 Managing UML Instances from the Host

MConsole clients can, and do, implement some functionality that
has no counterpart in the MConsole protocol. These things are imple-
mented locally, within the client, and will differ from client to client.
The upcoming discussion refers to the uml_mconsole client. Later, we
will talk about some other MConsole clients.

uml_mconsole can be used to perform a number of types of que-
ries and control operations on a UML instance, such as:

☞ Reporting the version of the UML kernel
☞ Hot-plugging, hot-unplugging and reporting the configuration of

the virtual hardware
☞ Doing any operation supported by the SysRq facility
☞ Reporting the contents of any file in the UML instance’s /proc

MConsole Queries

Version
The most basic query is the version command, which returns the version
of the kernel that the UML instance is running. The syntax is simple:

host% uml_mconsole debian version
OK Linux usermode 2.6.13-rc5 #29 Fri Aug 5 19:12:02 EDT 2005 \
 i686

This returns nearly the same output as uname -a would return
inside the UML instance:

uname -a
Linux usermode 2.6.13-rc5 #29 Fri Aug 5 19:12:02 EDT 2005 \
 i686 GNU/Linux

The output is composed of the following pieces:

☞ Linux—the kernel name, from uname -s.
☞ usermode—the node name, from uname -n.
☞ 2.6.13-rc5—the kernel version, from uname -r.
☞ #29 Fri Aug 5 19:12:02 EDT 2005 i686—the kernel build infor-

mation, from uname -v. The fact that uname calls this the kernel
version is misleading because it’s not obvious how that would dif-
fer from the kernel release. It is made up of the build number
since the last mrproper clean of the UML kernel tree. The first

Dike.book Page 168 Wednesday, March 15, 2006 8:16 PM

The Management Console 169

part, #29, indicates that this is the 29th build of this tree since it
was last configured. The date and timestamp are when this UML
kernel was built, and i686 is the architecture of the build host.

You don’t generally care about the version that a particular UML
is running since, if you are a careful UML administrator, you should
know that already. The real value of this query is that it serves as a
sort of ping to the UML to check that it is alive, at least enough to
respond to interrupts.

Hardware Configuration
We’ve seen this use of uml_mconsole already, when figuring out which
host devices our UML consoles and serial lines had been attached to
and when hot-plugging block and network devices. Even in those exam-
ples, we’ve seen only some of the available functionality. All of the driv-
ers that have MConsole support, which is all of the commonly used
ones, support the following operations:

☞ Hot-plugging
☞ Hot-unplugging
☞ Configuration request

The syntax for hot-plugging a device is:

config device=configuration

The syntax for hot-unplugging a device is:

remove device

The syntax for requesting the configuration of a device is:

config device

Unplugging a device will fail if the device is busy in some way that
makes it hard or impossible to remove.

Table 8.1 summarizes the device names, syntax of the configura-
tion data, and busyness criteria.

Halting and Rebooting a UML Instance
A UML instance can be halted or rebooted from the host using the
halt or reboot commands, respectively. The kernel will run its shutdown

Dike.book Page 169 Wednesday, March 15, 2006 8:16 PM

170 Chapter 8 Managing UML Instances from the Host

Table 8.1 Device Hot-Plugging, Hot-Unplugging, and Configuration

Device
Type

Device
Name Configuration Syntax Busy When

Console conn or
ssln

conn=fd:n

conn=xterm

conn=port:n

conn=tty:tty device

ssln=pts

ssln=pty:pty device

ssln=null

ssln=none

A UML process
has the console
open

Network
interface

ethn ethn=tuntap,tap device

ethn=tuntap,,MAC,host IP
address

ethn=ethertap,tap device

ethn=ethertap,tap
device,MAC,host IP address

ethn=daemon,MAC,unix,control
socket

ethn=mcast,MAC,host multicast
IP,port,TTL

ethn=slip,host IP address

ethn=slirp,MAC,Slirp command
line

ethn=pcap,host interface,
filter expression,flags

The interface is
up

Block
device

ubd<n>
<flags>

ubd<n><flags>=filename

ubd<n><flags>=COW file,
backing file

The device is
open in any
way, including
being mounted

Memory mem mem=+memory increase

mem=-memory decrease

mem=memory

Always—the
amount of mem-
ory size can be
decreased but
can’t be removed
totally

Dike.book Page 170 Wednesday, March 15, 2006 8:16 PM

The Management Console 171

procedure, which involves flushing unwritten data out to stable stor-
age, shutting down some subsystems, and freeing host resources. How-
ever, this is a forced shutdown—the distribution’s shutdown procedure
will not run. So, services that are running inside the UML will not be
shut down cleanly, and this may cause some problems with them on the
next reboot. For example, pid files won’t be removed, and these may
prevent the initialization scripts from starting services by faking them
into believing they are already running.

For a mechanism to shut down the guest more cleanly, use the
MConsole cad command.

The halt and reboot commands are useful when the UML
instance’s userspace isn’t responding reasonably and can’t shut itself
down. If the kernel is still responding to interrupts, these commands
can ensure a clean kernel shutdown with the filesystems unmounted
and clean.

Invoking the Ctrl-Alt-Del Handler
The distribution’s Ctrl-Alt-Del handler can be invoked using the cad
command. Unlike the halt and reboot commands, cad can be used to
cleanly shut down the guest, including running the distribution’s full
shutdown procedure. This will cause all the services to be cleanly
turned off, so there will be no problems as a result on the next boot.

The exact action taken by the UML instance in response to this
command depends on the distribution. The init process is in charge of
handling this, as the kernel passes the event on to it. An entry in /etc/
inittab controls what init does. The most common action is to reboot,
as shown in this entry:

What to do when CTRL-ALT-DEL is pressed.
ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now

Before booting a UML instance on a filesystem image, it’s best to
decide on the preferred action for Ctrl-Alt-Del. If you want to halt the
UML instance rather than reboot it, remove the -r from the inittab
entry above.

Note that actually pressing the Ctrl, Alt, and Del keys on your
keyboard into a UML session will not have the desired effect. If that
has any effect at all, it will reboot the host since the keyboard belongs
to it rather than the UML instance. Since UML doesn’t have anything
like a keyboard that can be made to treat a particular key combination

Dike.book Page 171 Wednesday, March 15, 2006 8:16 PM

172 Chapter 8 Managing UML Instances from the Host

specially, it uses this rather more abstract method in order to obtain
the same results.

Invoking the SysRq Handler
The SysRq key is another way to get the kernel to perform some action
on your behalf. Generally, this is intended to debug a sick system or to
shut it down somewhat cleanly when nothing else will work. Like Ctrl-
Alt-Del, access to this is provided through the MConsole protocol, using
the sysrq command to the uml_console client.

Use of this command requires that the UML kernel have
CONFIG_MAGIC_SYSRQ enabled. Failure to do this will result in an
error such as the following:

host% uml_mconsole debian sysrq p
ERR Sysrq not compiled in

The facility also must be turned on during boot. This is controlled
by the /proc/sys/kernel/sysrq file (if it contains 1, SysRq is enabled;
0 means that it is disabled) and by the kernel.sysrq sysctl param-
eter. Some distributions disable SysRq by default during boot. For exam-
ple, Fedora Core 4 disables it with these lines in /etc/sysctl.conf:

Controls the System Request debugging functionality of the kernel
kernel.sysrq = 0

You would need to change that 0 to 1 in order for the instance to sup-
port sysrq requests.

Any output from a sysrq command is returned to the MConsole
client and sent to the UML kernel log and, depending on the distribu-
tion, the main console.

For example, invoking the sysrq m command, to dump the ker-
nel’s memory statistics, looks like this:

host% uml_mconsole debian sysrq m
OK SysRq : Show Memory
Mem-info:
DMA per-cpu:
cpu 0 hot: low 62, high 186, batch 31 used:174
cpu 0 cold: low 0, high 62, batch 31 used:19
Normal per-cpu: empty
HighMem per-cpu: empty
Free pages: 433128kB (0kB HighMem)
Active:1995 inactive:1157 dirty:2 writeback:0 unstable:0 \
 free:108282 slab:917 mapped:1399 pagetables:510

Dike.book Page 172 Wednesday, March 15, 2006 8:16 PM

The Management Console 173

DMA free:433128kB min:2724kB low:3404kB high:4084kB \
 active:7980kB inactive:4628kB present:463768kB pages_scanned:0 \
 all_unreclaimable? no
lowmem_reserve[]: 0 0 0
Normal free:0kB min:0kB low:0kB high:0kB active:0kB inactive:0kB \
 present:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0
HighMem free:0kB min:128kB low:160kB high:192kB active:0kB \
 inactive:0kB present:0kB pages_scanned:0 all_unreclaimable? no
lowmem_reserve[]: 0 0 0
DMA: 2*4kB 2*8kB 5*16kB 2*32kB 1*64kB 0*128kB 1*256kB 1*512kB \
 0*1024kB 1*2048kB 105*4096kB = 433128kB
Normal: empty
HighMem: empty
Swap cache: add 0, delete 0, find 0/0, race 0+0
Free swap = 0kB
Total swap = 0kB
Free swap: 0kB
115942 pages of RAM
0 pages of HIGHMEM
3201 reserved pages
5206 pages shared
0 pages swap cached

The output will also appear in the kernel log. This and the output of
many of the other commands are dumps of internal kernel state and
aren’t meant to be analyzed by normal users. This information is useful
when a UML instance is in sufficiently bad shape as to require internal
kernel information for a diagnosis.

Table 8.2 summarizes the sysrq commands and what they do.

Table 8.2 sysrq Commands

Command Function

0–9 Set the log level: 0 is the lowest, 9 is the highest. Any mes-
sages with a priority at least as high as this are logged.

b Reboot—UML cleanup, but no kernel or userspace cleanup.

e Terminate all tasks by sending a SIGTERM.

f Simulate an out-of-memory condition, forcing a process to
be killed to reclaim its memory.

i Kill all tasks by sending a SIGKILL.

m Show memory usage.

(continues)

Dike.book Page 173 Wednesday, March 15, 2006 8:16 PM

174 Chapter 8 Managing UML Instances from the Host

Stopping and Restarting a UML Instance
MConsole provides the ability to stop and continue a UML instance. When
it is stopped in this manner, it is doing nothing but interpreting MConsole
commands. Nothing else is happening. Processes aren’t running and
nothing else in the kernel is running, including device interrupts.
This state will persist until the MConsole driver receives the command
to continue.

The main use of this functionality is to perform an online backup
by stopping the instance, having it write out all unwritten file data to
disk, copying the now-clean filesystem to someplace safe, and continu-
ing the UML instance.

The full procedure looks like this:

host% uml_mconsole debian stop
OK
host% uml_mconsole debian sysrq s
OK SysRq : Emergency Sync
host% cp --sparse=always cow save-cow
host% uml_mconsole debian go
OK

The sysrq s command performs the synchronization of unwritten
data to disk, resulting in this output to the kernel log:

SysRq : Emergency Sync
Emergency Sync complete

In this example, I just copied the UML instance’s COW file to a file
in the same directory. Obviously, a rather more organized backup sys-
tem would be advisable on a serious UML host. Such a system would

n Make all real-time tasks become normal round-robin tasks.

p Dump the registers and stack of the current task.

s Sync dirty data to stable storage.

t Show the state, stack trace, and registers for all tasks on
the system.

u Remount all filesystems read-only.

Table 8.2 sysrq Commands (continued)

Command Function

Dike.book Page 174 Wednesday, March 15, 2006 8:16 PM

The Management Console 175

keep track of what UML instances had been backed up, when they
were last backed up, and the location of the backups.

I used the --sparse=always switch to cp in order to preserve
the sparseness of the COW file. This is important for speeding up the
copy and for conserving disk space. Without it, all unoccupied blocks in
the COW file will be filled with zeros on disk in the copy. This will
result in those zero-filled blocks occupying host page cache for a while
and will require that they all be written out to disk at some point.
Keeping the copy sparse ensures that unoccupied blocks don’t become
instantiated, so they don’t occupy memory before being written to disk,
I/O bandwidth while being written, and disk space afterward.

The copy took just under three seconds on my laptop, making this
a very quick way to get a backup of the UML instance’s data, causing
almost no downtime.

This works particularly well with COW files since backing up a
full filesystem image would take noticeably longer and consume more
bandwidth while writing the copy out to disk.

Logging to the UML Instance’s Kernel Log
The log command enables arbitrary text to be inserted into the UML
instance’s kernel log. This was written in order to allow administrators
of UML honeypots to overwrite the preexisting, UML-specific kernel
log with a log that looks like it came from a physical machine. Since the
purpose of a virtual honeypot is to pretend to be a physical machine, it
is important that there be no easy ways for an intruder to discern that
it is a virtual machine. Examining the kernel log is a fairly easy way to
tell what sort of machine you’re on because it contains a great deal of
information about the hardware.

Since the kernel log has a fixed size, logging enough data will
cause any previous data to be lost, and the kernel log will contain only
what you logged with MConsole.

There are probably limited uses of this ability outside of honey-
pots, but it could be useful in a situation where events inside a UML
instance need to be coordinated with events outside. If the kernel log of
the UML instance is the official record of the procedure, the log MCon-
sole command can be used to inject outside messages so that the kernel
log contains all relevant information in chronological order.

The uml_mconsole client has a log -f <file> command that
will log the contents of the given file to the UML instance’s kernel log.

Dike.book Page 175 Wednesday, March 15, 2006 8:16 PM

176 Chapter 8 Managing UML Instances from the Host

Examining the UML Instance’s /proc
You can use the MConsole proc command to examine the contents of
any file within the UML’s /proc. This is useful for debugging a sick UML
instance, as well as for gathering performance data from the host.

This output gets returned to the MConsole client, as seen here:

host% uml_mconsole debian proc meminfo
OK MemTotal: 450684 kB
MemFree: 434608 kB
Buffers: 724 kB
Cached: 8180 kB
SwapCached: 0 kB
Active: 7440 kB
Inactive: 3724 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 450684 kB
LowFree: 434608 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
Mapped: 5632 kB
Slab: 3648 kB
CommitLimit: 225340 kB
Committed_AS: 10820 kB
PageTables: 2016 kB
VmallocTotal: 2526192 kB
VmallocUsed: 24 kB
VmallocChunk: 2526168 kB

This sort of thing would be useful in monitoring the memory con-
sumption of the UML instances running on a host. Its intended pur-
pose is to allow a daemon on the host to monitor memory pressure
inside the UML instances and on the host, and to use memory hot-plug
to shift memory between instances in order to optimize use of the host’s
physical memory. At this writing, this is a work in progress, as support
in the host kernel is needed in order to make this work. A prototype of
the host functionality has recently been implemented. However, it is
unclear whether this interface will survive or when this ability will
appear in the mainline kernel.

Currently, this command can be used only for /proc files that you
know exist. In other words, it doesn’t work on directories, meaning you
can’t use it to discover what processes exist inside the UML and get
their statistics.

Dike.book Page 176 Wednesday, March 15, 2006 8:16 PM

The Management Console 177

Forcing a Thread into Context
The MConsole stack command is a bit of a misnomer. While it does do
what it suggests, its real purpose is somewhat different. Sending this
command to a UML instance will cause it to dump the stack of the
given process:

host% uml_mconsole debian stack 1
OK EIP: 0073:[<400ecdb2>] CPU: 0 Not tainted ESP: 007b:bf903da0 \
 EFLAGS: 00000246
 Not tainted
EAX: ffffffda EBX: 0000000b ECX: bf903de0 EDX: 00000000
ESI: 00000000 EDI: bf903dd8 EBP: bf903dd8 DS: 007b ES: 007b
15b07a20: [<080721bd>] show_regs+0xd1/0xd8
15b07a40: [<0805997d>] _switch_to+0x6d/0x9c
15b07a80: [<081b3371>] schedule+0x2e5/0x574
15b07ae0: [<081b3d37>] schedule_timeout+0x4f/0xbc
15b07b20: [<080c1a85>] do_select+0x255/0x2e4
15b07ba0: [<080c1d75>] sys_select+0x231/0x43c
15b07c20: [<0805f591>] handle_syscall+0xa9/0xc8
15b07c80: [<0805e65a>] userspace+0x1ae/0x2bc
15b07ce0: [<0805f11e>] new_thread_handler+0xaa/0xbc
15b07d20: [<00dde420>] 0xdde420

The process ID I gave was one internal to UML, that of the init
process. If you don’t know what processes are running on the system,
you can get a list of them with sysrq t:

host% uml_mconsole debian2 sysrq t

The output looks in part like this:

apache S 00000246 0 253 238 \
 252 (NOTLB)
14f03b10 00000001 bfffe0cc 0013a517 00000246 14f03b10 \
 000021a0 144d8000
 14e75860 1448c740 144db98c 144db8d4 0805e941 00000001 \
 12002000 00000000
 00000033 00000025 bfffe0cc 0013a517 00000246 bfacf178 \
 0000007b 0013a517 Call Trace:
144db990: [<0805f039>] switch_to_skas+0x39/0x74
144db9c0: [<08059955>] _switch_to+0x45/0x9c
144dba00: [<081b38a1>] schedule+0x2e5/0x574
144dba60: [<081b4289>] schedule_timeout+0x71/0xbc
144dba90: [<08187cf9>] inet_csk_wait_for_connect+0xc5/0x10c
144dbad0: [<08187de1>] inet_csk_accept+0xa1/0x150
144dbb00: [<081a529a>] inet_accept+0x26/0xa4
144dbb30: [<08165e10>] sys_accept+0x80/0x12c
144dbbf0: [<081667dd>] sys_socketcall+0xbd/0x1c4
144dbc30: [<0805f591>] handle_syscall+0xa9/0xc8

Dike.book Page 177 Wednesday, March 15, 2006 8:16 PM

178 Chapter 8 Managing UML Instances from the Host

144dbc90: [<0805e65a>] userspace+0x1ae/0x2bc
144dbcf0: [<0805f1e0>] fork_handler+0x84/0x9c
144dbd20: [<00826420>] 0x826420

As with sysrq output, this will also be recorded in the kernel message log.
This tells us we have an apache process whose process ID is 253.

This also dumps the stack of every process on the system in exactly the
same format as with the stack command.

So why have the stack command when sysrq t gives us the
same information and more? The reason is that the real intent of this
command is to temporarily wake up a particular thread within the
UML instance so it will hit a breakpoint, letting you examine the
thread with the debugger.

To do this, you must have the UML instance running under gdb,
either from the start or by attaching to the instance later. You put a
breakpoint on the show_regs() call in _switch_to, which is currently
in arch/um/kernel/process_kern.c:

do {
 current->thread.saved_task = NULL ;
 CHOOSE_MODE_PROC(switch_to_tt, switch_to_skas, prev, \
 next);
 if(current->thread.saved_task)
 show_regs(&(current->thread.regs));
 next= current->thread.saved_task;
 prev= current;
} while(current->thread.saved_task);

This call is what actually dumps out the stack. But since you put a
breakpoint there, gdb will stop before that actually happens. At this
point, gdb is sitting at the breakpoint with the desired thread in con-
text. You can now examine that thread in detail. Obviously this is not
useful for the average UML user. However, it is immensely useful for
someone doing kernel development with UML who is seeing processes
hang. Most commonly, it’s a deadlock of some sort, and figuring out
exactly what threads are holding what locks, and why is essential to
debugging it. Waking up a particular thread and making it hit a break-
point is very helpful.

This sort of thing had been possible in tt mode for a long time, but
not in skas mode until this functionality was implemented. In tt
mode, every UML process or thread has a corresponding host process,
and that process includes the UML kernel stack. This makes it possible
to see the kernel stack for a process by attaching gdb to the proper host
process.

Dike.book Page 178 Wednesday, March 15, 2006 8:16 PM

The Management Console 179

In skas mode, this is not the case. The UML kernel runs entirely
within a single process, using longjmp to switch between kernel
stacks on context switches. gdb can’t easily access the kernel stacks of
processes that are not currently running. Temporarily waking up a
thread of interest and making it hit a breakpoint is a simple way to fix
this problem.

Sending an Interrupt to a UML Instance
The int command is implemented locally within uml_mconsole. It
sends an interrupt signal (SIGINT) to the UML instance that
uml_mconsole is communicating with. It operates by reading the
instance’s pid file and sending the signal to that process.

Normally, that instance will be running under gdb, in which case,
the interrupt will cause the UML instance to stop running and return
control to gdb. At that point, you can use gdb to examine the instance
as you would any other process.

If the UML instance is not running under gdb, the signal will
cause it to shut down.

Getting Help
Finally, there is a help command, which will display a synopsis of the
available MConsole commands:

host% uml_mconsole debian help
OK Commands:
 version - Get kernel version
 help - Print this message
 halt - Halt UML
 reboot - Reboot UML
 config <dev>=<config> - Add a new device to UML;
 same syntax as command line
 config <dev> - Query the configuration of a device
 remove <dev> - Remove a device from UML
 sysrq <letter> - Performs the SysRq action controlled by \
 the letter
 cad - invoke the Ctrl-Alt-Del handler
 stop - pause the UML; it will do nothing until it receives \
 a 'go'
 go - continue the UML after a 'stop'
 log <string> - make UML enter <string> into the kernel \
 log
 proc <file> - returns the contents of the UML's \
 /proc/<file>

Dike.book Page 179 Wednesday, March 15, 2006 8:16 PM

180 Chapter 8 Managing UML Instances from the Host

Additional local mconsole commands:
 quit - Quit mconsole
 switch <socket-name> - Switch control to the given \
 machine
 log -f <filename> - use contents of <filename> as \
 UML log messages
 mconsole-version - version of this mconsole program

The first section shows requests supported by the MConsole driver
within the UML kernel. These are available to all clients, although per-
haps in a different form. The second section lists the commands supported
locally by this particular client, which may not be available in others.

There is no predetermined set of requests within the MConsole
protocol. Requests are defined by the driver and can be added or
removed without changing the protocol. This provides a degree of sepa-
ration between the client and the UML kernel—the kernel can add
more commands and existing clients will be able to use them.

This separation can be seen in the help message above. The first
section was provided by the UML kernel and merely printed out by the
uml_mconsole client. When a new request is added to the driver, it
will be added to the kernel’s help string, and it will automatically
appear in the help text printed by the uml_mconsole client.

Running Commands within the UML Instance
An oft-requested MConsole feature is the ability to run an arbitrary
command within a UML instance. I oppose this on the basis that there
are perfectly good ways to run commands inside a UML instance, for
example, by logging in and executing a command within a shell.

A design ethic in the Linux kernel community holds that only
things that need to be done in the kernel should be done there. The
existence of other ways to run commands within a UML is proof that
this functionality doesn’t need to be in the kernel. Thus, I have refused
to implement this or to merge other people’s implementations.

Nevertheless, a patch implementing this ability does exist, and it
has a following in the UML community. With a suitably patched UML,
it works like this:

host% uml_mconsole debian exec "ps uax > /tmp/x"
OK The command has been started successfully.

The command’s output isn’t returned back to the MConsole client
because it would be complicated to start a process from a kernel
thread, capture its output, and return it to the outside. Thus, if you

Dike.book Page 180 Wednesday, March 15, 2006 8:16 PM

The Management Console 181

want the output, you need to save it someplace, as I did above by redi-
recting the output to /tmp/x, and then retrieve it.

This is convenient, but I would claim that, with a little foresight
on behalf of the host administrator, essentially the same thing can be
done in other ways.

The most straightforward way to do this is simply to log in to the
UML and run the commands you need. Some people make a couple of
common objections to this method.

☞ A login is hard because it’s tough to parse the login and password
prompts and respond to them robustly.

☞ A login modifies things such as network counters and wtmp and
utmp entries, which some people would prefer to see unchanged.

☞ MConsole exec is harder for the UML user to disable, purpose-
fully or not, than a login.

I have what I believe to be solid answers to these objections. First,
with an ssh key in the appropriate place in the UML filesystem, pars-
ing the login and password prompts is unnecessary because there
aren’t any.

Second, logging in over a UML console doesn’t modify any network
counters. Dedicating this console to the admin makes it possible to
have a root shell permanently running on it, making even ssh unnec-
essary, and also not modifying the wtmp or utmp files because there’s
no login.

Third, I don’t think any of the alternatives are any more robust
against disabling or manipulation than MConsole exec. An ssh login
can be disabled by the UML root user deleting the ssh key. The console
with a permanent root shell can be disabled by editing the UML instance’s
/etc/inittab. But MConsole exec can be disabled by moving or
replacing the commands that the host administrator will run.

The desire for something like MConsole exec is a legitimate one,
and all of the current solutions have limitations. I believe that the long-
term solution may be something like allowing a host process to migrate
into the UML instance, allowing it to do its work inside that environ-
ment. In this case, the UML environment wouldn’t be as opaque to the
host as it is now. It would be possible to create a process on the host,
guaranteeing that it is running the correct executable, and then move
it into the UML instance. It would then see the UML filesystem,
devices, processes, and so on and operate in that environment. However,
it would retain ties to the host environment. For example, it would

Dike.book Page 181 Wednesday, March 15, 2006 8:16 PM

182 Chapter 8 Managing UML Instances from the Host

retain the file descriptors opened on the host before the migration, and
it would be able to accept input and send output through them. Some-
thing like this, which can be seen as a limited form of clustering, seems
to me to suffice and has none of the limitations of the other solutions.

The uml_mconsole Client

We’ve already seen a great deal of the uml_mconsole client, as it has
been used to illustrate all of the MConsole discussion to date. However,
there are some aspects we haven’t seen yet.

We have seen the format of the output of a successful request,
such as this:

host% uml_mconsole debian version

OK Linux usermode 2.6.13-rc5 #29 Fri Aug 5 19:12:02 EDT 2005 \
 i686

It always starts with OK or ERR to simplify automating the deter-
mination of whether the request succeeded or failed. This is how a fail-
ure looks:

host% uml_mconsole debian remove ubda
ERR Device is currently open

Because the /dev/ubda device is currently mounted, the removal
request fails and is reported with ERR followed by the human-readable
error message.

An important part of uml_mconsole that we haven’t seen is its
internal command line. Every example I have used so far has had the
command in the argument list. However, if you ran uml_mconsole
with just one argument, a umid for a running UML instance, you
would see something like this:

host% uml_mconsole debian
(debian)

At this point, you can run any MConsole command. The prompt
tells you which UML instance your request will be sent to.

You can change which UML you are talking to by using the
switch local command:

(debian) switch new-debian
Switched to 'new-debian'
(new-debian)

Dike.book Page 182 Wednesday, March 15, 2006 8:16 PM

The Management Console 183

At this point, all requests will go to the new-debian UML
instance.

Finally, there is a local command that will tell you what version of
the client you are running:

(new-debian) mconsole-version
uml_mconsole client version 2

Whether you’re using uml_mconsole in single-shot mode, with
the command on the uml_mconsole command line, or you’re using its
internal command line, commands intended for the UML MConsole
driver are generally passed through unchanged. A single-shot com-
mand is formed by concatenating the command-line argument vector
into a single string with spaces between the arguments.

The one exception to this is for commands that take filenames as
arguments. Currently, there is only one time this happens—when indi-
cating the files that a block device will be attached to. These may be
specified as relative paths, which can cause problems when the UML
instance and uml_mconsole process don’t have the same working
directory. A path relative to the uml_mconsole process working direc-
tory will not be successfully opened by the UML instance from its
working directory. To avoid this problem, uml_mconsole makes such
paths absolute before passing the request to the UML instance.

The MConsole Protocol

The MConsole protocol, between the MConsole client and the MCon-
sole driver in the UML kernel, is the glue that makes the whole thing
work. I’m going to describe the protocol in enough detail that someone,
sufficiently motivated, could implement a client. This won’t take too
long since the protocol is extremely simple.

As with any client-server protocol, the client forms a request,
sends it to the server, and at some later point gets a reply from the
server.

The request structure contains

☞ A magic number
☞ A version number
☞ The request
☞ The request length

Dike.book Page 183 Wednesday, March 15, 2006 8:16 PM

184 Chapter 8 Managing UML Instances from the Host

In C, it looks like this:

#define MCONSOLE_MAGIC (0xcafebabe)
#define MCONSOLE_MAX_DATA (512)
#define MCONSOLE_VERSION 2

struct mconsole_request {
 u32 magic;
 u32 version;
 u32 len;
 char data[MCONSOLE_MAX_DATA];
};

The command goes into the data field as a string consisting of
space-separated words—exactly what the uml_mconsole client reads
from its command line. The length of the command, the index of the
NULL-terminator, is put in the len field.

In Perl, forming a request looks like this:

my $MCONSOLE_MAGIC = 0xcafebabe;
my $MCONSOLE_MAX_DATA = 512;
my $MCONSOLE_VERSION = 2;
my $msg = pack("LiiA*", $MCONSOLE_MAGIC, $MCONSOLE_VERSION, \
 length($cmd),
 $cmd);

Once the request is formed, it must be sent to the server in the
UML MConsole driver over a UNIX domain socket created by the
driver. On boot, UML creates a subdirectory for instance-specific data,
such as this socket. The subdirectory has the same name as the UML
instance’s umid, and its parent directory is the umid directory, which
defaults to ~/.uml. So, a UML instance with a umid of debian will
have its MConsole socket created at ~/.uml/debian/mconsole. The
umid directory can be changed with the umid= switch on the UML
command line.

The request is sent as a datagram to the MConsole socket, where
it is received by the driver and handled. The response will come back
over the same socket in a form very similar to the request:

struct mconsole_reply {
 u32 err;
 u32 more;
 u32 len;
 char data[MCONSOLE_MAX_DATA];
};

Dike.book Page 184 Wednesday, March 15, 2006 8:16 PM

The Management Console 185

err is the error indicator—if it is zero, the request succeeded and
data contains the reply. If it is nonzero, there was some sort of error,
and the data contains the error message.

more indicates that the reply is too large to fit into a single reply,
so more reply packets are coming. The final reply packet will have a
more field of zero.

As with the request, the len field contains the length of the data
in this packet.

In Perl, the response looks like this:

($err, $more, $len, $data) = unpack("iiiA*", $data);

where $data is the packet read from the socket.
The use of a UNIX domain socket, as opposed to a normal IP

socket, is intentional. An IP socket would allow an MConsole client to
control a UML instance on a different host. However, allowing this
would require some sort of authentication mechanism built into the
protocol, as this would enable anyone on the network to connect to a
UML instance and start controlling it.

The use of a UNIX domain socket adds two layers of protection.
First, it is accessible only on the UML instance’s host, so any users
must be logged in to the host. Second, UNIX domain sockets are pro-
tected by the normal Linux file permission system, so that access to it
can be controlled by setting the permissions appropriately.

Rather than invent another authentication and authorization
mechanism, the use of UNIX domain sockets forces the use of existing
mechanisms. If remote access to the UML instance is required, execut-
ing the uml_mconsole command over ssh will use ssh authentica-
tion. Similarly, the file permissions on the socket make up the
MConsole authorization mechanism.

The MConsole Perl Library

As is evident from the Perl snippets just shown, uml_mconsole is not
the only MConsole client in existence. There is a Perl client that is
really a library, not a standalone utility. Part of the UML test suite, it is
used to reconfigure UML instances according to the needs of the tests.

In contrast to the uml_mconsole client, this library has a method
for every MConsole request, rather than simply passing commands
through to the server unchanged.

Dike.book Page 185 Wednesday, March 15, 2006 8:16 PM

186 Chapter 8 Managing UML Instances from the Host

Requests Handled in Process and Interrupt Contexts

There is a subtlety in how MConsole requests are handled inside the
driver that can affect whether a sick UML will respond to them. Some
requests must be handled in a process context, rather than in the
MConsole interrupt handler. Any request that could potentially sleep
must be handled in a process context. This includes config and
remove, halt and reboot, and proc. These all call Linux kernel func-
tions, which for one reason or another might sleep and thus can’t be
called from an interrupt handler.

These requests are queued by the interrupt handler, and a special
worker thread takes care of them at some later time. If the UML is suf-
ficiently sick that it can’t switch to the worker thread, such as if it is
stuck handling interrupts, or the worker thread can’t run, then these
requests will never run, and the MConsole client will never get a reply.

In this case, another mechanism is needed to bring down the UML
instance in a semicontrolled manner. For this, see the final section of
this chapter, on controlling UML instances with signals from the host.

MConsole Notifications

So far, we have seen MConsole traffic initiated only by clients. How-
ever, sometimes the server in the UML kernel can initiate traffic. A
notification mechanism in the MConsole protocol allows asynchronous
events in the UML instance to cause a message to be sent to a client on
the host. Messages can result from the following events.

☞ The UML instance has booted far enough that it can handle
MConsole requests. This is to prevent races where a UML
instance is booted and an MConsole client tries to send requests to
it before it has set up its MConsole socket. This notification is sent
once the socket is initialized and includes the location of the
socket. When this notification is received, the MConsole driver is
running and can receive requests.

☞ The UML instance is panicking. The panic message is included in
the notification.

☞ The UML instance has hung. This one is unusual in not being gen-
erated by the UML kernel itself. Since the UML is not responding
to anything, it is likely unable to diagnose its own hang and send
this notification. Rather, the message is generated by an external

Dike.book Page 186 Wednesday, March 15, 2006 8:16 PM

The Management Console 187

process on the host that is communicating with the UML harddog
driver, which implements something like a hardware watchdog. If
this process doesn’t receive a message from the harddog driver
every minute, and it has been told to generate a hang notification,
it will construct the notification and send it. At that point, it is up
to the client to decide what to do with the hung UML instance.

☞ A UML user has generated a notification. This is done by writing
to the /proc/mconsole file in the UML instance. This file is cre-
ated when the UML instance has been told on the command line
to generate notifications.

The client that receives these notifications may be a different cli-
ent than you would use to control the UML. In fact, the uml_mconsole
client is incapable of receiving MConsole notifications. In order to gen-
erate notifications, a switch on the UML command line is needed to
specify the UNIX socket to which the instance will send notifications.
This argument on the command line specifies the file /tmp/notify,
which must already exist, as the notification socket for this UML
instance:

mconsole=notify:/tmp/notify

Using this small Perl script, we can see how notifications come
back from the UML instance:

use UML::MConsole;
use Socket;
use strict;

my $sock = "/tmp/notify";

!defined(socket(SOCK, AF_UNIX, SOCK_DGRAM, 0)) and
 die "socket failed : $!\n";

!defined(bind(*SOCK, sockaddr_un($sock))) and
 die "UML::new - bind failed : $!\n";

while(1){
 my ($type, $data) = UML::MConsole->read_notify(*SOCK, undef);

 print "Notification type = \"$type\", data = \"$data\"\n";
}

By first running this script and then starting the UML instance
with the switch given above, we can see notifications being generated.

Dike.book Page 187 Wednesday, March 15, 2006 8:16 PM

188 Chapter 8 Managing UML Instances from the Host

The first one is the socket notification telling us that the MConsole
request socket is ready:

Notification type = "socket", data = \
 "/home/jdike/.uml/debian/mconsole"

Once the instance has booted, we can log in and send messages to
the host through the /proc/mconsole file:

UML# echo "here is a user notification" > /proc/mconsole

This results in the following output from the notification client:

Notification type = "user notification", \
data = "here is a user notification"

These notifications all have a role to play in an automated UML
hosting environment. The socket notification tells when a UML instance
is booted enough to be controllable with an MConsole client. When this
message is received, the instance can be marked as being active and
the control tools told of the location of the MConsole socket.

