
P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

C H A P T E R 3

Style Sheets
CSS

As we have learned, HTML markup can be used to indicate both the semantics of a document
(e.g., which parts are elements of lists) and its presentation (e.g., which words should
be italicized). However, as noted in the previous chapter, it is advisable to use markup
predominantly for indicating the semantics of a document and to use a separate mechanism
to determine exactly how information contained in the document should be presented. Style
sheets provide such a mechanism. This chapter presents basic information about Cascading
Style Sheets (CSS), a style sheet technology designed to work with HTML and XML
documents.

CSS provides a great deal of control over the presentation of a document, but to
exercise this control intelligently requires an understanding of a number of features. And,
while you as a software developer may not be particularly interested in getting your web
page to look “just so,” many web software developers are members of teams that include
professional web page designers, some of whom may have precise presentation require-
ments. Thus, while I have tried to focus on what I consider key features of CSS, I’ve also
included a number of finer points that I believe may be more useful to you in the future than
you might expect on first reading.

While CSS is used extensively to style HTML documents, it is not the only style-
related web technology. In particular, we will study the Extensible Stylesheet Language
(XSL)—which is used for transforming and possibly styling general XML documents—
in Chapter 7.

3.1 Introduction to Cascading Style Sheets

Before getting into details, let’s take a quick look at an XHTML document that uses simple
style sheets to define its presentation. Specifically, let’s consider once again the “Hello
World!” document of Figure 2.1, but with the addition of two link elements in the head

of the document (CSSHelloWorld.html, shown in Fig. 3.1). Notice that the body of this
document is identical to that of Figure 2.1. However, viewing this document in Mozilla
1.4 produces the result shown in Figure 3.2, which is quite different from the way Mozilla
displayed the original “Hello World!” document (Fig. 2.2).

The difference between the two browser renderings, of course, has to do with the
link element, which imports a style sheet located at the URL specified as the value of
its href attribute. In this example, the style sheet is written in the CSS language, as
indicated by the MIME type value of the type attribute. The style1.css file contains
the lines

121

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

122 Chapter 3 Style Sheets

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>
CSSHelloWorld.html

</title>
<link rel="stylesheet" type="text/css" href="style1.css"

title="Style 1" />
<link rel="alternate stylesheet" type="text/css" href="style2.css"

title="Style 2" />
</head>
<body>

<p>
Hello World!

</p>
</body>

</html>

FIGURE 3.1 HTML source for “Hello World!” using style sheets.

body { background-color:lime }
p { font-size:x-large; background-color:yellow }

The first line simply says that, for rendering purposes, the body element of the document
should be treated as if it contained the attribute style="background-color:lime". The second
line is similar, except that it specifies a style that should be applied to every p element of the
document. The second line also specifies values for two different style properties, font-size
and background-color. We’ll learn details about these and many other style properties later
in this chapter, but for now their meaning should be clear from their names and the effects
shown in Figure 3.2.

The file style2.css contains the single line

p { font-size:smaller; letter-spacing:1em }

This says that p elements should be set in a smaller than normal font size and that there
should be space between adjacent letters. However, this style is not applied to the document

FIGURE 3.2 Browser rendering of CSSHelloWorld.html.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.2 Cascading Style Sheet Features 123

FIGURE 3.3 Selecting the style sheet to be used by Mozilla.

rendered in Figure 3.2, because this style sheet is specified as an alternate style sheet by the
rel (relationship) attribute of the link element that imports this sheet. A style sheet such
as the one in style1.css, which is referenced by a link element having a rel with value
stylesheet as well as a title specification, is known as a preferred style sheet. An alternate
sheet can be selected by the user, as illustrated in Figure 3.3. Notice that the values of the
title attributes of the link tags are displayed in the Use Style menu along with the default
Basic Page Style; preferred and alternate style sheet link elements must always contain
title attribute specifications. After the alternate style sheet is selected, the page renders in
the second style, as shown in Figure 3.4. (Alternate style sheets are not used often at the
time of this writing, because the user interface for IE6 does not support user selection of
alternate style sheets.)

Now that we have some understanding of what a style sheet is, we will discuss some
of the major features of CSS.

3.2 Cascading Style Sheet Features

The key property of style sheet technology is that it can be used to separate the presenta-
tion of information from the information content and semantic tagging. The content and

FIGURE 3.4 Browser rendering of CSSHelloWorld.html using style sheet from style2.css.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

124 Chapter 3 Style Sheets

TABLE 3.1 Possible Values for media Attribute Defined by HTML 4.01 Standard

Value Media Type

all All types (default)

aural Speech synthesizer

braille Tactile device generating braille characters

handheld Handheld device, such as a cell phone or PDA

print Printer

projection Projector, such as one used to display a large monitor image on a screen

screen Computer monitor

tty Fixed-width character output device

tv Television (monitor with low resolution and little or no scrolling)

semantics of the “Hello World!” page did not change in the previous example: it consisted
of a single paragraph containing some text. Put another way, the body elements of the
HelloWorld.html and CSSHelloWorld.html files will have exactly the same abstract syntax
tree. But by changing the style sheet used by the browser to display this tree, we can achieve
different presentations of the same information.

There are significant advantages to having such a separation between the information
contained in a document and its presentation. First, it allows the information in the document
to be presented without change in a variety of ways. We have already seen an example of
this feature with user-selectable alternative style sheets. But CSS can do even more than
this. For example, the link element defines a media attribute that can be used to define the
types of media for which a style sheet is designed, such as for display on a monitor or output
to a printer (see Table 3.1 for a complete list of media types defined by the HTML 4.01
standard). So, for example, if we had used the link elements

<link rel="stylesheet" type="text/css" href="style1.css"
media="screen, tv, projection" />

<link rel="stylesheet" type="text/css" href="style2.css"
media="handheld, print" />

then the style sheet of style1.css would be used for display on monitors, televisions,
and projectors, the style sheet of style2.css for output to handheld devices and print-
ers, and the browser’s default style sheet for all other forms of output. (The example file
CSSHelloWorldPrint.html demonstrates this feature: try loading it into your browser and
then printing it.) You’ll notice that the title attribute does not appear in the link elements
in this example. This is because these style sheets cannot be selected by the user, but instead
will apply regardless of user actions. Such style sheets are called persistent and can be
recognized by their lack of a title attribute specification in the link element referencing
the style sheet.

From a developer’s perspective, another useful feature of using style sheets is that it
is relatively easy to give all of the elements on a page a consistent appearance. That is, if
we want all of the h1 headers on a page to have a certain size, we can accomplish this easily

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.3 CSS Core Syntax 125

using a style sheet. Furthermore, if at a later time we wish to change the size of the headers,
we need only make the change in that one style sheet. More generally, if we use a single
style sheet for all of the pages at a site, then all of the site pages will have a consistent style,
and one that can be changed with little work.

In addition to these properties, which apply to any style sheet language—including
older print-oriented style sheet languages—the cascading quality of CSS makes it particu-
larly appealing for use with web documents. As we will learn, both the document author
and the person viewing the document can specify aspects of the document style as it is dis-
played by the browser (or other user agent displaying the document). For example, a user
may instruct their browser to display all HTML documents using only a white background,
regardless of the setting of the background-color property in style rules supplied by the
page author. This can be an important feature to, for example, a user who because of an
eyesight limitation needs high contrast between text and its background.

It should also be noted that, though I am going to cover CSS in the context of providing
style for HTML documents, it can also be used with non-HTML XML documents (Section
7.10 contains an example).

So, there are many reasons to learn about style sheet technology in general, and CSS
in particular. We’ll start by covering some of the core CSS syntactic elements. After that,
we’ll study the cascading aspects of CSS in more detail. Finally, we’ll consider details of a
number of specific style properties and apply CSS to the blogging case study.

3.3 CSS Core Syntax

As with HTML, there are several W3C-recommended versions of CSS. At the time of this
writing, there are technically two W3C recommendations for CSS: CSS level 1 [W3C-CSS-
1.0] and CSS level 2 [W3C-CSS-2.0] (often referred to as CSS1 and CSS2). Work is also
underway on CSS level 3, and several specialized versions of CSS for limited devices, such
as cell phones, low-cost printers, and televisions, are in various stages of standardization.

Although CSS2 has been a W3C recommendation since 1998, at this time no widely
used browser implements the entire recommendation. Recognizing this fact, the W3C has
been developing CSS 2.1, which is largely a scaled-back version of CSS2 that attempts to
capture those features of CSS2 that are—as of the time of the recommendation’s official
publication—implemented by multiple browsers. Using the February 2004 candidate ver-
sion of CSS 2.1 [W3C-CSS-2.1] as a guide, in this chapter I will specifically focus on key
aspects of CSS2 that are implemented in both IE6—the latest generally-available version
of Internet Explorer at the time of the writing—and Mozilla 1.4. For the most part, the basic
CSS syntax is the same for both levels 1 and 2, so much of what is presented should also
be compatible with older browsers. Furthermore, just as browsers generally ignore HTML
elements that they do not recognize, they also generally ignore CSS style properties that
they do not recognize. So, if you use CSS as described in this chapter, almost all browsers
should be able to display your document (although some older ones may not style it prop-
erly). It will of course be advisable for you to monitor the progress of the CSS 2.1 and CSS
3 recommendations so that you can use newer style sheet features as they become widely
available; see the References section (Section 3.12) for more on this.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

126 Chapter 3 Style Sheets

property names declarations

selector string

p {

}background-color : yellow

declaration block

font-size : x-large

FIGURE 3.5 Parts of a single ruleset-type style rule.

One other word of warning is that versions of the Internet Explorer browser before
IE6 supported style sheets but deviated from the CSS recommendation in several ways.
Even in IE6, these deviations will be present unless you use a document type declaration
such as the one for XHTML 1.0 Strict used in our examples. At the time of this writing, IE5
is still used on a substantial number of machines, although its usage is dwindling rapidly.
So, if you develop real-world CSS style sheets in the near term, you may need to deviate
somewhat from the material presented in this chapter. However, the concepts taught here
are similar to those found in IE5, and as time goes on the details presented here should
apply to the bulk of browsers in use. Again, see Section 3.12 for more information.

A CSS style sheet consists of one or more style rules (sometimes called statements).
Each line in the style1.css file in Section 3.1 is an example of a rule. This form of rule is
called a ruleset and consists of two parts: a selector string followed by a declaration block,
which is enclosed in curly braces ({ and }) (see Fig. 3.5). The declaration block contains a
list (possibly empty) of declarations separated by semicolons (;) (the final declaration can
also be followed by a semicolon, and many style sheet authors follow this convention). The
selector string indicates the elements to which the rule should apply, and each declaration
within the declaration block specifies a value for one style property of those elements. While
the example shows one rule per line, it is syntactically legal to split a rule over several lines
or (though not recommended) write multiple rules on a single line. No special character is
needed to mark the end of a rule (no semicolon as in Java), due to the use of the braces to
distinguish the parts of the rule.

We’ll have much more to say about the properties that may be set within declarations
in a later section. For the moment, the properties that we use, such as color (text color) and
font-style, should be fairly self-explanatory. Before considering other properties, we will
focus on selector strings.

3.3.1 Selector Strings

In the following paragraphs, we will be referring to an example style sheet and HTML
document shown in Figure 3.6 and Figure 3.7, respectively. Notice that comments are
written using the Java-style multiline syntax; HTML-style comments are not recognized in

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.3 CSS Core Syntax 127

/* Headers have dark background */

h1,h2,h3,h4,h5,h6 { background-color:purple }

/* All elements bold */

* { font-weight:bold }

/* Elements with certain id's have light background */

#p1, #p3 { background-color:aqua }

/* Elements in certain classes are italic, large font,
or both */

#p4, .takeNote { font-style:italic }
span.special { font-size:x-large }

/* Hyperlink ('a' element) styles */

a:link { color:black }
a:visited { color:yellow }
a:hover { color:green }
a:active { color:red }

/* Descendant selectors */

ul span { font-variant:small-caps }
ul ol li { letter-spacing:1em }

FIGURE 3.6 Style sheet file sel-demo.css used to demonstrate various types of CSS selectors.