The panic and hang notifications are needed in order to know
when the UML should be restarted, in the case of a panic, or forcibly
killed and then restarted, in the case of a hang.

The user notifications have uses that are limited only by the imagina-
tion of the administrator. I implemented them for the benefit of work-
loads running inside a UML instance that need to send status messages
to the host. In this scenario, whenever some milestone is reached or
some significant event occurs, a user notification would be sent to the
client on the host that is keeping track of the workload’s progress.

You could also imagine having a tool such as a log watcher or
intrusion detection system sending messages to the host through /proc/
mconsole whenever an event of interest happens. A hosting provider
could also use this ability to allow users to make requests from inside
the UML instance.

CONTROLLING A UML INSTANCE WITH SIGNALS

So far, I’ve described the civilized ways to control UML instances from
the host. However, sometimes an instance isn’t healthy enough to coop-
erate with these mechanisms. For these cases, some limited amount of
control is available by sending the instance a signal.

Dike.book Page 188 Wednesday, March 15, 2006 8:16 PM

Controlling a UML Instance with Signals 189

To send a UML instance a signal, you first need to know which
process ID to send it to. A UML instance is comprised of a number of
threads, so the choice is not obvious. Also, when the host has a number
of instances, there is a real chance of misreading the output of ps and
hitting the wrong UML instance.

To solve this problem, a UML instance writes the process ID of its
main thread into the pid file in its umid directory. This thread is the
one responsible for handling the signals that can be used for this last-
ditch control. Given a umid, sending a signal to the corresponding
instance is done like this:

kill -TERM `cat ~/.uml/debian/pid`

When this main thread receives SIGINT, SIGTERM, or SIGHUP, it
will run the UML-specific parts of the shutdown process. This will have
the same effect as the MConsole halt or sysrq b requests. No userspace
or kernel cleanup will happen. Only the host resources that have been
allocated by UML will be released. The UML instance’s filesystems will
be dirty and need either an fsck or a journal replay.

Dike.book Page 189 Wednesday, March 15, 2006 8:16 PM

Dike.book Page 190 Wednesday, March 15, 2006 8:16 PM

191

C H A P T E R 9

Host Setup for a Small UML
Server

After having talked about UML almost exclusively so far, we will now
talk about the host. This chapter and the next will cover setting up and
running a secure, well-performing UML server. First we will talk about
running a small UML server, where the UML instances will be con-
trolled by fairly trusted people, such as the host administrator or oth-
ers with logins on the host. Thus, we won’t need the same level of
security as on a large UML server with unknown, untrusted people
inside the UML instances. We will have a basic level of security, where
nothing can break out of a UML instance onto the host. We won’t be
particularly paranoid about whether network traffic from the UMLs is
originating from the expected IP addresses or whether there is too
much of it. Similarly, we will talk about getting good performance from
the UML instances, but we won’t try to squeeze every bit of UML host-
ing capacity from the host.

All of these things, which a large UML hosting provider cares
about more than a casual in-house UML user does, will be discussed in
the next chapter. There, we will cover tougher security measures, such
as how to protect the host even if a user does somehow manage to
break out of a UML instance and how to ensure that UML instances

Dike.book Page 191 Wednesday, March 15, 2006 8:16 PM

192 Chapter 9 Host Setup for a Small UML Server

are not spoofing IP addresses or sending out unreasonably large
amounts of traffic. We will also discuss how to log resource usage, such
as network traffic, in that chapter. But first, let’s cover what more
casual users want to know.

HOST KERNEL VERSION

Technically, UML will run on any x86 host kernel from a stable series
(Linux kernel versions 2.2, 2.4, or 2.6) since 2.2.15. However, the 2.2
kernel is of historic interest only—if you have such a machine that you
are going run UML instances on, you should upgrade. The 2.4 and 2.6
kernels make good hosts, but 2.6 is preferred. UML will run on any
x86_64 (Opteron/AMD64 or Intel EM64T) host, which is a newer archi-
tecture and has had the necessary basic support since the beginning.
However, x86_64 hosts are stable only on hosts running 2.6.12 or later.
On S/390, a fairly new 2.6 host kernel is required because of bugs that
were found and fixed during the UML port to that architecture.

UML makes use of the AIO and O_DIRECT facilities in the 2.6 ker-
nels for better performance and lower memory consumption. AIO is
kernel-level asynchronous I/O, where a number of I/O requests can be
issued at once, and the process that issued them can receive notifica-
tions asynchronously when they finish. The kernel issues the notifications
when the data is available, and the order in which that happens may
not be related to the order in which they are issued.

The alternative, which is necessary on earlier kernels, is to either
make normal read and write system calls, which are synchronous, and
make the process sleep until the operation finishes, or to dedicate a
thread (or multiple threads) to I/O operations. Doing I/O synchronously
allows only one operation to be pending at any given time. Doing I/O
asynchronously by having a separate thread do synchronous I/O at
least allows the process to do other work while the operation is pend-
ing. On the other hand, only one operation can be pending for each
such I/O thread, and the process must context-switch back and forth
from these threads and communicate with them as operations are
issued and completed. Having one thread for each pending I/O opera-
tion is hugely wasteful.

glibc has AIO support in all kernels, even those without AIO
support, and it implements this using threads, potentially one thread
per outstanding I/O request. UML, on such hosts, emulates AIO in a

Dike.book Page 192 Wednesday, March 15, 2006 8:16 PM

Host Kernel Version 193

similar way. It creates a single thread, allowing one I/O request to be
pending at a time.

The AIO facility present in the 2.6 kernel series allows processes
to do true AIO. UML uses this by having a separate thread handle all
I/O requests, but now, this thread can have many operations pending at
once. It issues operations to the host and waits for them to finish. As
they finish, the thread interrupts the main UML kernel so that it can
finish the operations and wake up anything that was waiting for them.

This allows better I/O performance because more parallel I/O is
possible, which allows data to be available earlier than if only one I/O
request can be pending.

O_DIRECT allows a process to ask that an I/O request be done
directly to and from its own address space without being cached in the
kernel, as shown in Figure 9.1. At first glance, the lack of caching
would seem to hurt performance. If a page of data is read twice with
O_DIRECT enabled, it will be read from disk twice, rather than the sec-
ond request being satisfied from the kernel’s page cache. Similarly,
write requests will go straight to disk, and the request won’t be consid-
ered finished until the data is on the disk.

However, O_DIRECT is intended for specialized applications that
implement their own caching and use AIO. For an application like this,
using O_DIRECT can improve performance and lower its total memory
requirements, including memory allocated on its behalf inside the ker-
nel. UML is such an application, and use of O_DIRECT actually makes
it behave more like a native kernel.

A native kernel must wait for the disk when it writes data, and
there is no caching level below it (except perhaps for the on-disk cache),
so if it reads data, it must again wait for the disk. This is exactly the
behavior imposed on a process when it uses O_DIRECT I/O.

The elimination of the caching of data at the host kernel level
means that the only copy of the data is inside the UML instance that
read it. So, this eliminates one copy of the data, reducing the memory
consumption of the host. Eliminating this copy also improves I/O
latency, making the data available earlier than if it was read into the
host’s page cache and then copied (or mapped) into the UML instance’s
address space.

For these reasons, for x86 hosts, a 2.6 host kernel is preferable to
2.4. As I pointed out earlier, running UML on x86_64 or S/390 hosts
requires a 2.6 host because of host bugs that were fixed fairly recently.

Dike.book Page 193 Wednesday, March 15, 2006 8:16 PM

194 Chapter 9 Host Setup for a Small UML Server

UML EXECUTION MODES

Traditionally, UML has had two modes of operation, one for unmodified
hosts and one for hosts that have been patched with what is known as
the skas patch. The first mode is called tt mode, or “tracing thread”
mode, after the single master thread that controls the operation of the
rest of the UML instance. The second is called skas mode, or “separate
kernel address space” mode. This requires a patch applied to the host
kernel. UML running in this mode is more secure and performs better
than in tt mode.

Figure 9.1 O_DIRECT I/O compared to buffered I/O. When a process does a
buffered read, the data is first read from disk and stored in the kernel’s page
cache. Then it is copied into the address space of the process that initiated the
read. Buffering it in the page cache provides faster access to the data if it is
needed again. However, the data is copied and stored twice. When a process
performs an O_DIRECT read, the data is read directly from the disk into the
process address space. This eliminates the extra copy operation and the extra
memory consumption caused by a buffered read. However, if another process
needs the data, it must be read from disk rather than simply copied from the
kernel’s page cache. The figure also shows a read done by the kernel for its
own purposes, to compare it to the O_DIRECT read. In both cases, the data is
read directly from disk and stored only once. When the process doing the
O_DIRECT read is UML reading data into its own page cache, the two cases
are identical.

Kernel

Disk

1

2

Process

Normal, buffered I/O

Kernel I/O

Page cache

O_DIRECT I/O

1

Page cache
1

Page cache

Dike.book Page 194 Wednesday, March 15, 2006 8:16 PM

UML Execution Modes 195

Recently, a third mode has been added that provides the same secu-
rity as skas, plus some of the performance benefits, on unmodified hosts.
The current skas host patch is the third version, so it’s called skas3.
This new mode is called skas0 since it requires no host changes. The
intent is for this to completely replace tt mode since it is generally
superior, but tt mode still has some advantages. Once this is no longer the
case, the support for tt mode will be removed. Even so, I will describe
tt mode here since it is not clear when support for it will be removed, and
you may need an older release of UML that doesn’t have skas0 support.

As the term skas suggests, the main difference between tt mode
and the two skas modes is how UML lays out address spaces on the
host. Figure 9.2 shows a process address space in each mode. In tt
mode, the entire UML kernel resides within each of its process’s
address spaces. In contrast, in skas3 mode, the UML kernel resides
entirely in a different host address space. skas0 mode is in between, as
it requires that a small amount of UML kernel code and data be in its
process address spaces.

Figure 9.2 The three UML execution modes differ in how they lay out their
process address spaces. tt mode maps the entire UML kernel into the upper
.5GB of the process address space. skas0 mode leaves the UML kernel outside
the process address space, except for two pages of memory mapped at the very
top of the process address space. These are used to receive SIGSEGV signals
and pass the resulting page fault information back to the UML kernel, and to
modify the process address space. These two pages are unnecessary in skas3
mode, which allows its processes to use the entire address space.

tt mode

UML kernel
code and data

skas0 mode
Stub data
Stub code

Process code and data

UML kernel code and data

skas3 mode

Dike.book Page 195 Wednesday, March 15, 2006 8:16 PM

196 Chapter 9 Host Setup for a Small UML Server

The relationship between UML processes and the corresponding
host processes for each mode follows from this. Figure 9.3 shows these
relationships.

tt mode really only exists on x86 hosts. The x86_64 and S/390
ports were made after skas0 mode was implemented, and they both use
that rather than tt mode. Because of this, in the following discussion
about tt mode, I will talk exclusively about x86. Also, the discussion about
address space sizes and constraints on UML physical memory sizes are
confined to x86, since this issue affects only 32-bit hosts.

Figure 9.3 Comparison of the three UML execution modes. tt mode has a
separate host thread (the tracing thread), which controls the execution of the
other threads. Processes and threads within the UML instance have corre-
sponding threads on the host. Each such host process has the UML kernel
mapped into the top of its address space. In skas3 mode, there is no separate
tracing thread—this role is performed by the kernel thread. There is a single
process on the host in which all UML processes run. skas0 mode is a hybrid of
tt mode and skas3 mode. Like skas3 mode, there is no tracing thread and
there is a separate kernel thread in which the UML kernel lives. Like tt
mode, each UML process has a corresponding host process.

tt mode skas0 mode

Tracing thread

UML kernel code and data

User code and data

Host

UML

skas3 mode

Dike.book Page 196 Wednesday, March 15, 2006 8:16 PM

UML Execution Modes 197

tt Mode

In tt mode, a single tracing thread controls the rest of the threads in
the UML instance by deciding when to intercept their system calls and
have them executed within UML. When a UML process is running, it
intercepts its system calls, and when the UML kernel is running, it doesn’t.
This is the tracing that gives this thread its name.

The tracing thread has one host process per UML process under
its control. This is necessary because UML needs a separate host
address space for each UML process address space, and creating a host
process is the only way to get a new host address space. This is wasteful
since all of the other host kernel data associated with the process, such
as the kernel stack and task structure, are unnecessary from the point
of view of UML. On a uniprocessor UML instance, there can be only
one of these host processes running at any given time, so all of the idle
execution contexts represented by the other host processes are wasted.
This problem is fixed in skas3 mode, as described in the next section.

The UML kernel is placed in the upper .5GB of each process
address space. This is the source of the insecurity of tt mode—the
UML kernel, including its data, is present and writable in the address
spaces of its processes. Thus, a process that knew enough about the
internals of UML could change the appropriate data inside UML and
escape onto the host by tricking the tracing thread into not intercept-
ing its system calls.

It is possible to protect the kernel’s memory from its processes by
write-protecting it when exiting the kernel and write-enabling it when
entering the kernel. This has been implemented but never used
because it imposes a huge performance cost. This protection has other
problems as well, including complicating the code and making Sym-
metric Multi-Processing (SMP) impossible. So, it has probably never
been used except in testing.

The fact that UML occupies a portion of the process address space
is also a problem. The loss to UML processes of the upper .5GB of
address space is inconvenient to some processes, and confining UML to
that small address space limits the size of its physical memory. Since
normal physical memory must be mapped into the kernel address
space, the maximum physical memory size of a UML is less than .5GB.
In practice, the limit is around 480MB.

You can use Highmem support to get around this. Highmem sup-
port in Linux exists because of the need to support more than 4GB of

Dike.book Page 197 Wednesday, March 15, 2006 8:16 PM

198 Chapter 9 Host Setup for a Small UML Server

physical memory in 32-bit x86 machines, which can access only 4GB of
memory in a single 32-bit address space. In practice, since the x86 ker-
nel has 1GB of address space (by default, it occupies the upper 1GB of
its process’s address spaces), it needs Highmem support to access more
than 1GB of physical memory.

The memory pages above the lower 1GB can be easily used for pro-
cess memory, but if the kernel is to use a Highmem page for its own
memory, it must temporarily map it into its address space, manipulate
the data in it, and then unmap it. This imposes a noticeable perfor-
mance cost.

UML has a similar problem with Highmem memory, and, in tt
mode, it starts at around .5GB of physical memory, rather than 1GB.
To access memory outside this region, it must also map it into its
address space, but this mapping is more expensive for UML than it is
for the host. So, UML suffers a greater performance penalty with a
large physical memory than the host does.

skas3 Mode

The problems with tt mode motivated the development of the skas3
host patch. These problems were driven by host limitations (or so we
thought until someone figured out a way around them), so the skas3
patch added mechanisms to the host that allowed UML to avoid them.

skas3 gets its name from using the third version of the “separate
kernel address space” host patch. As its rather unimaginative name
suggests, the skas3 patch allows the UML kernel to be in a separate
host address space from its processes. This protects it from nosy pro-
cesses because those processes can’t form a UML kernel address to
write. The UML kernel is completely inaccessible to its processes.

skas3 also improved UML performance. Removing the UML ker-
nel from its processes made new process creation faster, shrunk some
pieces of data in the host kernel, and may speed context switching. In
combination, these effects produced a very noticeable performance
improvement over tt mode.

To allow the UML kernel to exist in a separate address space from
its processes, a small number of new facilities were needed in the host:

☞ Creation, manipulation, and destruction of host address spaces
that are not associated with a process

Dike.book Page 198 Wednesday, March 15, 2006 8:16 PM

UML Execution Modes 199

☞ Extraction of page fault information, such as the faulting address,
access type, and processor flags, after a process receives a SIGSEGV

☞ Manipulation of the Local Descriptor Table (LDT) entries of
another process

The address space manipulation is enabled through a new file in
/proc called /proc/mm. Opening it creates a new, empty host address
space and returns a file descriptor that refers to that address space.
When the file descriptor is closed, and there are no users of the address
space, the address space is freed.

A number of operations were formerly impossible to perform on an
outside address space. Changing mappings is the most obvious. To han-
dle a page fault in tt mode, it is sufficient to call mmap since the kernel
is inside the process address space. When the process is outside it, we
need something else. We can have the address space file descriptor sup-
port these operations through writing specially formatted structures to
it. Mapping, unmapping, and changing permissions on pages are done
this way, as is changing LDT entries associated with the address space.

Now that we can create host address spaces without creating new
host processes, the resource consumption associated with tt mode goes
away. Instead of one host process per UML process, there is now one
host process per virtual processor. The UML kernel is in one host process
that does system call interception on another, which, on a uniprocessor
UML, runs all UML processes. It does so by switching between address
spaces as required, under the control of the UML kernel invoking
another ptrace extension, PTRACE_SWITCH_MM. This extension makes
the ptraced process switch from one host address space to another.

With the UML kernel in its own address space, it is no longer con-
strained to the 1GB of address space of tt mode. This enables it to
have a much larger physical memory without needing to resort to
Highmem. In principal, the entire 3GB address space on x86 is avail-
able for use as UML physical memory. In practice, the limit is some-
what lower, but, at around 2.5GB, still much greater than the 480MB
limit imposed by tt mode.

In order to achieve this higher limit, the UML kernel must be con-
figured with CONFIG_MODE_TT disabled. With both CONFIG_MODE_TT
and CONFIG_MODE_SKAS enabled, the resulting UML kernel must be
able to run in both modes, depending on its command line and the host
capabilities it detects when it boots. A dual-mode UML instance will be
compiled to load into the upper .5GB of its address space, as required

Dike.book Page 199 Wednesday, March 15, 2006 8:16 PM

200 Chapter 9 Host Setup for a Small UML Server

for tt mode, and will be subject to the 480MB physical memory limit.
Disabling CONFIG_MODE_TT causes the UML binary to be compiled so
it loads lower in its address space, where more normal processes load.
In this case, the physical memory limit increases to around 2.5GB.

This is fortunate since Highmem is slower in skas3 mode than in
tt mode, unlike almost all other operations. This is because a skas3
mode UML instance needs to map Highmem pages into its address
space much more frequently than a tt mode UML instance does. When
a UML process makes a system call, it is often the case that one of the
arguments is a pointer, and the data referenced by that pointer must
be copied into the UML kernel address space. In tt mode, that data is
normally available to simply copy since the UML kernel is in the UML
process address space. In skas3 mode, that isn’t the case. Now, the
UML kernel must work out from the process pointer it was given where
in its own physical memory that data lies. In the case of Highmem mem-
ory, that data is not in its physical memory, and the appropriate page
must be mapped into its address space before it can access the data.

Finally, it is necessary to extract page fault information from
another process. Page faults happen when a process tries to execute
code or access data that either has not been read yet from disk or has
been swapped out. Within UML, process page faults manifest them-
selves as SIGSEGV signals being delivered to the process. Again, in tt
mode, this is easy because the UML kernel itself receives the SIGSEGV
signal, and all the page fault information is on its stack when it enters
the signal handler. In skas3 mode, this is not possible because the
UML kernel never receives the SIGSEGV. Rather, the UML kernel
receives a notification from the host that its process received a SIG-
SEGV, and it cancels the signal so that it is never actually delivered to
the process. So, the skas3 patch adds a ptrace option,
PTRACE_FAULTINFO, to read this information from another process.

Together, these host changes make up the skas3 patch. UML
needed to be modified in order to use them, of course. Once this was
done, and the security and performance benefits became apparent,
skas3 became the standard for serious UML installations.

skas0 Mode

More recently, an Italian college student, Paolo Giarrusso, who had
been doing good work on UML, thought that it might be possible to
implement something like skas3 on hosts without the skas3 patch.

Dike.book Page 200 Wednesday, March 15, 2006 8:16 PM

UML Execution Modes 201

His basic idea was to insert just enough code into the address
space of each UML process to perform the address space updates and
information retrieval for which skas3 requires a host patch. As I
implemented it over the following weekend, this inserted code takes
the form of two pages mapped by the UML kernel at the top of each
process address space. One of these pages is for a SIGSEGV signal
frame and is mapped with write permission, and the other contains
UML code and is mapped read-only.

The code page contains a function that invokes mmap, munmap, and
mprotect as requested by the UML kernel. The page also contains the
SIGSEGV signal handler. The function is invoked whenever address
space changes are needed in a UML process and is the equivalent of
requesting an address space change through a /proc/mm file descriptor.
The signal handler implements the equivalent of PTRACE_FAULTINFO
by receiving the SIGSEGV signal, reading all of the fault information
from its stack, and putting it in a convenient form where the UML ker-
nel can read it.

Without changes in the host kernel, we have no way to create new
host address spaces without creating new host processes. So, skas0 mode
resembles tt mode in having one host process for each UML process.

This is the only similarity between skas0 mode and tt mode. In
skas0 mode, the UML kernel runs in a separate host process and has a
separate host address space from its processes. All of the skas3 bene-
fits to security and performance flow from this property. The fact that
the UML kernel is controlling many more processes than in skas3
mode means that we have the same wasted kernel memory that tt
mode has. This makes skas0 mode somewhat less efficient than skas3
mode but still a large improvement over tt mode.

To Patch or Not to Patch?

With respect to how you want to run UML, at this writing, the basic
choice is between skas0 mode and skas3 mode. The decision is con-
trolled by whether you are willing to patch the host kernel in order to
get better performance than is possible by using skas0 mode.

We have a number of performance-improving patches in the
works, some or all of which may be merged into the mainline kernel by
the time this book reaches your bookshelf. You will be able to tell what,
if any, patches are missing from your host kernel by looking at the
early boot messages. Here is an example:

Dike.book Page 201 Wednesday, March 15, 2006 8:16 PM

202 Chapter 9 Host Setup for a Small UML Server

Checking that ptrace can change system call numbers...OK
Checking syscall emulation patch for ptrace...missing
Checking PROT_EXEC mmap in /tmp...OK
Checking if syscall restart handling in host can be \
 skipped...OK
Checking for the skas3 patch in the host:
 - /proc/mm...not found
 - PTRACE_FAULTINFO...not found
 - PTRACE_LDT...not found
UML running in SKAS0 mode
Adding 16801792 bytes to physical memory to account for \
 exec-shield gap

The message about the syscall emulation patch is talking about a
ptrace extension that cuts in half the number of ptrace calls needed
to intercept and nullify a host system call. This is separate from the
skas3 patch and is used in all UML execution modes. At this writing,
this patch is in the mainline kernel, so a UML instance running on a
host with 2.6.14 or later will benefit from this.

A few lines later, you can see the instance checking for the individ-
ual pieces of the skas3 patch—/proc/mm, PTRACE_FAULTINFO, and
PTRACE_LDT. Two of these, the two ptrace extensions, are likely to be
merged into the mainline kernel separately, so there will likely be a set
of host kernels for which UML finds some of these features but not all.
In this case, it will use whatever host capabilities are present and use
fallback code for those that are missing. /proc/mm will never be in the
mainline kernel, so we are thinking about alternatives that will be
acceptable to Linus.

For a smallish UML installation, a stock unmodified host kernel
will likely provide good UML performance. So, in this case, it is proba-
bly not necessary to patch and rebuild a new kernel for the host.

Note that tt mode was not recommended in any situation. How-
ever, sometimes you may need to run an old version of UML in which
skas0 is not available. In this case, it may be a good idea to patch the
host with the skas3 patch. If UML running under tt mode is too slow
or too resource intensive, or you need the security that comes with
skas3 mode, then patching with the skas3 patch is the best course.

Vanderpool and Pacifica

Yet another option, which at this writing is not yet available but will be
relatively soon, is to take advantage of the hardware virtualization
support that Intel and AMD are incorporating into their upcoming pro-

Dike.book Page 202 Wednesday, March 15, 2006 8:16 PM

Managing Long-Lived UML Instances 203

cessors. These extensions are called Vanderpool and Pacifica, respec-
tively. UML is currently being modified in order to take advantage of
this support.

Vanderpool and Pacifica are similar, and compatible, in roughly
the same way that AMD’s Opteron and Intel’s EM64T architectures are
similar. There are some differences in the instructions, but they are rel-
atively minor, and software written for one will generally run unmodi-
fied on the other. UML is currently getting Vanderpool Technology
support, with the work being done by a pair of Intel engineers in Rus-
sia, but the result will likely run, perhaps with some tweaks, on an
AMD processor with Pacifica support.

This support will likely bring UML performance close to native
performance. The hardware support is sufficient to eliminate some of
the largest performance bottlenecks that UML faces on current hard-
ware. The main bottleneck is the context switching that ptrace
requires to intercept and nullify system calls on the host. The hard-
ware virtualization support will enable this to be eliminated, allowing
UML to receive process system calls directly, without having to go
through the host kernel. A number of other things will be done more
efficiently than is currently possible, such as modifying process address
spaces and creating new tasks.

In order to use this hardware virtualization support, you will need
a host new enough to have the support in its processor. You will also
need a version of UML that has the required support. Given these two
requirements are met, UML will likely perform noticeably better than
it does without that support.

MANAGING LONG-LIVED UML INSTANCES

It is common to want a UML instance to outlive the login session in
which it is started. As with other processes, it is possible to background
a UML instance and have it survive the end of the login session. The
problem with this is the main console. It is natural to have it attached
to the standard input and standard output of the UML instance’s main
process. But this means that the UML instance must be the foreground
process. It can be backgrounded (with some difficulty because it sets
the terminal raw, so Ctrl-Z and Ctrl-C don’t send SIGTSTP and SIGINT,
respectively, to the process), and once it is, and you log out, the main
console is lost.

Dike.book Page 203 Wednesday, March 15, 2006 8:16 PM

204 Chapter 9 Host Setup for a Small UML Server

To avoid this, you can use a very handy tool called screen. Upon
running it with no arguments, you get a new shell. At this point, you
can run your UML instance as you normally do. When you decide to log
out, you can detach the screen session, and it will, in effect, back-
ground the UML instance in a way that lets you reattach to it later.

Run screen -r and the session, with the UML instance and main
console intact, will return. So, in the simplest case, here is the proce-
dure for maintaining a long-lived UML instance.

1. Run screen.
2. Start the UML instance inside the resulting screen session.
3. Detach the screen session with Ctrl-A Ctrl-D.
4. Log out.
5. Later, log back in and run screen -r.
6. Detach, reattach, and repeat as often as necessary.

With a number of UML instances running on the host, the same
procedure will work. The problem is knowing which screen session
belongs to the UML instance you want to reattach to. The result of run-
ning screen -r may be something like this:

There are several suitable screens on:
 28348.pts-1.tp-w (Detached)
 28368.pts-1.tp-w (Detached)
 28448.pts-1.tp-w (Detached)
 28408.pts-1.tp-w (Detached)
 28308.pts-1.tp-w (Detached)
 28488.pts-1.tp-w (Detached)
 28530.pts-1.tp-w (Detached)
 28328.pts-1.tp-w (Detached)
 28428.pts-1.tp-w (Detached)
 28550.pts-1.tp-w (Detached)
 28468.pts-1.tp-w (Detached)
 28288.pts-1.tp-w (Detached)
 28510.pts-1.tp-w (Detached)
 28388.pts-1.tp-w (Detached)
Type "screen [-d] -r [pid.]tty.host" to resume one of them.

This is not helpful in figuring out which one you want to resume.
To simplify this, screen has the ability to attach names to screen ses-
sions. The -S switch will assign a meaningful name to the session and
this name is what you will use to resume it. So,

host% screen -S joes-uml

Dike.book Page 204 Wednesday, March 15, 2006 8:16 PM

Managing Long-Lived UML Instances 205

will start a screen session named joes-uml. You can assign a name to
each session you start. Then when you want to resume a particular
one, run screen -r and you’ll see something like this:

There are several suitable screens on:
 28868.work-uml (Detached)
 28826.spare3-uml (Detached)
 28910.simulator-uml (Detached)
 28890.devel-uml (Detached)
 28804.spare2-uml (Detached)
 28784.spare1-uml (Detached)
 28848.dmz-uml (Detached)
 28764.janes-uml (Detached)
 28742.named-uml (Detached)
 28700.joes-uml (Detached)
Type "screen [-d] -r [pid.]tty.host" to resume one of them.

It is now easy to pick out the one you want:

host% screen -r joes-uml

With good enough names, it may not even be necessary to look at the
list in order to remember which one you want.

Finally, you may wish to start a set of UML instances during the
host boot sequence. There is no terminal for the new UML instances to
use as their main consoles, unless, of course, you provide them one.
screen is useful here as well. The -d -m switch will start the screen
session detached. Now you’re not available to start the UML instances
by hand, so screen will need to do this automatically. This can be
accomplished, along with the other tricks we’ve seen, with something
like this:

host% screen -d -m -S boot-uml ./linux con0=fd:0,fd:1 \
 con1=none con=pts ssl=pts umid=debian mem=450M \
 ubda=../../debian30 devfs=nomount mconsole=notify:/tmp/notify

This starts the screen session detached, runs the UML command that
follows the screen switches, and names the screen session boot-uml.
screen -r shows it like this:

 16799.boot-uml (Detached)

Now, once the host has booted, and the UML instances with it, you can
log in to the host and attach to whatever UML instance you wish.

Dike.book Page 205 Wednesday, March 15, 2006 8:16 PM

206 Chapter 9 Host Setup for a Small UML Server

NETWORKING

I’ve covered networking in sufficient detail earlier in the book that I
don’t need to belabor it here. However, I will repeat a few important
points.

☞ Given that you control the host, the only two networking mecha-
nisms you should consider for allowing access to the host network
are TUN/TAP and uml_switch.

☞ Both bridging TUN/TAP devices with the host Ethernet and rout-
ing to unbridged TUN/TAP devices are appropriate models. They
have differing setup and security requirements, which should
drive the decision between the two.

☞ Make use of the ability to give descriptive names to your TUN/
TAP devices to document your UML configuration.

UML PHYSICAL MEMORY

UML uses a temporary file as its physical memory. It does this rather
than use anonymous memory since it needs file-backed memory so
pages of memory can be mapped in multiple locations in multiple
address spaces. This is impossible with anonymous memory. By
default, UML creates the file in /tmp and removes it so it can’t be
accessed by any other process. If you look at the open file descriptors of
a UML instance, you will see something like this:

lrwx------ 1 jdike jdike 64 Aug 14 13:15 3 -> \
 /tmp/vm_file-lQkcul (deleted)

Because the file has been deleted and UML is holding a reference
to it by keeping it open, the file is occupying space in /tmp but isn’t vis-
ible to ls. If you ran df, you would see that some space has disap-
peared, but there are no visible files consuming that space.

Thus, the first requirement on the host with respect to UML phys-
ical memory is that the filesystem on which it will create its physical
memory files must be large enough to hold all of those files. For example,
if you decide not to change the default and to use /tmp, the filesystem
on which /tmp lives must have enough free space to hold all of the
physical memory files for all of the UML instances on the host. These
files will be the same size as the physical memory assigned to the UML

Dike.book Page 206 Wednesday, March 15, 2006 8:16 PM

UML Physical Memory 207

instances. So, to decide how big your /tmp needs to be, you must add
the physical memory sizes of all UML instances that will put their
physical memory files in /tmp.

The UML instances will not occupy all of this space immediately.
Rather, it will be consumed as they allocate and use pages of their own
physical memory. Thus, the space on the host used by a UML instance
will grow asymptotically to its physical memory size.

For performance reasons, it is a very good idea to create the UML
physical memory files on a tmpfs filesystem. UML instances that have
their memory files on a disk-based filesystem are noticeably slower.
The filesystem should be sized as described above. In /etc/fstab, the
entry for a 512MB tmpfs mount on /tmp would look like this:

none /tmp tmpfs \
 size=512M 0 0

The equivalent command for doing this mount is:

host# mount none /tmp -t tmpfs -o size=512M

This is sufficient for one or two reasonably-sized UML instances. For a
larger number, a much larger size, obtained by adding the physical
memory sizes, would be needed.

You may wish to give each UML instance a separate tmpfs mount
or to group them into several mounts, providing a degree of isolation
between the UMLs or the groups. This could be useful if one instance
somehow outgrew its physical memory and started occupying more
space than it should.

This shouldn’t happen, and I know of no cases where it has, but it
is a conceivable failure that would affect the stability of the other UML
instances sharing a tmpfs filesystem. If the filesystem gets filled, the
host will stop allocating memory for new pages of memory within it.
Since this is caused by the UML instances changing hitherto unmodi-
fied memory, if the tmpfs filesystem is full, those memory references
will start failing. The UML instances will start receiving SIGBUS sig-
nals and very likely crash when some of those references occur inside
the UML kernel.

Creating multiple tmpfs filesystems, up to one per UML instance,
reduces the vulnerability of a UML instance to another overallocating
space. With one UML instance per filesystem, if a UML instance some-
how exceeded its physical memory size, that instance would be the only
one affected.

Dike.book Page 207 Wednesday, March 15, 2006 8:16 PM

208 Chapter 9 Host Setup for a Small UML Server

Finally, a point I mentioned earlier bears repeating here. Giving a
UML instance so much physical memory that it needs to use some of it
as Highmem will hurt its performance. If you need to have physical
memory sizes greater than the 480MB limit of tt mode, you should dis-
able CONFIG_MODE_TT.

HOST MEMORY CONSUMPTION

Host memory is often the bottleneck constraining the number of UML
instances that can be run while maintaining good performance. You
can do two principle things to reduce the amount of host memory con-
sumed by the UML instances. Both ideas involve cutting down on the
caching of multiple copies of the same data.

☞ Run 2.6 on the host. As described earlier, this will cause the UML
instances to use the O_DIRECT capability introduced in 2.6. Data
read by the UML instances will be read directly into their page
caches and won’t occupy memory in the host page cache.

☞ Use COW files wherever possible. This will cause data from the
backing files to be shared between the UML instances using them.
Instead of having one copy in the host page cache for each UML
instance, there will be only one total. There will still be one copy in
every UML instance sharing that page.

An enhancement that is not fully implemented at this writing is
to have the humfs filesystem map, rather than copy, pages from
its files into its page cache. This would reduce the number of cop-
ies of shared file pages from one per UML instance to one total
since all the UML instances would be sharing the host’s copy. This
would require the UML host administrator to create humfs root
filesystems and boot the UML instances on them.

The UML block driver can’t use mmap because the filesystems
using it would lose control over when their file data and metadata
are written to disk. This control is essential in their guarantees of
file consistency and recovery in the case of a crash. Control would
be lost because modifications to mapped data can be written to
disk at any time by the host. Preventing this problem was one of
the motivations for writing humfs. With the filesystem doing the
mapping itself, rather than the underlying block device, it retains
that control.

Dike.book Page 208 Wednesday, March 15, 2006 8:16 PM

Overall Recommendations 209

umid DIRECTORIES

By default, the unique machine id, or umid, directory for a UML
instance is .uml/<umid> in the home directory of the user running the
instance. This directory contains the mconsole socket and the pid file
for the instance. If you decide to provide each instance with its own
tmpfs mount, as described earlier, this would be a natural place to cre-
ate it.

For management purposes, you may want to move the umid direc-
tories to a different location. For example, you might want to have each
UML instance owned by a different user on the host but to have all of
their umid directories in a single location. To do this, there is a UML
switch that specifies the umid directory:

uml_dir=<umid path>

For instance, putting these switches on the command line for a
UML would create its umid directory at /var/run/uml/debian:

umid=debian uml_dir=/var/run/uml

OVERALL RECOMMENDATIONS

This chapter boils down to a small number of recommendations for
managing a modest UML server.

☞ Use a recent 2.6 kernel on the host. This will have performance
enhancements for UML on all architectures and necessary bug
fixes on x86_64 and S/390. It will give you the AIO and O_DIRECT
capabilities, which UML will take advantage of.

☞ Make sure CONFIG_MODE_TT is disabled. It is disabled in the default
configuration of UML, so you likely won’t have to do anything
except verify this. Having CONFIG_MODE_TT disabled will give you
more flexibility in the amount of physical memory you can provide
to your UML instances.

☞ Consider applying the skas3 patch to the host. This will provide
somewhat better performance than skas0.

☞ Mount a tmpfs filesystem on /tmp, or wherever you have the
UML instances create their physical memory files, and make sure
it is large enough to hold all of those files.

Dike.book Page 209 Wednesday, March 15, 2006 8:16 PM

210 Chapter 9 Host Setup for a Small UML Server

☞ screen is an essential tool for managing long-lived UML
instances. Become familiar with it.

☞ Be careful about managing the host’s physical memory. If the sum
of the UML instances’ physical memory sizes greatly exceeds the
host’s physical memory, performance will suffer as the host swaps
out the UML instances. Look into techniques for reducing memory
consumption such as COWing your ubd filesystem images or boot-
ing from humfs directories.

☞ It may simplify the management of your instances to centralize
their umid directories.

Dike.book Page 210 Wednesday, March 15, 2006 8:16 PM

211

C H A P T E R 10

Large UML Server Management

In the previous chapter, we talked about setting up a smallish UML
server where the UML users would be local users who have accounts
on the host and where it is not a goal to run as many UML instances on
the host as possible. Now, we will take a look at running a large server
where the UML users are untrusted, we want the largest possible
number of instances running with acceptable performance, and we are
willing to tune the host in order to accomplish this.

Security is going to be a major theme. The presence of untrusted
users who do not have accounts on the host and who should stay con-
fined to their UML instances requires a layered approach to security.
The first layer is UML itself. There are no known exploits to break out
of a UML jail, but it is prudent to take that possibility into account and
ensure that if such an exploit did exist, the host would not be harmed.

We are also going to be careful about network security, taking
steps to minimize the possibility of someone using a UML instance to
launch attacks or otherwise engage in hostile network behavior.

Security is also an issue when providing users access to their con-
sole devices. These are normally attached to devices on the host, mak-
ing it necessary to have access to the host in order to get console access.

Dike.book Page 211 Wednesday, March 15, 2006 8:16 PM

212 Chapter 10 Large UML Server Management

Instead, we will look at a way to provide this access by using a dedi-
cated UML instance for it, avoiding the need to provide direct access to
the host.

Finally, I will describe some enhancements on both the host and
UML that will improve performance, resource consumption, and man-
ageability of UML instances in the future.

SECURITY

UML Configuration

When you are concerned about preventing people from breaking out of
a UML instance, the first thing to look at is the configuration of UML
itself. Like the host, UML has two protection levels, user mode and ker-
nel mode. In user mode, system calls are intercepted by the UML ker-
nel, nullified, and executed in the context of UML. This is the basis for
UML jailing. The system calls and their arguments are interpreted
within the context of UML.

For example, when a process executes a read from its file descrip-
tor zero, the file that is written is taken from the first entry of the pro-
cess’s file table within the UML kernel rather than the first entry of
the file table in the host kernel. That would be the standard input of
UML itself rather than that of the UML process. Similarly, when a pro-
cess opens a file, it is the filesystem code of the UML, rather than the
host, that does the filename lookup. This ensures that a UML process
has no access to files on the host. The same is true for all other
resources, for the same reason.

When the UML kernel itself is running, system call tracing is dis-
abled, and the kernel does have access to host resources. This is the
critical difference between user mode and kernel mode in UML. Since
the UML kernel can execute system calls on the host, all code in the
UML kernel must remain trusted. If a user were able to insert arbi-
trary code into the kernel, that user could break out. It would simply be
a matter of executing a shell on the host from within the UML kernel.

There is a well-known mechanism in Linux for doing exactly this:
kernel modules. Of course, they are intended for something entirely
different—dynamically extending the kernel’s functionality by adding
drivers, filesystems, network protocols, and the like. But extending the
kernel’s functionality, in the context of UML, can also be interpreted as
allowing the UML user to execute arbitrary commands on the host.

Dike.book Page 212 Wednesday, March 15, 2006 8:16 PM

Security 213

Since we can’t prevent this and also allow legitimate kernel mod-
ules to be installed, in a secure UML configuration, modules need to be
disabled completely.

It turns out that modules aren’t the only mechanism by which a
user could inject code into the UML kernel. An entry in /dev, /dev/
mem, provides access to the system’s physical memory. Since the kernel
and its data are in that memory, with the ability to write to this file, a
nasty UML user could manually inject the equivalent of a module into
the kernel and change data structures in order to activate it so that the
kernel will execute the code.

This may sound hard to actually carry out successfully, but it is a
skill that rootkit writers have perfected. In certain circles, it is very
well known how to inject code into a Linux kernel and activate it, even
in the absence of module support, and there are reliable tools for doing
this automatically.

The obvious way to prevent someone from writing to a file is to set
the permissions on the file in order to make that impossible. However,
since the UML user could very likely be root, file permissions are use-
less. The root user is not in any way restricted by them.

Another mechanism is effective against the root user: capabilities.
These are a set of permissions associated with a process rather than a
file. They have two important properties.

1. They are inherited by a process from its parent.
2. They can be dropped, and once dropped, can’t be regained by the

process or its children.

Together, these properties imply that if the kernel or init, which is
ultimately the parent of every other process on the system, drop a
capability, then that capability is gone forever for that system. No pro-
cess can ever regain it.

It turns out that there is a capability that controls access to /dev/
mem, and that is CAP_SYS_RAW. If this is dropped by the kernel before
running init, no process on the system, including any process run by
the root user, will be able to modify the UML instance’s physical mem-
ory through /dev/mem. Removing CAP_SYS_RAW from the initial set of
capabilities (the bounding set) will irreversibly remove it from the
entire system, and nothing will be able to write to kernel memory.

A second issue is access to host filesystems. If the UML kernel has
CONFIG_EXTERNFS or CONFIG_HOSTFS enabled, a UML user will be
able to mount directories on the host as filesystems within the UML

Dike.book Page 213 Wednesday, March 15, 2006 8:16 PM

214 Chapter 10 Large UML Server Management

instance. For a secure UML environment, this is usually undesirable.
The easiest way to prevent this is to disable CONFIG_EXTERNFS and
CONFIG_HOSTFS in the UML kernel.

If you do want to allow some access to host files, it can be done
securely, but it requires some care because it opens up some more ave-
nues of attacks. There are no known holes here, but allowing any extra
access to the host from the UML instance will provide more possibili-
ties for malicious users or software to attack the host.

First of all, it’s a good idea to run the UML instance inside a jail
(we talk about setting up a good jail later in this chapter) and, inside
that, provide the directory that you wish to allow the instance to
access. Second, you can use a UML switch to force all hostfs mounts
to be within a specified host directory. For example, the following
option will restrict all hostfs mounts to be within the directory /uml-
jails/jeffs-uml:

hostfs=/uml-jails/jeffs-uml

This is done by prepending that directory name to every host directory
the UML attempts to mount. So, if the UML user tries to mount the
host’s /home like this:

UML# mount none /mnt -t hostfs -o /home

the UML instance will really attempt to mount /uml-jails/jeffs-uml/
home. If there really is a directory named /uml-jails/jeffs-uml/home,
that mount will succeed, and if not, it will fail. But in no case will the
UML instance attempt to mount the host’s /home.

If you wish to provide each UML instance with some host direc-
tory that will be private to the instance, simply copying that directory
into the instance’s jail is the easiest way to make it available.

If you wish to provide the same host directory to a number of UML
instances, you can make it available within each jail directory with a
bind mount. Bind mounts are new with 2.6, so you’ll need a 2.6 host in
order to use them. This facility allows you to make an existing direc-
tory available from multiple places within the filesystem. For example,
here is how to make /tmp available as ~/tmp:

host% mkdir ~/tmp
host# mount --bind /tmp ~/tmp
host% ls /tmp
gconfd-jdike orbit-jdike ssh-Xqcrac2878
keyring-4gMKe0 ssh-QWYGts4184 ssh-vlklKu4277

Dike.book Page 214 Wednesday, March 15, 2006 8:16 PM

Security 215

mapping-jdike ssh-VMnkLn4309 xses-jdike.oBNeep
host% ls ~/tmp
gconfd-jdike orbit-jdike ssh-Xqcrac2878
keyring-4gMKe0 ssh-QWYGts4184 ssh-vlklKu4277
mapping-jdike ssh-VMnkLn4309 xses-jdike.oBNeep

Now the same directory is available through the paths /tmp and ~/tmp.
It’s exactly the same directory—creating a new file through one path
will result in it being visible through the other.

To use this technique to provide a common hostfs directory to a
set of UML instances, you would do something like this for each
instance:

host# mount --bind /umls/common-data /umls/uml1-jail/data

Following this with the hostfs jailing switch would add another layer
of protection:

hostfs=/umls/uml1-jail/data

As I mentioned before, this does add another possible avenue of
attacks on the host from the UML instances. However, the risk of a
UML instance gaining access to information outside the directories
explicitly provided to it is minimal when the instances are jailed and
the hostfs mounts themselves are jailed.

Generally, such data would be read-only and would be provided to
the UML instances as a reference, such as a package repository. This
being the case, all files and subdirectories should be write-protected
against the UML instances. You can accomplish this by having these
files and subdirectories owned by a user that does not own any of the
UML instances and having everything be read-only for the owner,
group, and world.

In the spirit of having multiple layers of protection, an additional
hostfs option, append, restricts the file modifications that can be per-
formed through a hostfs mount.

hostfs=/uml-jail,append

When you add append to the hostfs switch as shown, the following
restrictions come into force.

☞ All file opens are done with O_APPEND. This means that all file
writes will append to the file rather than overwriting data that’s
already there.

Dike.book Page 215 Wednesday, March 15, 2006 8:16 PM

216 Chapter 10 Large UML Server Management

☞ Files can’t be shrunk, as with truncate.
☞ Files can’t be removed.

The purpose of the append switch is to prevent data from being
destroyed through the hostfs mount. It does not prevent writing of
new data, so if you want that restriction, you must still write-protect
the hostfs directories and everything in them.

If you do wish to provide the UML instances with the ability to
write to their hostfs mounts, you are providing a new avenue of
attack to a malicious UML user. This potentially enables a denial-of-
service attack on the host’s disk space rather than its data. By filling the
hostfs directories with data and filling up the filesystem on which it
lives, an instance could make that host disk space unusable by the other
UML instances. This possible problem can be handled with disk quotas
on the host if each UML instance is owned by a different host user.

Even so, humfs is probably a better option in this case. When writ-
ing files on the host, the permission and ownership problems I men-
tioned earlier rear their heads. hostfs files will be owned by the host
user that is running the UML instance, rather than the UML user that
created them, leading to a situation where a UML user can create a file
but subsequently can’t modify it. humfs handles this correctly, and it
has a built-in size limit that can be used to control the consumption of
host disk space.

JAILING UML INSTANCES

The centerpiece of any layered security design for a large UML server
is the jail that the UML instances are confined to. Even though UML
confines its users, it is prudent to assume that, at some point, someone
will find a hole through which they can escape onto the host. No such
holes are known, but it’s impossible to prove that they don’t exist and,
if one did exist, that it couldn’t be exploited.

This jail will make use of the Linux chroot system call, which
confines a process to a specific directory. You can see the effect of using
the chroot command, which is a wrapper around the system call, to
confine a shell to /sbin.

host# chroot /sbin ./sash
Stand-alone shell (version 3.7)
> -pwd
/

Dike.book Page 216 Wednesday, March 15, 2006 8:16 PM

Jailing UML Instances 217

> -ls
.
..
MAKEDEV

Notice how the current directory is /, but its contents are those of /sbin.
chroot arranges that the directory specified as the jail becomes the
new process’s root directory. The process can do anything it normally
has permissions to do within that directory tree but can’t access any-
thing outside it. This fact forced the choice of sash as the shell to run
within the chroot. Most other shells are dynamically loaded, so they
need libraries from /lib and /usr/lib in order to run. When jailed,
they can no longer access those libraries—even if the libraries are
within the jail, they will be in the wrong location for the dynamic
loader to find, even when the dynamic loader itself can be found.

So, for demo purposes, the easiest way to show how chroot works
is by running a statically linked shell within its own directory. More
serious purposes require constructing a complete but minimal environ-
ment, which we will do now. This environment must contain everything
that the jailed process will need, but nothing else.

We will construct a jail that is surprisingly empty. This provides
as few tools as possible to an attacker who somehow manages to break
out of a UML instance. He or she will want to continue the attack in
order to subvert the host. In order to do this, the attacker will need to
break out of the chroot environment. If there is a vulnerability (and I
am aware of no current holes in chroot), the attacker will need tools
in order to exploit it. Making the chroot environment as empty as it
can be will go some way toward denying him or her these tools.

First we must decide what a UML instance needs in order to sim-
ply boot. Looking at the shared libraries that UML links against and a
typical UML command line gives us a start:

host% ldd linux
 linux-gate.so.1 => (0x003ca000)
 libutil.so.1 => /lib/libutil.so.1 (0x00c87000)
 libc.so.6 => /lib/libc.so.6 (0x0020a000)
 /lib/ld-linux.so.2 (0x001ec000)
host% ./linux con0=fd:0,fd:1 con1=none con=pts ssl=pts \
 umid=debian mem=450M ubda=../../debian30 devfs=nomount

With this UML binary, those libraries would need to be present within
./lib and within the jail in order to even launch it. After launching,
the command line makes a number of other requirements in order for
UML to boot:

Dike.book Page 217 Wednesday, March 15, 2006 8:16 PM

218 Chapter 10 Large UML Server Management

☞ The root filesystem, debian30, needs to be present in the jail, and
not two directory levels higher, as I have it here.

☞ con=pts and ssl=pts require that ./dev/pts exist within the jail.
☞ The UML instance will try to create the umid directory for the pid

file and mconsole socket in the user’s home directory within the
jail.

This would be far from being an empty directory, and it would con-
tain files such as libraries and device nodes that an attacker might find
useful. Fortunately, these requirements can be reduced in some fairly
simple ways.

First, to eliminate the requirement for libraries, we can make the
UML executable statically, rather than dynamically, linked. If
CONFIG_MODE_TT is enabled, UML is linked statically. However, for a
serious server, it is highly recommended that the UML instances use
either skas0, if the server is running an unmodified kernel, or skas3,
if the skas3 patch can be applied to the host kernel. With
CONFIG_MODE_TT disabled, UML will link dynamically. However
desirable this is in general, it complicates setting up a jail. So, a config-
uration option for UML, CONFIG_STATIC_LINK, forces the UML build
to produce a statically linked executable, even when CONFIG_MODE_TT
is disabled.

Enabling CONFIG_STATIC_LINK results in a larger UML binary,
which is slightly less efficient for the host because the UML instances
are no longer sharing library code that they would share if they were
linked dynamically. This is unavoidable—even if you copied the neces-
sary libraries into the jail, each UML instance would have its own copy
of them, so there would still be no sharing. There is a clever way to
have the libraries be present in each jail but still shared with each
other—use the mount --bind capability described earlier to mount the
necessary libraries into the jails.

However, this is too clever—it opens up a possible security hole. If
an attacker were somehow able to break out of a UML instance, gain
access to the jail contents, and modify the libraries, those libraries
would be modified for the entire system. So, if the attacker could add
code to libc, at some point that code would be executed by a root-
owned process, and the host would be subverted. So, for security rea-
sons, we need no shared code between the UML instance and anything
else on the system. Once we have made that decision, there is no fur-
ther cost to statically linking the UML binary.

Dike.book Page 218 Wednesday, March 15, 2006 8:16 PM

Jailing UML Instances 219

The next issue is the /dev/pts requirements imposed by the con-
sole and serial line arguments. These are easy to dispose of by chang-
ing those configurations to ones that require no files in the jail. We
have a variety of possibilities—null, port, fd, and none all fill the
bill. null and none effectively make the consoles and serial lines
unusable. port and fd make them usable from the host outside the
jail. For an fd configuration, you would have to open the necessary file
descriptors and pass them to the UML instance on its command line.

Finally, there is the umid directory. We can’t eliminate it without
losing the ability to control the instance, but we can specify that it be
put someplace other than the user’s home directory within the jail. By
creating a ./tmp directory within the jail and using the uml_dir
switch to UML, we can arrange for the pid file and mconsole socket to
be put there.

At this point, the jail contents look like this:

host% ls -Rl
.:
total 1033664
-rw-rw-r-- 1 jdike jdike 1074790400 Aug 18 17:46 debian30
-rwxrwxr-x 1 jdike jdike 20860108 Aug 18 17:39 linux
drwxrwxr-x 2 jdike jdike 4096 Aug 18 17:46 tmp

./tmp:
total 0

As a quick test of whether UML can boot in this environment and
of its new command-line switches, we can do the following as root in
the jail directory:

host# chroot . ./linux con0=fd:0,fd:1 con1=none con=port:9000 \
 ssl=port:9000 umid=debian mem=450M ubda=debian30 \
 devfs=nomount uml_dir=tmp

It does boot, printing out a couple messages we haven’t seen before:

/proc/cpuinfo not available - skipping CPU capability checks
No pseudo-terminals available - skipping pty SIGIO check

Because /proc and /dev are not available inside the jail, UML
couldn’t perform some of its normal checks of the host’s capabilities.
These are harmless, as the /proc/cpuinfo checks come into play only
on old processors, and the pseudo-terminal test is necessary only when
attaching consoles to host pseudo-terminals, which we are not doing.

Dike.book Page 219 Wednesday, March 15, 2006 8:16 PM

220 Chapter 10 Large UML Server Management

Running UML in this way is useful as a test, but we ran UML as
root, which is very much not recommended. Running UML as a nor-
mal, nonprivileged user is one of the layers of protection the host has,
and running UML as root throws that away. Root privileges are needed
in order to enter the chroot environment, so we need a way to drop
them before running UML.

It is tempting to try something like this:

host# chroot jail su 1000 ./linux ...

However, this won’t work because the su binary must be present inside
the jail, which is undesirable. So, we need something like the following
small C program, which does the chroot, changes its uid to one we
provide on the command line, and executes the remainder of its com-
mand line:

#include <stdio.h>
#include <errno.h>
#include <stdlib.h>

int main(int argc, char **argv)
{
 int uid;
 char *dir, **command, *end;
 if(argc < 3){
 fprintf(stderr, "Usage - do-chroot dir uid \
 command-line...\n");
 exit(1);
 }

 dir = argv[1];
 uid = strtoul(argv[2], &end, 10);
 if(*end != '\0'){
 fprintf(stderr, "the uid \"%s\" isn't a number\n", \
 argv[2]);
 exit(1);
 }
 command = &argv[3];

 if(chdir(dir) < 0){
 perror("chroot");
 exit(1);
 }

 if(chroot(".") < 0){
 perror("chroot");
 exit(1);
 }

Dike.book Page 220 Wednesday, March 15, 2006 8:16 PM

Jailing UML Instances 221

 if(setuid(uid) < 0){
 perror("setuid");
 exit(1);
 }

 execv(command[0], command);
 perror("execv");
 exit(1);
}

This is run as follows:

host# do-chroot jail 1000 ./linux con0=fd:0,fd:1 con1=none \
 con=port:9000 ssl=port:9000 umid=debian mem=450M \
 ubda=debian30 devfs=nomount uml_dir=tmp

Since I am specifying a nonexistent uid, everything in the jail should
be owned by that user in order to prevent permission problems:

host# chown -R 1000.1000 jail

Now UML runs as we would like. It is owned by a nonexistent user, so
it has even fewer permissions on the host than something run by a nor-
mal user.

We saw the contents of the jail directory as we have it set up. With
the UML instance running, there are a couple more things in it:

host% ls -Rl
.:
total 1033664
-rw-rw-r-- 1 1000 1000 1074790400 Aug 18 19:12 debian30
-rwxrwxr-x 1 1000 1000 20860108 Aug 18 17:39 linux
drwxrwxr-x 3 1000 1000 4096 Aug 18 19:12 tmp

./tmp:
total 4
drwxr-xr-x 2 1000 root 4096 Aug 18 19:12 debian

./tmp/debian:
total 4
srwxr-xr-x 1 1000 root 0 Aug 18 19:12 mconsole
-rw-r--r-- 1 1000 root 5 Aug 18 19:12 pid

We also have the mconsole socket and the pid file in the tmp directory.
This is reasonably minimal, but we can do better. Some files are

opened and never closed. In these cases, we can remove the files after
we know that the UML instance has opened them. The instance will be
able to access the file through the open file descriptor and won’t need
the file to actually exist within its jail.

Dike.book Page 221 Wednesday, March 15, 2006 8:16 PM

222 Chapter 10 Large UML Server Management

Chief among these are the UML binary and the filesystem. We can
remove them after we are sure that UML is running and has opened its
filesystem. It is tempting to remove them immediately after executing
UML, but that is somewhat prone to failure because the removals
might run before the UML instance has run or before it has opened its
filesystem.

To avoid this, we can use the MConsole notify mechanism we
saw in Chapter 8. We’ll use a slightly modified version of the Perl script
used in that chapter to read notifications from a UML instance:

use UML::MConsole;
use Socket;
use strict;

@ARGV < 2 and die "Usage : running.pl notify-socket uid";

my $sock = $ARGV[0];
my $uid = $ARGV[1];

!defined(socket(SOCK, AF_UNIX, SOCK_DGRAM, 0)) and
 die "socket failed : $!\n";

!defined(bind(*SOCK, sockaddr_un($sock))) and
 die "UML::new - bind failed : $!\n";

chown $uid, $uid, $sock || die "chown failed - $!";

my ($type, $data) = UML::MConsole->read_notify(*SOCK, undef);
$type ne "socket" and
 die "Expected socket notification, got \"$sock\" " .
 "notification with data \"$data\"";
exit 0;

Running this as root like this:

host# perl running.pl tmp/notify 1000

and adding the following:

mconsole=notify:tmp/notify

to the UML command line will cause the running.pl script to exit
when the instance announces that it has booted sufficiently to respond
to MConsole requests.

At this point, the UML instance is clearly running and has the
root filesystem open, so the UML binary and the filesystem can be
safely removed. Under tmp, there is the MConsole socket and pid file.

Dike.book Page 222 Wednesday, March 15, 2006 8:16 PM

Providing Console Access Securely 223

The pid file is for management convenience, so it can be read and
removed. The MConsole socket can be moved outside the jail, where it’s
inaccessible to anyone who somehow manages to break out of the UML
instance, but where an MConsole client can access it.

The only thing that can’t be removed is the notify socket, which
has to stay where it is so that the UML instance can send notifications
to it. If that socket is removed, you lose an element of control since you
can’t find out if the instance has crashed. If this is OK, you can remove
the socket, and the UML instance will run in a completely empty jail.

One thing we haven’t done here is to provide the UML instance
with a swap device. Like the root filesystem, the swap device file needs
to be in the jail. If it’s removed, it can possibly be lost by the UML
instance. If swapoff is run inside the instance, the block driver will
close the swap device file. When this happens, the instance will lose the
only handle it had to the file. If swapon is subsequently run, the block
driver will attempt to open the file, and fail, since you removed it. This
is not a problem for the root filesystem since, once mounted, it is never
unmounted until the instance is shut down.

One side effect of removing the UML binary is that reboot will
stop working. Rebooting is implemented by exec-ing the binary to get
a clean start for the new instance. If the binary has been removed,
exec will fail. However, this is probably not a big problem since a
reboot is no different from a shutdown followed by a restart.

You need to be careful with the root filesystem. If you simply copy
it into the jail, boot the UML instance, and remove the filesystem file,
the instance will have access to the filesystem as long as it keeps the
file open. When it shuts down, it will close the file, and it will be
removed, along with whatever changes were made to it. To prevent
this, you should keep the filesystem out of the jail and make a hard
link to it from inside the jail. Now there will remain one reference to
the file—the original name for it—and it will not be removed when the
instance closes it.

PROVIDING CONSOLE ACCESS SECURELY

If you’re running a large UML server where you need to be concerned
about the behavior of outsiders, you’re likely going to need a way to
provide console access to the UML instances in a secure way. The obvi-
ous way to do this is to attach the UML consoles to some host device

Dike.book Page 223 Wednesday, March 15, 2006 8:16 PM

224 Chapter 10 Large UML Server Management

and provide some sort of login on the host, where the login shell is a
script that connects the user to the appropriate UML console. That’s
relatively simple, but it does have the disadvantage of providing users
with unjailed access to the host. This sort of script often turns out to
have security holes in it. Some kind of command interpreter inside
might, through a programming mistake, allow a user to execute some
arbitrary command on the host.

There is a way to provide console access that doesn’t require any
new tools to be written and doesn’t give the UML user any unjailed
access to the host.

The idea is to run a separate UML instance that serves as a con-
sole server for the other UML instances on the host. The other
instances have their consoles attached to terminals within this console
server. Each UML administrator has a normal, unprivileged account
on this UML and has access to his or her consoles through these
pseudo-terminals, which have been appropriately protected so as to
allow access only to the administrator for the instance to which they
connect.

I described this mechanism in Chapter 4, as a virtual serial line
running between two UML instances. This is merely an application of
it, with a bit of extra infrastructure. I will go through the process of set-
ting this up for one UML by hand. If you run a large UML host, this
procedure will need to be automated and included in your UML provi-
sioning process.

First, we need to boot two UML instances and establish a virtual
serial line connection between them. We start by finding a console in
the user’s instance that is attached to a host pseudo-terminal. Since I
do so with all spare consoles and serial lines, this is easy:

host% uml_mconsole jeff config con2
OK pts:/dev/pts/11

I attach the slave end of this pseudo-terminal to an unused con-
sole in the console server instance:

host% uml_mconsole console-server config con6=tty:/dev/pts/11
OK

Now I need to create a normal user account for myself in the con-
sole server:

console-server# adduser jeff
console-server# passwd jeff

Dike.book Page 224 Wednesday, March 15, 2006 8:16 PM

skas3 versus skas0 225

Changing password for user jeff.
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.

Since tty6 in the console server is attached to my instance, I need
to own the device file:

chown jeff.jeff /dev/tty6

This allows me to access my instance, and it prevents other unprivi-
leged users from accessing it.

Everything is now set up, and I should be able to log in over the
network to the console server as jeff and from there attach to my
UML instance over this virtual serial line:

[jdike@tp]$ ssh jeff@console-server
jeff@console-server's password:
[jeff@console-server ~]$ screen /dev/tty6

In the screen session, I now have the login prompt from my own
UML instance and can log in to it:

Debian GNU/Linux testing/unstable jeff tty2
jeff login: root
Password:
Last login: Fri Jan 20 22:26:53 2006 on tty2
jeff:~#

This is fairly simple, but it’s a powerful mechanism that allows
your users to log in to their UML instances on a “hardwired” console
without needing accounts on the host. If I kill the network on my
instance, I can log in over a console and fix it. Without a mechanism
like this, I would have to appeal to the host administrator to log in to
my UML instance and fix it for me. Using a UML instance as the con-
sole server increases the security of this arrangement by making it
unnecessary to provide accounts on the host for the UML users.

skas3 VERSUS skas0

The previous chapter contained a discussion of whether to leave the
host unmodified and have the UML instances running in skas0 mode
or to patch the host with the skas3 patch for better performance. Since
we’re now talking about a large UML server and we’re trying to get

Dike.book Page 225 Wednesday, March 15, 2006 8:16 PM

226 Chapter 10 Large UML Server Management

every bit of UML hosting capacity from it, I recommend patching the
host with the skas3 patch.

The reasons were mostly covered in the discussion in the last chap-
ter. You’ll get better performance with skas3 than skas0 for the fol-
lowing reasons.

☞ skas3 creates one host process per UML processor while skas0
creates one per UML process. This consumes host kernel memory
unnecessarily and slows down process creation.

☞ skas3 page faulting performance is better because it has a more
efficient way to get page fault information from the host and to
update the process address space in response to those page faults.

In addition to better performance, skas3 will have somewhat
lower host resource consumption due to the smaller number of pro-
cesses created on the host.

FUTURE ENHANCEMENTS

A number of host kernel enhancements for improving UML perfor-
mance host resource consumption are in the works. Some are working
and ready to be merged into the mainline kernel, and some are experi-
mental and won’t be in the mainline kernel for a while.

sysemu

Starting with the mature ones, the sysemu patch adds a ptrace
option that allows host system calls to be intercepted and nullified with
one call to ptrace, rather than two. Without this patch, in order to
intercept system calls, a process must intercept them both at system
call entry and exit. A tool like strace needs to make the two calls to
ptrace on each system call because the tool needs to print the system
call when it starts, and it needs to print the return value when it exits.
For something like UML, which nullifies the system call and doesn’t
need to see both the system call entry and exit, this is one ptrace call
and two context switches too many.

This patch noticeably speeds up UML system calls, as well as
workloads that aren’t really system call intensive. A getpid() loop is
faster by about 40%. A kernel build, which is a somewhat more repre-
sentative workload than a getpid() loop, is faster by around 3%.

Dike.book Page 226 Wednesday, March 15, 2006 8:16 PM

Future Enhancements 227

This improvement is not related to the skas3 patch at all. It is
purely to speed up system call nullification, which UML has to do no
matter what mode it is running in.

The sysemu patch went into the mainline kernel in 2.6.14, so if your
host is running 2.6.14 or later, you already have this enhancement.

PTRACE_FAULTINFO

PTRACE_FAULTINFO is another patch that has been around for a long
time. It is part of the skas3 patch but will likely be split out since it’s
less objectionable than other parts of skas3, such as /proc/mm.
PTRACE_FAULTINFO is used by UML in either skas mode in order to
extract page fault information from a UML process. skas0 mode has a
less efficient way to do this but will detect the presence of
PTRACE_FAULTINFO and use it if present on the host.

MADV_TRUNCATE

This is a relatively new patch from Badari Pulavarty of IBM. It allows
a process to throw out modified data from a tmpfs file it has mapped.
Rather than being a performance improvement like the previous
patches, MADV_TRUNCATE reduces the consumption of host memory by
its UML instances.

The problem this solves is that memory-mapped files, such as
those used by UML for its physical memory, preserve their contents.
This is normally a good thing. If you put some data in a file and it later
just disappeared, you would be rather upset. However, UML sometimes
doesn’t care if its data disappears. When a page of memory is freed
within the UML kernel, the contents of that page doesn’t matter any-
more. So, it would be perfectly alright if the host were to free that page
and use it for something else. When that page of UML physical mem-
ory was later allocated and reused, the host would have to provide a
page of its own memory, but it would have an extra page of free mem-
ory in the meantime.

I made an earlier attempt at creating a solution, which involved a
device driver, /dev/anon, rather than an madvise extension. The
driver allowed a process to map memory from it. This memory had the
property that, when it was unmapped, it would be freed. /dev/anon
mostly worked, but it was never entirely debugged.

Dike.book Page 227 Wednesday, March 15, 2006 8:16 PM

228 Chapter 10 Large UML Server Management

Both /dev/anon and MADV_TRUNCATE are trying to do the same
thing—poke a hole in a file. A third proposed interface, a system call
for doing this, may still come into existence at some point.

The main benefit of these solutions is that it provides a mecha-
nism for implementing hot-plug memory. The basic idea of hot-plug
memory on virtual machines is that the guest contains a driver that
communicates with the host. When the host is short of memory and
wants to take some away from a guest, it tells the driver to remove
some of the guest’s memory. The guest does this simply by allocating
memory and freeing it on the host. If the guest doesn’t have enough
free memory, it will start swapping out data until it does.

When the host wants to give memory back to a guest, it simply
tells the driver to free some of its allocated memory back to the UML
kernel.

This gives us what we need to avoid the pathological interaction
between the host and guest virtual memory systems I described in
Chapter 2. To recap, suppose that both the host and the guest are short
of memory and are about to start swapping memory. They will both
look for pages of memory that haven’t been recently used to swap out.
They will both likely find some of the same pages. If the host manages
to write one of these out before the guest does, it will be on disk, and its
page of memory will be freed. When the guest decides to write it out to
its swap, the host will have to read it back in from swap, and the guest
will immediately write it out to its own swap device.

So, that page of memory has made three trips between memory
and disk when only one was necessary. This increased the I/O load on
the host when it was likely already under I/O pressure. Reading the
page back in for the benefit of the guest caused the host to allocate
memory to hold it, again when it was already under memory pressure.

To make matters even worse, to the host, that page of memory is
now recently accessed. It won’t be a candidate for swapping from the
host, even though the guest has no need for the data.

Hot-pluggable memory allows us to avoid this by ensuring that
either the host or the UML instances swap, but not both. If the UML
instances are capable of swapping—that is, the host administrator
gave them swap devices—we should manage the host’s memory to min-
imize its swapping. This can be done by using a daemon on the host
that monitors the memory pressure in the UML instances and the host.
When the host is under memory pressure and on the verge of swap-
ping, the daemon can unplug some memory from an idle UML instance
and release it to the host.

Dike.book Page 228 Wednesday, March 15, 2006 8:16 PM

Future Enhancements 229

Hot-plug memory also allows the UML instances to make better
use of the host’s memory. By unplugging some memory from an idle
UML instance and plugging the same amount into a busy one, it will
effectively transfer the memory from one to the other. When some UML
instances will typically be idle at any given time, this allows more of
them to run on the host without consuming more host memory. When
an idle UML instance wakes up and becomes busy again, it will receive
some memory from an instance that is now idle.

Since the MADV_TRUNCATE patch is new, it is uncertain when it
will be merged into the mainline kernel and what the interface to it
will be when it is. Whatever the interface ends up being, UML will use
it in its hot-plug memory code. If MADV_TRUNCATE is not available in a
mainline kernel, it will be available as a separate patch.

The interface to plug and unplug UML physical memory likely
will remain as it is, regardless of the host interface. This uses the
MConsole protocol to treat physical memory as a device that can be
reconfigured dynamically. Removing some memory is done like this:

host% uml_mconsole debian config mem=-64M

This removes 64MB of memory from the specified UML instance.
The relevant memory statistics inside the UML (freshly booted,

with 192MB of memory) before the removal look like this:

UML# grep Mem /proc/meminfo
MemTotal: 191024 kB
MemFree: 117892 kB

Afterward, they look like this:

UML# grep Mem /proc/meminfo
MemTotal: 191024 kB
MemFree: 52172 kB

Just about what we would expect. The memory can be plugged back in
the same way with:

host% uml_mconsole debian config mem=+64M

That brings us basically back to where we started:

UML# grep Mem /proc/meminfo
MemTotal: 191024 kB
MemFree: 117396 kB

Dike.book Page 229 Wednesday, March 15, 2006 8:16 PM

230 Chapter 10 Large UML Server Management

The main limitation to this currently is that you can’t plug arbi-
trary amounts of memory into a UML instance. It can’t end up with
more than it had when it was booted because a kernel data structure
that is sized according to the physical memory size at boot can’t be
changed later. It is possible to work around this by assigning UML
instances a very large physical memory at boot and immediately
unplugging a lot of it.