CSS, nor are Java end-of-line (//) comments. A browser rendering of this HTML document
using the given style sheet is shown in Figure 3.8.

Probably the simplest form of selector string, which we have already seen, consists
of the name of a single element type, such as body or p. A rule can also apply to multiple
element types by using a selector string consisting of the comma-separated names of the
element types. For example, the rule

h1,h2,h3,h4,h5,h6 { background-color:purple }

says that any of the six heading element types should be rendered with a purple background.
Therefore, in our example document, the markup

<h1>Selector Tests</h1>

has a purple background when displayed in the browser.
In the preceding style rule, each of the selectors (comma-separated components of

the selector string) was simply the name of an element type. This form of selector is called
a type selector. Several other forms of selector are also defined in CSS. One is the universal

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

128 Chapter 3 Style Sheets

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>
Selectors.html

</title>
<link rel="stylesheet" type="text/css" href="sel-demo.css" />

</head>
<body>

<h1>Selector Tests</h1>
<p id="P1" class="takeNote">

Paragraph with id="P1" and class="takeNote".
</p>
<p id="p2" class="special">

Second paragraph. This span
belongs to classes takeNote, special, and cool.

Span's within this list are in small-cap

style.

This item spaces letters.

</p>
<p id="p3">

Third paragraph (id="p3") contains a
hyperlink.

This item contains a span but does not display it in
small caps, nor does it space letters.

</p>

</body>
</html>

FIGURE 3.7 HTML document used to demonstrate various types of CSS selectors.

selector, which is denoted by an asterisk (*). The universal selector represents every possible
element type. So, for example, the rule

* { font-weight:bold }

specifies a value of bold for the font-weight property of every element in the document.
Another form of selector is the ID selector. Recall that every element in an XHTML

document has an associated id attribute, and that if a value is assigned to the id attribute
for an element then no other element’s id can be assigned the same value. If a selector is
preceded by a number sign (#), then it represents an id value rather than an element type
name. So, for example, if a document contains the markup

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.3 CSS Core Syntax 129

FIGURE 3.8 Browser rendering of Selectors.html after applying style sheet sel-demo.css.

<p id="p3">
...

</p>

then the following rule will cause this paragraph (and another element with id value p1, if
such an element exists) to be displayed with an aqua background:

#p1, #p3 { background-color:aqua }

Note that id values are case-sensitive, so this rule will not apply to an element that has an
id value of P1. This is why the first paragraph in Figure 3.8 does not have a background
color.

Another HTML attribute that is frequently used with style sheets is class. This
attribute is used to associate style properties with an element as follows. First, the style
sheet must contain one or more rulesets having class selectors, which are selectors that are
preceded by a period (.), such as .takeNote in the rule

#p4, .takeNote { font-style:italic }

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

130 Chapter 3 Style Sheets

Then any element that specifies takeNote (without the leading period) as the value of
its class attribute will be given the properties specified in the declaration block of the
corresponding style rule. Thus, the first paragraph of the example is displayed in an italic
font. An element can be assigned to multiple style classes by using a space-separated list of
class names as the value of the class attribute. For example, a span element with start tag

will be affected by any rules for for the takeNote, special, and cool classes. Thus, the
second sentence of the second paragraph of the example is italicized, since it belongs to
the takeNote class, among others. If a class name does not correspond to a class selector
in any of the style rules for a document (for example, .cool is not used as a class selector
in sel-demo.css), then that class value is ignored.

Note that, like id values, class values are case sensitive and cannot begin with a
decimal digit. However, unlike id, multiple elements can have the same value for their
class attributes. All but a few elements, such as html, head, and elements that appear as
content of head, have the class attribute.

ID and class selectors can also be prefixed by an element type name, which restricts
the selector to elements of the specified type. For example, the style rule

span.special { font-size:x-large }

applies only to span elements that have a class value of special. So, in our example, the
second paragraph itself is not set in the extra large (x-large) font size, but the second
sentence of that paragraph is displayed using the extra large font, because the sentence is
contained in a span with class value special. Also, an asterisk can be used in place of an
element name in such a prefix, and (as with the universal selector) represents the set of all
element names. In other words, the selectors *.takeNote and .takeNote are equivalent.

In addition to ID and class selectors, several predefined pseudo-classes are associated
with a (anchor) elements that have an href attribute (source anchors). Table 3.2 lists these
pseudo-class selectors. Figure 3.8 shows a link that has not been visited recently, and is
therefore displayed in black. Positioning the cursor over that link without clicking the mouse
button will cause the link to change to green, and clicking and holding the mouse button
will change the color to red. If the link is visited, then the next time Selectors.html is

TABLE 3.2 Pseudo-Classes Associated with a Element Type

Selector Associated a Elements

a:visited Any element with href corresponding to a URL that has been visited recently by the user

a:link Any element that does not belong to the a:visited pseudo-class

a:active An element that is in the process of being selected; for example, the mouse has been clicked

on the element but not released

a:hover An element over which the mouse cursor is located but that does not belong to the a:active

pseudo-class

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.3 CSS Core Syntax 131

loaded into the browser the link will be yellow. A fine point is that the current CSS 2.1
draft recommendation [W3C-CSS-2.1] allows a browser to ignore a pseudo-class style rule
that would change the positioning of any elements within the browser. Color changes are
therefore good choices as declarations for a rule that uses a pseudo-class selector, while
even a seemingly innocuous declaration involving boldfacing should be used with caution
(since boldfacing can increase the width of text and therefore move other elements).

Finally, a selector may be specialized so that it holds only within the content of certain
element types. For example, the rule

ul span { font-variant:small-caps }

says that the text within a span element that is in turn part of the content of an unordered, or
bulleted, list (ul element) should be displayed using a small-cap font form. Such a selector
is known as a descendant selector. Notice that only the span within the bulleted list item in
Figure 3.8 is displayed in the small-cap format.

Class selectors can also be included in the ancestor list; for example, the selector

.special span

would apply to any span element within the content of any element belonging to the class
special. More generally, a white-space-separated list of element and/or class names may
be used as a selector, representing a chain of elements each of which must be a descendant
of the element to its left in order for the selector to apply. For example, the rule

ul ol li { letter-spacing:1em }

applies only to an li element within an ol (ordered, or numbered, list) element that is within
a ul element. Thus, the numbered item in the second paragraph displays in the letterspaced
format, because this paragraph’s numbered list is contained within a bulleted list; but the
numbered list in the third paragraph does not use this format, because it is not contained
within a bulleted list.

3.3.2 At-Rules

So far, we have covered the ruleset form of style rules. The other form of rule is called an
at-rule. The only at-rule that is widely supported and used at the time of this writing is the
rule beginning with @import. This rule is used to input one style sheet file into another one.
For example, a style sheet such as

@import url("general-rules.css");
h1, h2 { background-color: aqua }

will first read in rules from the file general-rules.css before continuing with the other rule
in this style sheet. The url() function is used to mark its string argument as a URL. Single
quotes can be used for this argument rather than double quotes; in fact, the quotes are not
required at all. The URL can be absolute or relative. If it is a relative URL, like the one

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

132 Chapter 3 Style Sheets

shown in this example, then it will be taken as relative to the URL of the file containing
the import at-rule, rather than relative to the HTML document. The @import rule must end
with a semicolon, as shown. Also, all @import rules must appear at the beginning of a style
sheet, before any ruleset statements.

3.4 Style Sheets and HTML

So far, the style sheets we have used have been stored in files and included in an HTML
document through the use of a link element. Such style sheets are known as external style
sheets. Another option is to embed a style sheet directly in an HTML document as the
content of the HTML style element, which can appear any number of times in the head

content of a document. For example, an XHTML document might contain the following
markup:

<head>
<title>InternalStyleSheet.html</title>
<style type="text/css">

h1, h2 { background-color:aqua }
</style>

</head>

As you would expect, this will have the same effect as if the given style rule had
been contained in an external style sheet and included in the HTML document via a link

element. A style sheet that is included in the content of a style element is known as an
embedded style sheet.

I have two notes of caution about using embedded style sheets. First, if any XML
special character, such as less-than (<) or ampersand (&), appears in the style rules, then the
character must be replaced by the appropriate entity or character reference. On the other
hand, such references should not be used in an external style sheet, because an external
style sheet is not an XML document and therefore is not processed like one. Second, the
HTML 4.01 specification suggests enclosing the content of a style element within an
SGML comment, for example,

<style type="text/css">
<!--
h1, h2 { background-color:aqua }
-->

</style>

This was suggested because some older browsers did not recognize the style element. Such
a browser would ignore the style start and end tags but would still attempt to process the
content of the element, as discussed in Chapter 2. Therefore, a style element could produce
strange behavior in such browsers. To circumvent this problem, CSS was defined so that the
SGML comment start and end delimiters <!-- and --> are ignored by style sheet processors
(the delimiters themselves are ignored, but the content within the delimiters is not ignored).
So an older browser would ignore both the style tags and the content in a style element

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.5 Style Rule Cascading and Inheritance 133

written as shown, while a style-cognizant HTML 4.01 browser would process the style

element as if the comment delimiters were not present.
However, using SGML comment delimiters in embedded style sheets is not recom-

mended in XHTML, as XHTML parsers are allowed to strip out comments and their con-
tent regardless of what elements may contain the comments. So, in an XHTML-compliant
browser an embedded style sheet enclosed within comment delimiters may be ignored.
Given that almost all browsers in use today recognize the style element, and given this
potential difficulty in XHTML browsers, I suggest that you not use SGML comment
delimiters within style elements.

The media attribute described earlier can be used with the style element as well
as with link elements, and therefore applies to both external and embedded style sheets.
However, the rel attribute applies only to the link element, not to style. So an embedded
style sheet is treated much the same as a persistent external style sheet: it cannot be selected
or deselected by the browser user, but instead always applies to the document.

As we learned in the previous chapter, most HTML elements have a style attribute
that can be used to define style properties for the element. Technically speaking, the value of
a style attribute is not a style sheet, since it is not a set of style rules but is instead essentially
a single list of style declarations that applies to a single document element. In fact, the use
of style sheets is recommended over the use of style attributes, for a number of reasons.
One reason is ease of coding: if you want all of the paragraphs in your document to have the
same style applied, it is much easier to accomplish this by writing a single style rule than
by adding a style attribute specification to every p element. Similarly, it is generally much
easier to modify the style of a document that uses style sheets to define style than it is to
modify one that uses style attributes. A style attribute value also cannot vary automatically
with media type. This last observation is a special case of the more general recommendation
that since markup is designed to carry structural and semantic information, it is generally
best to keep all style information out of the body of an HTML document. All that said, there
are times when the style attribute is convenient (e.g., to make an image cover an entire
table cell, as in Section 2.7). So, while you shouldn’t necessarily avoid its use altogether,
try to use the style attribute wisely.

3.5 Style Rule Cascading and Inheritance

Before describing in detail many of the key CSS style properties, it will be helpful to
understand two concepts: cascading of style sheet rules and element inheritance of style
properties.

3.5.1 Rule Cascading

The style sheet of Figure 3.6 contains the rule

* { font-weight:bold }

which applies to every element of the HTML document. It also contains the rule

#p1, #p3 { background-color:aqua }

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

134 Chapter 3 Style Sheets

As we have seen, both of these rules applied to an element with id attribute value p3. That
is, if multiple rules apply to an element, and those rules provide declarations for different
properties, then all of the declarations are applied to the element. But what would happen
if the rule

#p3 { font-weight:normal }

also appeared in a style sheet for the document? Which rule would apply to the font-weight

property of the p3 element?
This is one example of a more general question: For every property of every element

on a page, the browser must decide on a value to use for that property. How does it determine
this value if multiple style declarations apply to that property of that element? Furthermore,
what should the browser do if no declaration at all directly applies to that element property?
We’ll deal with the first question in this subsection, and the second question in the next.

In order to choose between multiple declarations that all apply to a single property
of a single element, the browser (or other user agent) applies rule cascading, a multistage
sorting process that selects a single declaration that will supply the property value. The very
first step of this process involves deciding which external and embedded style sheets apply
to the document. For example, if alternate external style sheets are available, only one will
apply, and rules in the other alternate style sheets will be ignored. Similarly, if a media type
is specified for an embedded or external style sheet and that type is not supported by the
user agent rendering the page, then that style sheet’s rules will be ignored.