This limitation may not exist for long. People who want Linux to
run on very large systems are doing work that would make this data
structure much more flexible, with the effect for UML that it could add
memory beyond what it had been booted with.

Since this capability is brand new, the UML management implica-
tions of it aren’t clear at this point. It is apparent that there will be a
daemon on the host monitoring the memory usage of the host and the
UML instances and shuffling memory around in order to optimize its
use. What isn’t clear is exactly what this daemon will measure and
exactly how it will implement its decisions. It may occasionally plug
and unplug large amounts of memory, or it may constantly make small
adjustments.

Memory hot-plugging can also be used to implement policy. One
UML instance may be considered more important than another (possi-
bly because its owner paid the hosting company some extra money) and
will have preferential access to the host’s memory as a result. The dae-
mon will be slower to pull memory from this instance and quicker to
give it back.

All of this is in the future since this capability is so new. It will be
used to implement both functionality and policy. I can’t give recommen-
dations as to how to use this capability because no one has any experi-
ence with it yet.

remap_file_pages

Ingo Molnar spent some time looking at UML performance and at ways
to increase it. One of his observations was that the large number of vir-
tual memory areas in the host kernel hurt UML performance. If you
look in /proc/<pid>/maps for the host process corresponding to a
UML process, you will see that it contains a very large number of
entries. Each of these entries is a virtual memory area, and each is typ-
ically a page long. If you look at the corresponding maps for the same
process inside the UML instance, you will see basically the same areas

Dike.book Page 230 Wednesday, March 15, 2006 8:16 PM

Future Enhancements 231

of virtual memory, except that they will be much fewer and much
larger.

This page-by-page mapping of host memory creates data struc-
tures in the host kernel and slows down the process of searching, add-
ing, and deleting these mappings. This, in turn, hurts UML
performance.

Ingo’s solution to this was to create a new system call,
remap_file_pages, that allows pages within one of these virtual
memory areas to be rearranged. Thus, whenever a page is mapped into
a UML process address space, it is moved around beneath the virtual
memory area rather than creating a new one. So, there will be only one
such area on the host for a UML process rather than hundreds and
sometimes thousands.

This patch has a noticeable impact on UML performance. It has
been around for a while, and Paolo Giarrusso has recently resurrected
it, making it work and splitting it into pieces for easier review by the
kernel development team. It is a candidate for inclusion into Andrew
Morton’s kernel tree. It was sent once but dropped because of clashes
with another patch. However, Andrew did encourage Paolo to keep it
maintained and resubmit it again.

VCPU

VCPU is another of Ingo’s patches. This deals with the inefficiency of the
ptrace interface for intercepting system calls. The idea, which had
come up several times before, is to have a single process with a “privi-
leged” context and an “unprivileged” context. The process starts in the
privileged context and eventually makes a system call that puts it in
the unprivileged context. When it receives a signal or makes a system
call, it returns through the original system call back to the privileged
context. Then it decides what to do with the signal or system call.

In this case, the UML kernel would be the privileged context and
its processes would be unprivileged contexts. The behavior of regaining
control when another process makes a system call or receives a signal
is exactly what ptrace is used for. In this case, the change of control
would be a system call return rather than a context switch, reducing
the overhead of doing system call and signal interception.

Dike.book Page 231 Wednesday, March 15, 2006 8:16 PM

232 Chapter 10 Large UML Server Management

FINAL POINTS

Managing a large UML server requires attention to a number of areas
that aren’t of great concern with a smaller server. Security requires
some care. In order to run a secure installation, I recommend the fol-
lowing guidelines.

☞ The host should be running a fairly recent kernel. This will give
you the performance enhancements that are trickling into the
mainline kernel. Also consider applying some of the other patches
I have mentioned. In particular, the file-punching patch, which is
currently MADV_TRUNCATE, creates a number of new possibilities
for UML management and hosting policy.

☞ Configure the UML instances carefully. Loadable module support
should definitely be disabled, as should tt mode support. If access
to host filesystems is provided, those filesystems should be bind-
mounted into the UML jail. They should also be read-only if possi-
ble.

☞ Jail the UML instances tightly. The jail should be as minimal as
you can make it, consistent with your other goals. I expect that the
jailing will never be exercised since I know of no way for anyone to
break out of a properly configured UML instance. However, a good
jail will provide another level of security in the event of a configu-
ration error or an exploitable escape from UML.

Dike.book Page 232 Wednesday, March 15, 2006 8:16 PM

233

C H A P T E R 11

Compiling UML from Source

So far we have been playing with a UML kernel binary that we had no
hand in creating. Now we will see what’s involved with building a UML
binary from source.

The process is exactly the same as building a kernel for the host—
download the source, configure it, and then build it. The kernel build
procedure can be daunting for someone who has never done it before; if
the kernel isn’t configured correctly, it is reasonably likely not to recog-
nize all of the system’s hardware. If one of the unrecognized devices is
the boot disk, the kernel won’t even boot.

With UML, things are simpler. There are far fewer configuration
options because there is a much greater variety of physical devices pos-
sibly present on the host than there are virtual devices available for
UML. For example, there is one UML block driver, which can be used to
access anything on the host that looks like a file—normal files, disks
and disk partitions, CD and DVD drives, floppies, and so on. This one
driver is the functional equivalent of a large menu hierarchy on the
host. As a result, the number of choices and the depth of menus are far
less for UML than for the host architecture, and the configuration pro-
cess is much less complicated.

Dike.book Page 233 Wednesday, March 15, 2006 8:16 PM

234 Chapter 11 Compiling UML from Source

A further benefit is that the default UML configuration will build
and boot. It may not be exactly what you want, but it will work. To get
what you want may take some tweaking of the configuration and
rebuilding. If you get a nonworking configuration at some point, you
know what change you need to undo in order to get back to a working
configuration.

DOWNLOADING UML SOURCE

Before you can build UML from source, you need some sources to build.
UML is in the mainline 2.6 kernel tree. The process of releasing
patches to mainline is done so as to make the main releases as stable
and as functional as possible. Patches are considered ready to submit
from my development tree to mainline when they have been suffi-
ciently tested. For an obvious bug fix, this can involve just booting and
running a UML with the patch. Other, more intrusive patches have
stayed for many months in my development tree before being sent to
mainline.

So, one of the main 2.6 kernel releases, normally the later the bet-
ter, is a good place to start for UML. The “stable” kernel tree main-
tained by Greg Kroah-Hartman and Chris Wright is another good
choice. This tree is the same as the corresponding release from Linus,
except for a few additional small, critical bug fixes. There normally
aren’t any additional UML bug fixes in this tree, so it is usually identi-
cal to the release from Linus as far as UML is concerned. Occasionally,
there is a UML fix here, which will be clear from the change log, and
then this would be the recommended kernel tree to start with.

Both of these kernel trees are available from http://www.kernel.org
and its mirrors—the stable tree is actually more accessible than Linus’
releases. When there is a stable version of the latest kernel, it is avail-
able from the main page of http://www.kernel.org, while in order to get
the corresponding Linus release, you need to go digging. Successful dig-
ging will produce the directory http://www.kernel.org/pub/linux/kernel/
v2.6, where you will find all of Linus’ kernels.

Whichever tree you decide to use, it is one download away:

host% wget http://kernel.org/pub/linux/kernel/v2.6/\
 linux-2.6.12.5.tar.bz2
--22:49:05-- http://kernel.org/pub/linux/kernel/v2.6/\
 linux-2.6.12.5.tar.bz2
 => `linux-2.6.12.5.tar.bz2'

Dike.book Page 234 Wednesday, March 15, 2006 8:16 PM

Configuration 235

Resolving kernel.org... 204.152.191.37, 204.152.191.5
Connecting to kernel.org[204.152.191.37]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 37,398,284 [application/x-bzip2]

100%[====================================>] 37,398,284 \
 471.35K/s ETA 00:00

22:50:08 (580.21 KB/s) - `linux-2.6.12.5.tar.bz2' saved \
 [37,398,284/37,398,284]

This is a compressed tar file, so it needs to be uncompressed and
unpacked:

host% bunzip2 linux-2.6.12.5.tar.bz2
host% tar xf linux-2.6.12.5.tar

At this point, we have a linux-2.6.12.5 subdirectory in which there
is a kernel tree.

host% cd linux-2.6.12.5
host% ls
COPYING MAINTAINERS REPORTING-BUGS drivers init \
 lib scripts usr
CREDITS Makefile arch fs ipc \
 mm security
Documentation README crypto include kernel \
 net sound

Now the UML tree is ready to be configured and built.

CONFIGURATION

Before describing the various configuration interfaces, I should point
out that it is highly recommended to run defconfig before doing any-
thing else. I describe exactly why later in this section, but, for now, suf-
fice it to say that doing so will give you a UML configuration that is
much more likely to boot and run.

There are a variety of kernel configuration interfaces, ranging
from the almost completely hands-off oldconfig to the graphical and
fairly user-friendly xconfig. Here are the major choices.

☞ xconfig presents a graphical kernel configuration, with a tree
view of the configuration on one side. Selecting a branch there dis-
plays the options on that branch in another pane. Selecting one of
these options displays the help for that option in a third pane.

Dike.book Page 235 Wednesday, March 15, 2006 8:16 PM

236 Chapter 11 Compiling UML from Source

Clicking repeatedly on an option causes it to cycle through its
possible settings. Normally, these choices are Enable versus Dis-
able or Enable versus Modular versus Disable. Enable means that
the option is built into the final kernel binary, Disable means that
it’s simply turned off, and Modular means that the option is com-
piled into a kernel module that can be inserted into the kernel at
some later point. Some options have numeric or string values.
Double-clicking on these opens a little pane in which you can type
a new value. The main menu for the UML configuration is shown
in Figure 11.1.

☞ menuconfig presents the same menu organization as text in your
terminal window. Navigation is done by using the up and down
arrow keys and by typing the highlighted letters as shortcuts. The
Tab key cycles around the Select, Exit, and Help buttons at the
bottom of the window. Choosing Select enters a submenu—Exit

Figure 11.1 The xconfig configurator

Dike.book Page 236 Wednesday, March 15, 2006 8:16 PM

Configuration 237

leaves it and returns to the parent menu. Help displays the help
for the current option. Hitting the spacebar will cycle through the
settings for the current option. Empty brackets next to an option
mean that it is disabled. An asterisk in the brackets means that it
is enabled, and an “M” means that it is a module. When you are
done choosing options, you select the Exit button repeatedly until
you exit the top-level menu and are asked whether to keep this
configuration or discard it. Figure 11.2 shows menuconfig run-
ning in an xterm window displaying the main UML-specific con-
figuration menu.

☞ config is the simplest of the interactive configuration options. It
asks you about every configuration option, one at a time. On a
native x86 kernel, this is good for a soul-deadening afternoon. For
UML, it’s not nearly as bad, but this is still not the configuration
method of choice.

Figure 11.2 The xconfig configurator

Dike.book Page 237 Wednesday, March 15, 2006 8:16 PM

238 Chapter 11 Compiling UML from Source

Some lesser-known configuration choices are useful in some situations.

☞ gconfig is a graphical configurator that’s similar to xconfig. It’s
based on the GTK toolkit (which underlies the GNOME desktop
environment) rather than the QT toolkit (which underlies the
KDE desktop environment) as xconfig is. gconfig’s behavior is
nearly the same as xconfig’s with the exception that checkboxes
invite you to click on them, but they do nothing when you do.
Instead, there are N, M, and Y columns on the right, as shown in
Figure 11.3, which you can click in order to set options.

☞ oldconfig is one of the mostly noninteractive configurators. It
gives you a default configuration, with values taken from .config
in the kernel tree if it’s there, from the host’s own configuration, or
from the architecture’s default configuration when all else fails. It
does ask about options for which it does not have defaults.

☞ randconfig provides a random configuration. This is used to test
the kernel build rather than to produce a useful kernel.

Figure 11.3 The gconfig configurator

Dike.book Page 238 Wednesday, March 15, 2006 8:16 PM

Configuration 239

☞ defconfig provides a default configuration, using the defaults
provided by the architecture.

☞ allmodconfig provides a configuration in which everything that
can be configured as a module is. This is used either to get the
smallest possible kernel binary for a given configuration or to test
the kernel build procedure.

☞ allnoconfig provides a configuration with everything possible
disabled. This is also used for kernel build testing rather than for
producing useful kernels.

One important thing to remember throughout this process is that
any time you run make in a UML pool, it is essential to put ARCH=um on
the command line. This is because UML is a different architecture from
the host, just like PowerPC (ppc) is a different architecture from PC
(i386). UML’s architecture name in the kernel pool is um. I dropped the
l from uml because I considered it redundant in a Linux kernel pool.

Because the kernel build procedure will build a kernel for the
machine on which it’s running unless it’s told otherwise, we need to tell
it otherwise. This is the purpose of the ARCH=um switch—it tells the
kernel build procedure to build the um architecture, which is UML,
rather than the host architecture, which is likely i386.

If you forget to add the ARCH=um switch at any point, as all of us
do once in a while, the tree is likely to be polluted with host architec-
ture data. I clean it up like this:

host% make mrproper
host% make mrproper ARCH=um

This does a full clean of both UML and the host architectures so
that everything that was changed is cleaned up. Then, restart by redo-
ing the configuration.

So, with that in mind, you can configure the UML kernel with
something as simple as this:

host% make defconfig ARCH=um

This will give you the default configuration, which is recommended if
this is the first time you are building UML. In this case, feel free to
skip over to where we build UML. Otherwise, I’m going to talk about a
number of UML-specific configuration options that are useful to know.

I recommend starting with defconfig before fine-tuning the
UML configuration with another configurator. This is because, when

Dike.book Page 239 Wednesday, March 15, 2006 8:16 PM

240 Chapter 11 Compiling UML from Source

starting with a clean tree, the other configurators look for a default
configuration to start with. Unfortunately, they look in /boot and find
the configuration for the host kernel, which is entirely unsuitable for
UML. Using a configuration that started like this is likely to give you a
UML that is missing many essential drivers and won’t boot. Running
defconfig as the first step, before anything else, will start you off
with the default UML configuration. This configuration will boot, and
the configuration you end up with after customizing it will likely boot
as well. If it doesn’t, you know what configuration changes you made
and which are likely to have caused the problem.

Useful Configuration Options

Execution Mode-Specific Options
A number of configuration options are related to UML’s execution
mode. These are largely associated with tt mode, which may not exist
by the time you read this. But it may still be present, and you may have
to deal with a version of UML that has it.

☞ MODE_TT and MODE_SKAS are the main options controlling UML’s
execution mode. They decide whether support for tt and skas
modes, respectively, are compiled into the UML kernel. skas0
mode is part of MODE_SKAS. With MODE_TT disabled, tt mode is
not available. Similarly, with MODE_SKAS disabled, skas3 and
skas0 modes are not available. If you know you don’t need one or
the other, disabling an option will result in a somewhat smaller
UML kernel. Having both enabled will produce a UML binary that
tests the host’s capabilities at runtime and chooses its execution
mode accordingly.

Given a UML with skas0 support, MODE_TT really isn’t needed
since skas0 will run on a standard, unmodified host. This used to
be the rationale for tt mode, but skas0 mode makes it obsolete.
At this point, the only reason for tt mode is to see if a UML prob-
lem is skas specific. In that case, you’d force UML to run in tt
mode and see if the problem persists. Aside from this, MODE_TT
can be safely disabled.

☞ STATIC_LINK forces the build to produce a statically linked
binary. This is an option only when MODE_TT is disabled because a
UML kernel with tt mode compiled in must be statically linked.
With tt mode absent, the UML kernel is linked dynamically by

Dike.book Page 240 Wednesday, March 15, 2006 8:16 PM

Configuration 241

default. However, as we saw in the last chapter, a statically linked
binary is sometimes useful, as it simplifies setting up a chroot
jail for UML.

☞ NEST_LEVEL makes it possible to run one UML inside another.
This requires a configuration option because UML maps code and
data into its own process address spaces in tt and skas0 modes.
In tt mode, the entire UML kernel is present. In skas0 mode,
there are just the two stub pages.

When the UML process is another instance of UML, they will
both want to load that data at the same location in the address
space unless something is done to change that. NEST_LEVEL
changes that. The default value is 0. By changing it to 1, you will
build a UML that can run inside another UML instance. It will
map its data lower in its process address spaces than the outer
UML instance, so they won’t conflict with each other.

This is a total nonissue with skas3 mode since the UML kernel
and its processes are in different address spaces. You can run a
skas3 UML inside another UML without needing to specially con-
figure either one.

☞ HOST_2G_2G is necessary for running a tt or skas0 UML on
hosts that have the 2GB/2GB address space split. With this option
enabled on the host, the kernel occupies the upper 2GB of the
address space rather than the usual 1GB. This is uncommon but is
sometimes done when the host kernel needs more address space
for itself than the 1GB it gets by default. This allows the kernel to
directly access more physical memory without resorting to Highmem.

The downside of this is that processes get only the lower 2GB of
address space, rather than the 3GB they get normally. Since UML
puts some data into the top of its process address spaces in both
tt and skas0 modes, it will try to access part of the kernel’s
address space, which is not allowed. The HOST_2G_2G option
makes this data load into the top of a 2GB address space.

☞ CMDLINE_ON_HOST is an option that makes UML management on
the host slightly easier. In tt mode, UML will make the process
names on the host reflect the UML processes running in them,
making it easy to see what’s happening inside a UML from the
host. This is accomplished through a somewhat nasty trick that
ensures there is space on the initial UML stack to write this infor-
mation so that it will be seen on the host. However, this trick,
which involves UML changing its arguments and exec-ing itself,

Dike.book Page 241 Wednesday, March 15, 2006 8:16 PM

242 Chapter 11 Compiling UML from Source

confuses some versions of gdb and makes it impossible to debug
UML. Since this behavior is specific to tt mode, it is not needed
when running in skas mode, even if tt mode support is present in
the binary.

This option controls whether the exec takes place. Disabling it
will disable the nice process names on the host, but those are
present only in tt mode anyway.

☞ PT_PROXY is a tt mode–specific debugging option. Because of the
way that UML uses ptrace in tt mode, it is difficult to use gdb to
debug it. The tracing thread uses ptrace on all of the other
threads, including when they are running in the kernel. gdb uses
ptrace in order to control the process it has debugged, and two
processes can’t simultaneously use ptrace on a single process.

In spite of this, it is possible to run gdb on a UML thread, in a
clever but fairly nasty way. The UML tracing thread uses ptrace
on gdb, intercepting its system calls. It emulates some of them in
order to fake gdb into believing that it has successfully attached to
a UML process and is controlling it. In reality, gdb isn’t attached
to or controlling anything. The UML tracing thread is actually
controlling the UML thread, intercepting gdb operations and per-
forming them itself.

This behavior is enabled with the PT_PROXY operation. It gets
its name from the ptrace operation proxying that the UML trac-
ing thread does in order to enable running gdb on a tt mode
UML. At runtime, this is invoked with the debug switch. This
causes the tracing thread to start an xterm window with the cap-
tive gdb running inside it.

Debugging a skas mode UML with gdb is much simpler. You
can simply start UML under the control of gdb and debug it just
as you would any other process.

☞ The KERNEL_HALF_GIGS option controls the amount of address
space that a tt mode UML takes for its own use. This is similar to
the host 2GB/2GB option mentioned earlier, and the motivation is
the same. A larger kernel virtual address space allows it to directly
access more physical memory without resorting to Highmem.

The value for this option is an integer, which specifies how
many half-gigabyte units of address space that UML will take for
itself. The default value is 1—increasing to 2 would cause UML to
take the upper 1GB, rather than .5GB, for itself.

Dike.book Page 242 Wednesday, March 15, 2006 8:16 PM

Configuration 243

In skas mode, with tt mode disabled, this is irrelevant. Since
the kernel is in its own address space, it has a full process address
space for its own use, and there’s no reason to want to carve out a
large chunk of its process address spaces.

Generic UML Options
A number of other configuration options don’t depend on UML’s execu-
tion mode. Some of these are shared with other Linux architectures but
differ in interesting ways, while others are unique to UML.

☞ The SMP and NR_CPUS options have the same meaning as with any
other architecture—SMP controls whether the UML kernel will be
able to support multiple processors, and NR_CPUS controls the
maximum number of processors the kernel can use.

However, SMP on UML is different enough from SMP on physi-
cal hardware to warrant a discussion. Having an SMP virtual
machine is completely independent from the host being SMP. An
SMP UML instance has multiple virtual processors, which do not
map directly to physical processors on the host. Instead, they map
directly to processes on the host. If the UML instance has more
virtual processors than the host has physical processors, the vir-
tual processors will just be multiplexed on the physical ones by the
host scheduler. Even if the host has the same or a greater number
of processors than the UML instance, it is likely that the virtual
processors will get timesliced on physical processors anyway, due
to other demands on the host.

An SMP UML instance can even be run on a uniprocessor host.
This will lose the concurrency that’s possible on an SMP host, but
it does have its uses. Since having multiple virtual processors
inside the UML instance translates into an equal number of
potentially running processes on the host, a greater number of vir-
tual processors provides a greater call on the host’s CPU consump-
tion. A four-CPU UML instance will be able to consume twice as
much host CPU time as a two-CPU instance because it has twice
as many processes on the host possibly running.

Running an SMP instance on a host with a different number of
processors is also useful for kernel debugging. The multiplexing of
virtual processors onto physical ones can open up timing holes
that wouldn’t appear on a physical system. This can expose bugs
that would be very hard or impossible to find on physical hardware.

Dike.book Page 243 Wednesday, March 15, 2006 8:16 PM

244 Chapter 11 Compiling UML from Source

NR_CPUS limits the maximum number of processors that an
SMP kernel will support. It does so by controlling the size of some
internal data structures that have NR_CPUS elements. Making
NR_CPUS unnecessarily large will waste some memory and maybe
some CPU time by making the CPU caches less effective but is
otherwise harmless.

☞ The HIGHMEM option also means the same thing as it does on the
host. If you need more physical memory than can be directly
mapped into the kernel’s address space, what’s left over must be
Highmem. It can’t be used for as many purposes as the directly
mapped memory, and it must be mapped into the kernel’s address
space when needed and unmapped when it’s not. Highmem is per-
fect for process memory on the host since that doesn’t need to be
mapped into the kernel’s address space.

This is true for tt mode UML instances, as well, since they fol-
low the host’s model of having the kernel occupy its process
address spaces. However, for skas UML instances, which are in a
different address space entirely, kernel access to process memory
that has been mapped from the Highmem area is slow. It has to
temporarily map the page of memory into its address space before
it has access to it. This is one of the few examples of an operation
that is faster in tt mode than in skas mode.

The mapping operation is also slower for UML than for the host,
making the performance cost of Highmem even greater. However,
the need for Highmem is less because of the greater amount of
physical memory that can be directly mapped into the skas kernel
address space.

☞ The KERNEL_STACK_ORDER option is UML-specific and is some-
what specialized. It was introduced in order to facilitate running
valgrind on UML. valgrind creates larger than normal signal
frames, and since UML receives interrupts as signals, signal frames
plus the normal call stack have to fit on a kernel stack. With
valgrind, they often didn’t, due to the increased signal frame size.

This was later found to be useful in a few other cases. Some people
doing kernel development in UML discovered that their code was
overflowing kernel stacks. Increasing the KERNEL_STACK_ORDER
parameter is useful in demonstrating that their system crashes
are due to stack overflows and not something else, and to allow
them to continue working without immediately needing to reduce
their stack usage.

Dike.book Page 244 Wednesday, March 15, 2006 8:16 PM

Configuration 245

☞ By default, 3_LEVEL_PGTABLES is disabled on 32-bit architec-
tures and enabled on 64-bit architectures. It is not available to be
disabled in the 64-bit case, but it can be enabled for a 32-bit archi-
tecture. Doing this provides UML with the capability to access
more than 4GB of memory, which is the two-level pagetable limit.
This provides a way to experiment with very large physical mem-
ory UML instances on 32-bit hosts. However, the portion of this
memory that can’t be directly mapped will be Highmem, with the
performance penalties that I have already mentioned.

☞ The UML_REAL_TIME_CLOCK option controls whether time inter-
vals within UML are made to match real time as much as possible.
This matters because the natural way for time to progress within
a virtual machine is virtually—that is, time progresses within the
virtual machine only when it is actually running on the host. So, if
you start a sleep for two seconds inside the UML instance and the
host does other things for a few seconds before scheduling the
instance, then five seconds or so will pass before the sleep ends.
This is correct behavior in a sense—things running within the
UML instance will perceive that time flows uniformly, that is, they
will see that they can consistently do about the same amount of
work in a unit of time. Without this, in the earlier example, a pro-
cess would perceive the sleep ending immediately because it did
no work between the start of the sleep and its end since the host
had scheduled something else to run.

In another sense, this is incorrect behavior. UML instances
often have people interacting with them, and those people exist in
real time. When someone asks for a five-second pause, it really
should end in five real seconds, not five virtual ones. This behavior
has actually broken tests. Some Perl regression tests run timers
and fail if they take too long to expire. They measure the time dif-
ference by using gettimeofday, which is tied to the host’s get-
timeofday. When gettimeofday is real time and interval timers
are virtual, there is bound to be a mismatch.

So, the UML_REAL_TIME_CLOCK option was added to fix this
problem. It is enabled by default since that is the behavior that
almost everyone wants. However, in some cases it’s not desired, so
it is a configuration option, rather than hard coded. Intervals are
measured by clock ticks, which on UML are timer interrupts from
the host. The real-time behavior is implemented by looking at how
many ticks should have happened between the last tick and the

Dike.book Page 245 Wednesday, March 15, 2006 8:16 PM

246 Chapter 11 Compiling UML from Source

current one. Then the generic kernel’s timer routine is called that
many times. This makes the UML clock catch up with the real one,
but it does so in spurts. Time stops for a while, and then it goes
forward very quickly to catch up.

When you are debugging UML, you may have it stopped at a
gdb prompt for a long time. In this case, you don’t want the UML
instance to spend time in a loop calling the timer routine. For
short periods of time, this isn’t noticeable. However, if you leave
the debugger for a number of hours before continuing it, there will
be a noticeable pause while the virtual clock catches up with the
real one.

Another case is when you have a UML instance running on a
laptop that is suspended overnight. When you wake it up, the
UML instance will spend a good amount of time catching up with
the many hours of real time it missed. In this case, the UML
instance will appear to be hung until it catches up. If either of
these situations happens enough to be annoying, and real-time
timers aren’t critical, you can disable this option.

Virtual Hardware Options
UML has a number of device drivers, each with its own configuration
option. I’m going to mention a few of the less obvious ones here.

☞ The MCONSOLE option enables the MConsole driver, which is
required in order to control and configure the instance through an
MConsole client. This is on by default and should remain enabled
unless you have a good reason to not want it.

☞ The MAGIC_SYSRQ option is actually a generic kernel option but is
related to MCONSOLE through the MConsole sysrq command.
Without MAGIC_SYSRQ enabled, the sysrq command won’t work.

☞ The UML_RANDOM option enables a “hardware” random number
generator for UML. Randomness is often a problem for a server
that needs random numbers to seed ssh or https sessions. Desk-
top machines can rely on the user for randomness, such as the
time between keystrokes or mouse movements. Physical servers
rely on randomness, such as the time between I/O interrupts, from
their drivers, which is sometimes insufficient.

Virtual machines have an even harder time since they have
fewer sources of randomness than physical machines. It is not
uncommon for ssh or https key generation to hang for a while

Dike.book Page 246 Wednesday, March 15, 2006 8:16 PM

Configuration 247

until the UML instance acquires enough randomness. The UML
random number generator has access to all of the host’s random-
ness from the host’s /dev/random, rather than having to gener-
ate it all itself. If the host has problems providing enough random
numbers, key generation and other randomness-consuming opera-
tions will still hang. But they won’t hang for as long as they would
without this driver.

In order to use this effectively, you need to run the hwrng tools
within the UML instance. This package reads randomness from
/dev/hwrng, which is attached to this driver, and feeds it into
/dev/random, from where the randomness is finally consumed.

☞ The MMAPPER option implements a virtual iomem driver. This
allows a host file to be used as an I/O area that is mapped into the
UML instance’s physical memory. This specialized option is mostly
used for writing emulated drivers and cluster interconnects.

☞ The WATCHDOG and UML_WATCHDOG options implement a “hard-
ware” watchdog for UML. The “hardware” portion of it is a process
running outside of UML. This process is started when the watch-
dog device is opened within the UML instance and communicates
with the driver through a pipe. It expects to receive some data
through that pipe at least every 60 seconds. This happens when
the process inside the UML instance that opened the device writes
to it. If the external watchdog process doesn’t receive input within
60 seconds, it presumes that the UML instance is hung and takes
measures to deal with it.

If it was told on its command line that there is an MConsole
notify socket, it will send a “hang” notification there. (We saw this
in Chapter 8.) Otherwise, it will kill the UML instance itself by
sending the main process a sufficiently severe signal to shut it down.

Networking
A number of networking options control how the UML instance can
exchange packets with the host and with other UML instances.
UML_NET enables UML networking—it must be enabled for any net-
work drivers to be available at all. The rest each control a particular
packet transport, and their names should be self-explanatory:

☞ UML_NET_ETHERTAP

☞ UML_NET_TUNTAP

Dike.book Page 247 Wednesday, March 15, 2006 8:16 PM

248 Chapter 11 Compiling UML from Source

☞ UML_NET_SLIP

☞ UML_NET_DAEMON

☞ UML_NET_MCAST

☞ UML_NET_PCAP

☞ UML_NET_SLIRP

UML_NET and all of the transport options are enabled by default.
Disabling ones that will not be needed will save a small amount of
code.

Consoles
A similar set of console and serial line options control how they can be
connected to devices on the host. Their names should also be self-
explanatory:

☞ NULL_CHAN

☞ PORT_CHAN

☞ PTY_CHAN

☞ TTY_CHAN

☞ XTERM_CHAN

The file descriptor channel, which, by default, the main console
uses to attach itself to stdin and stdout, is not configurable. It is
always on because people were constantly disabling it and sending
mail to the UML mailing lists wondering why UML wouldn’t boot.

There is an option, SSL, to enable UML serial line support. Serial
lines aren’t much different from consoles, so having them doesn’t do
much more than add some variety to the device names through which
you can attach to a UML instance.

Finally, the default settings for console zero, the rest of the con-
soles, and the serial lines are all configurable. These values are strings,
and describe what host device the UML devices should be attached to.
These, and their default values, are as follows:

☞ CON_ZERO_CHAN—fd:0,fd:1

☞ CON_CHAN—xterm

☞ SSL_CHAN—pty

Dike.book Page 248 Wednesday, March 15, 2006 8:16 PM

Compilation 249

Debugging
I talked about a number of debugging options in the context of tt mode
already since they are specific to tt mode. A few others allow UML to
be profiled by the gprof and gcov tools. These work only in skas
mode since a tt mode UML instance breaks assumptions made by
them.

The GPROF option enables gprof support in the UML build, and
the GCOV option similarly enables gcov support. These change the com-
pilation flags so as to tell the compiler to generate the code needed for
the profiling. In the case of gprof, the generated code tracks procedure
calls and keeps statistical information about where the UML instance
is spending its time. The code generated for gcov tracks what blocks of
code have been executed and how many times they were executed.

A UML profiling run is just like any other process. You start it,
exercise it for a while, stop it, and generate the statistics you want. In
the case of UML, the profiling starts when UML boots and ends when
it shuts down. Running gprof or gcov after that is exactly like run-
ning it on any other application.

COMPILATION

Now that the UML has been configured, it is time to build it. On 2.6
hosts, we need to take care of one more detail. If the UML instance is to
be built to use AIO support on the host, a header file, include/
linux/aio_abi.h in the UML tree, must be copied to /usr/
include/linux/aio_abi.h on the host.

With this taken care of, building UML is as simple as this:

host% make ARCH=um

If you have built Linux kernels before, you will see that the UML
build is very similar to what you have seen before. When it finishes,
you will get two identical files, called vmlinux and linux. In fact, they
are hard links to the same file. Traditionally, the UML build produced
a file called linux rather than the vmlinux or vmlinuz that the ker-
nel build normally produces. I did this on purpose, believing that hav-
ing the binary be named linux was more intuitive than vmlinux or
vmlinuz.

This was true, and most people like the name, but some kernel
hackers are very used to an output file named vmlinux. Also, the kernel

Dike.book Page 249 Wednesday, March 15, 2006 8:16 PM

250 Chapter 11 Compiling UML from Source

build became stricter over time, and it became very hard to avoid hav-
ing a final binary named vmlinux. So, I made the UML build produce
the vmlinux file, and as a final step, link the name linux to that file.
This way, everyone is happy.

Dike.book Page 250 Wednesday, March 15, 2006 8:16 PM

251

C H A P T E R 12

Specialized UML Configurations

So far we have seen UML instances with fairly normal virtual hard-
ware configurations—they are similar to common physical machines.
Now we will look at using UML to emulate unusual configurations that
can’t even be approached with common hardware. This includes config-
urations with lots of devices, such as block devices and network inter-
faces, many CPUs, and very large physical memory, and more
specialized configurations, such as clusters.

By virtualizing hardware, UML makes it easy to simulate these
configurations. Virtual devices can be constructed as long as host and
UML memory hold out and no built-in software limits are reached.
There are no constraints such as those based on the number of slots on
a bus or the number of buses on a system.

UML can also emulate hardware you might not even have one
instance of. We’ll see an example of this when we build a cluster, which
will need a shared storage device. Physically, this is a disk that is some-
how multiported, either because it is multiported itself or because it’s
on a shared bus. Either way, this is an expensive, noncommodity
device. However, with UML, a shared device is simply a file on the host
to which multiple UML instances have access.

Dike.book Page 251 Wednesday, March 15, 2006 8:16 PM

252 Chapter 12 Specialized UML Configurations

LARGE NUMBERS OF DEVICES

We’ll start by configuring a UML instance with a large number of
devices. The reasons for wanting to do this vary. For many people, there
is value in looking at /proc/meminfo and seeing an absurdly large
amount of memory, or running df and seeing more disk space than you
could fit in a room full of disks.

More seriously, it allows you to explore the scalability limits of the
Linux kernel and the applications running on it. This is useful when
you are maintaining some software that may run into these limits, and
your users may have hardware that may do so, but you don’t. You can
emulate the large configuration to see how your software reacts to it.

You may also be considering acquiring a very large machine but
want to know whether it is fully usable by Linux and the applications
you envision running on it. UML will let you explore the software limi-
tations. Obviously, any hardware limitations, such as the number of
bus slots and controllers and the like, can’t be explored in this way.

Network Interfaces

Let’s start by configuring a pair of UML instances with a large number
of network interfaces. We will boot the two instances, debian1 and
debian2, and hot-plug the interfaces into them. So, with the UML
instances booted, you do this as follows:

host% for i in `seq 0 127`; do uml_mconsole debian1 \
config eth$i=mcast,,224.0.0.$i; done
host% for i in `seq 0 127`; do uml_mconsole debian2 \
config eth$i=mcast,,224.0.0.$i; done

These two lines of shell configure 128 network interfaces in each UML
instance. You’ll see a string of OK messages from each of these, plus a
lot of console output in the UML instances if kernel output is logged
there. Running dmesg in one of the instances will show you something
like this:

Netdevice 124 : mcast backend multicast address: \
224.0.0.124:1102, TTL:1
Configured mcast device: 224.0.0.125:1102-1
Netdevice 125 : mcast backend multicast address: \
224.0.0.125:1102, TTL:1
Configured mcast device: 224.0.0.126:1102-1
Netdevice 126 : mcast backend multicast address: \

Dike.book Page 252 Wednesday, March 15, 2006 8:16 PM

Large Numbers of Devices 253

224.0.0.126:1102, TTL:1
Configured mcast device: 224.0.0.127:1102-1
Netdevice 127 : mcast backend multicast address: \
224.0.0.127:1102, TTL:1

Running ifconfig inside the UML instances will confirm that
interfaces eth0 through eth127 now exist. If you’re brave, run
ifconfig -a. Otherwise, just do some spot-checking:

UML# ifconfig eth120
eth120 Link encap:Ethernet HWaddr 00:00:00:00:00:00
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 \
frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 \
carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
 Interrupt:5

This indicates that we indeed have the network interfaces we asked for.
I configured them to attach to multicast networks on the host, so they
will be used purely to network between the two instances. They can’t
talk directly to the outside network unless you configure one of the
instances with an interface attached to a TUN/TAP device and use it as
a gateway. Each of an instance’s interfaces is attached to a different
host multicast address, which means they are on different networks.
So, taken in pairs, the corresponding interfaces on the two instances
are on the same network and can communicate with each other.

For example, the two eth0 interfaces are both attached to the host
multicast IP address 224.0.0.0 and thus will see each other’s packets.
The two eth1 interfaces are on 224.0.0.1 and can see each other’s
packets, but they won’t see any packets from the eth0 interfaces.

Next, we configure the interfaces inside the UML instances. I’m
going to put each one on a different network in order to correspond to
the connectivity imposed by the multicast configuration on the host.
The eth0 interfaces will be on the 10.0.0.0/24 network, the eth1
interfaces will be on the 10.0.1.0/24 network, and so forth:

UML1# for i in `seq 0 127`; do ifconfig eth$i 10.0.$i.1/24 up; done
UML2# for i in `seq 0 127`; do ifconfig eth$i 10.0.$i.2/24 up; done

Now the interfaces in the first UML instance are running and have
the .1 addresses in their networks, and the interfaces in the second

Dike.book Page 253 Wednesday, March 15, 2006 8:16 PM

254 Chapter 12 Specialized UML Configurations

instance have the .2 addresses. Again, some spot-checking will confirm
this:

UML1# ifconfig eth75
eth75 Link encap:Ethernet HWaddr FE:FD:0A:00:4B:01
 inet addr:10.0.75.1 Bcast:10.255.255.255 \
Mask:255.0.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 \
Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 \
frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 \
carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
 Interrupt:5

UML2# ifconfig eth100
eth100 Link encap:Ethernet HWaddr FE:FD:0A:00:64:02
 inet addr:10.0.100.2 Bcast:10.255.255.255 \
Mask:255.0.0.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 \
Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 \
frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 \
carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)
 Interrupt:5

Let’s see if the interfaces work:

UML1# ping 10.0.50.2
PING 10.0.50.2 (10.0.50.2): 56 data bytes
64 bytes from 10.0.50.2: icmp_seq=0 ttl=64 time=56.3 ms
64 bytes from 10.0.50.2: icmp_seq=1 ttl=64 time=15.7 ms
64 bytes from 10.0.50.2: icmp_seq=2 ttl=64 time=16.6 ms
64 bytes from 10.0.50.2: icmp_seq=3 ttl=64 time=14.9 ms
64 bytes from 10.0.50.2: icmp_seq=4 ttl=64 time=16.4 ms

--- 10.0.50.2 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 14.9/23.9/56.3 ms

You can try some of the others by hand or check all of them with a
bit of shell such as this:

UML1# for i in `seq 0 127`; do ping -c 1 10.0.$i.2 ; done

Dike.book Page 254 Wednesday, March 15, 2006 8:16 PM

Large Numbers of Devices 255

This exercise is fun and interesting, but what’s the practical use?
We have demonstrated that there appears to be no limit, aside from
memory, on how many network interfaces Linux will support. To tell
for sure, we would need to look at the kernel source. But if you are seri-
ously asking this sort of question, you probably have some hardware
limit in mind, and setting up some virtual machines is a quick way to
tell whether the operating system or the networking tools have a lower
limit.

By poking around a bit more, we can see that other parts of the
system are being exercised. Taking a look at the routing table will show
you one route for every device we configured. An excerpt looks like this:

UML1# route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric \
 Ref Use Iface
10.0.20.0 0.0.0.0 255.255.255.0 U 0 \
 0 0 eth20
10.0.21.0 0.0.0.0 255.255.255.0 U 0 \
 0 0 eth21
10.0.22.0 0.0.0.0 255.255.255.0 U 0 \
 0 0 eth22
10.0.23.0 0.0.0.0 255.255.255.0 U 0 \
 0 0 eth23

This would be interesting if you wanted a large number of net-
works, rather than simply a large number of interfaces.

Similarly, we are exercising the arp cache more than usual. Here
is an excerpt:

UML# arp -an
? (10.0.126.2) at FE:FD:0A:00:7E:02 [ether] on eth126
? (10.0.64.2) at FE:FD:0A:00:40:02 [ether] on eth64
? (10.0.110.2) at FE:FD:0A:00:6E:02 [ether] on eth110
? (10.0.46.2) at FE:FD:0A:00:2E:02 [ether] on eth46
? (10.0.111.2) at FE:FD:0A:00:6F:02 [ether] on eth111

This all demonstrates that, if there are any hard limits in the
Linux networking subsystem, they are reasonably high. A related but
different question is whether there are any problems with performance
scaling to this many interfaces and networks. If you are concerned
about this, you probably have a particular application or workload in
mind and would do well to run it inside a UML instance, varying the
number of interfaces, networks, routes, or whatever its performance
depends on.

Dike.book Page 255 Wednesday, March 15, 2006 8:16 PM

256 Chapter 12 Specialized UML Configurations

For demonstration purposes, since I lack such a workload, I will
use standard system tools to see how well performance scales as the
number of interfaces increases.

Let’s look at ping times as the number of interfaces increases. I’ll
shut down all of the Ethernet devices and bring up an increasing num-
ber on each test. The first two rounds look like this:

UML# export n=0 ; for i in `seq 0 $n`; \
 do ifconfig eth$i 10.0.$i.1/24 up; done ; \
 for i in `seq 0 $n`; do ping -c 2 10.0.$i.2 ; done ; \
 for i in `seq 0 $n`; do ifconfig eth$i down ; done
PING 10.0.0.2 (10.0.0.2): 56 data bytes
64 bytes from 10.0.0.2: icmp_seq=0 ttl=64 time=36.0 ms
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=4.9 ms

--- 10.0.0.2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 4.9/20.4/36.0 ms
UML# export n=1 ; for i in `seq 0 $n`; \
 do ifconfig eth$i 10.0.$i.1/24 up; done ; \
 for i in `seq 0 $n`; do ping -c 2 10.0.$i.2 ; \
 done ; for i in `seq 0 $n`; do ifconfig eth$i down ; done
PING 10.0.0.2 (10.0.0.2): 56 data bytes
64 bytes from 10.0.0.2: icmp_seq=0 ttl=64 time=34.0 ms
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=4.9 ms

--- 10.0.0.2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 4.9/19.4/34.0 ms
PING 10.0.1.2 (10.0.1.2): 56 data bytes
64 bytes from 10.0.1.2: icmp_seq=0 ttl=64 time=35.4 ms
64 bytes from 10.0.1.2: icmp_seq=1 ttl=64 time=5.0 ms

--- 10.0.1.2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 5.0/20.2/35.4 ms

The two-interface ping times are essentially the same as the one-
interface times. We are looking at how the times change, rather than
their actual values compared to ping times on the host. A virtual
machine will necessarily have different performance characteristics
than a physical one, but they should scale similarly.

We see the first ping taking much longer than the second because
of the arp request and response that have to occur before any ping
requests can be sent out. The sending system needs to determine the
Ethernet MAC address corresponding to the IP address you are ping-
ing. This requires an arp request to be broadcast and a reply to come

Dike.book Page 256 Wednesday, March 15, 2006 8:16 PM

Large Numbers of Devices 257

back from the target host before the actual ping request can be sent.
The second ping time measures the actual time of a ping round trip.

I won’t bore you with the full output of repeating this, doubling
the number of interfaces at each step. However, this is typical of the
times I got with 128 interfaces:

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 6.7/22.7/38.8 ms
PING 10.0.123.2 (10.0.123.2): 56 data bytes
64 bytes from 10.0.123.2: icmp_seq=0 ttl=64 time=39.1 ms
64 bytes from 10.0.123.2: icmp_seq=1 ttl=64 time=8.9 ms

--- 10.0.123.2 ping statistics ---

With 128 interfaces, both ping times are around 4 ms greater than
with one. This suggests that the slowdown is in the IP routing code
since this is exercised once for each packet. The arp requests don’t go
through the IP stack, so they wouldn’t be affected by any slowdowns in
the routing code.

The 4-ms slowdown is comparable to the fastest ping time, which
was around 5 ms, suggesting that the routing overhead with 128 net-
works and 128 routes is comparable to the ping round trip time.

In real life, you’re unlikely to be interested in how fast pings go
when you have a lot of interfaces, routes, arp table entries, and so on.
You’re more likely to have a workload that needs to operate in an envi-
ronment with these sorts of scalability requirements. In this case,
instead of running pings with varying numbers of interfaces, you’d run
your workload, changing the number of interfaces as needed, and make
sure it behaves acceptably within the range you plan for your hardware.

Memory

Memory is another physical asset that a system may have a lot of. Even
though it’s far cheaper than it used to be, outfitting a machine with
many gigabytes is still fairly pricy. You may still want to emulate a
large-memory environment before splashing out on the actual physical
article. Doing so may help you decide whether your workload will bene-
fit from having lots of memory, and if so, how much memory you need.
You can determine your memory sweet spot so you spend enough on
memory but not too much.

Dike.book Page 257 Wednesday, March 15, 2006 8:16 PM

258 Chapter 12 Specialized UML Configurations

You may have guessed by now that we are going to look at large-
memory UML instances, and you’d be right. To start with, here is /proc/
meminfo from a 64GB UML instance:

UML# more /proc/meminfo
MemTotal: 65074432 kB
MemFree: 65048744 kB
Buffers: 824 kB
Cached: 9272 kB
SwapCached: 0 kB
Active: 5252 kB
Inactive: 6016 kB
HighTotal: 0 kB
HighFree: 0 kB
LowTotal: 65074432 kB
LowFree: 65048744 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 112 kB
Writeback: 0 kB
Mapped: 2772 kB
Slab: 4724 kB
CommitLimit: 32537216 kB
Committed_AS: 4064 kB
PageTables: 224 kB
VmallocTotal: 137370258416 kB
VmallocUsed: 0 kB
VmallocChunk: 137370258416 kB

This output is from an x86_64 UML on a 1GB host. Since x86_64 is a
64-bit architecture, there is plenty of address space for UML to map
many gigabytes of physical memory. In contrast, x86, as a 32-bit archi-
tecture, doesn’t have sufficient address space to cleanly handle large
amounts of memory. On x86, UML must use the kernel’s Highmem
support in order to handle greater than about 3GB of physical memory.
This works, but, as I discussed in Chapter 9, there’s a large perfor-
mance penalty to pay because of the requirement to map the high
memory into low memory where the kernel can directly access it.

On an x86 UML instance, the meminfo output would have a large
amount of Highmem in the HighTotal and HighFree fields. On 64-bit
hosts, this is unnecessary, and all the memory appears as LowTotal
and LowFree. The other unusual feature here is the even larger
amount of vmalloc space, 137 terabytes. This is simply the address
space that the UML instance doesn’t have any other use for.

There has to be more merit to large-memory UML instances than
impressive numbers in /proc/meminfo. That’s enough for me, but

Dike.book Page 258 Wednesday, March 15, 2006 8:16 PM

Large Numbers of Devices 259

other people seem to be more demanding. A more legitimate excuse for
this sort of exercise is to see how the performance of a workload or
application will change when given a large amount of memory.

In order to do this, we need to be able to judge the performance of
a workload in a given amount of memory. On a physical machine, this
would be a matter of running it and watching the clock on the nearest
wall. Having larger amounts of memory improves performance by
allowing more data to be stored in memory, rather than on disk. With
insufficient memory, the system has to swap data to disk when it’s
unused and swap it back in when it is referenced again. Some intelligent
applications, such as databases, do their own caching based on the amount
of memory in the system. In this case, the trade-off is usually still against
storing data in memory. For example, a database will read more index
data from disk when it has enough memory, speeding lookups.

In the example above, the 64GB UML instance is running on a
1GB host. It’s obviously not manufacturing 63GB of memory, so that
extra memory is ultimately backed by disk. You can run applications
that consume large amounts of memory, and the UML instance will not
have to use its own swap. However, since this will exceed the amount of
memory on the host, it will start swapping. This means you can’t watch
the clock in order to decide how your workload will perform with a lot
of memory available.

Instead, you need to find a proxy for performance. A proxy is a
measurement that can stand in for the thing you are really interested
in when that thing can’t be measured directly. I’ve been talking about
disk I/O, either by the system swapping or by the application reading
in data on its own. So, watching the UML instance’s disk I/O is a good
way to decide whether the workload’s performance will improve. The
greater the decrease in disk traffic, the greater the performance
improvement you can expect.

As with increasing amounts of any resource, there will be a point
of diminishing returns, where adding an increment of memory results
in a smaller performance increase than the previous increment did.
Graphing performance against memory will typically show a relatively
narrow region where the performance levels off. It may still increase,
but suddenly at a slower rate than before. This performance “knee” is
usually what you aim at when you design a system. Sometimes the
knee is too expensive or is unattainable, and you add as much memory
as you can, accepting a performance point below the knee. In other
cases, you need as much performance as you can get, and you accept
the diminishing performance returns with much of the added memory.

Dike.book Page 259 Wednesday, March 15, 2006 8:16 PM

260 Chapter 12 Specialized UML Configurations

As before, I’m going to use a little fake workload in order to dem-
onstrate the techniques involved. I will create a database-like workload
with a million small files. The file metadata—the file names, sizes,
modification dates, and so on—will stand in for the database indexes,
and their contents will stand in for the actual data. I need such a large
number of files so that their metadata will occupy a respectable amount
of memory. This will allow us to measure how changing the amount of
system memory impacts performance when searching these files.

The following procedure creates the million files in three stages,
increasing the number by a factor of 100 at each step:

☞ First, copy 1024 characters from /etc/passwd into the file 0 and
make 99 copies of it in the files 1 through 99.

☞ Next, create a subdirectory, move those files into it, and make 99
copies, creating 10,000 files.

☞ Repeat this, creating 99 more copies of the current directory, leav-
ing us with a million files, containing 1024 characters apiece.

UML# mkdir test
UML# cd test
UML# dd if=/etc/passwd count=1024 bs=1 > 0
1024+0 records in
1024+0 records out
UML# for n in `seq 99` ; do cp 0 $n; done
UML# ls
1 14 19 23 28 32 37 41 46 50 55 6 \
 64 69 73 78 82 87 91 96
10 15 2 24 29 33 38 42 47 51 56 60 \
 65 7 74 79 83 88 92 97
11 16 20 25 3 34 39 43 48 52 57 61 \
 66 70 75 8 84 89 93 98
12 17 21 26 30 35 4 44 49 53 58 62 \
 67 71 76 80 85 9 94 99
13 18 22 27 31 36 40 45 5 54 59 63 \
 68 72 77 81 86 90 95 0
UML# mkdir a
UML# mv * a
mv: cannot move `a' to a subdirectory of itself, `a/a'
UML# mv a 0
UML# for n in `seq 99` ; do cp -a 0 $n; done
UML# mkdir a
UML# mv * a
mv: cannot move `a' to a subdirectory of itself, `a/a'
UML# mv a 0
UML# for n in `seq 99` ; do cp -a 0 $n; done

Dike.book Page 260 Wednesday, March 15, 2006 8:16 PM

Large Numbers of Devices 261

Now let’s reboot in order to get some clean memory consumption
data. On reboot, log in, and look at /proc/diskstats in order to see
how much data was read from disk during the boot:

UML# cat /proc/diskstats
 98 0 ubda 375 221 18798 2860 55 111 1328 150 0 2740 3010

The sixth field (18798, in this case) is the number of sectors read from
the disk so far. With 512-byte sectors, this means that the boot read
around 9.6MB (9624576 bytes, to be exact).

Now, to see how much memory we need in order to search the
metadata of the directory hierarchy, let’s run a find over it:

UML# cd test
UML# find . > /dev/null

Let’s look at diskstats again, using awk to pick out the correct
field so as to avoid taxing our brains by having to count up to six:

UML# awk '{ print $6 }' /proc/diskstats
214294
UML# echo $[(214214 - 18798) * 512]
100052992

This pulled in about 100MB of disk space. Any amount of memory
much more than that will be plenty to hold all of the metadata we will
need. To check this, we can run the find again and see that there isn’t
much disk input:

UML# awk '{ print $6 }' /proc/diskstats
215574
UML# find . > /dev/null
UML# awk '{ print $6 }' /proc/diskstats
215670

So, there wasn’t much disk I/O, as expected.
To see how much total memory would be required to run this little

workload, let’s look at /proc/meminfo:

UML# grep Mem /proc/meminfo
MemTotal: 1014032 kB
MemFree: 870404 kB

A total of 143MB of memory has been consumed so far. Anything over
that should be able to hold the full set of metadata. We can check this
by rebooting with 160MB of physical memory:

Dike.book Page 261 Wednesday, March 15, 2006 8:16 PM

262 Chapter 12 Specialized UML Configurations

UML# cd test
UML# awk '{ print $6 }' /proc/diskstats
18886
UML# find . > /dev/null
UML# awk '{ print $6 }' /proc/diskstats
215390
UML# find . > /dev/null
UML# awk '{ print $6 }' /proc/diskstats
215478
UML# grep Mem /proc/meminfo
MemTotal: 156276 kB
MemFree: 15684 kB

This turns out to be correct. We had essentially no disk reads on the
second search and pretty close to no free memory afterward.

We can check this by booting with a lot less memory and seeing if
there is a lot more disk activity on the second find. With an 80MB UML
instance, there was about 90MB of disk activity between the two
searches. This indicates that 80MB was not enough memory for opti-
mal performance in this case, and a lot of data that was cached during
the first search had to be discarded and read in again during the sec-
ond. On a physical machine, this would result in a significant perfor-
mance loss. On a virtual machine, it wouldn’t necessarily, depending on
how well the host is caching data. Even if the UML instance is swap-
ping, the performance loss may not be nearly as great as on a physical
machine. If the host is caching the data that the UML instance is swap-
ping, then swapping the data back in to the UML instance involves no
disk activity, in contrast to the case with a physical machine. In this
case, swapping would result in a performance loss for the UML
instance, but a lot less than you would expect for a physical system.

We measured the difference between an 80MB UML instance and
a 160MB one, which are very far from the 64MB instance with which I
started. These memory sizes are easily reached with physical systems
today (it would be hard to buy a system with less than many times as
much memory as this), and this difference could easily have been
tested on a physical system.

To get back into the range of memory sizes that aren’t so easily
reached with a physical machine, we need to start searching the data.
My million files, plus the rest of the files that were already present,
occupy about 6.5GB.

With a 1GB UML instance, there are about 5.5GB of disk I/O on
the first search and about the same on the second, indicating that this
is not nearly enough memory and that there is less actual data being
read from the disk than df would have us believe:

Dike.book Page 262 Wednesday, March 15, 2006 8:16 PM

Large Numbers of Devices 263

UML# awk '{ print $6 }' /proc/diskstats
18934
UML# find . -xdev -type f | xargs cat > /dev/null
UML# awk '{ print $6 }' /proc/diskstats
11033694
UML# find . -xdev -type f | xargs cat > /dev/null
UML# awk '{ print $6 }' /proc/diskstats
22050006
UML# echo $[(11033694 - 18934) * 512]
5639557120
UML# echo $[(22050006 - 11033694) * 512]
5640351744

With a 4GB UML instance, we might expect the situation to
improve, but with still a noticeable amount of disk activity on the sec-
ond search.

UML# awk '{ print $6 }' /proc/diskstats
89944
UML# find / -xdev -type f | xargs cat > /dev/null
UML# awk '{print $6}' /proc/diskstats
13187496
UML# echo $[13187496 * 512]
6751997952
UML# awk '{print $6}' /proc/diskstats
26229664
UML# echo $[(26229664 - 13187496) * 512]
6677590016

Actually, there is no improvement—there was just as much input
during the second search as during the first. In retrospect, this
shouldn’t be surprising. While a lot of the data could have been cached,
it wasn’t because the kernel had no way to know that it was going to be
used again. So, the data was thrown out in order to make room for data
that was read in later.

In situations like this, the performance knee is very sharp—you
may see no improvement with increasing memory until the workload’s
entire dataset can be held in memory. At that point, there will likely be
a very large performance improvement. So, rather than the continuous
performance curve you might expect, you would get something more
like a sudden jump at the magic amount of memory that holds all of the
data the workload will need.

We can check this by booting a UML instance with more than
about 6.5GB of memory. Here are the results with a 7GB instance:

UML# awk '{print $6}' /proc/diskstats
19928
UML# find / -xdev -type f | xargs cat > /dev/null

Dike.book Page 263 Wednesday, March 15, 2006 8:16 PM

264 Chapter 12 Specialized UML Configurations

UML# awk '{print $6}' /proc/diskstats
13055768
UML# echo $[(13055768 - 19928) * 512]
6674350080
UML# find / -xdev -type f | xargs cat > /dev/null
UML# awk '{print $6}' /proc/diskstats
14125882
UML# echo $[(14125882 - 13055768) * 512]
547898368

We had about a half gigabyte of data read in from disk on the sec-
ond run, which I don’t really understand. However, this is far less than
we had with the smaller memory instances. On a physical system, this
would have translated into much better performance. The UML
instance didn’t run any faster with more memory because real time is
going to depend on real resources. The real resource in this case is
physical memory on the host, which was the same for all of these tests.
In fact, the larger memory instances performed noticeably worse than
the smaller ones. The smallest instance could just about be held in the
host’s memory, so its disk I/O was just reading data on behalf of the
UML instance. The larger instances couldn’t be held in the host’s mem-
ory, so there was that I/O, plus the host had to swap a large amount of
the instance itself in and out.

This emphasizes the fact that, in measuring performance as you
adjust the virtual hardware, you should not look at the clock on the
wall. You should find some quantity within the UML instance that will
correlate with performance of a physical system with that hardware
running the same workload. Normally, this is disk I/O because that’s
generally the source for all the data that’s going to fill your memory.
However, if the data is coming from the network, and increasing mem-
ory would be expected to reduce network use, then you would look at
packet counts rather than disk I/O.

If you were doing this for real in order to determine how much
memory your workload needs for good performance, you wouldn’t have
created a million small files and run find over them. Instead, you’d
copy your actual workload into a UML instance and boot it with vary-
ing amounts of memory. A good way to get an approximate number for
the memory it needs is to boot with a truly large amount of memory,
run the workload, and see how much data was read from disk. A UML
instance with that amount of memory, plus whatever it needs during
boot, will very likely not need to swap out any data or read anything twice.

However, this approximation may overstate the amount of mem-
ory you need for decent performance—a good amount of it may be hold-

Dike.book Page 264 Wednesday, March 15, 2006 8:16 PM

Clusters 265

ing data that is not important for performance. So, it would also be a
good idea, after checking this first amount of memory to see that it
gives you good performance, to decrease the memory size until you see
an increase in disk reads. At this point, the UML instance can’t hold all
of the data that is needed for good performance.

This, plus a bit more, is the amount of memory you should aim at
with your physical system. There may be reasons it can’t be reached,
such as it being too expensive or the system not being able to hold that
much. In this case, you need to accept lower than optimal performance,
or take some more radical steps such as reworking the application to
require less memory or spreading it across several machines, as with a
cluster. You can use UML to test this, as well.

CLUSTERS

Clusters are another area where we are going to see increasing
amounts of interest and activity. At some point, you may have a situa-
tion where you need to know whether your workload would benefit in
some way from running on a cluster.

I am going to set up a small UML cluster, using Oracle’s ocfs2 to
demonstrate it. The key part of this, which is not common as hardware,
is a shared storage device. For UML, this is simply a file on the host
that multiple UML instances can share. In hardware, this would
require a shared bus of some sort, which you quite likely don’t have
and which would be expensive to buy, especially for testing. Since UML
requires only a file on the host, using it for cluster experiments is much
more convenient and less expensive.

Getting Started

First, since ocfs2 is somewhat experimental (it is in Andrew Morton’s
-mm tree, not in Linus’ mainline tree at this writing), you will likely
need to reconfigure and rebuild your UML kernel. Second, procedures for
configuring a cluster may change, so I recommend getting Oracle’s current
documentation. The user guide is available from http://oss.oracle.com/
projects/ocfs2/.

The ocfs2 configuration script requires that everything related to
ocfs2 be built as modules, rather than just being compiled into the
kernel. This means enabling ocfs2 (in the Filesystems menu) and

Dike.book Page 265 Wednesday, March 15, 2006 8:16 PM

266 Chapter 12 Specialized UML Configurations

configfs (which is the “Userspace-driven configuration filesystem”
item in the Pseudo Filesystems submenu). These options both need to
be set to “M.”

After building the kernel and modules, you need to copy the mod-
ules into the UML filesystem you will be using. The easiest way to do
this is to loopback-mount the filesystem on the host (at ./rootfs, in
this example) and install the modules into it directly:

host% mkdir rootfs
host# mount root_fs.cluster rootfs -o loop
host# make modules_install INSTALL_MOD_PATH=`pwd`/rootfs
 INSTALL fs/configfs/configfs.ko
 INSTALL fs/isofs/isofs.ko
 INSTALL fs/ocfs2/cluster/ocfs2_nodemanager.ko
 INSTALL fs/ocfs2/dlm/ocfs2_dlm.ko
 INSTALL fs/ocfs2/dlm/ocfs2_dlmfs.ko
 INSTALL fs/ocfs2/ocfs2.ko
host# umount rootfs

You can also install the modules into an empty directory, create a
tar file of it, copy that into the running UML instance over the net-
work, and untar it, which is what I normally do, as complicated as it
sounds.

Once you have the modules installed, it is time to set things up
within the UML instance. Boot it on the filesystem you just installed
the modules into, and log into it. We need to install the ocfs2 utilities,
which I got from http://oss.oracle.com/projects/ocfs2-tools/. There’s a Down-
loads link from which the source code is available. You may wish to see
if your UML root filesystem already has the utilities installed, in which
case you can skip down to setting up the cluster configuration file.

My system doesn’t have the utilities, so, after setting up the net-
work, I grabbed the 1.1.2 version of the tools:

UML# wget http://oss.oracle.com/projects/ocfs2-tools/dist/\
files/source/v1.1/ocfs2-tools-1.1.2.tar.gz
UML# gunzip ocfs2-tools-1.1.2.tar.gz
UML# tar xf ocfs2-tools-1.1.2.tar
UML# cd ocfs2-tools-1.1.2
UML# ./configure

I’ll spare you the configure output; I had to install a few pack-
ages, such as e2fsprogs-devel (for libcom_err.so), readline-
devel, and glibc2-devel. I didn’t install the python development
package, which is needed for the graphical ocfs2console. I’ll be dem-
onstrating everything on the command line, so we won’t need that.

Dike.book Page 266 Wednesday, March 15, 2006 8:16 PM

Clusters 267

After configuring ocfs2, we do the usual make and install:

UML# make && make install

install will put things under /usr/local unless you configured it
differently.

At this point, we can do some basic checking by looking at the clus-
ter status and loading the necessary modules. The guide I’m reading
refers to the control script as /etc/init.d/o2cb, which I don’t have.
Instead, I have ./vendor/common/o2cb.init in the source directory,
which seems to behave as the fictional /etc/init.d/o2cb.

UML# ./vendor/common/o2cb.init status
Module "configfs": Not loaded
Filesystem "configfs": Not mounted
Module "ocfs2_nodemanager": Not loaded
Module "ocfs2_dlm": Not loaded
Module "ocfs2_dlmfs": Not loaded
Filesystem "ocfs2_dlmfs": Not mounted

Nothing is loaded or mounted. The script makes it easy to change this:

UML# ./vendor/common/o2cb.init load
Loading module "configfs": OK
Mounting configfs filesystem at /config: OK
Loading module "ocfs2_nodemanager": OK
Loading module "ocfs2_dlm": OK
Loading module "ocfs2_dlmfs": OCFS2 User DLM kernel \
 interface loaded
OK
Mounting ocfs2_dlmfs filesystem at /dlm: OK

We can check that the status has now changed:

UML# ./vendor/common/o2cb.init status
Module "configfs": Loaded
Filesystem "configfs": Mounted
Module "ocfs2_nodemanager": Loaded
Module "ocfs2_dlm": Loaded
Module "ocfs2_dlmfs": Loaded
Filesystem "ocfs2_dlmfs": Mounted

Everything looks good. Now we need to set up the cluster configu-
ration file. There is a template in documentation/samples/clus-
ter.conf, which I copied to /etc/ocfs2/cluster.conf after
creating /etc/ocfs2 and which I modified slightly to look like this:

Dike.book Page 267 Wednesday, March 15, 2006 8:16 PM

268 Chapter 12 Specialized UML Configurations

UML# cat /etc/ocfs2/cluster.conf
node:
 ip_port = 7777
 ip_address = 192.168.0.253
 number = 0
 name = node0
 cluster = ocfs2

node:
 ip_port = 7777
 ip_address = 192.168.0.251
 number = 1
 name = node1
 cluster = ocfs2

cluster:
 node_count = 2
 name = ocfs2

The one change I made was to alter the IP addresses to what I intend
to use for the two UML instances that will form the cluster. You should
use IP addresses that work on your network.

The last thing to do before shutting down this instance is to create
the mount point where the cluster filesystem will be mounted:

UML# mkdir /ocfs2

Shut this instance down, and we will boot the cluster, after taking
care of one last item on the host—creating the device that the cluster
nodes will share:

host% dd if=/dev/zero of=ocfs seek=$[100 * 1024] bs=1K count=1

Booting the Cluster

Now we boot two UML instances on COW files with the filesystem we
just used as their backing file. So, rather than using ubda=rootfs as
we had before, we will use ubda=cow.node0,rootfs and ubda=
cow.node1,rootfs for the two instances, respectively. I am also giv-
ing them umids of node0 and node1 in order to make them easy to ref-
erence with uml_mconsole later.

The reason for mostly configuring ocfs2, shutting the UML
instance down, and then starting up the cluster nodes is that the file-
system changes we made, such as installing the ocfs2 tools and the
configuration file, will now be visible in both instances. This saves us
from having to do all of the previous work twice.

Dike.book Page 268 Wednesday, March 15, 2006 8:16 PM

Clusters 269

With the two instances running, we need to give them their sepa-
rate identities. The cluster.conf file specifies the node names as
node0 and node1. We now need to change the machine names of the two
instances to match these. In Fedora Core 4, which I am using, the names
are stored in /etc/sysconfig/network. The node part of the value
of HOSTNAME needs to be changed in one instance to node0 and in the
other to node1. The domain name can be left alone.

We need to set the host name by hand since we changed the config-
uration file too late:

UML1# hostname node0

and

UML2# hostname node1

Next, we need to bring up the network for both instances:

host% uml_mconsole node0 config eth0=tuntap,,,192.168.0.254
OK
host% uml_mconsole node1 config eth0=tuntap,,,192.168.0.252
OK

When configuring eth0 within the instances, it is important to
assign IP addresses as specified in the cluster.conf file previously.
In my example above, node0 has IP address 192.168.0.253 and
node1 has address 192.168.0.251:

UML1# ifconfig eth0 192.168.0.253 up

and

UML2# ifconfig eth0 192.168.0.251 up

At this point, we need to set up a filesystem on the shared device,
so it’s time to plug it in:

host% uml_mconsole node0 config ubdbc=ocfs

and

host% uml_mconsole node1 config ubdbc=ocfs

The c following the device name is a flag telling the block driver
that this device will be used as a clustered device, so it shouldn’t lock

Dike.book Page 269 Wednesday, March 15, 2006 8:16 PM

270 Chapter 12 Specialized UML Configurations

the file on the host. You should see this message in the kernel log after
plugging the device:

Not locking "/home/jdike/linux/2.6/ocfs" on the host

Before making a filesystem, it is necessary to bring the cluster up
in both nodes:

UML# ./vendor/common/o2cb.init online ocfs2
Loading module "configfs": OK
Mounting configfs filesystem at /config: OK
Loading module "ocfs2_nodemanager": OK
Loading module "ocfs2_dlm": OK
Loading module "ocfs2_dlmfs": OCFS2 User DLM kernel interface loaded
OK
Mounting ocfs2_dlmfs filesystem at /dlm: OK
Starting cluster ocfs2: OK

Now, on one of the nodes, we run mkfs:

mkfs.ocfs2 -b 4K -C 32K -N 8 -L ocfs2-test /dev/ubdb
mkfs.ocfs2 1.1.2-ALPHA
Overwriting existing ocfs2 partition.
(1552,0):__dlm_print_nodes:380 Nodes in my domain \
 ("CB7FB73E8145436EB93D33B215BFE919"):
(1552,0):__dlm_print_nodes:384 node 0
Filesystem label=ocfs2-test
Block size=4096 (bits=12)
Cluster size=32768 (bits=15)
Volume size=104857600 (3200 clusters) (25600 blocks)
1 cluster groups (tail covers 3200 clusters, rest cover 3200 clusters)
Journal size=4194304
Initial number of node slots: 8
Creating bitmaps: done
Initializing superblock: done
Writing system files: done
Writing superblock: done
Writing lost+found: done
mkfs.ocfs2 successful

This specifies a block size of 4096 bytes, a cluster size of 32768 bytes, a
maximum cluster size of eight nodes, and a volume label of ocfs2-test.

At this point, we can mount the device in both nodes, and we have
a working cluster:

UML1# mount /dev/ubdb /ocfs2 -t ocfs2
(1618,0):ocfs2_initialize_osb:1165 max_slots for this device: 8
(1618,0):ocfs2_fill_local_node_info:836 I am node 0
(1618,0):__dlm_print_nodes:380 Nodes in my domain \
 ("B01E29FE0F2F43059F1D0A189779E101"):

Dike.book Page 270 Wednesday, March 15, 2006 8:16 PM

Clusters 271

(1618,0):__dlm_print_nodes:384 node 0
(1618,0):ocfs2_find_slot:266 taking node slot 0
JBD: Ignoring recovery information on journal
ocfs2: Mounting device (98,16) on (node 0, slot 0)

UML2# mount /dev/ubdb /ocfs2 -t ocfs2
(1442,0):o2net_set_nn_state:417 connected to node node0 \
 (num 0) at 192.168.0.253:7777
(1522,0):ocfs2_initialize_osb:1165 max_slots for this device: 8
(1522,0):ocfs2_fill_local_node_info:836 I am node 1
(1522,0):__dlm_print_nodes:380 Nodes in my domain \
 ("B01E29FE0F2F43059F1D0A189779E101"):
(1522,0):__dlm_print_nodes:384 node 0
(1522,0):__dlm_print_nodes:384 node 1
(1522,0):ocfs2_find_slot:266 taking node slot 1
JBD: Ignoring recovery information on journal
ocfs2: Mounting device (98,16) on (node 1, slot 1)

Now we start to see communication between the two nodes. This is vis-
ible in the output from the second mount and in the kernel log of node0
when node1 comes online.