Once the appropriate external and embedded style sheets have been identified, the next
stage of the sorting process involves associating an origin and weight with every declaration
that applies to a given property of a given element. The origin of a style sheet declaration
has to do with who wrote the declaration: the person who wrote the HTML document, the
person who is viewing the document, or the person who wrote the browser software that is
displaying the document. Specifically, the origin of a declaration is one of the following:

� Author: If the declaration is part of an external or embedded style sheet or is part of the
value specified for the style attribute of the given element, then it originated with the
author of the document that is being styled.

� User agent: A browser or other user agent may define default style property values for
HTML elements. In the Mozilla 1.4 View|Use Style menu, this is the style sheet rep-
resented by the “Basic Page Style” option. Appendix A of the CSS 2.0 recommendation
[W3C-CSS-2.0] contains an example user agent style sheet.

� User: Most modern browsers allow users to provide a style sheet or to otherwise indicate
style preferences that are treated as style rules.

In Mozilla 1.4, the user style rules can be defined in two ways. First, under the Edit|
Preferences|Appearance category, the Fonts and Colors panels allow a user to select
various style options, which will be treated as user style rules. Second, the user can ex-
plicitly create a style sheet file that the browser will input when it is started. However,
this is not an easy-to-use feature in Mozilla 1.4: you must create a file with a certain file-
name (userContent.css) and place it in a certain directory (the chrome subdirectory of the

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.5 Style Rule Cascading and Inheritance 135

directory specified by the Cache Folder field of Edit| Preferences | Advanced | Cache).
Similar features are provided in IE6 under the General tab of the Tools | Internet
Options window. The Colors and Fonts buttons allow the user to set style options, and
a style sheet file can be read into IE by clicking the Accessibility button, checking the
checkbox in the User Style Sheet panel, and selecting the file.

In addition to an origin, every author and user style declaration has one of two weight
values: normal and important. A declaration has important weight if it ends with an excla-
mation mark (!) followed by the string important (or similar strings: case is not important,
and there may be white space before or after the exclamation mark). So the rule

p { text-indent:3em; font-size:larger !important }

gives important weight to the declaration of the font-size property. A declaration with-
out the !important string—such as the declaration of the text-indent property in that
example—would have normal weight. All user-agent declarations can also be considered
to have normal weight.

Once the origin and weight of all declarations applying to an element property have
been established, they are prioritized (from high to low) as follows:

1. Important declaration with user origin

2. Important declaration with author origin

3. Normal declaration with author origin

4. Normal declaration with user origin

5. Any declaration with user agent origin

That is, we can think of each declaration as falling into one of five priority bins. We then look
through the bins, starting with the first, until we find a nonempty bin. If that bin has a single
declaration, the declaration is applied to the element property and we are done. Otherwise,
there are multiple declarations in the first nonempty bin, and we continue to the next sorting
stage in order to select a single declaration from among the candidates within this bin.

Before getting to this next stage, you may be wondering why important user declara-
tions have higher priority than author declarations while normal-weight user declarations
have lower priority. The reason is accessibility. If a visually impaired web user must have
high contrast between text and background along with large bold fonts in order to read text
on a monitor, that user can be accommodated by writing declarations with important weight,
regardless of the page author’s design decisions. On the other hand, a user who is merely
stating style preferences will generally not want their default preferences to override those
of a web site author who made specific style choices for his or her web site. One significant
change between CSS1 and CSS2 was the adoption of the sort order just listed, which is also
supported by the major modern browsers.

Now we return to the case in which the top nonempty bin of the weight-origin sort
contains multiple style declarations for a single element property. The next step is to sort
these declarations according to their specificity. First, if a declaration is part of the value
of a style attribute of the element, then it is given the highest possible specificity value

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

136 Chapter 3 Style Sheets

(technically, in CSS2 this specificity value can be overridden, but that feature does not seem
to be widely implemented by current browsers). If a declaration is part of a ruleset, then its
specificity is determined by the selector(s) for the ruleset. We begin by treating a ruleset
with a comma-separated selector string as if it were multiple rulesets each with a single
selector; that is, a ruleset such as

h1, #head5, .big { font-size:x-large }

is treated as the equivalent three rulesets

h1 { font-size:x-large }
#head5 { font-size:x-large }
.big { font-size:x-large }

Next, we conceptually place each ruleset in one or more bins, each bin labeled with a
class of selectors. The bins we use for this purpose, from highest to lowest specificity, are:

1. ID selectors

2. Class and pseudo-class selectors

3. Descendant and type selectors (the more element type names, the more specific)

4. Universal selectors

A ruleset with a selector such as li.special would go in two bins, since this is both a
class and a type selector. Now we select a ruleset from the first nonempty bin. If, say, two
rulesets appears in this bin, we search lower bins for the first recurrence of either ruleset.
If one of the rulesets recurs before the other, then it is chosen. So, for example, li.special
would be chosen over ∗.special.

Even after this sorting process, two or more declarations may still have equally high
weight-origin ranking and specificity. The final step in the style cascade is then applied, and
is guaranteed to produce a single declaration for a given property of a given element. First,
if there is a declaration in the style attribute for the element, then it is used. Otherwise,
conceptually, all of the style sheet rules are listed in the order in which they would be
processed in a top-to-bottom reading of the document, with external and imported style
sheets inserted at the point of the link element or @import rule that causes the style sheet
to be inserted. The declaration corresponding to the rule that appears farthest down in this
list is chosen. As an example, if the file imp1.css contains the statements

@import url("imp2.css");
p { color:green }

and the file imp2.css contains the statement

p { color:blue }

and a document head contains the markup

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.5 Style Rule Cascading and Inheritance 137

<title>StyleRuleOrder.html</title>
<style type="text/css">

p { color:red }
</style>
<link rel="stylesheet" type="text/css" href="imp1.css" />
<style type="text/css">

p { color:yellow }
</style>

then the style rulesets are effectively in the order

p { color:red }
p { color:blue }
p { color:green }
p { color:yellow }

and p elements will be displayed with yellow text. Notice that since the import at-rules must
always come at the beginning of a style sheet, any imported rules can always be overridden
by rules in the body of the style sheet causing the import. This is sensible, since rules
imported from a file are presumably meant to be of a reusable, general-purpose nature and
therefore should be subject to revision for a specific task.

Finally, certain (often deprecated) HTML attributes other than style can be used to
affect the presentation of an HTML document. For example, the height attribute of the
img element type can affect presentation. But img also has a height style property that can
be set to achieve the same effect. If both are defined for an img element, which should
take precedence: the attribute or the style property? The general answer is that any CSS
style declaration takes precedence over style-type declarations made via HTML attribute
specifications. More specifically, the browser or user agent treats non-CSS attribute styling
as if an equivalent CSS style rule had been inserted at the very beginning of the author
(normal weight) style sheet with a specificity lower than that for the universal selector. So
any important-weight user style rule as well as any style rule written by the document author
will take precedence over style rules derived from attributes such as height, which in turn
will take precedence over normal-weight user and user-agent style rules.

The style cascade is summarized in Figure 3.9. We’re now ready to tackle the other
question posed earlier: if a property of an element has no associated style declarations,
how is the value of the property determined? The answer is that the value is inherited from
ancestors of the element, as discussed next.

3.5.2 Style Inheritance

While cascading is based on the structure of style sheets, inheritance is based on the tree
structure of the document itself. That is, conceptually an element inherits a value for one of
its properties by checking to see if its parent element in the document has a value for that
property, and if so, inheriting the parent’s value. The parent may in turn inherit its property
value from its parent, and so on. Put another way, when attempting to inherit a property
value, an element (say with id value needValue) will search upward through its tree of
ancestor elements, beginning with its parent and ending either at the root html element or

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

138 Chapter 3 Style Sheets

Alternate style sheets

1. Select style
sheets and insert
rules for HTML
attributes

4. Break ties based
on position within
style sheet (last
occuring wins)

3. Break ties based
on specificity
(style attribute
or most specific
selector)

2. Prioritize
declarations by
origin and weight

FIGURE 3.9 Steps in the CSS cascade.

at the first element that has a value for the property. If the search ends at an element with
a value for the property, that value will be used by needValue as its property value. If no
ancestor element has a value for the property, then as a last resort the property will be given a
value specified for each property by the CSS specification [W3C-CSS-2.0] and known as
the property’s initial value. This terminology makes sense if you think of each element
property as having its initial value assigned when the document is first read and then having
this value changed if either the cascade or the inheritance mechanism supplies a value.

Figure 3.10 shows the source of an HTML document that illustrates inheritance. No-
tice that the style sheet for this document contains font-weight declarations for both the
body and span element types. So for span elements, the font-weight is specified by an
author rule, and no value will be inherited for this property. For other elements within the
body, though, there is no author rule, and assuming that there is also no user or user-agent
rule, the font-weight property value will be inherited from the body element. Therefore,

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.5 Style Rule Cascading and Inheritance 139

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>
Inherit.html

</title>
<style type="text/css">

body { font-weight:bold }
li { font-style:italic }
p { font-size:larger }
span { font-weight:normal }

</style>
</head>
<body>

List item outside and inside a span.
<p>

Embedded paragraph outside and inside a span.
</p>

</body>
</html>

FIGURE 3.10 HTML document demonstrating inheritance.

as shown in Figure 3.11, the word “inside” (which is the content of two span elements)
appears with a normal font weight, while all other text is boldfaced. However, since there
are no other property declarations for the two span elements, these elements do inherit other
property values from their ancestors. The first span inherits italicization from its parent
li element, while the second inherits a larger font size from its p element parent and italiciza-
tion from its li element grandparent. The p element similarly inherits italicization from its
li parent.

FIGURE 3.11 Rendering of document demonstrating inheritance.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

140 Chapter 3 Style Sheets

A few final points should be mentioned about inheritance. First, while many CSS
properties are inheritable, a number of other properties are not. In general, your intuition
about whether or not a property will be inherited should be correct. For example, the height

property of an element is not inherited from its parent, which is sensible, since often the
parent has many children on many lines and therefore has a greater height than any one
child. As I cover specific CSS properties in later sections of this chapter, you should assume
that each property is inherited unless I explicitly say otherwise. Of course, you can consult
the CSS specifications [W3C-CSS-2.0] if in doubt or for information about inheritance of
properties not covered in this chapter.

A second point about inheritance has to do with exactly which of several possible
property values is inherited. The value contained in a style declaration for a property is
known as the specified value for the property. This value can be either relative or absolute.
An absolute value is a value that can be understood without the need for any context, such
as the value 2cm (two centimeters). A relative value, on the other hand, cannot be understood
without knowing some context. For example, the property declaration font-size:larger

uses the relative value larger to set the size of the font of an element. Exactly what this
value is relative to is discussed in Section 3.6.3. For now, it’s sufficient to know that the
browser must perform a calculation—which depends on the particular relative value—to
obtain a computed value for the property. In the case of the font-size value larger, this
calculation might involve multiplying the base font size by a factor such as 1.2 to obtain the
computed font size. If the specified value is absolute, then the computed value is identical
to the specified value. Finally, the computed value may not be suitable for immediate use by
the browser. For example, a specified font size—relative or absolute—may not be available
for the font currently in use, so the browser may need to substitute the closest available font
size. The value actually used by the browser for a property is known, appropriately enough,
as the actual value.

In terms of inheritance, the computed value is normally inherited for a property, not
the specified or actual value. The one exception to this among the properties discussed in
this chapter is line-height; its inheritance properties will be described in detail in Section
3.6.4.

A final note about inheritance is that the CSS2 recommendation allows every style
property to be given the value inherit, whether or not the property is inherited normally.
When this value is specified for a property, the computed value of the property is supposed
to be obtained from its parent. However, you should be aware that this inheritance feature
is not supported by IE6, and therefore should be used with care if at all. I am mentioning it
mainly because it appears often in the CSS2 recommendation. Since this value can be used
for every CSS2 property, I will not mention it explicitly when listing possible values for
properties in the following sections.