To quickly demonstrate that we really do have a cluster, I will copy
a file into the filesystem on node0 and see that it’s visible on node1:

UML1# cd /ocfs2
UML1# cp ~/ocfs2-tools-1.1.2.tar .
UML1# ls -al
total 2022
drwxr-xr-x 3 root root 4096 Oct 14 16:24 .
drwxr-xr-x 28 root root 4096 Oct 14 16:17 ..
drwxr-xr-x 2 root root 4096 Oct 14 16:15 lost+found
-rw-r--r-- 1 root root 2058240 Oct 14 16:24 \
 ocfs2-tools-1.1.2.tar

On the second node, I’ll unpack the tar file to see that it’s really there.

UML2# cd /ocfs2
UML2# ls -al
total 2022
drwxr-xr-x 3 root root 4096 Oct 14 16:15 .
drwxr-xr-x 28 root root 4096 Oct 14 16:18 ..
drwxr-xr-x 2 root root 4096 Oct 14 16:15 lost+found
-rw-r--r-- 1 root root 2058240 Oct 14 16:24 \
 ocfs2-tools-1.1.2.tar
UML2# tar xf ocfs2-tools-1.1.2.tar
UML2# ls ocfs2-tools-1.1.2
COPYING aclocal.m4 fsck.ocfs2 mount.ocfs2 \
rpmarch.guess
CREDITS config.guess glib-2.0.m4 mounted.ocfs2 \
runlog.m4

Dike.book Page 271 Wednesday, March 15, 2006 8:16 PM

272 Chapter 12 Specialized UML Configurations

Config.make.in config.sub install-sh o2cb_ctl \
sizetest
MAINTAINERS configure libo2cb ocfs2_hb_ctl \
tunefs.ocfs2
Makefile configure.in libo2dlm ocfs2cdsl \
vendor
Postamble.make debian libocfs2 ocfs2console
Preamble.make debugfs.ocfs2 listuuid patches
README documentation mkfs.ocfs2 python.m4
README.O2CB extras mkinstalldirs pythondev.m4

This is the simplest possible use of a clustered filesystem. At this
point, if you were evaluating a cluster as an environment for running
an application, you would copy its data into the filesystem, run it on
the cluster nodes, and see how it does.

Exercises

For some casual usage here, we could put our users’ home directories in
the ocfs2 filesystem and experiment with having the same file acces-
sible from multiple nodes. This would be a somewhat advanced version
of NFS home directories.

A more advanced project would be to boot the nodes into an ocfs2
root filesystem, making them as clustered as they can be, given only
one filesystem. We would need to solve a couple of problems.

☞ The cluster needs to be running before the root filesystem can be
mounted. This would require an initramfs image containing the
necessary modules, initialization script, and tools. A script within
this image would need to bring up the network and run the ocfs2
control script to bring up the cluster.

☞ The cluster nodes need some private data to give them their sepa-
rate identities. Part of this is the network configuration and node
names. Since the network needs to be operating before the root
filesystem can be mounted, some of this information would be in
the initramfs image.

☞ The rest of the node-private information would have to be provided
in files on a private block device. These files would be bind-mounted
from this device over a shared file within the cluster filesystem,
like this:

UML# mount --bind /private/network /etc/sysconfig/network

Dike.book Page 272 Wednesday, March 15, 2006 8:16 PM

UML as a Decision-Making Tool for Hardware 273

Without having done this myself, I am no doubt missing some other
issues. However, none of this seems insurmountable, and it would
make a good project for someone wanting to become familiar with set-
ting up and running a cluster.

Other Clusters

I’ve demonstrated UML’s virtual clustering capabilities using Oracle’s
ocfs2. This isn’t the only clustering technology available—I chose it
because it nicely demonstrates the use of a host file to replace an expen-
sive piece of hardware, a shared disk. Other Linux cluster filesystems
include Lustre from CFS, GFS from Red Hat, and, with a generous def-
inition of clustering, NFS.

Further, filesystems aren’t the only form of clustering technology
that exists. Clustering technologies have a wide range, from simple
failover, high-availability clusters to integrated single-system image
clusters, where the entire cluster looks and acts like a single machine.

Most of these run with UML, either because they are architecture-
independent and will run on any architecture that Linux supports, or
because they are developed using UML and are thus guaranteed to run
with UML. Many satisfy both conditions.

If you are looking into using clusters because you have a specific
need or are just curious about them, UML is a good way to experiment.
It provides a way to bring multiple nodes up without needing multiple
physical machines. It also lets you avoid buying exotic hardware that
the clustering technology may require, such as the shared storage
required by ocfs2. UML makes it much more convenient and less
expensive to bring in multiple clustering technologies and experiment
with them in order to determine which one best meets your needs.

UML AS A DECISION-MAKING TOOL FOR HARDWARE

In this chapter, I demonstrated the use of UML in simulating hardware
that is difficult or expensive to acquire in order to make decisions about
both software and hardware. By simulating a system with a great deal
of devices of a particular sort, it is possible to probe the limits of the
software you might run on such a machine. These limits could involve
either the kernel or applications. By running the software stack on an

Dike.book Page 273 Wednesday, March 15, 2006 8:16 PM

274 Chapter 12 Specialized UML Configurations

appropriately configured UML instance, you can see whether it is going
to have problems before you buy the hardware.

I demonstrated this with a UML instance with a very large num-
ber of Ethernet interfaces and some with varying amounts of memory,
up to 64GB. The same could have been done with a number of other
types of devices, such as CPUs and disks.

With memory, the objective was to analyze the memory require-
ments of a particular workload without actually having a physical sys-
tem with the requisite memory in it. You must be careful about doing
performance measurements in this case. Looking at wall-clock time is
useless because real time will be controlled by the availability of real
resources, such as physical memory in the host. A proxy for real time is
needed, and when memory is concerned, disk I/O inside the virtual
machine is usually a good choice.

The UML instance will act as though it has the memory that was
configured on the command line, and the host will swap as necessary in
order to maintain that illusion. Therefore, the virtual machine will
explicitly swap only when that illusory physical memory is exhausted.
A physical machine with that amount of memory will behave in the
same way, so a lower amount of disk I/O in the virtual machine will
translate into lower real time for the workload on a physical machine.

Finally, I demonstrated the configuration of a cluster of two UML
instances. This substituted the use of a host file, rather than a shared
disk device, as the cluster interconnect. The ability to substitute a free
virtual resource for an expensive physical one is a good reason to proto-
type a cluster virtually before committing to a physical one. You can see
whether your workload will run on a cluster, and if so, how well, with
the earlier caveats about making performance measurements.

In a number of ways, a virtual machine is a useful tool for helping
you make decisions about software intended to run on physical hard-
ware and about the hardware itself. UML lets you simulate hardware
that is expensive or inconvenient to acquire, so you can test-run the
applications or workloads you intend to run on that hardware. By
doing so, you can make more informed decisions about both the hard-
ware and the software.

Dike.book Page 274 Wednesday, March 15, 2006 8:16 PM

275

C H A P T E R 13

The Future of UML

Currently, a UML instance is a standard virtual machine, hard to dis-
tinguish from a Linux instance provided by any of the other virtualiza-
tion technologies available. UML will continue to be a standard virtual
machine, with a number of performance improvements. Some of these
have been discussed in earlier chapters, so I’m not going to cover them
here. Rather, I will talk about how UML is also going to change out of
recognition. Being a real port of the Linux kernel that runs as a com-
pletely normal process gives UML capabilities not possessed by any
other virtualization technology that provides virtual machines that
aren’t standard Linux processes.

We discussed part of this topic in Chapter 6, when we talked about
humfs and its ability to store file metadata in a database. The capabili-
ties presented there are more general than we have talked about.
humfs is based on a UML filesystem called externfs, which imports
host data into a UML instance as a filesystem. By writing plugin mod-
ules for externfs, such as humfs, anything on the host that even
remotely resembles a filesystem can be imported into a UML instance
as a mountable filesystem.

Dike.book Page 275 Wednesday, March 15, 2006 8:16 PM

276 Chapter 13 The Future of UML

Similarly, external resources that don’t resemble filesystems but
do resemble processes could be imported, in a sense, into a UML
instance as a process. The UML process would be a representative of
the outside resource, and its activity and statistics would be repre-
sented as the activity and statistics of the UML process. Operations
performed on the UML process, such as sending it signals or changing
its priority, would be reflected back out to the outside in whatever way
makes sense.

An extension of this idea is to import the internal state of an appli-
cation into UML as a filesystem. This involves embedding a UML
instance into the application and modifying the application sufficiently
to provide access to its data from the captive UML instance through a
filesystem. Doing so requires linking UML into the application so that
the UML instance and the application share an address space, making
it easy for them to share data.

It may not be obvious why this is useful, but it has potential that
may turn out to be revolutionary for two major reasons.

1. A small number of applications have some of the attributes of an
operating system, and a larger number would benefit from gaining
those attributes. As an operating system that is already in user-
space, UML is available to provide those attributes very easily in
comparison to implementing them from scratch. For example,
there are a small number of clusterized applications, such as some
databases. As Linux gains clustering capabilities, UML will acquire
them, and those capabilities will become available to applications
that embed a UML instance. A number of other capabilities exist,
such as good SMP scaling, filesystems, and a full network stack.

2. A UML instance embedded in an application with filesystem
access to the application’s internal data provides a standard devel-
opment environment. This will make it easy to customize the
application’s behavior, add features to it, and make it interoperate
with other applications that themselves contain embedded UML
instances. All the application needs to do is embed the UML instance
and provide it with access to whatever data it wishes to expose. At
that point, the information is available through the standard
Linux file interfaces and can be manipulated using standard
Linux tools. Furthermore, applications within the embedded UML
instance can use any development tools and environments avail-
able for Linux.

Dike.book Page 276 Wednesday, March 15, 2006 8:16 PM

The externfs Filesystem 277

Some prominent individual applications would also benefit from
embedding UML instances; I’ll describe those later.

Another area of future work comes from UML being a virtualized
Linux kernel, rather than a userspace Linux kernel. As a virtualized
kernel, a UML instance (and all of the subsystems within it) operates
as a guest, in the sense that it knows it’s a guest and explicitly uses the
resources provided by the host. This comes in handy because of the
benefits of using pieces of UML, such as the scheduler, as guests on
their own.

For example, I have prototyped a guest scheduler patch to the
Linux kernel that runs the scheduler as a guest on the normal sched-
uler. The guest scheduler runs as a process on the host, and processes
controlled by it compete for slices of the CPU time that the host sched-
uler provides to it. Thus, processes controlled by the guest scheduler
are jailed with respect to their CPU consumption but unlimited in
other respects.

Similarly, other subsystems pulled out of UML will jail processes
in different ways. Combining these will allow the system administrator to
confine processes and partition the system’s resources in arbitrary ways.

THE externfs FILESYSTEM

humfs is a special case of a more general filesystem called externfs.
The purpose of externfs is to allow any reasonable external data to
be imported as a UML filesystem. externfs doesn’t import anything
by itself—it simply makes it easy to import external data by imple-
menting an interface, defined by externfs, to the Linux filesystem
layer. externfs provides the glue between that interface and the
Linux kernel VFS interface, allowing the data to appear to be a Linux
filesystem.

This will allow you to mount this data as a UML filesystem and
use standard utilities and scripts to examine and manipulate it. The
filesystem interface hides the specialized interface normally used to
access the data. By providing a common way to access the information,
data sources that are normally disjointed and isolated from each other
can be made to interoperate. Data can be copied from one database to a
completely different database merely by copying files.

The sqlfs example in Chapter 6 as a possible humfs metadata
format demonstrates this by allowing you to examine and change a

Dike.book Page 277 Wednesday, March 15, 2006 8:16 PM

278 Chapter 13 The Future of UML

database using normal Linux utilities rather than a SQL monitor. Of
course, the SQL interface is still there, but it has been hidden under
the Linux filesystem interface by the UML filesystem that imported it.

Essentially any structured data anywhere can be represented
somehow as files and directories, and a plugin for externfs that maps
the structure onto files and directories will import that data as a UML
filesystem.

This is a large universe of possibilities, but which of them will
actually prove to be useful? Representing data this way would be use-
ful for any database whose contents are not readily accessible as text.
Having the database available as a set of directories and files allows
you to use standard utilities such as find and grep on it. It would not
be so useful for any database that already uses text, such as any of the
ones in /etc (e.g., the password and group files). These can already be
easily analyzed and searched with the standard text utilities.

A package database might be a good candidate for this sort of
treatment. rpm and dpkg have their own syntaxes for querying their
databases. However, having the host’s package database, including
installed and available packages and the information associated with
them, as a set of text files would make it unnecessary to use those syn-
taxes. Instead, you would use ls, cat, and find to tell you what you
need to know.

For example, in order to figure out which package owns a particu-
lar file, such as /etc/passwd, you would do something like this:

UML% find /host-packages -name passwd
/host-packages/installed/setup-2.5.46-1/files/etc/passwd

The output tells you that /etc/passwd is a part of the setup-
2.5.46-1 package. Similarly, you could find the package’s description
like this:

UML% cat /host-packages/installed/setup-2.5.46-1/description
The setup package contains a set of important system
configuration and setup files, such as passwd, group, and
profile.

There’s no reason that the package database filesystem would be
limited to importing the host’s package database. The package data-
bases of other hosts on the network could also be imported into the UML
using a network-aware version of this filesystem. Mounting another
host’s package database would involve communicating with a daemon on
the remote side. So, via this daemon, you could have a set of filesystems

Dike.book Page 278 Wednesday, March 15, 2006 8:16 PM

The externfs Filesystem 279

such as /packages/my-host, /packages/bob-host, /packages/
jane-host, and /packages/web-server.

Having the package information for all the hosts on the network
in one place would turn the UML into a sort of control center for the
network in this regard. Then you could perform some useful opera-
tions.

☞ Compare the configurations of different machines:

UML% ls -1 /packages/my-host/installed > /tmp/x
UML% ls -1 /packages/bob-host/installed > /tmp/y
UML% diff /tmp/x /tmp/y

☞ Ensure that all machines on the network have the same versions
of their packages installed by comparing the version files of the
package subdirectories in the host package filesystems.

☞ Install and delete packages:

UML% rm -rf /packages/my-host/installed/bc-1.06-18
UML% mv firefox-1.0.4-5.i386.rpm /packages/my-host/installed

These two operations would translate into a package removal
and a package installation on the host. In the installation example,
the firefox RPM file would be copied out to the host and installed.
Then a firefox subdirectory would appear in the /packages/
my-host/installed directory.

If you wanted to enforce a policy that all configuration changes to
any machine on the network would have to be done from this UML con-
trol console, the daemon on each host would maintain a lock on the
package database. This would prevent any changes from happening
locally. Since these daemons would be controlled from the UML
instance, configuration changes to any of the hosts could be done only
from the UML instance through this filesystem.

If a number of machines needed to have the same configurations,
you could also have them all mounted in the same place in the UML
control console. Operations within this filesystem would be multi-
plexed to all of the hosts. So, installing a new package through this file-
system would result in the package being copied to all of the hosts and
installed on all of them. Similarly, removing a package would result in
it being removed from all the hosts.

You can consider using a UML as a similar control console for any
other system administration database. Using it to manage the host’s

Dike.book Page 279 Wednesday, March 15, 2006 8:16 PM

280 Chapter 13 The Future of UML

password or group files is probably not practical, as I mentioned ear-
lier. However, it may be useful to manage the password or group files
for a network, if you’re not using an existing distributed mechanism,
such as NIS, for them.

You could take this control console idea further and use an
externfs plugin to front a number of databases on the network, not
just one. For example, consider a large organization with several levels
of management and an externfs-based filesystem that allows a mir-
ror of this organization to be built in it. So, every manager would be
represented by a directory that contains a directory for each person
who reports directly to that manager. If some of these reporting people
were also managers, there would be another level of directories further
down. Hiring a new person would involve creating a directory under-
neath the hiring manager. The filesystem would see this directory cre-
ation and perform the necessary system administration tasks, such as:

☞ Creating login and mail accounts
☞ Adding the new person to the appropriate groups and mailing lists
☞ Updating online organization charts and performing other

organization-specific tasks

Similarly, removing a person’s directory would result in the reversal of
all of these tasks.

Performing these tasks would not need to be done by hand, nor
would it require a specialized application to manage the whole process.
It would be done by changing files and directories in this special file-
system and tying those changes to the necessary actions on the net-
work. I’m not suggesting that someone would be literally running the
mkdir and rmdir utilities in a shell whenever someone is hired or
leaves, although that would work. There would likely be a graphical
interface for doing this, and it would likely be customized for this task,
to simplify the input of the required information. However, putting it in
a filesystem makes this information available in a standardized way at
a low enough level that any sort of application, from a shell script to a
customized graphical interface, can be written to manipulate it.

If the filesystem contains sensitive data, such as pay rates or
home addresses, Linux file permissions can help prevent unauthorized
people from seeing that information. Each piece of data about an
employee could potentially be in its own file, with user and group own-
ership and permissions that restrict access to people who are allowed
to view the information.

Dike.book Page 280 Wednesday, March 15, 2006 8:16 PM

The externfs Filesystem 281

This example seems to fit a filesystem particularly well. No doubt
there are others. UML’s externfs allows this sort of information to be
plugged into a UML as a filesystem, where it can be viewed and manip-
ulated by any tools that know how to deal with files and directories.

This scenario is not as far out in left field as it may appear. Practi-
cally every Linux system in the world is doing something similar by
providing a unified interface to a number of disparate databases. A typ-
ical Linux system contains the following:

☞ At least one, and often more, disk-based filesystems such as ext2,
ext3, reiserfs, or xfs

☞ A number of virtual, kernel-based filesystems such as procfs,
sysfs, and devpts

☞ Usually at least one CD or DVD filesystem
☞ Often some devices such as MP3 players or cameras that repre-

sent themselves as storage devices with FAT or HFS filesystems

You can think of all of these as being different kinds of databases
to which the Linux VFS layer is providing a uniform interface. This lets
you transparently move data between these different databases (as
with ls -l /proc > /tmp/processes copying data from the kernel to
/tmp) and transparently search them. You don’t need to be concerned
about the underlying representation of the data, which differs greatly
from filesystem to filesystem.

What I described above is close to the same thing, except that my
example uses the Linux VFS interface to provide the same sort of
access to a different class of databases: personnel databases, corporate
phone books, and so on. In principle, these are no different from the on-
disk databases your files are stored in. I’d like to see access to these be
as transparent and unified as access to your disks, devices, and inter-
nal kernel information is now.

externfs provides the framework for making this access possi-
ble. Each different kind of database that needs to be imported into a
UML instance would need an externfs plugin that knows how to
access it. With that written, the database can be imported as a Linux
filesystem. At that point, the files and directories can be rearranged as
necessary with Linux bind mounts. In the example above, the overall
directory hierarchy can be imported from the corporate personnel data-
base. Information like phone numbers and office locations may be in
another database. Those files can be bind-mounted into the employee
hierarchy, so that when you look at the directory for an employee, all of

Dike.book Page 281 Wednesday, March 15, 2006 8:16 PM

282 Chapter 13 The Future of UML

that person’s information is present there, even though it’s coming
from a number of different databases.

The infrastructure to provide a transparent, unified interface to
these different databases already exists. The one thing lacking is the
modules needed to turn them into filesystems.

VIRTUAL PROCESSES

Some things don’t map well to files, directories, or filesystems, but you
may wish to import them into Linux at a low level in order to manipu-
late them in a similar way. Many of these may resemble processes.

☞ They start at a certain time and may stop at some point.
☞ They consume various sorts of resources while running.
☞ They may be in various states at different times, such as actively

running, stopped, or waiting for an event.

It may make sense to represent such things as Linux processes,
and it will be possible to create UML processes that represent the state
of something external to the UML instance. This could be something
very close to a process, such as a server on the host, or it could be some-
thing very unlike a process, such as a project.

This “virtual” process would appear in the UML instance’s process
list with all the attributes of a normal process, except that these would
be fabricated from whatever it is representing. As with the filesystem
example, actions performed on one of these processes would be
reflected out to the real thing it represents. So, sending a signal to a
virtual process that represents a service on some machine elsewhere on
the network could shut down that service. Changing the virtual pro-
cess’s priority would have the analogous effect on the processes that
belong to that service.

Representing a project as a “virtual” process is not as good a fit. It
is hard to imagine that a high-level manager would sit in front of a pro-
cess listing, look at processes representing projects within the com-
pany, and change their priorities or cancel them by clicking on a Linux
process manager. Some things resemble processes, but their attributes
don’t map well onto Linux processes.

Representing network services as UML processes and managing
them as such doesn’t seem to me far fetched. Neither does representing

Dike.book Page 282 Wednesday, March 15, 2006 8:16 PM

Captive UML 283

hosts as a whole. Machines can respond to signals on their process rep-
resentatives within the UML instance by shutting down or rebooting,
and the status of a machine seems to map fairly well onto the status of
a process.

Processes are more limited in this regard than filesystems are
since they can’t contain arbitrary data, such as names and file con-
tents, and they have a limited number of attributes with fairly inflexi-
ble semantics. So, while I can imagine a synthetic filesystem being
used to manage personnel in some sense, I don’t think synthetic pro-
cesses can be used in a similar way. Nevertheless, within those limits, I
think there is potential for managing some process-like entities as syn-
thetic UML processes and using that capability of UML to build a con-
trol console for those entities.

CAPTIVE UML

So far I’ve talked about using special filesystems to import the external
state of outside entities into a UML instance where it can be manipu-
lated through a filesystem. An extension of this is to import the inter-
nal state of an application into a UML instance to be manipulated in
the same way.

This would be done by actually embedding the UML instance
within the application. The application would link UML in as a library,
and a UML instance would be booted when the application runs. The
application would export to the UML instance whatever internal state
it considers appropriate as a filesystem. Processes or users within that
UML instance could then examine and manipulate that state through
this filesystem, with side effects inside the application whenever any-
thing is changed.

Secure mod_perl

Probably the best example of a real-world use for a captive UML that I
know of is Apache’s mod_perl. This loadable module for Apache con-
tains a Perl interpreter and allows the use of Perl scripts running
inside Apache to handle requests, generate HTML, and generally con-
trol the server. It is very powerful and flexible, but it can’t be used
securely in a shared Apache hosting environment, where a hosting

Dike.book Page 283 Wednesday, March 15, 2006 8:16 PM

284 Chapter 13 The Future of UML

company uses a single Apache server to serve the Web sites of a num-
ber of unrelated customers.

Since a Perl script runs in the context of the Apache server and
can control it, one customer using mod_perl could take over the entire
server, cause it to crash or exit, or misbehave in any number of other
ways. The only way to generate HTML dynamically with a shared
Apache is to use CGI, which is much slower than with mod_perl. CGI
creates a new process for every HTML request, which can be a real per-
formance drag on a busy server. This is especially the case when the
Web site is generated with Perl, or something similar, because of the
overhead of the Perl interpreter.

With some captive UML instances inside the Apache server, you
could get most of the performance of standard mod_perl, plus a lot of
its flexibility, and do so securely, so that no customer could interfere
with other sites hosted on the same server or with the server itself. You
would do this by having the customer’s Perl scripts running inside the
instances, isolating them from anything outside. Communication with
the Apache server would occur through a special filesystem that would
provide access to some of Apache’s internal state.

The most important piece of state is the stream of requests flowing
to a Web site. These would be available in this filesystem, and in a very
stripped-down implementation, they would be the only thing available.
So, with the special Apache filesystem mounted on /apache, there
could be a file called /apache/request that the Perl script would
read. Whenever a request arrived, it would appear as the contents of
this file. The response would be generated and written back to that file,
and the Apache server would forward it to the remote browser.

One advantage of this approach is immediately evident. Since the
HTML generation is happening inside a full Linux host and communi-
cation with the host Apache server is through a set of files, the script
can be written in any language—Perl, Python, Ruby, shell, or even
compiled C, if maximum performance is desired. It could even be writ-
ten in a language that didn’t exist at the time this version of Apache
was released. The new language environment would simply need to be
installed in the captive UML instance.

Another advantage is that the Web site can be monitored in real
time, in any manner desired, from inside the UML instance. This
includes running an interactive debugger on the script that’s generat-
ing the Web site, in order to trace problems that might occur only in a
production deployment. Obviously, this should be done with caution,

Dike.book Page 284 Wednesday, March 15, 2006 8:16 PM

Captive UML 285

considering that debuggers generally slow down whatever they’re
debugging and can freeze everything while stopped at a breakpoint.
However, for tracking down tricky problems, this is a capability that
doesn’t exist in mod_perl currently but comes for free with a captive
UML instance.

So far, I’ve talked about using a single file, /apache/request, to
receive HTTP requests and to return responses. This Apache filesystem
can be much richer and can provide access to anything in the
mod_perl API, which is safe within a shared server. For example, the
API provides access to information about the connection over which a
request came, such as what IP the remote host has and whether the
connection supports keepalives. This information could be provided
through other files in this filesystem.

The API also provides access to the Apache configuration tree,
which is the in-memory representation of the httpd.conf file. Since
this information is already a tree, it can be naturally represented as a
directory hierarchy. Obviously, full access to this tree should not be pro-
vided to a customer in a shared server. However, the portions of the
tree associated with a particular customer could be. This would allow
customers to change the configuration of their own Web sites without
affecting anyone else or the server as a whole.

For example, the owner of a VirtualHost could change its config-
uration or add new VirtualHosts for the same Web site. Not only
would this be more convenient than asking the hosting company to
change the configuration file, it also could be done on the fly. This
would allow the site to be reconfigured as much and as often as desired
without having to involve the hosting company.

It is common to have Apache running inside a UML instance. This
scheme turns that inside-out, putting the UML instance inside Apache.
Why do things this way instead of the standard Apache-inside-UML
way? The reasons mirror the reasons that people use a shared Apache
provider rather than colocating a physical machine and running a pri-
vate Apache on it.

It’s cheaper since it involves less hardware, and it doesn’t require
a separate IP address for every Web site. The captive UML instance
has less running in it compared to running Apache inside UML. All
Web sites on the server share the same Apache instance, and the only
resources they don’t share are those dedicated to generating the indi-
vidual Web sites. Also, it’s easier to administrate. The hosting company
manages the Apache server and the server as a whole, and the custom-
ers are responsible only for their own Web sites.

Dike.book Page 285 Wednesday, March 15, 2006 8:16 PM

286 Chapter 13 The Future of UML

Evolution

Putting a UML instance inside Apache is probably the most practical
use of a captive UML instance, but my favorite example is Evolution. I
use Evolution on a daily basis, and there are useful things that I could
make it do if there were a UML instance inside it with access to its
innards. For example, I have wanted an easy way to turn an e-mail
message into a task by forwarding the e-mail to some special address.
With a UML instance embedded inside Evolution, I would have the
instance on the network with a mail server accepting e-mail. Then a
procmail script, or something similar, would create the task via the
filesystem through which the UML instance had access to Evolution’s
data.

So, given an e-mail whose title is “frobnitz is broken” and whose
message is “The frobnitz utility crashes whenever I run it,” the
script would do something like this:

UML% cat > /evolution/tasks/"frobnitz is broken" << EOF
The frobnitz utility crashes whenever I run it
EOF

This would actually create this task inside Evolution, and it would
immediately appear in the GUI. Here, I am imagining that the “Evolu-
tion filesystem” would be mounted on /evolution and would contain
subdirectories such as tasks, calendar, and contacts that would let
you examine and manipulate your tasks, appointments, and contacts,
respectively. Within /evolution/tasks would be files whose names
were the same as those assigned to the tasks through the Evolution
GUI. Given this, it’s not too much of a stretch to think that creating a
new file in this directory would create a new task within Evolution,
and the contents of the task would be the text added to the file.

In reality, an Evolution task is a good deal more complicated and
contains more than a name and some text, so tasks would likely be rep-
resented by directories containing files for their attributes, rather than
being simple files.

This example demonstrates that, with a relatively small interface
to Evolution and the ability to run scripts that use that interface, you
can easily make useful customizations. This example, using the tools
found on any reasonable Linux system, would require a few lines of
procmail script to provide Evolution with a fundamental new capabil-
ity—to receive e-mail and convert it into a new task.

Dike.book Page 286 Wednesday, March 15, 2006 8:16 PM

Captive UML 287

The new script would also make Evolution network-aware in a
sense that it wasn’t before by having a virtual machine embedded
within it that is a full network node.

I can imagine making it network-aware in other ways as well:

☞ By having a bug-tracking system send it bug reports when they
are assigned to you so they show up automatically in your task
list, and by having it send a message back to the bug-tracking sys-
tem to close a bug when you finish the task

☞ By allowing a task to be forwarded from one person to another
with one embedded UML sending it to another, which recreates
the task by creating the appropriate entries in the virtual Evolu-
tion filesystem

The fact that the captive UML instance could be a fully functional
network node means that the containing application could be, too. The
data exported through the filesystem interface could then be exported
to the outside world in any way desired. Similarly, any data on the out-
side could be imported to the application through the filesystem inter-
face. The application could export a Web interface, send and receive e-mail,
and communicate with any other application through its captive UML
instance.

Any application whose data needs to be moved to or from other
applications could benefit from the same treatment. Our bug-tracking
system could forward bugs to another bug tracker, receive bug reports
as e-mail, or send statistics to an external database, even when the bug
tracker couldn’t do any of these itself. If it can export its data to the
captive UML instance, scripts inside the instance can do all of these.

Given sufficient information exported to the captive UML instance,
any application can be made to communicate with any other applica-
tion. An organization could configure its applications to communicate
with each other in suitable ways, without being constrained by the
communication mechanisms built into the applications.

Application Administration

Some applications, such as databases and those that contain data-
bases, require dedicated administration, and sometimes dedicated
administrators. These applications try to be operating systems, in the
sense that they duplicate and reimplement functionality that is

Dike.book Page 287 Wednesday, March 15, 2006 8:16 PM

288 Chapter 13 The Future of UML

already present in Linux. A captive UML within the application could
provide these functions for free, allowing it to either throw out the
duplicated functionality or avoid implementing it in the first place.

For example, databases and many Web sites require that users log
in. They have different ways to store and manage account information.
Almost everyone who uses Linux is familiar with adding users and
changing passwords, but doing the same within a database requires
learning some new techniques. However, with a captive UML instance
handling this, the familiar commands and procedures suffice. The
administrator can log in to the UML instance and add or modify
accounts in the usual Linux way.

The captive UML instance can handle authentication and authori-
zation. When a user logs in to such a Web site, the site passes the user
ID and password to the UML instance to be checked against the pass-
word database.

If there are different levels of access, authorization is needed as
well. After the captive UML instance validates the login, it can start a
process owned by that user. This process can generate the HTML for
requests from that user. With the site’s data within this UML instance
and suitably protected, authorization is provided automatically by the
Linux file permission system. If a request is made for data that’s inac-
cessible to the user, this process will fail to access it because it doesn’t
have suitable permissions.

The same is true with other tasks such as making backups. Data-
bases have their own procedures for doing this, which differ greatly
from the way it’s done on Linux. With a captive UML instance having
access to the application’s data, the virtual filesystem that the instance
sees can be backed up in the same way as any other Linux machines.
The flip side of this is restoring a backup, which would also be done in
the usual Linux way.

The added convenience of not having to learn new ways to perform
old tasks is obvious. Moreover, there are security advantages. Doing
familiar tasks in a familiar way reduces the likelihood of mistakes, for
example, making it less likely that adding an account, and doing it
wrong, will inadvertently open a security hole.

There is another security benefit, namely, that the application
administrator logs in to the application’s captive UML instance to per-
form administration tasks. This means that the administrator doesn’t
need a special account on the host, so there are fewer accounts, and
thus fewer targets, on the host. When the administrator doesn’t need

Dike.book Page 288 Wednesday, March 15, 2006 8:16 PM

Captive UML 289

root privileges on the host, there is one fewer person with root access,
one fewer person who can accidentally do something disastrous to the
host, and one fewer account that can be used to as a springboard to root
privileges.

A Standard Application Programming Interface

Another side of a captive UML instance can be inferred from the dis-
cussion above, but I think it’s worth talking about it specifically. A
Linux environment, whether physical or virtual, normally comes with
a large variety of programming tools. Add to this the ability of a captive
UML instance to examine and manipulate the internal state of its
application, and you have a standard programming environment that
can be imported into any application.

The current state of application programmability and extensibility
is that the application provides an API to its internals, and that API
can be used by one of a small number of programming languages. To
extend Emacs, you have to use Lisp. For GIMP, you have Scheme, TCL,
and Perl. For Apache, there is Perl and Python. With a reasonable
Linux environment, you get all of these and more. With an API based
on the virtual filesystem I have described, application development and
extension can be done with any set of tools that can manipulate files.

With an embedded UML instance providing the application’s
development environment, the developers don’t need to spend time cre-
ating an API for every language they wish to support. They spend the
time needed to embed a UML instance and export internal state
through a UML virtual filesystem, and they are done. Their users get
to choose what languages and tools they will use to write extensions.

Application-Level Clustering

A captive UML can also be used to provide application access to kernel
functionality. Clustering is my favorite example. In Chapter 12 we saw
two UML instances being turned into a little cluster, which is a simple
example of process-level clustering. There is at least one real-world,
commercial example of this—Oracle clusters, where the database
instances on multiple systems cooperate to run a single database.

There would be more examples like this if clustering were easier
to do. Oracle did its own clustering from scratch, and any other product,

Dike.book Page 289 Wednesday, March 15, 2006 8:16 PM

290 Chapter 13 The Future of UML

commercial or open source, would have to do the same. With the clus-
tering technologies that are currently in Linux and those that are on their
way, UML can provide a much easier way to “clusterize” an application.

With UML, any clustering technology in the Linux kernel is auto-
matically running in a process, assuming that it is not hardware-
dependent. To clusterize an application, we need to integrate UML into
the application in such a way that it can use that technology.

Integrating UML into the application is a matter of making UML
available as a linkable library. At that point, the application can call
into the UML library to get access to any functionality within it.

I am envisioning this as an enabling technology for much deeper
Internet-wide collaborations than we’ve seen so far. At this point, most
such collaborations have been Web-based. Why isn’t that sufficient?
Why do we need some new technology? The answer is the same as that
for the question of why you don’t do all of your work within a Web
browser. You create a lot—likely all—of your work with other applica-
tions because these other tools are specialized for the work you are
doing, and your Web browser isn’t. Your tools have interfaces that
make it easy to do your work, and they understand your work in ways
that enable them to help. Web browsers don’t. Even when it is possible
to do the same work in your Web browser, the Web interface is invari-
ably slower, harder to use, and less functional than that for the special-
ized application.

Imagine taking one of these applications and making it possible
for many people to work within it at the same time, working on the
same data without conflicting with each other. Clusterizing the appli-
cation would allow this.

To make our example a bit more concrete, let’s take the ocfs2
UML cluster we saw in Chapter 12 and assume that an application
wants to use it as the basis for making a cluster from multiple
instances of itself. The ocfs2 cluster makes a shared disk accessible to
multiple nodes in such a way that all the nodes see the same data at all
times. The application shares some of its data between instances by
storing it in an ocfs2 volume.

Let us say that this application is a document editor, and the value
it gains from being clusterized is that many people can work on the
same document at the same time without overwriting each other’s
work. In this case, the document is stored in the cluster filesystem,
which is stored in a file on the host.

When an instance of this editor starts, the captive UML inside it
boots enough that the kernel is initialized. It attaches itself to the

Dike.book Page 290 Wednesday, March 15, 2006 8:16 PM

Captive UML 291

ocfs2 shared disk and brings itself up as a cluster node. The editor
knows how the document is stored within the shared disk and accesses
it by directly calling into the Linux filesystem code rather than making
system calls, such as open and read, as a normal process would.

With multiple instances of the editor attached to the same docu-
ment, and the captive UML instances as nodes within the cluster, a
user can make changes to the document at the same time as other
users, without conflicting with them.

The data stored within the cluster filesystem needs to be the pri-
mary copy of the document, in the sense that changes are reflected
more or less immediately in the filesystem. Otherwise, two users could
change the same part of the document, and one would end up overwrit-
ing the other when the changes made it to the filesystem.

How quickly changes need to be reflected in the filesystem is
affected to some extent by the organization of the document and the
properties of the cluster being used. A cluster ensures that two nodes
can’t change the same data at the same time by locking the data so
that only one node has access to it at any given time. If the locking is
done on a per-file basis, and this editor stores its document in a single
file, then the first user will have exclusive access to the entire docu-
ment for the entire session. This is obviously not the desired effect.

Alternatively, the document could be broken into pieces, such as a
directory hierarchy that reflects the organization of the document. The
top-level directories could be volumes, with chapter subdirectories
below that, sections below the chapters, and so on. The actual contents
would reside within files at the lowest level. These would likely be at
the level of paragraphs. A cluster that locks at the file level would let
different people work on different paragraphs without conflict.

There are other advantages to doing this. It allows the Linux file
permission system to be applied to the document with any desired
granularity. When each contributor to the document is assigned a sec-
tion to work on, this section would be contained inside some directory.
The ownerships on these directories and files would be such that those
people assigned to the section can edit it, and others can’t, although
they may have permission to read it. Groups can be set up so that some
people, such as editors, can modify larger pieces of the document.

At first glance, it would appear that this could be implemented by
running the application within a cluster, rather than having the cluster
inside the application, as I am describing. However, for a number of
reasons, that wouldn’t work.

Dike.book Page 291 Wednesday, March 15, 2006 8:16 PM

292 Chapter 13 The Future of UML

The mechanics of setting up the cluster require that it be inside
the application. Consider the case where this idea is being used to sup-
port an Internet-wide collaboration. Running the application within a
cluster requires the collaboration to have a cluster, and everyone con-
tributing to it must boot their systems into this cluster. This immedi-
ately runs into a number of problems.

First, many people who would be involved in such an effort have
no control over the systems they would be working from. They would
have to persuade their system administrators to join this cluster. For
many, such as those in a corporate environment, with systems installed
with defined images, this would be impossible. However, when the
application comes with its own clustering, this is much less of a prob-
lem. Installing a new application is much less problematic than having
the system join a cluster.

Even if you can get your system to join this cluster, you need your
system either to be a permanent member or to join when you run the
application that needs it. These requirements pose logistical and secu-
rity problems. To be a cluster node means sharing data with the other
nodes, so having to do this whenever the system is booted is undesir-
able. To join the cluster only when the application is running requires
the application to have root privileges or to be able to call on something
with those privileges. This is also impossible for some types of cluster-
ing, which require that nodes boot into the cluster. Both of these
options are risky from a security perspective. With the cluster inside
the application, these problems disappear. The application boots into
the cluster when it is started, and this requires no special privileges.

Second, there may be multiple clustered applications running on a
given system. Having the system join a different cluster for each one
may be impossible, as this would require that the system be a member
of multiple clusters at the same time. For a cluster involving only a
shared filesystem, this may be possible. But it also may not. If the dif-
ferent clusters require different versions of the same cluster, they may
be incompatible with each other. There may be stupid problems like
symbol conflicts with the two versions active on the host at the same
time. For any more intrusive clustering, being a member of multiple
clusters at once just won’t work. The extreme case is a Single-System
Image (SSI) cluster where the cluster acts as a single machine. It is
absolutely impossible to boot into multiple instances of these clusters
at once. However, with the cluster inside the application, this is not an
issue. There can’t be conflicts between different versions of the same

Dike.book Page 292 Wednesday, March 15, 2006 8:16 PM

Captive UML 293

clustering software between different clusters, or between different
types of clusters, because each cluster is in its own application. They
are completely separate from each other and can’t conflict.

Consider the case where the large-scale collaboration decides to
upgrade the cluster software it is using or decides to change the cluster
software entirely. This change would require the administrators of all
the involved systems to upgrade or change them. This logistical night-
mare would knock most of the collaboration offline immediately and
leave large parts of it offline for a substantial time. The effects of
attempting this could even kill the collaboration. An upgrade would
create two isolated groups, and the nonupgrading group could decide to
stay that way, forking the collaboration. With the cluster as part of the
application, rather than the other way around, an upgrade or change of
cluster technologies would involve an upgrade of the application. This
could also fail to go smoothly, but it is obviously less risky than upgrad-
ing the system as a whole.

Security also requires that the cluster be within the application.
Any decent-size collaboration needs accountability for contributions
and thus requires members to log in. This requires a unified user ID
space across the entire cluster. For any cluster that spans organization
boundaries, this is clearly impossible. No system administrator is going
to give accounts to a number of outsiders for the benefit of a single
application. It may also be mathematically impossible to assign user
IDs such that they are the same across all of the systems in the cluster.
With the application being its own cluster, this is obviously not a prob-
lem. With the captive UML instances being members of the cluster,
they have their own separate, initially empty, user ID space. Assigning
user IDs in this case is simple.

Now, consider the case where the application requires an SSI clus-
ter. For it to require the system to be part of the cluster is impossible
for logistical reasons, as I pointed out above. It’s also impossible from a
security standpoint. Every resource of every member of the cluster
would be accessible to every other member. This is unthinkable for any
but the smallest collaborations. This is not a problem if the cluster is
inside the application. The application boots into the cluster, and all of
its resources are available to the cluster. Since the application is
devoted to contributing to this collaboration, it’s expected that all of its
information and resources are available to the other cluster nodes.

Earlier, I used the example of a UML cluster based on ocfs2 to
show that process-level clustering using UML is possible and is the

Dike.book Page 293 Wednesday, March 15, 2006 8:16 PM

294 Chapter 13 The Future of UML

most practical way to clusterize an application. To implement the
large-scale collaborations I have described, ocfs2 is inadequate for the
underlying cluster technology for a number of reasons.

☞ It requires a single disk shared among all of its nodes. For a UML
cluster, this means a single file that’s available to all nodes. This is
impractical for any collaboration that extends much beyond a sin-
gle host. It could work for a local network, sharing the file with
something like NFS, but won’t work beyond that. What is needed
for a larger collaboration is a cluster technology that enables each
node to have its own local storage, which it would share with the
rest of the cluster as needed.

☞ ocfs2 clusters are static. The nodes and their IP addresses are
defined in a cluster-wide configuration file. The shared filesystem
has a maximum cluster size built into it. This can’t work for a
project that has contributors constantly coming and going. What is
required is something that allows nodes to be added and removed
dynamically and that does not impose a maximum size on the
cluster.

☞ ocfs2 doesn’t scale anywhere near enough to underlie a large col-
laboration. I am envisioning something with the scale of Wikipedia,
with hundreds or thousands of contributors, requiring the cluster-
ing to scale to that number of nodes. ocfs2 is used for sharing a
database, which is typically done with a number of systems in the
two-digit range or less.

While ocfs2 doesn’t have the ability to power such a project, I
know of one clustering technology, GFS, that might. It stores data
throughout the cluster. It claims to scale to tens of thousands of clients,
a level that would support a Wikipedia-scale collaboration. It does
seem to require good bandwidth (gigabit Ethernet or better) between
nodes, which the Internet as a whole can’t yet provide. Whether this is
a problem probably depends on the quantity of data that needs to be
exchanged between nodes, and that depends on the characteristics of
the collaboration.

These projects probably will not be well served by existing technol-
ogies, at least at first. They will start with something that works well
enough to get started and put pressure on the technology to develop in
ways that serve them better. We will likely end up with clusters with
different properties than we are familiar with now.

Dike.book Page 294 Wednesday, March 15, 2006 8:16 PM

Virtualized Subsystems 295

VIRTUALIZED SUBSYSTEMS

I plan to take advantage of UML’s virtualization in one more way: to
use it to provide customizable levels of confinement for processes. For
example, you may wish to control the CPU consumption of a set of pro-
cesses without affecting their access to other machine resources. Or
you may wish to make a container for some processes that restricts
their memory usage and filesystem access but lets them consume as
much CPU time as they like.

I’m going to use UML to implement such a flexible container sys-
tem by breaking it into separate subsystems (e.g., the scheduler and
the virtual memory system). When you break UML, which is a virtual
kernel, into separate pieces, those pieces are virtual subsystems. They
can run on or within their nonvirtual counterparts, and they require a
nonvirtual counterpart to host them in order to function at all.

For example, my virtualized scheduler runs a guest scheduler
inside a host process. The host process provides the context needed for
the guest scheduler to function. The guest scheduler requires some
CPU cycles to allocate among the processes in its care. These cycles
come from its host process, which is competing with other processes for
CPU cycles from the host scheduler.

Similarly, a guest virtual memory system would allocate memory
to its processes from a pool of memory provided by the host virtual
memory system.

You would construct a container by building a set of virtualized
subsystems, such as the scheduler and virtual memory system, loading
it into the host kernel, and then loading processes into it. Those pro-
cesses, in the scheduler and virtual memory system case, would get
their CPU cycles from the guest scheduler and their memory from the
guest virtual memory system. In turn, these would have some alloca-
tion of cycles and memory from the host.

Let’s take the guest scheduler as an example since it has been
implemented. A new guest scheduler is created by a process opening a
special file in /proc:

host% cat /proc/schedulers/guest_o1_scheduler &
Created sched_group 290 ('guest_o1_scheduler')

The contents of /proc/schedulers are the schedulers available
for use. In this case, there is only one, guest_o1_scheduler. This cre-
ates a sched_group, which is the set of processes controlled by this

Dike.book Page 295 Wednesday, March 15, 2006 8:16 PM

296 Chapter 13 The Future of UML

scheduler. When the system boots, all processes are in sched_group 0,
which is the host scheduler. sched_group 290 is the group controlled
by the cat process we ran, which had process ID 290.

Once we have a guest scheduler, the next step is to give it some
processes to control. This is done by literally moving processes from
sched_group 0 to sched_group 290. Let’s create three infinite shell
loops and move two of them into the new scheduler:

host% bash -c 'while true; do true; done' &
[2] 292
host% bash -c 'while true; do true; done' &
[3] 293
host% bash -c 'while true; do true; done' &
[4] 294
host% mv /proc/sched-groups/0/293 /proc/sched-groups/290/
host% mv /proc/sched-groups/0/294 /proc/sched-groups/290/

Now process 290, which is the host representative of the guest
scheduler, is competing with the other host processes, including the
busy loop with process ID 292, for CPU time. Since those are the only
two active processes on the host scheduler, they will each get half of the
CPU. The guest scheduler, inside process 290, is going to take its half of
the CPU and split it between the two processes under its control. Thus,
processes 293 and 294 will each get half of that, or a quarter of the
CPU each:

host% ps uax
...
root 292 49.1 0.7 2324 996 tty0 R 21:51 \
 14:40 bash -c
root 293 24.7 0.7 2324 996 tty0 R 21:51 \
 7:23 bash -c
root 294 24.7 0.7 2324 996 tty0 R 21:51 \
 7:23 bash -c
...

The guest scheduler forms a CPU compartment—it gets a fixed
amount of CPU time from the host and divides it among its processes.
If it has many processes, it gets no more CPU time than if it had only a
few. This is useful for enforcing equal access to the CPU for different users
or workloads, regardless of how many processes they have running.

By loading each group of processes, whether a user, an application,
a workload, or an arbitrary set of processes, into one of these compart-
ments, you guarantee that the groups as a whole get treated equally by
the scheduler.

Dike.book Page 296 Wednesday, March 15, 2006 8:16 PM

Virtualized Subsystems 297

I’ve described the guest schedulers as being loaded into the host
kernel, but I can also see a role for userspace guest schedulers. Most
obviously, by making the scheduler of a UML instance visible to the
host as a guest scheduler, its processes become visible to the host in the
same way as the host’s own processes. Their names and resource usage
become visible on the host. They also become controllable in the same
way—a signal can be sent to one from the host and the corresponding
UML process will receive it.

Making a UML scheduler visible as a host guest scheduler
requires an interface for a process to register itself as a guest sched-
uler. This interface would be the mechanism for telling the host about
the guest’s processes and their data. Once we have an interface like
this, there’s no reason that UML has to be the only user of it.

A number of other applications have internal process-like compo-
nents and could use this interface. Anything with internal threads
could make them visible on the host in the same way that UML pro-
cesses would be. They would be controllable in the same way, and the
attributes the host sees would be provided by the application.

A Web server could make requests or sessions visible as host pro-
cesses. Similarly, a mail server could make incoming or outgoing e-mail
messages look like processes. The ability to monitor and control these
servers with this level of granularity would make them much more
manageable.

The same ideas would apply to any other sort of compartment. A
memory compartment would be assigned some amount of memory when
created, just as a CPU compartment has a call on a certain amount of
CPU time. Processes would be loaded into it and would then have their
memory allocations satisfied from within that pool of memory.

If a compartment runs out of memory, it has to start swapping. It
is required to operate on the fixed amount of memory it was provided
and can’t allocate more from the host when it runs short. It has to swap
even if there is plenty of memory free on the rest of the system. In this
way, the memory demands of the different groups of processes on the
host are isolated from each other. One group can’t adversely affect the
performance of another by allocating all of the memory on the system.

Compartmentalization is an old subject, and there are many ways
to do it, including some that are currently being implemented on Linux,
principally, CKRM, or Class-based linux Kernel Resource Management.
These projects add resource allocation and control infrastructures to
the kernel and add interfaces that allow users to control the resulting
compartments.

Dike.book Page 297 Wednesday, March 15, 2006 8:16 PM

298 Chapter 13 The Future of UML

These approaches necessarily involve modifying the basic algo-
rithms in the kernel, such as the scheduler and the virtual memory
system. This adds some overhead to these algorithms even when com-
partments aren’t being used, which is likely to be the common case.
There is a bias in the Linux kernel development community against
making common things more expensive in order to make uncommon
things cheap. Compartmentalization performed in these ways conflicts
with that ethos.

More importantly, these algorithms have been carefully tuned
under a wide range of workloads. Any perturbations to them could
throw off this tuning and require repeating all this work.

In contrast, the approach of gaining compartmentalization
through virtualization requires no changes to these core algorithms.
Instead of modifying an algorithm to accommodate compartments, a
new copy of the same algorithm is used to implement them. Thus, there
is no performance impact and no behavior perturbation when compart-
ments are not being used.

The price of having two complete implementations of an algorithm
instead of a single modified one is that compartments will tend to be
more expensive. This is the trade-off against not affecting the perfor-
mance and behavior when compartments are not being used.

CONCLUSION

UML differs from other virtualization technologies in implementing
virtualization completely in userspace. This gives it capabilities that
have not been realized yet, but I believe UML will ultimately be more
widely used for purposes other than just as a virtual machine.

The fact that UML implements a virtual machine in a set of pro-
cesses means that it can be repackaged as a library and linked into
other applications, which gain an embedded virtual machine. This
gives them a standard development and extension environment that is
familiar to everyone who does Linux development. This may make
those applications more useful than they would be otherwise. They
gain the ability to communicate with each other in arbitrary ways,
allowing them to adapt to the workflow rather than forcing the work-
flow to adapt to them.

For some specific applications, this may open up new markets. I
described how shared Apache configurations could benefit from this.

Dike.book Page 298 Wednesday, March 15, 2006 8:16 PM

Conclusion 299

They would gain the ability to securely host multiple dynamic Web
sites using mod_perl, which currently requires a dedicated system for
each site. This has obvious economic advantages, as a single system
could replace the many systems currently hosting these sites. Other
advantages flow from this approach, such as being freed from having to
use a specific language for development and being able to interactively
debug a Web site inside the live server.

The use of UML for compartmentalization demonstrates another
aspect of userspace virtualization. While I demonstrated the guest
scheduler being loaded into the kernel, it is not necessarily required to
be there. It should be possible to have a guest scheduler running in a
process, in userspace, doing all the things that the in-kernel guest
scheduler does. The fact that the scheduler and the other subsystems
can be virtualized at all is a result of the fact that they started from
UML, in userspace. Since UML is already a virtualized Linux kernel,
any pieces of it will be similarly virtualized.

Dike.book Page 299 Wednesday, March 15, 2006 8:16 PM

Dike.book Page 300 Wednesday, March 15, 2006 8:16 PM

301

A P P E N D I X A

UML Command-Line Options

There are a number of UML-specific command-line options. The largest
group configures the hardware and devices that the virtual machine
will have. The rest are used to specify how the instance will be man-
aged from the host, to set debugging options, or to print information
about the UML instance.

DEVICE AND HARDWARE SPECIFICATIONS

The following options set configurations for virtual devices and hard-
ware.

☞ dsp=dsp device and mixer=mixer device—These two options
specify the host audio interfaces for the use of the UML audio
pass-through driver. The default values are /dev/sound/dsp and
/dev/sound/mixer, respectively. If you wish to play sound from
within your UML instance, and the host digital signal processor
(dsp) or mixer devices are different from these, you’ll need to use
these switches.

Dike.book Page 301 Wednesday, March 15, 2006 8:16 PM

302 Appendix A UML Command-Line Options

☞ xterm=terminal emulator,title switch,exec switch—This
switch allows the use of terminal emulators besides xterm for
UML consoles and serial lines. The arguments specify how to
invoke the emulator with a given title and command running
within it. The defaults, for xterm, are -T and -e, meaning that
the title is specified with the -T switch and the command to run
within the xterm follows the -e switch. The values for gnome-
terminal are -t and -x, so xterm=gnome-terminal,-t,-x
would make UML use gnome-terminal instead of xterm.

☞ initrd=initrd image—This switch makes UML boot from an
initial ramdisk (initrd) image. The image must be specified as a
filename on the host.

☞ iomem=name,file—This specifies the use of a host file as an I/O
memory (iomem) region. name is the name of the driver that is
going to own the region of memory. file is the name of the host
file to be mapped into the UML instance’s physical memory
region. A demo iomem driver can be found in arch/um/drivers/
mmapper_kern.c in the UML source tree.

☞ mem=size—Use this to specify the size of the UML instance’s
physical memory as a certain number of kilobytes, megabytes, or
gigabytes via the K, M, or G suffixes, respectively. This has no rela-
tion to the amount of physical memory on the host. The UML
instance’s memory size can be either less or more than the host’s
memory size. If the UML memory size is more, and it is all used by
the UML instance, the host will swap out the portion of the UML
instance’s memory that it thinks hasn’t been used recently.

☞ root=root device—This option specifies the device containing
the root filesystem. By default, it is /dev/ubda.

☞ ncpus=n—With CONFIG_SMP enabled, this switch specifies the
number of virtual processors in the UML instance. If this is less
than or equal to the number of processors on the host, the switch
will enable that many threads to be running simultaneously, sub-
ject to scheduling decisions on the host. If there are more virtual
processors than host processors, you can use this switch to deter-
mine the amount of host CPU power the UML instances can con-
sume relative to each other. For example, a UML instance with
four processors is entitled to twice as much host CPU time as an
instance with two processors.

☞ ethn=interface configuration—This configures the host side
of a network interface, making the device available and able to

Dike.book Page 302 Wednesday, March 15, 2006 8:16 PM

Debugging Options 303

receive and transmit packets. The interface configuration is sum-
marized in Table 8.1 and described completely in Chapter 7.

☞ fake_ide—This switch creates IDE entries in /proc that corre-
spond to the ubd devices in the UML instance, which sometimes
helps make distribution install procedures work inside UML.

☞ ubd<n><flags>=filename[:filename]—This configures a UML
block device on the host. n specifies the device to be configured; either
letters (a through z) or numbers can be used. Letters are preferred
because they don’t encourage the belief that the unit number on
the command line is the same as the minor number within UML.
ubda (and ubd0) has minor number 0 and ubdb (and ubd1) has
minor number 16 since each device can have up to 16 partitions.

flags can be one or more of the following.
– r—The device is read-only—read-write mounts will fail, as will

any attempt to write anything to the device.
– s—All I/O to the host will be done synchronously (O_SYNC will

be set).
– d—This device is to be considered as strictly data (i.e., even if it

looks like a COW file, it is to be treated as a standalone device).
– c—This device will be shared writable between this UML

instance and something else, normally another UML instance.
This would generally be done through a cluster filesystem.
Either one or two filenames may be provided, separated by

either a comma or a colon. If two filenames are specified, the first
is a COW file and the second is its backing file. You can obtain the
same effect by specifying the COW file by itself, as it contains the
location of its backing file. Separating the two files by a colon
allows shell filename completion to work on the second file.

☞ udb—This option exists for the sole purpose of catching ubd to
udb typos, which can be impossible to spot visually unless you are
specifically looking for them. Adding this to the UML command
line will simply cause a warning to be printed, alerting you to the typo.

DEBUGGING OPTIONS

The debugging options come in two groups—those that make kernel
debugging possible in tt mode and those that disable use of host fea-
tures in order to narrow down UML problems.

Dike.book Page 303 Wednesday, March 15, 2006 8:16 PM

304 Appendix A UML Command-Line Options

In the first group are two options for specifying that we want
debugging and whether we want to use an already-running debugger.

☞ debug—In tt mode, this causes UML to bring up gdb in an xterm
window in order to debug the UML kernel.

☞ gdb-pid=<pid>—In tt mode, this switch specifies the process ID
of an already-running debugger that the instance should attach to.

These may go away in the future if tt mode support is removed from
UML.

The second group of options allows you to selectively disable the
use of various host capabilities.

☞ aio=2.4—This switch causes UML to avoid the use of the AIO
support on the host if it’s present and to fall back to its own I/O
thread, which can keep one request in flight at a time.

☞ mode=tt—This specifies that the UML instance should use tt
mode rather than skas mode.

☞ mode=skas0 and skas0—Both of these switches avoid the use of
the skas3 patch if it’s present on the host, causing UML to use
skas0 mode, unless mode=tt is also specified, in which case tt
mode will be used.

☞ nosysemu—This avoids the use of the sysemu patch if it’s present
on the host.

☞ noprocmm—This avoids the use of /proc/mm if the skas3 patch is
present on the host.

☞ noptracefaultinfo—This avoids the use of PTRACE_FAULTINFO
if the skas3 patch is present on the host.

MANAGEMENT OPTIONS

Several options control how you manage UML instances. The following
control the location of the MConsole request and notification sockets
and the pid file.

☞ mconsole=notify:socket—This specifies the UNIX domain
socket that the mconsole driver will send notifications to.

☞ umid=name—This assigns a name to the UML instance, making it
more convenient to control with an MConsole client.

Dike.book Page 304 Wednesday, March 15, 2006 8:16 PM

Informational Options 305

☞ uml_dir=directory—This specifies the directory within which
the UML instance will put the subdirectory containing its pid file
and MConsole control socket. The name of this subdirectory is
taken from the umid of the UML instance.

These two control the behavior of the UML tty logging facility.

☞ tty_log_dir=directory—With tty logging enabled, this speci-
fies the directory within which logging data will be stored.

☞ tty_log_fd=descriptor—This specifies that tty log data
should be sent to an already-opened file descriptor rather than a
file. For example, adding 10>tty_log tty_log_fd=10 to the
UML command line will open file descriptor 10 onto the file
tty_log and have all logging data be written to that descriptor.

INFORMATIONAL OPTIONS

Finally, three options cause UML to simply print some information and
exit.

☞ --showconfig—This option prints the configuration file that the
UML was built with and exits.

☞ --version—This switch causes the UML instance to print its
version and then exit.

☞ --help—This option prints out all UML-specific command-line
switches and their help strings, then exits.

Dike.book Page 305 Wednesday, March 15, 2006 8:16 PM

Dike.book Page 306 Wednesday, March 15, 2006 8:16 PM

307

A P P E N D I X B

UML Utilities Reference

humfsify

humfsify makes an existing directory structure mountable as a
humfs filesystem. The directory hierarchy must have been copied to
the data subdirectory of the current working directory with all file and
directory ownerships and permissions preserved. The common usage of
this would be to convert a ubd filesystem image into a humfs filesys-
tem by loopback-mounting the image, copying it to ./data, and invok-
ing humfsify.

humfsify has the following usage:

humfsify user group size

☞ user is a user ID, which can be a username or numeric user ID.
☞ group is a group ID, which can be a group name or numeric group

ID.
☞ size is the size of the humfs filesystem, specified as a number of

bytes, with the K, M, and G suffixes meaning kilobytes, megabytes,
and gigabytes, respectively.

Dike.book Page 307 Wednesday, March 15, 2006 8:16 PM

308 Appendix B UML Utilities Reference

All of the files and directories under data will be made readable and
writeable by, and owned by, the specified user and group. The previous
ownerships and permissions will be recorded under two new directo-
ries, file_metadata and dir_metadata. The file superblock will be
created in the current directory. This contains information about the
metadata format and the amount of space available and used within
the mount.

uml_moo

uml_moo merges a COW file with its backing file. It can do an in-place
merge, where the new blocks from the COW file are written directly
into the backing file, or create a new file, leaving the existing backing
file unchanged.

Create a new merged file like this:

uml_moo [-b backing file] COW-file new-backing-file

Here’s the usage for doing an in-place merge:

uml_moo [-b backing file] -d COW-file

The -b switch is used when the COW file doesn’t correctly specify
the backing file. This can be required when the COW file was created
in a chroot jail, in which case the path to the backing file stored in the
COW file header will be relative to the jail.

uml_mconsole

uml_mconsole is the UML control utility. It allows a UML instance to
be controlled from the host and allows information to be extracted from
the UML instance. It is one client of several for the MConsole protocol,
which communicates with a driver inside UML.

It can be run in either single-shot mode, where the request is spec-
ified on the command line, or in command-line mode, where the user
interacts with the uml_mconsole command line to make multiple
requests of a UML instance.

The single-shot usage is:

uml_mconsole umid request

Dike.book Page 308 Wednesday, March 15, 2006 8:16 PM

uml_mconsole 309

☞ umid is the name given to the UML instance. This is specified on
the UML command line. If none is provided there, the instance
will create a random umid, which will be visible in the boot log.

☞ request is what will be sent to the UML instance. This is
described fully below.

A single-shot request will send the request to the UML instance,
wait for a response, and then exit. The exit code will be zero if the
request succeeded and nonzero otherwise.

The command-line usage is:

uml_mconsole umid

uml_mconsole will present a prompt consisting of the umid of the
UML instance that requests will be sent to. In this mode, there are two
commands available that are handled by uml_mconsole and are not
sent to the UML instance.

☞ switch new-umid changes the UML instance to which requests
will be sent to the one whose umid is new-umid. The prompt will
change to reflect this.

☞ quit exits uml_mconsole.

A few commands are implemented within the uml_mconsole cli-
ent and are available in both modes.

☞ mconsole-version prints the version of the uml_mconsole client.
This is different from the UML version that the version command
returns.

☞ help prints all of the available commands and their usage.
☞ int sends an interrupt (SIGINT) to the UML instance. If it is run-

ning under gdb, this will break out to the gdb prompt. If it isn’t,
this will cause a shutdown of the UML instance.

The commands sent to the UML instance are as follows.

☞ version returns the kernel version of the UML instance.
☞ halt performs a shutdown of the kernel. This will not perform a

clean shutdown of the distribution. For this, see the cad command
below. halt is useful when the UML instance can’t run a full shut-
down for some reason.

Dike.book Page 309 Wednesday, March 15, 2006 8:16 PM

310 Appendix B UML Utilities Reference

☞ reboot is similar to halt except that the UML instance reboots.
☞ config dev=config adds a new device to a UML instance. See

Table 8.1 for a list of device and configuration syntax.
☞ config dev queries the configuration of a UML device. See Table

8.1 for a list of device syntax.
☞ remove dev removes a device from a UML instance. See Table 8.1

for a list of device syntax.
☞ sysrq letter performs the sysrq action specified by the given

letter. This is the same as you would type on the keyboard to invoke
the host’s sysrq handler. These are summarized in Table 8.2.

☞ cad invokes the Ctrl-Alt-Del handler in the UML instance. The
effect of this is controlled by the ca entry in the instance’s /etc/
inittab. Usually this is to perform a shutdown. If a reboot is
desired, /etc/inittab should be changed accordingly.

☞ stop pauses the UML instance until it receives a go command. In
the meantime, it will do nothing but respond to MConsole commands.

☞ go continues the UML instance after a stop.
☞ log string makes the UML instance enter the string into its ker-

nel log.
☞ log -f filename is a uml_mconsole extension to the log com-

mand. It sends the contents of filename to the UML instance to be
written to the kernel log.

☞ proc file returns the contents of the UML instance’s /proc/file.
This works only on normal files, so it can’t be used to list the con-
tents of a directory.

☞ stack pid returns the stack of the specified process ID within the
UML instance. This is duplicated by one of the SysRq options—the
real purpose of this command is to wake up the specified process
and make it hit a breakpoint so that it can be examined with gdb.

tunctl

tunctl is used to create and delete TUN/TAP devices. The usage for
creating a device is:

tunctl [-b] [-u owner] [-t device-name] [-f tun-clone-device]

Dike.book Page 310 Wednesday, March 15, 2006 8:16 PM

uml_switch 311

☞ The -b switch causes tunctl to print just the new device name.
This is useful in scripts, so that they don’t have to parse the longer
default output in order to find the device name.

☞ -u specifies the user that should own the new device. If unspeci-
fied, the owner will be the user running the command. This can be
specified either as a username or a numeric user. You can specify a
user other than yourself, but only that user or root will be able to
open the device or delete it.

☞ -t specifies the name of the new device. This is useful for creating
descriptive TUN/TAP device names.

☞ -f specifies the location of the TUN/TAP control device. The
default is /dev/net/tun, but on some systems, it is /dev/misc/
net/tun.

The usage for deleting a TUN/TAP device is:

tunctl -d device-name [-f tun-clone-device]

More precisely, the -d switch makes the device nonpersistent, meaning
that it will disappear when it is no longer opened by any process. The -f
switch works as described above.

uml_switch

uml_switch is the UML virtual switch and has the following usage:

uml_switch [-unix control-socket] [-hub] [-tap tap-device]

☞ The -unix switch specifies an alternate UNIX domain socket to be
used for control messages. The default is /tmp/uml/ctl, but Debian
changes this to /var/run/uml-utilities/uml_switch.ctl.

☞ -hub specifies hub rather than switch behavior. With this enabled,
all frames will be forwarded to all ports, rather than the default
behavior of forwarding frames to only one port when it is known
that the destination MAC is associated with that port.

☞ -tap is used to connect the switch to a previously configured
TUN/TAP device on the host. This gives a uml_switch-based net-
work access to the host network.

Dike.book Page 311 Wednesday, March 15, 2006 8:16 PM

312 Appendix B UML Utilities Reference

INTERNAL UTILITIES

A few of the UML utilities are used by UML itself and are not meant to
be used on their own.

☞ port-helper helps a UML instance use the host’s telnetd
server to accept telnet connections. This is used when attaching
UML consoles and serial lines to host portals and xterms.

☞ uml_net is the setuid network setup helper. It is invoked by a
UML instance whenever it needs to perform a network setup oper-
ation that it has no permissions for. This includes configuring net-
work interfaces and establishing routes and proxy arp on the host.
This is to ease the use of UML networking in casual use, where
the root user inside the UML instance can be trusted. A secure
UML configuration should not use uml_net and should instead
use preconfigured TUN/TAP devices or uml_switch to communi-
cate with the host.

☞ uml_watchdog is an external process used to track when a UML
instance is running. It communicates with the UML harddog
driver, expecting some communication at least once a minute. If
that doesn’t happen, uml_watchdog takes some action, either to
kill the UML instance or to notify the administrator with an
MConsole hang notification.