We are now ready to begin learning about many of the available CSS2 properties.
We’ll begin with a number of text properties.

3.6 Text Properties

In this section, we will cover many of the CSS properties related to the display of text.
Specifically, we will learn about how to select a font and how to modify text properties
such as color. We’ll also cover in some detail how browsers determine the spacing between

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.6 Text Properties 141

lines of text and how document authors can influence this spacing. Later sections will cover
some other aspects of text, such as alignment, once we have covered necessary background
material.

One note before beginning: CSS defines a direction property that can be thought
of as defining the default direction in which text is written. It takes two possible keyword
values: ltr indicates a left-to-right language, and rtl indicates right-to-left. This property
affects the default behavior of many other CSS properties as well as some of their initial
values. For example, the initial value for the text-align property, used to specify how
a paragraph of text should be aligned, is left if direction’s value is ltr and is right

otherwise. For simplicity, I will assume left-to-right languages throughout this chapter; if
there is an asymmetry between left and right for a property (such as the initial value of
text-align, which gives preference to left), simply switch the roles of left and right if you
use a right-to-left language.

3.6.1 Font Families

Figure 3.12 is a browser rendering of an HTML document that displays characters using
four different font families (we’ll learn later how to write a document such as the one that
generated this figure). A font family is a collection of related fonts, and a font is a mapping
from a character (Unicode Standard code point) to a visual representation of the character
(a glyph). Each glyph is drawn relative to a rectangular character cell (also known as the
character’s content area), which is shown shaded for each character in the figure. The fonts
within a font family differ from one another in attributes such as boldness or degree of
slantedness, but they all share a common design. The font families used in this example
are, in order of use, Jenkins v2.0, Times New Roman R©, Jokewood, and HelveticaTM; they
illustrate well how different font family designs can be from one another. (The Jenkins and
Jokewood fonts may not be available on your machine, so this example may not appear the
same in your browser as it does in Fig. 3.12.)

The font family to be used for displaying text within an HTML element is specified
using the font-family style property. For example, the start tag

<p style="font-family:'Jenkins v2.0'">

FIGURE 3.12 Rendering of document illustrating four different font families.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

142 Chapter 3 Style Sheets

indicates that the text within the paragraph started by this tag should use the Jenkins v2.0
font (unless a child element specifies a different font). Some font family names must be
quoted and/or special characters contained in the names must be escaped; for simplicity, I
recommend that you always quote font family names. Either single or double quotes can be
used, which is especially convenient when the declaration appears within a style attribute
as shown.

Most end-user computers contain files describing a variety of font families. How-
ever, there is no guarantee that a font family that you would like to display in an HTML
document you are authoring will be available on all of the client machines viewing your
document. Although IE6 has a mechanism for downloading fonts from the Web for use
within an HTML document, this facility is not included in the current version of CSS 2.1
[W3C-CSS-2.1]. Instead, a recommended mechanism for specifying a font family in CSS
is to use a comma-separated list of font families as the value of the font-family property,
such as

font-family:"Edwardian Script ITC","French Script MT",cursive

The browser will attempt to use the first family specified (Edwardian Script ITC in this
example), but if that family is not available on the browser’s system, then the browser will
proceed through the list until it finds a family that is available. The last element in the
list (cursive in this example) should be the name of a generic font family. The generic
font families defined by CSS are listed in Table 3.3. Unlike normal font family names, the
names of generic families are CSS keywords and therefore must not be quoted within a
font-family declaration.

The browser will attempt to associate a reasonable font family available on the
user’s system with each generic name. In Mozilla 1.4, the user can specify the actual font
family associated with each generic family through a preference setting as illustrated in
Figure 3.13.

TABLE 3.3 CSS Generic Font Families

Font Family Description

serif A serif is a short, decorative line at the end of a stroke of a letter. There are three serifs at

the top of the W in Figure 3.12, for example. Most glyphs in a serif font family will have

serifs, and such a family is typically proportionately spaced (different glyphs occupy

different widths).

sans-serif Usually proportionately spaced, but glyphs lack serifs, so they don’t look as fancy as serif

fonts.

cursive Looks more like cursive handwriting than like printing.

fantasy Glyphs are still recognizable as characters, but are nontraditional.

monospace All glyphs have the same width. Since monospace fonts are often used in editors when

programming, these font families are frequently used to display program code or other

computer data.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.6 Text Properties 143

FIGURE 3.13 Example of associations of actual with generic font families in Mozilla.

3.6.2 Length Specifications in CSS

Font size is one of the key features used to distinguish between individual fonts within a
font family. In CSS, the size of a font is specified using the font-size property. One type of
value that can be assigned to font-size is a CSS length. In fact, CSS lengths can be assigned
to many CSS properties, not just font-size. Therefore, we will cover length specification
separately in this section before moving on to how to specify font properties such as size
in CSS.

In CSS, a length value is represented either by the number 0 or by a number followed
by one of the unit identifiers given in Table 3.4. Some example declarations involving length
values are:

font-size:0.25in
font-size:12pt
font-size:15px

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

144 Chapter 3 Style Sheets

TABLE 3.4 CSS Length Unit Identifiers

Identifier Meaning

in Inch

cm Centimeter

mm Millimeter

pt Point: 1/72 inch

pc Pica: 12 points

px Pixel: typically 1/96 inch (see text)

em Em: reference font size (see text)

ex Ex: roughly the height of the lowercase “x” character in the reference font (see text)

The first six units in Table 3.4 are, in practice, all related to one another by multiplica-
tive scale factors. In particular, both Mozilla 1.4 and IE6 appear to maintain the relationships
1 in. = 2.54 cm = 25.4 mm = 72 pt = 6 pc = 96 px both on screen and when printing a
document. Both also appear to use pixels to define all of the other units when displaying a
document on a monitor. For example, if your monitor resolution is set to 1024 by 768 pixels
and you specify a horizontal length as 1024px, then this length will roughly correspond to
the width of the monitor’s display area. The display area will also be treated as if it were
1024/96 ≈ 10.7 in. across, regardless of its true physical width. Thus, the units in, cm, mm,
pt, and pc are all only approximations on screen, and depending on the resolution may be
off by 50% or more (all by the same factor). When printing, however, it appears that both
browsers define px as 1/96 in. (or close to it) and define the other units accordingly.

Note that, despite the imprecisions, lengths defined using the first five units in Table 3.4
are absolute lengths in the sense defined earlier: they do not depend on other style property
values. Such units are referred to as absolute units. The other three units are relative units.
Technically, CSS defines px as a relative unit, since its physical value should depend on the
medium displaying the document. However, as indicated, in practice it seems to be treated
by typical browsers as an absolute unit. We’ll see why em and ex are relative units in a
moment.

Before defining the em and ex units formally, it will be helpful to understand several
details about fonts. First, all character cells within a given font have the same height.
However, generally speaking, this height is not exactly the same as the computed or even
the actual value of the CSS font-size property. For example, in Figure 3.12, a single
font-size value—72 pt—applies to all of the characters, yet obviously the character cells
vary somewhat in height. Thus a combination of the font family and the font-size property
determines the actual height of character cells. The font-size computed value is known
as the em height; for most font families, the cell height is 10–20% greater than the em
height.

Another feature that the font defines is the baseline height. The baseline height is the
distance from the bottom of a character cell to an imaginary line known as the baseline,
which is the line that characters appear to rest on. As shown in Figure 3.12, when a single
line of text contains characters from different fonts, the characters are by default aligned

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.6 Text Properties 145

M x
baseline
height

baseline

ex
height

cell
height

FIGURE 3.14 Some features and quantities defined by a font.

vertically by aligning their baselines. Thus, although we can see from the figure that the
characters cells do not align vertically, the character glyphs themselves appear to all be
written on a single horizontal line.

Yet another quantity defined by each font is the ex height. This quantity should be
thought of as the font designer’s definition of the height (above the baseline) of lowercase
letters such as “x.” Figure 3.14 illustrates this quantity and several other font features.

Now we can define the em and ex units. First, as noted in Table 3.4, these units are
defined relative to a reference font (and are therefore relative units). With one exception
explained in the paragraph after next, the reference font is just the font of the element to
which the relative unit applies. So, for example, in the markup

<p style="width:20em">

the reference font is the font that applies (via a style rule or inheritance) to the p element.
Once the reference font is known, 1 em is simply the em height of the font, that is,

the computed value of the font-size property of the reference font. So, continuing our
example, if the computed value of the p element’s font-size property is 0.25 in., then the
computed value for its width property will be 5 in. Similarly, 1 ex is the ex height of the
reference font.

The one exception when determining the reference font for these reference units is
when one of them is used in a font-size declaration. In this case, the reference font is the
font of the parent of the element to which the declaration applies. So in the markup

<div id="d1" style="font-size:12pt">
<div id="d2" style="font-size:2em">

the reference font for the div with id attribute value d2 will be d1’s font. Since the computed
font-size for d1 will be 12 pt (because absolute units are used), the computed font-size

for d2 will be 24 pt.
Now we are ready to more fully describe font-size and several other font properties.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

146 Chapter 3 Style Sheets

3.6.3 Font Properties

The CSS font-size property, we now know, is used to specify the approximate height of
character cells in the desired font within a font family. This property has an initial (default)
value of medium, which is associated with a physical font size by the browser (these may
vary with font family; Mozilla 1.4 defaults to 14 pt for proportional font families and 12 pt
for monospace). A variety of other values can be specified for this property.

First, of course, a length value can be specified for font-size, using any of the length
units described in the previous section. A second way that a font-size property may be
specified is as a percentage of the computed font-size of the parent element. Since 1em

represents the computed value of the parent’s font-size, the following specifications are
essentially equivalent:

font-size:0.85em
font-size:85%

Third, the font-size specification may be given using what is termed an absolute size
keyword. One of these keywords is medium, the initial value for font-size. The remaining
keywords are xx-small, x-small, small, large, x-large, and xx-large. The browser or other
user agent creates a table of actual lengths corresponding to each of these size keywords.
The CSS2 recommendation [W3C-CSS-2.0] is that each of these be approximately 20%
larger than its next-smaller size.

Finally, the relative size keywords smaller and larger may be specified. Again, like
the relative units em and ex, each of these keywords specifies the font size for the current
element relative to the font size of its parent. These relative size keywords conceptually
say “move one position in the font-size table.” So, if the parent element has a font size of
large, then a relative size specification of larger for its child is equivalent to an absolute
size specification of x-large. If the parent font size is outside the range of the browser’s
font-size table, then an appropriate numerical font change (for example, 20%) is applied
instead.

CSS also provides several other font style properties; three of the most commonly
used are shown in Table 3.5. Several other font-related properties, including color, are
covered later in this section.

TABLE 3.5 Additional Font Style Properties

Property Possible Values

font-style normal (initial value), italic (more cursive than normal), or oblique (more slanted

than normal)

font-weight bold or normal (initial value) are standard values, although other values can be used with

font families having multiple gradations of boldness (see CSS2 [W3C-CSS-2.0] for

details)

font-variant small-caps, which displays lowercase characters using uppercase glyphs (small

uppercase glyphs if possible), or normal (initial value)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.6 Text Properties 147

Line
boxes

Th i s i s
sure fun!

FIGURE 3.15 A box representing a p element that consists of two line boxes, each partially filled with character

cells.

3.6.4 Line Boxes

We now want to consider how a browser determines where text should be rendered within
an HTML element. We will assume in this section that the text is the content of an HTML
p element, but the details are essentially the same for most other HTML block elements,
such as div.

The simplest case is the one in which the content of the p element consists solely
of text. In this case, we can think of the p element as being rendered as a rectangular box
composed entirely of a stack of imaginary boxes called line boxes. Each line box contains
one line of text. The height of a line box is precisely the height of a character cell in the
p element’s font. Character cells representing the text are placed side by side in the topmost
line box until it contains as many words (strings of contiguous non-white-space characters)
as possible; a single space (with width defined by the font) separates each word. When the
first line box can hold no more words, this process continues with the second line box, and
so on until all of text of the p element has been added to line boxes. There will be just enough
line boxes to contain the text, so the height of the box representing the p element will be
the number of line boxes multiplied by the height of a character cell. Figure 3.15 illustrates
the rendering of the text “This is sure fun!” using a monospace font within a p-element box
that is only wide enough to hold 10 characters. Notice that the box consists entirely of two
line boxes, and that neither of the line boxes in this case is completely filled by character
cells.