Dike.book Page 312 Wednesday, March 15, 2006 8:16 PM

313

I N D E X

A
-a option

for cp, 69
for ifconfig, 56, 124
for uname, 168

Access control lists (ACLs), 95
Address Resolution Protocol (ARP)

for Ethernet, 11, 58
for host setup, 89

Address space manipulation, 199
Addresses. See IP addresses; MAC addresses
Administration in captive UML, 287–289
Administrators, console access by, 224–225
aio_abi.h file, 249
AIO facility, 192–193
aio option, 304
allmodconfig configurator, 239
allnoconfig configurator, 239
Always disallow TCP connections to X server

option, 96
anon driver, 227–228
Apache servers, 94
append switch for hostfs, 215–216
Application administration in captive UML,

287–289
Application-level clustering, 289–294
Application programming interface in captive

UML, 289
ARCH, 239
ARP (Address Resolution Protocol)

for Ethernet, 11, 58
for host setup, 89

arp command
for network interfaces, 255–257
for TUN/TAP, 127–128, 131

Attacks
humfs for, 216
packet faking, 122–123
with TUN/TAP, 130

Audio pass-through driver, 301

Authentication
in captive UML, 288
in MConsole requests, 185

Authorization
in captive UML, 288
in host setup, 95
in MConsole requests, 185

B
b command in sysrq, 173
-b switch

for tunctl, 124, 311
for uml_moo, 71, 308

Backing files
COW, 62–65
merging with, 70–71
moving, 69–70

Backups
COW files for, 64
for filesystems, 116–117

bash command, 57
Bind mounts, 214–215
Block devices

configuring, 170, 303
pluggable, 87
using and abusing, 83–87

Block drivers, 23–25
Booting

clusters, 268–272
from COW files, 67–68
first time, 20–24
successful, 24–28

Bottlenecks, 203, 208
brctl utility, 137–138
Breakpoints, 178
bridge-utilities package, 137
Bridging

security in, 140
setting up, 136–139

Dike.book Page 313 Wednesday, March 15, 2006 8:16 PM

314 Index

Broadcast domains for host setup, 89
BSD jail, 2
Buffered I/O, 194
Bug fixes, 234
Bug-tracking system, 287
Builds, 249–250
BusyBox project, 10
bzip files, 87

C
-c switch for ubd, 303
Cached data, 115
cad command, 310
CAP_SYS_RAW, 213
Capabilities, permissions for, 213
Captive UML, 283

application administration, 287–289
application-level clustering, 289–294
Evolution, 286–287
secure mod_perl, 283–285
standard application programming

interface, 289
Carvalho de Melo, Arnaldo, 7
chroot technology, 2, 71, 216–217, 220–221
CKRM (class-based linux Kernel Resource

Management), 297
Clock

real-time, 245–246
synchronizing, 28–29

close calls, 113
cluster.conf file, 267–269
Clusters, 265–268

application-level, 289–294
available, 273
booting, 268–272
exercises, 272–273

CMDLINE_ON_HOST option, 241–242
Code pages, 201
Collaboration, clustering for, 292–293
Command-line options, 301

debugging, 303–304
device and hardware specifications,

301–303
informational, 305
management, 304–305

Commands, running within instances,
180–182

Compartmentalization, 297–298
Compiling, 233–234

builds, 249–250
configuration interfaces, 235–240
configuration options

console, 248
debugging, 249
execution mode-specific, 240–243
generic, 243–246
networking, 247–248
virtual hardware, 246–247

source downloading for, 234–235
CON_CHAN option, 248
CON_ZERO_CHAN option, 248
config command

for devices, 169
process context for, 186
in uml_mconsole, 310

config configurator, 237–238
CONFIG_EXTERNFS option, 213–214
CONFIG_HOSTFS option, 213–214
CONFIG_IP_MROUTE option, 152
CONFIG_IP_MULTICAST option, 152
CONFIG_MAGIC_SYSRQ option, 172
CONFIG_MODE_SKAS option, 199
CONFIG_MODE_TT option, 199–200, 218
CONFIG_STATIC_LINK option, 218
configfs filesystem, 266
"connection refused" message, 96
Connectivity with TUN/TAP devices,

125–129
Consistency problem, 115
Consoles, 40–47

configuring, 170, 248
for host ports, 41–45
MConsole. See Management Console

(MConsole)
security for, 223–225

Consolidating servers, 8–10
Contexts

forcing threads into, 177–179
process, 186, 231

Cookies, Xauthority, 95
Copy-On-Write files. See COW (Copy-On-

Write) files

Dike.book Page 314 Wednesday, March 15, 2006 8:16 PM

Index 315

Copying data into instances, 83–87
Corrupted filesystems, 68
Cost savings, 8
COW (Copy-On-Write) files, 11, 61–66

backing files for, 62–65
merging with, 70–71
moving, 69–70

for backups, 117
booting from, 67–68
in small server setup, 208
sparseness of, 175

cp command, 69
cpuinfo file, 36, 219
CPUs, multiple, 243–244
Ctrl-Alt-Del handler, 171–172
Ctrl-C, signals from, 203
Ctrl-Z, signals from, 203

D
-d switch

for screen, 205
for tunctl, 124, 311
for ubd, 303
for uml_moo, 71

Daemon transport, 152, 154
Databases

in captive UML, 288
metadata, 113–115
package, 278–282

date command, 70
dd command

for copying data into instances, 85–87
for copying files, 53
for swap space, 47

debug option, 304
Debugging, 13

options for, 249, 303–304
PT_PROXY for, 242

Decision-making for hardware, 273–274
Default Apache install page, 94
Default configuration, 239–240
Default gateways for uml_switch, 163
Default ports for multicast transport, 152
Default routes

for host setup, 91
for TUN/TAP, 133

Default values for transports, 148
defconfig configurator, 235, 239
Deleting routes, 77
Denial-of-service attacks, 216
dev with jails, 219
Development uses, 12–13
Devices

hardware specifications for, 301–303
memory-mapped I/O for, 82
queries for, 169–170
TUN/TAP. See TUN/TAP devices

devpts filesystem, 34
df command, 34
DHCP

in bridging, 139–140
for host setup, 89
for transports, 148
through TUN/TAP devices, 134–135

dhcp-fwd service, 134–135
dir_metadata file, 112
Disable option for xconfig, 236
Disaster recovery, 13–14
Disk numbers for partitions, 50
Disks

listing, 35–36
partitioned, 49–52
as raw data, 53–54
saving space on

COW files for, 62–66
humfs for, 111

for swap space. See Swap space
diskstats file, 261
DISPLAY environment variable, 96–97
dmesg command, 22

for consoles, 40, 42
for host setup, 90

DocumentRoot, 94
Downloading source, 234–235
Drivers

block, 23–25
initializing, 22–23
loopback, 24–25

DSL connections, 136
dsp option, 301
Duality of UML, 18
Dumping

memory statistics, 172–173
registers and stack, 174, 178

Dike.book Page 315 Wednesday, March 15, 2006 8:16 PM

316 Index

Dynamic linking
configuration option for, 240–241
with jails, 218

E
e command, 173
-e switch for xterm, 302
e2fsprogs-devel package, 266
EAGAIN value, 36
ebtables, 140–141
Educational uses, 10–12
Efficiency, filesystem, 119
Emacs, 289
Embedded hardware, 13
Emulating devices, 82
Enable option for xconfig, 236
Encapsulation in SLIP, 144
ERR message, 182
Error indicators in MConsole requests, 185
eth option, 302–303
Ethernet

in bridging, 136, 139
in host setup, 89
for instances, 72–73
IP addresses for, 57–58
in SLIP transport, 144

Ethernet cards, 134
Ethertap

configuring, 150
for frames, 54
for host network access, 143
for host setup, 88

Evolution, 286–287
Exchanging packets, 72–73
Exclusive locks, 68
exec command, 181
Execution modes

options for, 240–243
in small server setup, 194–196

patches for, 201–202
skas0, 200–201
skas3, 198–200
tt, 197–198
Vanderpool and Pacifica, 202–203

ext2 filesystem, 24, 118

ext2online filesystem, 118
ext3 filesystem, 118
Extending filesystems, 117–118
externfs filesystem, 277–282

F
f command in sysrq, 173
-f switch

for log, 175, 310
for tunctl, 311

fake_ide option, 303
Faking packets, 122–123
fd directory, 31
fd file descriptor, 43–44
fdisk tool, 50–51
file command, 19, 24
file_metadata file, 109, 112
Filenames for backing files, 69
Filesystems, 101

backups for, 116–117
booting, 26
corrupted, 68
extending, 117–118
externfs, 277–282
host access to, 114–116
host directory mounting, 101–104

with hostfs, 104–108
with humfs, 108–114

selecting, 119–120
filesystems file, 34–35, 102–103
Filters

for pcap, 154
for TUN/TAP, 130

Firewalls
in host setup, 92–93
for TUN/TAP, 132

fonts-xorg-75dpi package, 96
Forcing threads into contexts, 177–179
FORWARD chains, 141
Frames

in bridging, 136, 139
host setup for, 88–89
transmission of, 54

free command, 52
fsck message, 26

Dike.book Page 316 Wednesday, March 15, 2006 8:16 PM

Index 317

fstab file
for small server setup, 207
for swap space, 52
sync options in, 115

Future of UML, 14–15, 275–277
captive UML, 283

application administration, 287–289
application-level clustering, 289–294
Evolution, 286–287
secure mod_perl, 283–285
standard application programming

interface, 289
conclusion, 298–299
externfs filesystem, 277–282
virtual processes, 282–283
virtualized subsystems, 295–298

fvwm window manager, 97

G
gconfig configurator, 238
gcov, 12, 249
GCOV option, 249
gdb

in debugging, 12, 178
with ptrace, 242

gdb-pid option, 304
gdmsetup, 96
getpid loops, 226
gettimeofday command, 29, 245
getty

for consoles, 45–46
for virtual serial lines, 79–82

gettys, 29
GFS clusters, 273
Giarrusso, Paolo, 7, 200, 231
GID (group ID) root, 109
GIMP, 289
glibc, 192
glibc2-devel package, 266
go command, 310
gprof, 12, 249
GPROF option, 249
Group ID (GID) root, 109
GRUB command, 23
GTK toolkit, 238
Guest scheduler, 295–297

H
halt command

vs. cad, 171
for instances, 169
process context for, 186
for shutdown, 59
in uml_mconsole, 309

Hang notifications, 186, 188
Hardware

configuration options for, 246–247
decision-making for, 273–274
developing, 13
queries for, 169–170
specifications for, 301–303

Header files, 249
help command, 179–180, 309
--help option, 305
HighFree field, 258
HIGHMEM option, 244
Highmem support, 258

in skas mode, 200
in small server setup, 208
in tt mode, 197–198

HighTotal field, 258
History of UML, 4–8
home, mounting, 214
HOST_2G_2G option, 241
Host directory mounting, 101–104

with hostfs, 104–108
with humfs, 108–114

host filesystem, 103
hostfs, 101–102

advantages of, 119
append switch, 215–216
for bind mounts, 215
for file access, 114–116
for host directory mounting, 104–108
for mount restrictions, 214

Hosts
consoles for, 41–45
filesystem access by, 114–116
instance management from. See Instances;

Management Console (MConsole)
intercepting and nullifying calls to, 226
kernel in, 18
memory consumption by, 25–26
in networking, 87–99, 143–145

Dike.book Page 317 Wednesday, March 15, 2006 8:16 PM

318 Index

Hosts continued
proxy arp for, 58
for serial lines, 79–81

Hot-plug memory, 228–230
Hot-plugging devices, 169–170
httpd file, 94
httpd.conf file, 94, 285
https sessions, random numbers for, 246
-hub switch for uml_switch, 153, 311
Hubs, 72
humfs, 101–102, 104

advantages of, 119
for denial-of-service attacks, 216
for file access, 114–116
for host directory mounting, 108–114
in small server setup, 208

humfsify command
for humfs, 110–111
reference, 307–308

hwclock program, 29
hwrng file, 247

I
i command in sysrq, 173
ifconfig command, 54–56

for host setup, 90
for instances, 73–77
for interfaces, 124, 253–254

Informational options, 305
Inheritance of capabilities, 213
init process, 171
Initializing drivers, 22–23
initrd option, 302
inittab file

for Ctrl-Alt-Del handler, 171
editing, 45–46
for serial lines, 40, 79–80, 82

INPUT chains, 141
Instance kernel log, 175
Instances

block devices for, 83–87
for console server, 224–225
COW files for. See COW (Copy-On-Write)

files
halting and rebooting, 169, 171

jailing, 216–223
managing, 167

with Management Console. See
Management Console (MConsole)

with signals, 188–189
networking, 71–79
running commands within, 180–182
sending interrupts to, 179
stopping and restarting, 174–175

int command, 309
Intercepting host system calls, 226
Internal utilities, 312
Internet collaboration, clustering for, 292
Interprocess communication (IPC)

mechanisms, 72
Interrupts

handling, 186
sending to instances, 179

interrupts file, 35–37
I/O

AIO facility for, 192–194
MADV_TRUNCATE for, 228

iomem driver, 247, 302
IP addresses

in bridging, 137, 139
for Ethernet, 57–58
for hosts, 87–90, 93, 96
for instances, 73, 75–76
reusing, 56–57
for transports, 148
for TUN/TAP, 124–126, 130–134
for virtual serial lines, 82

IPC (interprocess communication)
mechanisms, 72

iptables
for bridging, 142
for filtering, 130–132
for host setup, 92–93

Isolated networks, transports for,
145–146

J
jail switch

for hostfs, 215
for uml_moo, 71

Dike.book Page 318 Wednesday, March 15, 2006 8:16 PM

Index 319

Jailed processes, 2–3
Jailing instances, 214–224

K
Kernel

logs for, 173
logging to, 175
for multicast networks, 155

security for, 212–214
versions of

queries for, 168–169
in small server setup, 192–194

virtualized subsystems in, 295
KERNEL_HALF_GIGS option, 242–243
Kernel-level programming, 12
Kernel mode, 212
Kernel modules, 212–213
KERNEL_STACK_ORDER option, 244
Kernel tree, 234–235
Keyboards listing, 35–36
Killing tasks, 173
Kroah-Hartman, Greg, 234

L
Large numbers of devices, configuring

memory, 257–265
network interfaces, 252–257

Large server management, 211
final points, 232
future enhancements

MADV_TRUNCATE, 227–230
PTRACE_FAULTINFO, 227
remap_file_pages, 230–231
sysemu patch, 226–227
VCPU, 231

security for
configuration for, 212–216
console, 223–225
jailing instances, 216–223
skas3 vs. skas0, 225–226

LDT (Local Descriptor Table) entries, 199
len field in MConsole requests, 185
lib file, 217
libpcap, 145

Libraries with jails, 217–218
LILO command, 23
Linking, dynamic and static

configuration option for, 240–241
with jails, 218

Links, symbolic, 113
linux file, 249–250
Local Descriptor Table (LDT) entries, 199
Locks

in application-level clustering, 291
for instances, 68

log command, 175, 310
log level setting, 173
Login prompt, 29
Logins

console for, 224
as normal users, 39–40
for running commands, 181

Long-lived instances, 203–205
longjmp command, 179
Loop-mounting images on hosts, 115
Loopback drivers, 24–25
LowFree field, 258
LowTotal field, 258
ls command line, 47
ltrace, 12
Lustre clusters, 273

M
m command in sysrq, 172–173
-m switch for screen, 205
MAC addresses

in bridging, 136, 139
for host setup, 90
for instances, 75
for transports, 148
for TUN/TAP, 127, 134–135

MADV_TRUNCATE patch, 227–230
Magic SysRq facility, 116–117
MAGIC_SYSRQ option, 246
Management Console (MConsole)

for backups, 117
MConsole protocol, 183–186
notifications, 186–188
for partitions, 50
Perl library, 185

Dike.book Page 319 Wednesday, March 15, 2006 8:16 PM

320 Index

Management Console (MConsole) continued
for queries. See Queries, MConsole
requests in, 184–186
uml_mconsole client, 182–183

Management options, 304–305
Mapping

file operations to host operations, 104–108
memory, 230–231, 244
in skas3, 199

Masquerading, 92–93
Master UMLs, 80–81
Maximal Transfer Units (MTUs), 136
mcast command, 89, 151–152
MConsole. See Management Console

(MConsole); Queries, MConsole
mconsole driver, 23–24, 304
MCONSOLE option, 246
MConsole protocol, 183–185
mem file

for kernel access, 213
for swap space, 48

mem option, 302
meminfo command, 261–262

for debugging, 176
for instances, 258
output from, 30–32
for scalability limits, 252
for swap space, 48

Memory
configuring, 170, 257–265
consumption of

host, 25–26
monitoring. See meminfo command

Highmem support for, 197–198, 200, 244
mapping, 230–231, 244
saving

COW files for, 62, 64, 68
MADV_TRUNCATE for, 227–230

small server setup for, 206–208
statistics dumping for, 172–173
swap space for. See Swap space
usage information, 31–33

Memory-mapped I/O, 82
Memory pages, 198, 230–231
menuconfig configurator, 236–237
Merging COW files with backing files,

70–71
metadata file, 112

Metadata for files, 109–115
mixer option, 301
mkfs for clusters, 270
mm process, 199, 201–202
mmap, 104, 201, 208
MMAPPER option, 247
mnt directory, 105
mod_perl module, 283–285
mode option, 304
MODE_SKAS option, 240
MODE_TT option, 240
Modification time for backing files, 69–70
modprobe command, 57
Modular option for xconfig, 236
Molnar, Ingo, 230–231
Monitoring memory consumption. See

meminfo command
Morton, Andrew, 7, 231, 265
mount command, 105
Mounting host directories, 101–104

with hostfs, 104–108
with humfs, 108–114

Moving backing files, 69–70
mprotect, 201
MTUs (Maximal Transfer Units), 136
Multicasts, 72–73

configuring, 151–152
example networks, 155–160
with instances, 75–78
for isolated networks, 145

Multiple clustered applications, 292
Multiple instances, COW files for. See COW

(Copy-On-Write) files
Multiple processors, 243–244
Multiple users, hostfs with, 107
munmap, 201

N
n command in sysrq, 174
-n option for uname, 168
Name server responses, faking, 123
Named pipes

hostfs with, 108
humfs with, 110

Names
for devices, 124

Dike.book Page 320 Wednesday, March 15, 2006 8:16 PM

Index 321

for partitions, 50
for screen sessions, 205

ncpus option, 302
NEST_LEVEL option, 241
Network Address Translation (NAT), 92
network file, 269
Network sniffers, 146
Networking, 54–59, 121

configuration options for, 247–248
examples

multicast, 155–160
summary, 166
uml_switch, 160–166

filesystem access in, 104
hosts in, 87–99
instances, 71–79
interface configuration for, 170, 252–257
manual setup for

bridging, 136–142
TUN/TAP. See TUN/TAP devices

small server setup for, 206
transports, 142–143

configuring, 147–154
for host network access, 143–145
for isolated networks, 145–146
selecting, 146–147

New connection message, 162
NFS clusters, 273
nfs directory, 103
Nodes, cluster, 268–272
nodev entries, 102
-nolisten tcp, 96
Nonbroadcast frames in bridging, 139
Nondevice filesystems, 102
none device, 43
Nonexclusive read-only locks, 68
nooptimize flag for pcap, 154
noprocmm option, 304
noptracefaultinfo option, 304
Normal user logins, 39–40
nosysemu option, 304
Notifications

for jails, 222–223
MConsole, 186–188

NR_CPUS option, 243–244
NULL_CHAN option, 248
null device, 43
Nullifying host system calls, 226

O
O_APPEND option, 215
O_DIRECT I/O

caches in, 119
in host kernel, 192–194
in small server setup, 208

-o option for hostfs, 105–106
o2cb file, 267
ocfs2 clusters, 290–291, 293–294
ocfs2 script, 265–267
ocfs2console, 266
od utility, 86
OK message, 182
oldconfig configurator, 235, 238
Omitted transport parameters, 148
open calls, 113
Openswan project, 10
optimize flag for pcap, 154
Oracle, 265
Out-of-memory condition, 173
OUTPUT chains, 141
Outside network access, 132–133
Overwriting files, preventing, 215
Ownership of files, 106–110, 112

P
p command in sysrq, 174
-p switch for cp and tar, 69
Pacifica execution mode, 202–203
Packages, databases for, 278–282
Packets

exchanging, 72–73
faking, 122–123
forwarding, 127
with instances, 74, 77–78
transmission of, 55

Page-by-page memory mapping, 230–231
Page faults, 199–200
Panic notifications, 186, 188
Parameters for transports, 148
Partitioned disks, 49–52
passwd file, 101
password prompt for running commands,

181
Passwords in captive UML, 288

Dike.book Page 321 Wednesday, March 15, 2006 8:16 PM

322 Index

Patches, 234
for execution modes, 201–202
for performance, 226–227

pcap transport
configuring, 154
for isolated networks, 145–146

Performance
bottlenecks in, 203, 208
COW files for, 64
memory for, 259–265
PTRACE_FAULTINFO patch for, 227
remap_file_pages for, 230–231
in skas3 Mode, 198
in SLIP transport, 144
in small server setup, 208
sysemu patch for, 226–227

Perl library, 185
Permissions

in application-level clustering, 291
for capabilities, 213
for files, 106–110, 112
for host setup, 95
for security, 123

physdev module, 142
Physical memory, small server setup for,

206–208
pid file with jails, 222–223
PIDs (process IDs) for signals, 189
ping command, 58

for bridging, 141
for host setup, 90–91, 93–94
for instances, 76–78
for multicast networks, 158–160
for network interfaces, 254, 256–257
for TUN/TAP, 125–129, 133
for uml_switch, 162–166

Pipes
with hostfs, 108
with humfs, 110
with uml_switch, 153

Pluggable block devices, 87
Point-to-Point Protocol (PPP)

for frames, 54
for host setup, 88

PORT_CHAN option, 248
port device, 43
port-helper utility, 312

Ports
consoles for, 41–45
for multicast transport, 152
with Slirp, 144
for uml_switch, 162

PPP (Point-to-Point Protocol)
for frames, 54
for host setup, 88

ppp0 device, 92
PPPoE connections, 136
print statement, 13
Privileged contexts, 231
Privileges

with jails, 220
in virtual machines, 9

proc command, 176
for files, 310
process context for, 186

proc directory
for cpu, 37, 219
for diskstats, 261–264
examining, 176
for filesystems, 34–36, 102–103
for guest scheduler, 295
for interrupts, 35–37
for mconsole, 187–188
for memory. See meminfo command
for mm, 199, 201
for sysrq, 172

Process contexts, requests in, 186
Process IDs (PIDs) for signals, 189
process_kern.c file, 178
Processes, 18

contexts for, 231
in execution modes. See Execution modes
jailed, 2–3
listing, 29–30
permissions for, 213
virtual, 282–283

Processors, multiple, 243–244
procfs filesystem, 34
promisc flag for pcap, 154
Proxies for performance, 259
Proxy arp

for host routing, 58
for TUN/TAP, 128

ps command, 29–31

Dike.book Page 322 Wednesday, March 15, 2006 8:16 PM

Index 323

Pseudo-terminals, 79–81
PT_PROXY option, 242
ptrace

gdb with, 242
for intercepting system calls, 231
in skas3 mode, 202
in sysemu, 226
in tt mode, 199

PTRACE_FAULTINFO patch, 200–202, 227
PTRACE_LDT option, 202
PTRACE_SWITCH_MM option, 199
pts device

for consoles and serial lines, 42–44, 79–81
with jails, 218–219

PTY_CHAN option, 248
pty device, 43
Pulavarty, Badari, 227

Q
Queries, MConsole, 168

for Ctrl-Alt-Del handler, 171–172
for forcing threads into contexts, 177–179
for halting and rebooting instances, 169,

171
for hardware configuration, 169–170
for help, 179–180
for logging to instance kernel log, 175
for proc, 176
for running commands, 180–182
for sending interrupts, 179
for stopping and restarting instances,

174–175
for SysRq handler, 172–174
for version, 168–169

quit command, 309
Quotas on hosts, 118

R
-r switch

for screen, 204–205
for ubd, 303
for uname, 168

randconfig configurator, 238
random file, 247

Random numbers, 246–247
Raw data, disks As, 53–54
Read-only files, 64
Read-only locks, 68
Read-write locks, 68
Reading files, 113
readlinedevel package, 266
Readlinks, 113
Real-time clock, 245–246
Real-time tasks, 174
reboot command

vs. cad, 171
for instances, 169
process context for, 186
in uml_mconsole, 310

Rebooting instances, 169, 171
Registers, dumping, 174
remap_file_pages call, 230–231
Remote logins, 94
remove command

for devices, 169
process context for, 186
in uml_mconsole, 310

Requests
MConsole, 184–186
web site, 284–285

Resizing filesystems, 118
resolv.conf file

for host setup, 91–92
for TUN/TAP, 132–133

respawn command, 82
Restarting instances, 174–175
Restoring timestamps, 70
root option, 302
Root privileges

and capabilities, 213
with jails, 220
in virtual machines, 9

/rootfs switch for uml_moo, 71
route command and routing, 57

for bridging, 138
for host setup, 91
for instances, 76–77
for multicast networks, 158
for network interfaces, 255
for TUN/TAP. See TUN/TAP devices
for uml_switch, 165

Running commands within instances, 180–182

Dike.book Page 323 Wednesday, March 15, 2006 8:16 PM

324 Index

S
s command in sysrq, 174
-s switch

for screen, 204
for ubd, 303
for uname, 168

Scaling in application-level clustering, 294
Schedulers, guest, 295–297
schedulers file, 295–297
screen tool, 204–205
Searching file contents, 114
Secure mod_perl, 283–285
Security

in application-level clustering, 293
in bridging, 140
in captive UML, 288–289
for host setup, 93
for large servers, 211

configuration for, 212–216
console, 223–225
jailing instances, 216–223
skas3 vs. skas0, 225–226

for TUN/TAP devices, 129–132
Seekable host files, 53
Sending interrupts to instances, 179
Separate kernel address space mode. See skas

(separate kernel address space) mode
Serial Line IP (SLIP)

configuring, 150
for frames, 54
for host network access, 144
for host setup, 88

Serial lines
setting up, 40–47
virtual, 79–82

Server consolidation, 8–10
servers. See Large server management; Small

server setup
setuid files, 113–114
shadow_fs metadata format, 111–113
shadowfs file, 112
Shared memory for device emulation, 82
--showconfig option, 305
Shutting down, 59–60
SIGBUS signal, 207
SIGHUP signal, 189
SIGINT signal, 179, 189, 203

SIGIO signal, 36
SIGKILL signal, 173
Signals for instance management, 188–189
SIGSEGV signal, 195, 200–201
SIGTERM signal, 173, 189
SIGTSTP signal, 203
SIGWINCH signal, 36–37
Simulating hardware, 273–274
Single-System Image (SSI) cluster, 292–293
Size

of backing files, 69
in copying data into instances, 86
of COW files, 65–66
of filesystems, 118

skas (separate kernel address space) mode,
194–196

enabling, 240
skas0, 195–196

with jails, 218
vs. skas3, 225–226
working with, 200–201

skas3, 195–196
with jails, 218
vs. skas0, 225–226
working with, 198–200

for threads, 179
Slave UMLs, 80–81
SLIP (Serial Line IP)

configuring, 150
for frames, 54
for host network access, 144
for host setup, 88

Slirp networking emulator
configuring, 150–151
for host network access, 144–145

Small server setup, 191–192
execution modes in, 194–196

patches for, 201–202
skas0, 200–201
skas3, 198–200
tt, 197–198
Vanderpool and Pacifica, 202–203

kernel version in, 192–194
long-lived instances in, 203–205
for memory, 206–208
for networking, 206
recommendations for, 209–210
umid directories in, 209

Dike.book Page 324 Wednesday, March 15, 2006 8:16 PM

Index 325

SMP (Symmetric Multi-Processing), 197
SMP option, 243–244
Sniffers, 146
Sockets

with hostfs, 107–108
with humfs, 110
in MConsole, 185
notifications with, 188
with uml_switch, 152–153

Solaris zones, 3
Source, downloading, 234–235
--sparse switch, 175
Specialized configurations, 251

clusters, 265–273
large numbers of devices

memory, 257–265
network interfaces, 251–257

Spoofing in bridging, 142
ssh command, 94–95
ssh keys, 181
ssh sessions, random numbers for, 246
SSI (Single-System Image) cluster, 292–293
SSL option, 248
SSL_CHAN option, 248
Stack, dumping, 174, 178
stack command, 177–179, 310
Standard application programming interface

in captive UML, 289
STATIC_LINK option, 240–241
Static linking

configuration option for, 240–241
with jails, 218

stop command, 310
Stopping

instances, 174–175
virtual machines, 117

strace tool, 226
su with jails, 220
Subnets for instances, 76
Subsystems, virtualized, 295–298
superblock files, 111–112, 118
Swap space

adding, 47–49
with compartments, 297
for instances, 26
for jails, 223
MADV_TRUNCATE for, 228
partitions for, 52
performance of, 259–265

swapoff command, 223
swapon command, 52, 223
switch command, 309
switch-tap option, 153
Switches

for packets, 72
virtual, 136

Symbolic links, 113
Symmetric Multi-Processing (SMP), 197
Synchronization

clock, 28–29
in sysrq, 174

Synchronous files, 115–117
sysemu patch, 226–227
sysrq command and SysRq handler

for backups, 116–117
invoking, 172–174
MAGIC_SYSRQ for, 246
in uml_mconsole, 310

sysrq file, 172
System call tracing, 212
System-level programming, 12
System memory savings, COW files for, 64

T
t command in sysrq, 174
-t switch

for iptables, 92
for tunctl, 124, 311
for xterm, 302

-tap switch for uml_switch, 311
Tape drives for copying data into instances,

84–85
tar files

for copying data into instances, 84–85
copying into UML, 53
length of, 87
for moving backing files, 69
for source, 235

Tasks
killing, 173
real-time, 174

tcpdump
for multicast networks, 158–159
with pcap, 145
for TUN/TAP, 125–127, 131–132
for uml_switch, 164–165

Dike.book Page 325 Wednesday, March 15, 2006 8:16 PM

326 Index

telnet, 43, 45–47
telnetd, 46
Terminal emulators, 302
Testing

COW files for, 64
testbeds for, 9–10
TUN/TAP devices, 135–136

Threads
in execution modes. See Execution modes
forcing into contexts, 177–179

3_LEVEL_PGTABLES option, 245
Time to live (TTL) setting, 151–152
Timers

listing, 36
real-time clock for, 245–246

Timestamps, 69–70
Timing bugs, 13
tmp directory

for bind mounts, 214–215
copying files to, 67, 82
for databases, 281
for filesystems, 34, 103
for jails, 219, 221
for memory, 31–32, 206–207
for processes, 106

tmpfs filesystem, 32, 34, 102, 207
Torvalds, Linus, 7
touch command, 70
Tracing thread (tt) mode, 194–196

enabling, 240
for threads, 178
working in, 197–198

Traffic analysis tools, 146
Translation of filesystem requests, 104
Transports

configuration options for, 247–248
networking, 142–143

configuring, 147–154
for host network access, 143–145
for isolated networks, 145–146
selecting, 146–147

tt (tracing thread) mode, 194–196
enabling, 240
for threads, 178
working in, 197–198

TTL (time to live) setting, 151–152
TTY_CHAN option, 248
tty_log_dir option, 305

tty_log_fd option, 305
tun file, 55, 57, 123
TUN/TAP devices, 35–36, 57

bridging with, 136–142
for frames, 54
for host network access, 143
in host setup, 88–90
with routing, 121–122

configuring, 122–124, 149
connectivity in, 125–129
DHCP for, 134–135
for outside network access, 132–133
security for, 129–132
testing, 135–136

tunctl utility
reference, 310–311
working with, 122–124

tuntap command, 149

U
u command in sysrq, 174
-u switch for tunctl, 124, 311
ubd devices, 34

advantages of, 119
for filesystem access, 114–115
image backup for, 117
partitioning, 50

ubd option, 303
ubd0 file, 26
ubda switch for COW files, 62
ubdb file, 26

for copying data into instances, 84–85
for swap space, 48

udb option, 303
UID root, 109
UIDs (user IDs)

in filesystem extensions, 118
in ownership, 106–107

umid (unique machine ID), 42
umid directory

with jails, 219
process IDs in, 189
in small server setup, 209

umid option, 304
uml.ctl socket, 152
uml_dir option, 305

Dike.book Page 326 Wednesday, March 15, 2006 8:16 PM

Index 327

uml_mconsole command, 182–183. See also
Management Console (MConsole)

for bridging, 138
for copying data into instances, 84
for devices, 43
for host ports, 41–45
for hosts, 87, 89
for network devices, 56
reference, 308–310
for TUN/TAP device connectivity, 125
for virtual serial lines, 80

uml_moo tool
for merging COW files, 71
reference, 308

UML_NET options, 247–248
uml_net utility, 125, 129–130, 312
UML_RANDOM option, 246–247
UML_REAL_TIME_CLOCK option,

245–246
uml_switch process, 148

configuring, 152–154
example, 160–166
for isolated networks, 145
reference, 311

UML_WATCHDOG option, 247, 312
uname command, 168
Unique machine ID (umid), 42
Unique machine id (umid) directory

with jails, 219
process IDs in, 189
in small server setup, 209

UNIX sockets
with hostfs, 107–108
with humfs, 110
in MConsole, 185
with uml_switch, 152–153

-unix switch for uml_switch, 311
Unplugging devices, 169–170
Unprivileged contexts, 231
untar command, 53, 85
User IDs (UIDs)

in filesystem extensions, 118
in ownership, 106–107

User mode vs. kernel mode, 212
User notifications, 188
Utilities reference

humfsify, 307–308

internal, 312
tunctl, 310–311
uml_mconsole, 308–310
uml_moo, 308
uml_switch, 311

V
-v option for uname, 168
valgrind, 244
Vanderpool execution mode, 202–203
VCPU, 231
version command, 168–169, 309
--version option, 305
Version queries, 168–169
Virtual filesystems, 101–104
Virtual hardware configuration options,

246–247
Virtual machines, purpose of, 3–4
Virtual memory, 230–231
Virtual operating systems, 2
Virtual Private Networks (VPNs), 89
Virtual processes, 282–283
Virtual processors, 243–244
Virtual serial lines, 79–82
Virtual switches, 136
Virtualized subsystems, 295–298
vmalloc space, 258
vmlinux file, 249–250
vmlinuz file, 249
VMWare technology, 2–3
VPNs (Virtual Private Networks), 89
vserver project, 2
vtund, 89

W
WATCHDOG option, 247
Web site requests, 284–285
wget

for connectivity, 74
for host setup, 94

winch interrupt, 36–37
Wright, Chris, 234
Write-protecting hostfs directories, 216

Dike.book Page 327 Wednesday, March 15, 2006 8:16 PM

328 Index

X
X11 utilities, 96
Xauthority application, 95
.Xauthority file, 95
xconfig configurator, 235–237
xdpyinfo, 96
Xen technology, 2–3
xhost application, 95, 98
xload, 96

Xnest, 96–99
xorg-x11-tools package, 96n
xterm option, 43–44, 96, 302
XTERM_CHAN option, 248
xterm windows, 29

Z
Zones, Solaris, 3

Dike.book Page 328 Wednesday, March 15, 2006 8:16 PM

BRUCE PERENS’ OPEN SOURCE SERIES
www.prenhallprofessional.com/perens

Bruce Perens’ Open Source Series is a defi nitive series of books on Linux and open
source technologies, written by many of the world’s leading open source professionals. It is
also a voice for up-and-coming open source authors. Each book in the series is published
under the Open Publication License (www.opencontent.org), an open source compatible
book license, which means that electronic versions will be made available at no cost after
the books have been in print for six months.

Perens_ad_7_x_9_25.indd 1Perens_ad_7_x_9_25.indd 1 3/1/06 3:27:46 PM3/1/06 3:27:46 PM

Wouldn’t it be great
if the world’s leading technical

publishers joined forces to deliver
their best tech books in a common

digital reference platform?

They have. Introducing
InformIT Online Books

powered by Safari.

� Specific answers to specific questions.
InformIT Online Books’ powerful search engine gives you
relevance-ranked results in a matter of seconds.

� Immediate results.
With InformIT Online Books, you can select the book
you want and view the chapter or section you need
immediately.

� Cut, paste and annotate.
Paste code to save time and eliminate typographical
errors. Make notes on the material you find useful and
choose whether or not to share them with your work
group.

� Customized for your enterprise.
Customize a library for you, your department or your entire
organization. You only pay for what you need.

in
fo

rm
it

.c
o
m

/
o
n
li

n
e
b
o
o
k
s

Get your first 14 days FREE!
For a limited time, InformIT Online Books is offering

its members a 10 book subscription risk-free for

14 days. Visit http://www.informit.com/online-

books for details.

On
lin

e
Bo

ok
s

safari_7x9.25 4/17/03 4:08 PM Page 1

If you have difficulty registering on Safari Bookshelf or accessing the online edition,
please e-mail customer-service@safaribooksonline.com.

THIS BOOK IS SAFARI ENABLED

INCLUDES FREE 45-DAY ACCESS TO THE ONLINE EDITION

The Safari® Enabled icon on the cover of your favorite technology
book means the book is available through Safari Bookshelf. When you
buy this book, you get free access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily
search thousands of technical books, find code samples, download
chapters, and access technical information whenever and wherever
you need it.

TO GAIN 45-DAY SAFARI ENABLED ACCESS TO THIS BOOK:

 • Go to http://www.prenhallprofessional.com/safarienabled

 • Complete the brief registration form

 • Enter the coupon code found in the front
of this book on the “Copyright” page

www.informit.com

YOUR GUIDE TO IT REFERENCE

Articles

Keep your edge with thousands of free articles, in-

depth features, interviews, and IT reference recommen-

dations – all written by experts you know and trust.

Online Books

Answers in an instant from InformIT Online Book’s 600+

fully searchable on line books. For a limited time, you can

get your first 14 days free.

Catalog

Review online sample chapters, author biographies

and customer rankings and choose exactly the right book

from a selection of over 5,000 titles.

IITad_7x9.25 4/17/03 3:49 PM Page 1

PHPTR_Online_7x9_25.qxd 11/23/04 2:12 PM Page 1