The browser’s default setting of the height of line boxes can be overridden by spec-
ifying a value for the p element’s line-height property. The initial value of this property
is normal, which as we have seen sets the height of line boxes equal to the height of a
character cell (a typical value might be 1.15 em, or 15% greater than the computed value
of font-size). Other legal values for this property are a CSS length (using any of the
units defined earlier), a percentage (treated as a percentage of the computed value of the
p element’s font-size), or a number without units. In the final case, the number is treated
as if its units are em, except in terms of inheritance (we deal with this in a moment). Thus,
the following declarations are all equivalent in terms of their effect on the p element itself:

line-height:1.5em
line-height:150%
line-height:1.5

If the height of a line box is greater than the character cell height, then the character
cells are vertically centered within the line box. The distance between the top of a character

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

148 Chapter 3 Style Sheets

Half-leading

Text cell
height

line-height

Half-leading

G

FIGURE 3.16 Default placement of text cell within a line box when the value of line-height exceeds the height

of a text cell. An equal amount of space (half-leading) is inserted above and below the text cell.

cell and the top of a line box (which is the same as the distance between the bottom of a
cell and the bottom of the line box) is sometimes called the half-leading (pieces of lead
were often used to separate lines of type in early manual typesetting systems, hence the
term). Thus, increasing the line-height value above its normal value not only increases the
distance between lines, but actually moves the text of the first line down by the half-leading
distance as well as increasing the distance between the last line of text and whatever follows
the p element’s box by the same distance (Fig. 3.16). We will learn how to override this
default centering of text within tall line boxes later in this chapter.

A fine point about inheritance of this property: If normal or a number without units
is specified as the value of line-height, then this specified value is inherited rather than
the computed value. For any other specified value, such as 1.5em, the computed value is
inherited. An exercise explores this further.

Now that we have learned about the line-height property, I can describe a convenient
property called font. This property is an example of a CSS shortcut property, which is a
property that allows values to be specified for several nonshorthand properties with a single
declaration. As an example of the use of the font shortcut, the declaration block

{ font: italic bold 12pt "Helvetica",sans-serif }

is equivalent to the the declaration block

{ font-style: italic;
font-variant: normal;
font-weight: bold;
font-size: 12pt;
line-height: normal;
font-family: "Helvetica",sans-serif }

Notice that the font shortcut always affects all six of the properties shown, resetting those
for which a value is not specified explicitly in the font declaration to their initial (default)
values. The font size and font family (in this order) must be included in the specified
value for font. If values for any of style, variant, and weight appear, they must appear

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.6 Text Properties 149

TABLE 3.6 Primary CSS Text Properties

Property Values

text-decoration none (initial value), underline, overline, line-through, or space-separated list of

values other than none.

letter-spacing normal (initial value) or a length representing additional space to be included between

adjacent letters in words. Negative value indicates space to be removed.

word-spacing normal (initial value) or a length representing additional space to be included between

adjacent words. Negative value indicates space to be removed.

text-transform none (initial value), capitalize (capitalizes first letter of each word), uppercase

(converts all text to uppercase), lowercase (converts all text to lowercase).

text-indent Length (initial value 0) or percentage of box width, possibly negative. Specify for block

elements and table cells to indent text within first line box.

text-align left (initial value for left-to-right contexts), right, center, or justified. Specify

for block elements and table cells.

white-space normal (initial value), pre. Use to indicate whether or not white space should be

retained.

before the font size and may appear in any order among themselves. To specify a value for
line-height, immediately follow the font size value by a slash (/) and the line-height

value. For example,

{ font: bold oblique small-caps 12pt/2 "Times New Roman",serif }

is a valid font declaration that explicitly sets all six font properties.

3.6.5 Text Formatting and Color

Beyond font selection, several other CSS properties can affect the appearance of text. These
are listed in Table 3.6. All of these properties except text-decoration are inherited. And,
while not inherited, text-decoration automatically applies to all text within the element,
while skipping nontext, such as images. The decoration uses the element’s color value.
Some of these properties may interfere with one another. For example, since text justifi-
cation (lining up text with a straight edge on both left and right sides) generally involves
inserting space between letters and/or words, specifying justify for text-align and also
specifying values for letter-spacing and word-spacing may not produce the results you
expect. As usual, see the CSS2 recommendation [W3C-CSS-2.0] for details on such special
cases.

Finally, as we learned in early examples in this chapter, the color property is used to
specify the color for text within an element. There are many possible values for the color

property, which we now cover. It should be noted that these values can also be specified for
several other CSS properties, as discussed later.

CSS2 color properties can be assigned several types of values. The most flexible type
is a numerical representation of the color. In particular, three numerical values are used

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

150 Chapter 3 Style Sheets

TABLE 3.7 Alternative Formats for Specifying Numeric Color Values

Format Example Meaning

Functional, integer arguments rgb(255,170,0) Use arguments as RGB values.

Functional, percentage arguments rgb(100%,66.7%,0%) Multiply arguments by 255 and round to obtain

RGB values (at most one decimal place

allowed in arguments).

Hexadecimal #ffaa00 The first pair of hexadecimal digits represents

the red intensity; the second and third

represent green and blue, respectively.

Abbreviated hexadecimal #fa0 Duplicate the first hexadecimal digit to obtain

red intensity; duplicate the second and third

to obtain green and blue, respectively.

to specify a color, representing intensities of red, green, and blue to be mixed together in
order to simulate the desired color (the typical human eye can be “tricked” into perceiving
light from multiple sources at various intensities and wavelengths as if it were from a single
source with a single intensity and wavelength). The specific color model used involves
specifying an integer between 0 and 255, inclusive, for each of the intensities of red, green,
and blue, in that order (early Web pages used a limited range of intensities due to hardware
limitations of many computers in use at the time, but most machines today can reliably
display any of these intensities). Such an integer is known as an RGB value. Many readily
available software tools, including Microsoft Paint, provide visual maps from colors to
RGB values. Four different formats can be used to specify these three values, as shown in
Table 3.7. All of the examples in this table specify the same color value. (A word of caution:
it’s easy to forget the leading # for the third and fourth formats.)

Many of our earlier style sheet examples used a second, more convenient way
to specify common colors: many color values have a standard name associated with
them. A list of the 16 colors named in CSS2 and their associated RGB values is given
in Table 3.8. The current CSS 2.1 specification also adds orange (#ffa500) to the list.
Furthermore, Mozilla 1.4 supports all and IE6 supports almost all (there are some ex-
ceptions containing gray or grey) of the 147 color names recognized as part of the
W3C’s Scalable Vector Graphics recommendation [W3C-SVG-1.1]. This provides 130
color names in addition to those of CSS 2.1, from aliceblue through yellowgreen (see
http://www.w3.org/TR/SVG11/types.html#ColorKeywords for a complete list).

Finally, color values can be specified by referencing colors set for other purposes
on the user’s system. For example, the keyword Menu represents the color used for menu
backgrounds, and MenuText the color used for text within menus. This can be useful, for
example, if you plan to provide menus within your page and want them to use colors familiar
to your users, regardless of user selected menu color preferences. A full list of these so-called
system color names is provided in Section 18.2 of the CSS2 specification [W3C-CSS-2.0].
However, be advised that the draft for CSS3 current at the time of this writing deprecates
such system color names.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.7 CSS Box Model 151

TABLE 3.8 CSS2 Color Names and

RGB Values

Color Name RGB Value

black #000000

gray #808080

silver #c0c0c0

white #ffffff

red #ff0000

lime #00ff00

blue #0000ff

yellow #ffff00

aqua #00ffff

fuchsia #ff00ff

maroon #800000

green #008000

navy #000080

olive #808000

teal #008080

purple #800080

We have referred throughout this section to the notion of a box corresponding to a
p element. In the next section, we begin to make this concept more precise.

3.7 CSS Box Model

In this section we define a number of CSS properties that relate to the boxes that a browser
renders corresponding to the elements in an HTML document. In subsequent sections we
will learn how browsers position these boxes relative to the browser client area and relative
to one another.

3.7.1 Basic Concepts and Properties

In CSS, each element of an HTML or XML document, if it is rendered visually, occupies
a rectangular area—a box—on the screen or other visual output medium. What’s more,
every box consists conceptually of a nested collection of rectangular subareas, as shown
in Figure 3.17. Specifically, there is an innermost rectangle known as the content area
that encloses the actual content of the element (line boxes or boxes for other elements, or
both). Padding separates the content area from the box’s border. There is then a margin
surrounding the border. The content and margin edges are not displayed in a browser, but
are drawn in Figure 3.17 for definitional purposes. Note the similarity between the CSS box
model and the concept of a cell in HTML tables. However, as we will see, style properties
in CSS provide finer-grained control over boxes than HTML provides for table cells.

Some other terminology related to the box model will also be helpful. The content
and margin edges of an element’s box are sometimes referred to as the inner and outer
edges of the box, respectively. Also, as shown in Figure 3.18, the outer (margin) edges of a

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

152 Chapter 3 Style Sheets

the

Margin area Margin edge

Border
area

Border edge

Padding
area

Padding edge

Content area Content edge

FIGURE 3.17 Definition of areas and edges in the CSS box model.

box define the box width and box height, while the inner (content) edges define the content
width and content height of the box.

Figure 3.18 also gives the CSS property names corresponding to the 12 distances
between adjacent edges in the box model. Notice that the border properties have the suffix
-width. This suffix is used to distinguish border properties related to distances from other
border properties that affect the color and style of borders (and have the suffixes -color

and -style, respectively). Note that the same suffix is used for both horizontal and vertical
distances, which can be confusing, since in the rest of the box model “width” normally
refers to a horizontal distance.

border-bottom-width

margin-bottom

margin-
left

padding-bottom

Content Height

Content Width

margin-top

border-top-width

margin-
right Box

Height

Box Width

padding-top

padding-
right

padding-
left

border-
right-
width

border-
left-
width

FIGURE 3.18 Definition of various lengths in the CSS box model.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.7 CSS Box Model 153

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>
SpanBoxStyle.html

</title>
<link rel="stylesheet" type="text/css" href="span-box-style.css" />

</head>
<body>

<p>
The first span and second span.

</p>
</body>

</html>

FIGURE 3.19 HTML document demonstrating basic box model style properties.

As a simple example of what can be done with what we have already learned (and a
few other things that we will learn shortly about border-style property values), consider the
following style sheet:

/* span-box-style.css */
/* solid is a border style (as opposed to dashed, say). */
span { margin-left: 1cm;

border-left-width: 10px;
border-left-color: silver;
border-left-style: solid;
padding-left: 0.5cm;
border-right-width: 5px;
border-right-color: silver;
border-right-style: solid }

and assume that this style sheet is contained in a file named span-box-style.css, as indicated
by the comment. Then the HTML document shown in Figure 3.19 will be rendered by a
CSS2-compliant browser as illustrated in Figure 3.20. Note that for span elements, any
margin, border, or padding distance that is not specified by an author or user style sheet is
given the value 0.

FIGURE 3.20 Rendering of document demonstrating basic style properties.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

154 Chapter 3 Style Sheets

3.7.2 Box Model Shorthand Properties

CSS2 defines a number of shorthand properties related to the box model. For example, the
declaration

padding: 30px;

is shorthand for four declarations:

padding-top: 30px;
padding-right: 30px;
padding-bottom: 30px;
padding-left: 30px;

Table 3.9 lists a number of such shorthand properties as well as the properties already
covered and gives for each property its allowable values. None of the properties in this table
is inherited.

The auto value that can be used when setting margin widths has a meaning that
depends on its context, so we will defer discussing it to the appropriate later sections. I’ll
try to answer other questions you may have about Table 3.9 here.

First, notice that five of the properties in Table 3.9 (padding, border-width,
border-color, border-style, and margin) take from one to four space-separated val-
ues. Each of these properties is a shorthand for specifying values for the four

TABLE 3.9 Basic CSS Style Properties Associated with the Box Model

Property Values

padding-{top,right,bottom,left} CSS length (Section 3.6.2).

padding One to four length values (see text).

border-{top,right,bottom,left}-width thin, medium (initial value), thick, or a length.

border-width One to four border-*-width values.

border-{top,right,bottom,left}-color Color value. Initial value is value of element’s color

property.

border-color transparent or one to four border-*-color values.

border-{top,right,bottom,left}-style none (initial value), hidden, dotted, dashed, solid,

double, groove, ridge, inset, outset.

border-style One to four border-*-style values.

border-{top,right,bottom,left} One to three values (in any order) for border-*-width,

border-*-color, and border-*-style. Initial values

are used for any unspecified values.

border One to three values; equivalent to specifying given values

for each of border-top, border-right,

border-bottom, and border-left.

margin-{top,right,bottom,left} auto (see text) or length.

margin One to four margin-* values.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.7 CSS Box Model 155

TABLE 3.10 Meaning of Values for Certain Shorthand Properties that Take One to Four Values

Number of
Values Meaning

One Assign this value to all four associated properties (top, right, bottom, and left).

Two Assign first value to associated top and bottom properties, second value to associated right

and left properties.

Three Assign first value to associated top property, second value to right and left, and third

value to bottom.

Four Assign first value to associated top property, second to right, third to bottom, and fourth to

left.

associated properties that include top, right, bottom, or left in their names. For
example, border-style is a shorthand for specifying values for border-top-style,
border-right-style, border-bottom-style, and border-left-style. Table 3.10 shows the
meaning of the values for these properties. We have just seen an example of such a short-
hand declaration, when a single padding declaration was equivalent to four declarations.
As another example, the style declaration

margin: 15px 45px 30px

is equivalent to

margin-top: 15px
margin-right: 45px
margin-left: 45px
margin-bottom: 30px

You may also have a question about the border styles listed in Table 3.9. There
is no precise definition for most of these border styles, so their visual appearance may
vary somewhat when displayed in different browsers. For example, Figure 3.21 shows two
paragraphs p1 and p2 displayed in two different browsers using the following style sheet:

/* border-styles.css */
#p1 {

background-color: yellow;
border: 6px maroon;
border-style: solid dashed dotted double

}

#p2 {
border: 16px teal;
border-style: groove ridge inset outset

}

Obviously, you may want to experiment with these border-style values in browsers you
are targeting before using these values. Also note that both of the border style values

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

156 Chapter 3 Style Sheets

FIGURE 3.21 Illustration of some border styles in different browsers.

hidden and none effectively eliminate a border from a box element, but hidden behaves
slightly different within HTML table elements in certain circumstances (refer to the CSS2
specification [W3C-CSS-2.0] for details).

Finally, you probably have noticed that shorthand properties make it possible to
declare multiple values for a single property within a single declaration block. For example,
the value of border-top-style can be specified by a direct declaration of this property as
well as by declarations for the border-top and border shorthand properties. If multiple
declarations within a single declaration block apply to a property, the last declaration takes
precedence over any earlier declarations. So, for example, in the declaration block

{ border: 15px solid;
border-left: 30px inset red;
color: blue }

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.8 Normal Flow Box Layout 157

the border on the top, right, and bottom will be 15-px-wide solid blue, while the left border
will be a 30-px-wide red inset style. This is because the first declaration sets all four borders
to 15 px wide and solid, with the border color set to its initial value, which for border
colors is the value specified for the element’s color property (blue in this case). The second
declaration effectively overrides these values for the border-left property.

3.7.3 Background Colors and Images

The background-color property specifies the color underlying the content, padding, and
border areas of an element’s box. The background color in the border area will normally
be covered by the border itself, but will be visible if the border color is specified as
transparent or partly visible if the border style is dashed, dotted, or double (see Fig. 3.21).
Notice that the margin area is not affected by the background color. The margin area is
always transparent, which allows the background color of the parent element to be seen in
the margin area. Strictly speaking, the background-color property’s value is not inherited;
however, the initial value of background-color is transparent, and the background color
of an element will be visible through transparent areas of child elements. In other words,
for CSS box model purposes, we should think of the browser as rendering parent elements
first and then rendering the nontransparent portions of the child elements over top of the
parents.

A related property that is used in many Web pages is background-image. The accept-
able values for this property are none, the initial value, or a URL specified using the same
url() functional notation used with the @import style rule. By default, the image found at
the specified URL will be tiled over the padding and content areas of the element to which
this property is applied (such as the body element of an HTML document). Tiling simply
means that if an image is too small to cover the element, either from left to right or from
top to bottom or both, then the image is repeated as needed.

Like background-color, background-image is not inherited. Conceptually, the element
to which the background image will be applied is first drawn, including its background
color if any. Then the background image is drawn over top of the element, with the element
showing through any transparent areas of the image. Finally, any child elements are drawn
over top of the background image. The positioning of a background image and whether it
is tiled or not can be specified using various CSS properties; see the CSS2 specification
[W3C-CSS-2.0] for complete details.

This concludes our discussion of the basic CSS box model. We next turn to considering
how this model relates to some specific HTML elements.

3.8 Normal Flow Box Layout

In a browser’s standard rendering model (which is called normal flow processing), every
HTML element rendered by the browser has a corresponding rectangular box that contains
the rendered content of the element. The primary question we address in this section is
where these boxes will be placed within the client area of the browser.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

158 Chapter 3 Style Sheets

3.8.1 Basic Box Layout

First, recall that the html element is the root element of an HTML document. The browser
generates a box corresponding to this element, which is called the initial containing block.
The CSS2 recommendation does not specify the lengths (margin, padding, etc.) or di-
mensions (width and height) of this box, but instead leaves it to each browser to choose
values for these parameters. In both IE6 and Mozilla 1.4, by default the border, margin, and
padding lengths are all zero, so the inner (content) and outer edges of the box coincide. As
for dimensions of the initial containing block box, if the browser’s horizontal and vertical
scrollbars are not active, then the box coincides with the browser’s client area, and therefore
has the same dimensions. On the other hand, if either scrollbar is active, then the the outer
edges of the initial containing block are located at the edges of the underlying area over
which the browser can be scrolled. Conceptually, it is as if the document is drawn on an
imaginary canvas. The browser client area acts as a viewport through which all or part of
the canvas is viewed. The initial containing block’s height is the total height of this canvas,
or the height of the browser’s client area if that is greater than the canvas height. The width
of the initial containing block is defined similarly. Figure 3.22 illustrates the relationship

Paragraph 1: blah blah blah

more blah blah

blah blah blah blah blah blah

blah blah blah blah blah blah

Paragraph 2: blah blah blah

more blah blah

blah blah blah blah blah blah

blah blah blah blah blah blah

Paragraph 3:

Image 2

a span

a span

Image 1

Canvas

Initial Containing
Block

Browser
Client Area

FIGURE 3.22 Initial containing block box when canvas is taller than client area but client area is wider than

canvas.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.8 Normal Flow Box Layout 159

between the canvas, client area, and initial containing block box when the canvas is taller
than the client area but not as wide. Note that if the browser window is resized, the initial
containing block’s box will be resized automatically as needed.

All other CSS boxes within the client area are laid out (either directly or indirectly)
relative to the initial containing block box. For an HTML document, the first such box to
be added to the client area is the one corresponding to the body element. Because the body

element is contained within the html element, the box corresponding to the body element
is placed within the initial containing block box (which corresponds to the html element).
This is the default behavior for all boxes: if one HTML element is part of the content of a
second HTML element, then the box corresponding to the first element will be contained
within the content area of the box for the second element. This default behavior is known
as normal flow processing of boxes. Thus, if normal flow processing is used for an entire
HTML document, all of the boxes corresponding to elements within the body element of
the document will be contained within the box generated for the body, which in turn will be
contained within the initial containing block box. In essence, in normal flow processing, the
block corresponding to the body element is the canvas on which boxes for all other elements
will be drawn.

By default, the body box will be placed so that its left, top, and right outer edges
coincide with the left, top, and right inner (content) edges of the initial containing block. If
the width of the browser window is changed, then the width of the body box may change
as well, since the width of the initial containing block can change automatically when the
browser width changes. The height of the body box, on the other hand, is determined by its
content. You might think of the box as starting with the height of its content area set to 0.
Then, as the browser generates boxes corresponding to elements contained within the body,
it increases this height so that it is just sufficient to contain all the generated boxes. The
height when this process is done determines the final height of the content area of the body

element’s box (the overall height of the box also depends on the values of style properties
such as margin-top).

Similar rules apply to the default placement of boxes within the body box. That is, the
first child element’s box will be placed so that its left, top, and right outer edges coincide
with the corresponding content edges of the body box. The height of this box will then be
determined by generating boxes for all of the elements contained within the first element
and laying these boxes out within this first child box (by recursively applying the layout
rules being described). The second child element’s box will be placed so that its top outer
edge coincides with the bottom outer edge of the first child box (this isn’t quite correct; see
Section 3.8.3 for more details). The left and right edges of this second child box will also
coincide with the left and right content edges of the body. The second child is then filled
with all of its descendants’ boxes. This process continues with the remaining children of
the body.

Figure 3.23 is an HTML document that illustrates the layout concepts discussed thus
far (I have used an embedded style sheet in this document and several others in this chapter
for ease of reading, but in practice I would probably have used an external style sheet).
Figure 3.24 shows how Mozilla 1.4 renders this document (the IE6 rendering is similar,
although my copy of IE6 incorrectly draws the initial containing block’s border so that
it always coincides with the client area, regardless of how the browser window is sized).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

160 Chapter 3 Style Sheets

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>
BlockBoxes.html

</title>
<style type="text/css">

html, body { border:solid red thin }
html { border-width:thick }
body { padding:15px }
div { margin:0px; padding:15px; border:solid black 2px }
.shade { background-color:aqua }
.topMargin { margin-top:10px }

</style>
</head>
<body>

<div id="d1">
<div id="d2">

<div id="d3" class="shade"></div>
</div>
<div id="d4" class="shade topMargin"></div>

</div>
</body>

</html>

FIGURE 3.23 HTML document containing nested div elements.

Figure 3.24 shows the borders of a number of boxes. The outermost border (thick red border
at the edges of the browser’s client area) is for the initial containing block box generated by
the html element. The thin red border immediately inside the html element’s box belongs
to the body element’s box. You’ll notice that the body border does not touch the html border.
This is because the Mozilla 1.4 user agent style sheet specifies a nonzero margin value
(apparently about 8 px in Mozilla 1.4 and 10 px in IE6) for the body box, and the embedded
author style sheet does not override this value. Inside the body block box there is a box
with a medium-width black border generated by the div with ID d1. Inside this box are two
child boxes, one for each of the div children of d1 (d2 and d4). Finally, the first of these
child elements (d2) itself has a child div with id d3, which generates its own box. The boxes
for the div elements d3 and d4, which have no content, are given a background color in
Figure 3.24.

3.8.2 The display Property

The layout rules described so far only apply to HTML elements that CSS recognizes as block
elements. These are elements for which the CSS display property has the value block. Of
the elements covered in Chapter 2, standard user agent style sheets will define the following
HTML elements as block elements: body, dd, div, dl, dt, fieldset, form, frame, frameset,
hr, html, h1, h2, h3, h4, h5, h6, ol, p, pre, and ul. You may recall from the last chapter that

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.8 Normal Flow Box Layout 161

FIGURE 3.24 Nested boxes.

we informally introduced the concept of block elements as those elements for which the
browser essentially generates a new line before and after the element. Now we see that what
actually happens is that the browser stacks the boxes for these elements one on top of the
next.

CSS defines a number of other possible values for the display property. Many
of these values are associated with specific HTML elements. For example, there is a
list-item value that is intended to be used as the display value for li elements, a table

value for HTML table elements, and a table-row value for tr elements. In fact, nearly
every element associated with the HTML table model has its own value for the display

property (td and th share the table-cell value). We will not discuss these values further;
see [W3C-CSS-2.0] for details.

In addition to these and other somewhat specialized values for display, there is
another value that is shared by a number of HTML elements: inline. Again, recall from
the previous chapter that inline HTML elements are those that do not interrupt the flow
of a document by starting a new line as block elements do. Examples of inline elements
were span and strong. In a typical browser, all of the HTML elements discussed in the last
chapter except the block elements listed at the begining of this subsection, the li element,
and table-related elements will be treated as having the value inline, which is the initial
value for the display property.

As you might expect, the rules for laying out the boxes for elements with a display

value of inline (which I’ll refer to as inline boxes) are different from those for laying out
boxes for elements with a display value of block (block boxes). In fact, how content is laid
out within inline and block boxes also differs. We’ll cover some more details concerning
block boxes in the next few sections and then look more closely at inline boxes.

Before leaving this section, let me mention that an author style sheet can override
the default value of an element’s display property just as any other default property value

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

162 Chapter 3 Style Sheets

can be overridden. For example, suppose that an HTML document has a large number of
consecutive p elements but that for some reason we would like—with a minimal amount of
change to the document—to have all of these separate paragraphs in the document displayed
as one (long) paragraph. We can accomplish this by adding to the document the style rule

p { display:inline }

Obviously, this style rule significantly changes the expected semantics of the p element, so
a rule such as this should be used with some caution.

3.8.3 Margin Collapse

Earlier I said that, roughly speaking, consecutive block boxes are positioned one on top of
the next. I’ll now explain why this isn’t exactly the case.

When two consecutive block boxes are rendered (the first on top of the second), a
special rule called margin collapse is used to determine the vertical separation between the
boxes. As the name implies, two margins—the bottom margin of the first (upper) box and
the top margin of the second (lower) box—are collapsed into a single margin.

Specifically, let m1 represent the value of margin-bottom for the top box, and let m2

represent the value of margin-top for the lower box. Without margin collapse, the distance
between the borders of these boxes would be m1 + m2. With border collapse, the distance
will instead be max(m1, m2) (see Fig. 3.25).

3.8.4 Block Box Width and Height

Each block element has a width property (not inherited) that defines the width of the content
area of the element’s block box. The initial value of this property is auto, which produces
the width-defining behavior described earlier: the box will automatically be stretched hor-
izontally so that its left and right outer edges align with the left and right content edges of
its parent box. As an example, if the browser window shown in Figure 3.24 is widened, the
block boxes displayed in the content area will also become wider (Fig. 3.26).

More precisely, if the value of width is auto, and if a value other than auto is specified
for both margin-left and margin-right (the initial value for these properties is 0), then for
display purposes width will be given the value

width = parent's displayed content width -
(margin-left + border-left-width + padding-left +
padding-right + border-right-width + margin-right)

This value is not in any way associated with the width property itself, as a specified or
computed value is. Instead, it is used by the browser strictly for display purposes. Such a
value is sometimes referred to as a property’s used value.

In addition to auto, a length value can be specified as the value of the width property
of a block element. The length value can use any of the units described in Section 3.6.2.
Furthermore, the specified length value can be a percentage, which is a number (integer
or decimal) immediately followed by a percent sign (%). In the case of the width property,

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.8 Normal Flow Box Layout 163

margin-bottom1

margin-bottom1

margin-edge1

margin-edge1

margin-edge2

margin-top2

border-edge2

border-edge2

border-edge1

border-edge2

(a)

(c)

(b)

FIGURE 3.25 (a) A block box (only margin and border edges are shown). (b) A second block box with margin-

top smaller than margin-bottom of first box. (c) First and then second boxes rendered, illustrating margin

collapse.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

164 Chapter 3 Style Sheets

FIGURE 3.26 BlockBoxes.html displayed in a wider window.

this represents a percentage of the width of the parent element’s content area, or more
precisely, a percentage of the used value associated with the content width. For example,
the declaration

width:50%

says that the width of the content area of a box should be half the (used) width of the content
area of its parent box. Percentages can also be used with many other CSS properties that
take a length value, although the length to which the percentage is applied varies from
property to property. See the CSS2 recommendation [W3C-CSS-2.0] for details regarding
properties not explicitly mentioned in this chapter.

You might expect (I did initially) that the percentage width declaration would cause
an associated element to be centered within the parent box. However, this is not the case
by default. Instead, the element will appear left-justified within its parent box. In essence,
when only the width is specified for an element, the browser computes a used value for the
margin-right property of the element’s box so that the overall width of the box (sum of the
element width plus left and right margins, borders, and paddings) is equal to the width of
its parent’s content area. The margin-left, however, is unchanged. To center an element,
in addition to specifying a value for the element’s width property, the value auto should be
specified for both the margin-left and margin-right properties of the element. The browser
will then use a single value for both margins, with the used value being computed so that
the borders (but not necessarily the content) of the box will be centered within the content
area of the parent box.

So, for example, assume that we create an HTML document BlockBoxesWidth.

html from the earlier BlockBoxes.html example (Fig. 3.23) by adding the following two
rules to the embedded style sheet:

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.8 Normal Flow Box Layout 165

#d3 { width:50% }
#d4 { width:50%; margin-left:auto; margin-right:auto }

Note that these rules will override the declarations having element selector div, due to
the higher specificity of ID selectors. The new BlockBoxesWidth.html document will be
rendered as shown in Figure 3.27. Notice that although both of the shaded boxes have
specified widths of 50%, their actual widths are different because the percentage is applied
to parent boxes that have different content widths. Also, keep in mind that the value of the
width property defines the width of the content area of a box. Thus, the shaded boxes are
both wider than half the width of their parents’ content areas, because each box includes a
total of 30 px of horizontal padding (15 px for each side) in addition to the content area.

In general, the value auto can be specified for any combination of width,
margin-left, and margin-right. For example, if for a given box margin-left is auto,
width is a specified length, and margin-right is 0, then the box will be right-justified
within its containing block. See the CSS2 recommendation [W3C-CSS-2.0] for de-
tails on how CSS interprets other possible combinations for values of these three
properties.

Block boxes also have a height property (not inherited) with an initial value of auto.
As with the width property, the default block box height calculation described earlier can be
overridden by specifying a value (length with units or percentage) for the block element’s
height property. If a percentage is specified, it is interpreted as a percentage of the value
(if any) specified for the parent block’s height property. If no value was specified for the
parent’s height, then the percentage specification is essentially ignored and treated as a
specification of auto.

We’re now ready to consider how inline boxes are rendered within a block box.

FIGURE 3.27 Rendering when widths of shaded boxes are specified as percentages. Lower box is centered

because left and right margins are auto.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

166 Chapter 3 Style Sheets

3.8.5 Simple Inline Boxes

Until now, we have thought of block boxes as either containing text (or more precisely, a
stack of line boxes containing character cells) or containing other block boxes. But a block
element can also contain inline elements, such as span and strong, and the browser will
generate inline boxes corresponding to these elements. These inline boxes will be added
to line boxes within the containing block box, much like text characters. In fact, we have
already seen an example of this in Figure 3.20. In this section, we will look more closely
at how browsers lay out simple inline boxes, that is, boxes for inline elements that contain
only text or that are of type img. We’ll briefly consider more complex inline elements in the
next section.

We will first consider simple inline boxes consisting of text, generated by elements
such as

BIG

The height of the content area of such a box will be determined exactly as the height of
a line box is determined: the height of a character cell (in the inline element’s font) will
be used unless the inline element’s line-height property has a value other than normal,
in which case this value will determine the content area height. Character glyphs are then
added to the content area of the inline box as if they were being added to a line box, with
half-leading added if needed to center the character cells vertically. Note that this process
defines a baseline for the inline box: it is at the baseline height (as defined by the inline
element’s font) above the bottom edge of the content area of the inline box. We therefore
now have a box that has a well-defined height (the height of the content area), width (the
overall width of the box, including left and right padding, border, and margin lengths), and
baseline height. These are essentially the same characteristics that a character cell has, so the
browser can add this inline box to a line box as if it were a character cell, vertically aligning
the baseline of the inline box with the baseline of the line box. If the inline box is too long
to fit within the current line box, it may be broken on word boundaries into a sequence of
shorter inline boxes that will each be added to a separate line box. If the top or bottom of
an inline box extends beyond the corresponding edge of the line box, the line box height
will automatically be expanded as needed to contain the inline box. If the line box height is
extended upward, then the line box will be moved down within the containing block box by
the same amount so that the line boxes within the block box will still effectively be stacked
one on top of the other (Fig. 3.28).

You probably noticed that there is an asymmetry in how the height and width of the
“character” representation of an inline box are determined. Specifically, the height of this
“character” is determined by the content height of the inline box, but the width is determined
by the overall box width. To illustrate, suppose we change the d3 element of the document
of Figure 3.23 as follows:

<div id="d3" class="shade">
Here are
some
lines of text.

</div>

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.8 Normal Flow Box Layout 167

Some

l e t t e r s .

BIG

inline box

line
boxes

FIGURE 3.28 Two line boxes, the top box containing an inline box with a larger font size than the text elsewhere

in the line boxes. Notice that the baselines are aligned in the top line box and that the line boxes stack despite

having different heights.

Then the document will be rendered as in Figure 3.29. Notice that the word “some” is
moved to the right to make room for the border, but the line height is unchanged, and in
fact the border overlaps somewhat the text in the second line box.

The other type of simple inline element is an img. An img element is similarly treated,
for rendering purposes, as a character to be added to a line box. However, the height and
width of the “character” are the values specified for the height and width properties of
the element (or, if these properties are not specified, the values of the height and width

attributes, or, if these values are also not provided, then values contained within the image
file itself). The baseline height of an image is always considered to be 0. Therefore, the
bottom of the image will coincide with the baseline of the line box. As with inline boxes,
if the top of an img box extends past the top of the line box, then the height of the line box

FIGURE 3.29 A span element with a border is added to the text.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

168 Chapter 3 Style Sheets

will be increased to fit. Unlike other inline elements, the border, margin, and padding of an
img element are considered part of the height of the image for purposes of determining the
height of a line box containing the image.

The default vertical placement of an inline box within a line box can be overrid-
den by specifying a value for the vertical-align property (not inherited) of the ele-
ment generating the inline box. The initial value of vertical-align is baseline, which
produces the default behavior described. Some other possible values are text-bottom,
which aligns the bottom of the inline box with where the bottom of any character cell
written into the line box would be located; text-top, which is similar except it aligns
the top of the inline box with the top of the location for character cells; and middle,
which aligns the vertical midpoint of the inline box with the character middle of the
line box, a location that is one-half the ex height above the baseline of the line box. The
CSS2 recommendation specifies several additional keyword values for vertical-align,
but my copy of IE6 does not seem to handle them properly, so I will not cover them
here.

In addition to these keywords, the value specified for vertical-align can be a length
or a percentage (of the value of the height of an img element or the line-height of any other
inline element). For both percentage and length specifications, a positive value indicates
that the inline box should be raised by the specified distance relative to the default baseline
position, and a negative value indicates that it should be lowered.

3.8.6 Nested Inline Boxes

How are text and boxes laid out within an inline element? We will consider the standard
case for HTML, in which an inline element contains only text and other inline elements
(see the CSS specification [W3C-CSS-2.0] for details on how a block box is handled within
an inline box).

Actually, the layout of inline boxes and text within an inline box is essentially identical
to the layout of inline boxes and text within a line box. In particular, the content area of
the containing inline box is treated as a line box that initially has a height and baseline
location defined by the font and line-height properties of the corresponding inline element.
Characters and boxes are then added to this content area just as they would be to a line
box, including having the vertical alignment of boxes determined by the vertical-align

property. One difference is that the height of the content area is not adjusted to contain
inline boxes whose top or bottom edges extend beyond the respective edges of the content
area. However, when these boxes are eventually transferred from the content area to a line
box, that line box’s height will be adjusted. For example, changing the d3 element of the
document of Figure 3.23 to

<div id="d3" class="shade">
Here are some lines of text.
This
<strong style="line-height:3">bold
word has a line-height of 3.

</div>

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.9 Beyond the Normal Flow 169

FIGURE 3.30 Effect of setting line-height on an inline element (the word “bold”).

causes the browser to increase the height of the line box containing the word “bold,” as
shown in Figure 3.30. However, the heights of other line boxes are not affected.

3.9 Beyond the Normal Flow

What we have described so far is the default way in which a browser will format an HTML
document. In this section, we’ll learn that there are several CSS alternatives to the normal
flow processing we have seen so far that can be used to control the position of boxes
within a browser window. Three alternatives to normal flow positioning supported by both
Mozilla 1.4 and IE6 are: relative positioning, in which the position is altered relative to its
normal flow position; float positioning, in which an inline element moves to one side or
the other of its line box; and absolute positioning, in which the element is removed entirely
from the normal flow and placed elsewhere in the browser window.

We’ll look at each of these three positioning schemes in detail in Sections 3.9.2–3.9.4.
First, though, we’ll briefly learn about the CSS properties used to indicate whether or not a
box should use an alternative positioning scheme.

3.9.1 Properties for Positioning

The type of positioning for an element is defined by specifying two style properties.
The position property takes the value static (the initial value) to indicate normal flow,
relative and absolute to represent the respective flow positionings, or fixed, which is a
special type of absolute positioning discussed in the exercises. The float property can be
set for elements with either static or relative specified for position. Possible values for

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

170 Chapter 3 Style Sheets

FIGURE 3.31 HTML document using relative positioning to nudge text to the left.

float are none (the initial value), left, or right. The latter two values indicate that the ele-
ment’s box should move to the far left or far right side of the current line box, respectively.
Neither position nor float is an inherited property.

Any element with a position value other than static is said to be positioned. If
the position value of a positioned element is absolute or fixed, then it is said to be
absolutely positioned; otherwise it is relatively positioned. Four (noninherited) properties
apply specifically to positioned elements: left, right, top, and bottom. Each of these
properties takes a value that is either a length, a percentage, or the keyword auto (the initial
value). The meaning of these properties is explained for each positioning scheme in the
following Sections 3.9.2–3.9.4.

3.9.2 Relative Positioning

Relative positioning is useful when you want to nudge a box a bit from the position where the
browser would normally render it, and you want to do so without disturbing the placement
of any other boxes. That is, all other boxes are positioned as if the nudged box had never
moved.

For example, suppose that you were asked to produce the rendered HTML document
shown in Figure 3.31. Notice that the first letter of each of the words “Red,” “Yellow,” and
“Green” has a background that is partly shaded and partly not. This is not an effect that we
would expect to produce in the normal flow processing model. But with relative positioning,
it’s easy: we use a style rule

.right { position:relative; right:0.25em }

and wrap each word to be moved in a span that specifies right for the value of its class

attribute. As a side benefit, we get a little more separation between each word and the shaded
box to its right than we would have had in normal flow processing, since the locations of
these boxes is not affected by the relative shifting of the words.

Notice that for relatively positioned boxes, a positive value for the right property
moves the box to the left by the specified amount. You can think of this as adding space to
the right margin of the box. Recall that the initial value of left is auto; in this example, the
corresponding computed value for the left property will be −0.25 em. Alternatively, if the
style rule had been

.right { position:relative; left:-0.25em }

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.9 Beyond the Normal Flow 171

then the browser would have displayed the same rendering and left and right would have
had the same computed values as they did with the original style rule. If, for some reason,
both left and right have specified values other than auto, then the value of left will be
used for the positioning, and the computed value of right will be set to the negative of the
value of left (assuming direction is ltr). Similar rules apply to top and bottom, with top

“winning” if both properties have non-auto values.

3.9.3 Float Positioning

Float positioning is often used when embedding images within a paragraph. For example,
recall that the HTML markup

<p>
<img

src="http://www.w3.org/Icons/valid-xhtml10"
alt="Valid XHTML 1.0!" height="31" width="88"
style="float:right" />

See
the

W3C HTML 4.01 Element Index
for a complete list of elements.

</p>

is part of the document displayed in Figure 2.13. The float:right declaration causes the
image to be treated specially in several ways. First, the image is not added to a line box.
Instead, the widths of one or more line boxes are shortened in order to make room for the
image along the right content edge of the box containing the line boxes and image (the
block box generated by the p element, in this case). The first shortened line box is the one
that would have held the image if it had not been floated. Subsequent line boxes may also
be shortened if necessary to make room for the image. Line boxes below the floated box
extend to the full width of the containing block, producing a visual effect of text wrapping
around the floated block (Fig. 3.32).

FIGURE 3.32 Wrapping of text around a floated box.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

172 Chapter 3 Style Sheets

The markup used to generate this figure includes the following:

<style type="text/css">
.bigNum { float:left; font-size:xx-large; font-weight:bold }

</style>
...
<p>

This text is going to wrap
around the
I.
big Roman numeral
embedded within the paragraph, because the numeral is floated.

</p>

Notice that, unlike a relatively positioned box, the words “the” and “big” are not separated
by the width of the floated span that separates these words in the source document. In other
words, portions of this document that are part of the normal flow are formatted as if the
floated element were not present at all (except for its effect on the width of line boxes). We
say that float boxes are removed from the normal flow to indicate that making them float
has an impact on how normal flow elements are rendered.

One small detail about floated boxes is that a floated inline box becomes a block box
for display purposes; that is, an inline box’s display property will have a computed value
of block if the box is floated. This means, for example, that values can be specified for the
height and width of a floated inline element.

For more details on float positioning, such as what happens when multiple floated
boxes touch one another or when floated inline boxes extend below their containing block,
see the CSS2 specification [W3C-CSS-2.0].

3.9.4 Absolute Positioning

Absolute positioning offers total control over the placement of boxes on the canvas. This
power should be used with care: while you can create interesting visual effects this way,
any information conveyed by these effects will generally not be available to users who are
accessing the document in other ways (text-based browsing, speech synthesis, etc.). That
said, there are certain times when it is useful to be able to place a box exactly where you
want it.

For example, suppose that you would like to be able to easily add marginal notes to
the left of paragraphs in an HTML document, as shown in Figure 3.33. Specifically, you’d
like to be able to embed each note within the paragraph to which it applies, as in

<p>
This second paragraph has a note.
This note is pretty long, so
it could cause trouble...

</p>

Then you would like the browser to automatically place the note next to the paragraph,
starting vertically at the top of the paragraph.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.9 Beyond the Normal Flow 173

FIGURE 3.33 Absolute positioning used to create marginal notes.

This can be done easily using absolute positioning. When a box is absolutely posi-
tioned, as indicated by specifying absolute for the position property, the left, top, right,
and bottom properties can be used to place the box relative to a containing block. The con-
taining block for purposes of absolute positioning is defined as follows. First, we locate the
nearest positioned ancestor of the absolutely positioned element (recall that a positioned
element has position value other than static). If this ancestor is a block element (which
we will assume; see the CSS2 recommendation for other possibilities), then the containing
block is formed by the padding edge of the element’s box, not the content edge as you
might expect (the next example will show why this is a good choice of edge). If there is no
positioned ancestor, then the initial containing block is used as the containing block.

Similar to relative positioning, specifying a value such as 10em for the left prop-
erty of an absolutely positioned box tells the browser to position the left outer edge of
that box 10 ems to the right of the left (padding) edge of the containing block. Positive
values for the other three positioning properties have similar effects, while negative val-
ues for these properties have the opposite effects (e.g., a negative value of left moves
the box to the left rather than to the right). Like floats, if the box of an inline element
is positioned absolutely, the box becomes a block box, and therefore can have its width
set explicitly.

In our marginal note application, we would like each note to be positioned starting
vertically at the top of the paragraph containing the note and horizontally to the left of the
paragraph. This means that we want the paragraphs containing notes to be positioned, so
that they can act as containing blocks for absolutely positioned elements. Also, we want to
leave room next to paragraphs for the notes. So we will use the style rule

p { position:relative; margin-left:10em }

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

174 Chapter 3 Style Sheets

In relative positioning, if no value is specified for left or the other positioning properties,
then the element is not moved. So the position:relative declaration has no visible effect.
Instead, it marks p elements as positioned, making them eligible to act as containing blocks
for absolutely positioned elements.

The rule for the marginNote class is longer, but not particularly difficult to understand.
The rule is

.marginNote { position:absolute;
top:0; left:-10em; width:8em;
background-color:yellow }

This says to put any box belonging to the marginNote class and that is contained within a p

element where we have said we would like it placed: beginning to the left of the top line of
the paragraph. Notice that, for the given style rules, the outer left edge of a marginNote box
will coincide with the outer left edge of the p element containing the marginNote element,
regardless of the padding value of the p element (and assuming that the p element has no
border). You can now see an advantage to positioning the box relative to the padding edge
of the containing element rather than the content edge: we did not have to add in the padding
distance in order to place our note in the margin.

As with float positioning, elements that are absolutely positioned are removed from
the normal flow. This can be seen from the fact that there is no additional space between the
second and third paragraphs in the figure. In contrast with float boxes, however, the normal
flow will not flow around absolute boxes. In fact, absolute boxes will not flow around one
another, either. For example, if we widen the browser window so that the second paragraph
fits on a single line, the two marginal note boxes collide and the second obscures some of
the text of the first (Fig. 3.34). This is another reason to use absolute positioning with care.

3.9.5 Positioning-Related Properties

A few additional CSS properties deserve mention in relation to positioning. The first of these
is related to the overlay phenomenon that we have just discussed with absolute positioning.

FIGURE 3.34 Absolutely positioned boxes can obscure one another.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.9 Beyond the Normal Flow 175

FIGURE 3.35 An overlay of one box on top of another.

There may be times when you want several boxes to overlie one another, at least partially,
but you want to be certain that they overlie in a certain order. For example, you may want
one box to be drawn first, then a second box to be drawn as an overlay over top of the
first box, possibly obscuring some or all of the first box. Figure 3.35 illustrates this: a box
containing text is drawn first, and then an empty box (basically just a border) is drawn over
top of the text box.

The z-index property can be used to define a drawing order for positioned boxes. In
its simplest form, the root element of each positioned box is assigned an integer z-index

value (this assumes that normal flow is followed for all of the descendants of a positioned
box). If this is done, then drawing will proceed as follows. First, the box with the most
negative z-index value (if any) will be drawn. Other boxes with negative z-index values
will then be drawn on top of this box, proceeding in ascending order, until the box with the
negative value closest to 0 has been drawn. At this point, all of the elements that are not
positioned are drawn. Finally, all elements with positive z-index values are drawn, again
in ascending order. The full definition of z-index, including how ties are broken between
elements with the same z-index value (or no value at all) is contained in Section 9.9.1 of
the CSS2 specification. But for most purposes, the simple use of z-index described should
be sufficient to guarantee the drawing order you want.

To produce the effect shown in Figure 3.35, I used the following style rules:

#text { position:absolute; top:10px; left:10px;
font-family:"Courier",monospace; letter-spacing:0.1ex;
background-color:yellow;
z-index:1 }

#overlay { position:absolute; top:10px; left:10px;
width:1.1ex; height:4.5em;
border:solid red 1px;
z-index:2 }

The first rule is applied to a div containing the text, and the second to an empty div. The
key item to notice is that the z-index value of the second div is greater than that of the first,
so the second div is drawn on top of the first.

We discussed the display property earlier, but it has a keyword value that we did not
cover. Specifying none for the value of display tells the browser to, for display purposes,
treat the element and all of its descendants as if they did not exist. In other words, the

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

176 Chapter 3 Style Sheets

element is effectively removed from the normal flow and is also not displayed elsewhere.
This is sometimes used with scripting to allow portions of a document to be easily added
to or removed from the browser window.

The final property, visibility, is related. If the value of this property is hidden, then
the element and its children—except those that specify visible for this property—will not
be rendered. However, much as with relative positioning, the space occupied by the element
will remain rendered. In other words, whether an element is visible or not does not affect the
rendering of other nondescendant elements. Like display, this property is generally used
in scripting contexts.

3.10 Some Other Useful Style Properties

While we have covered a significant portion of the CSS2 specification, we have also omitted
a number of details and quite a few properties. A few of the remaining items are covered in
this section.

3.10.1 Lists

The list-style-type property can be used to vary the default styles used for bulleted and
numbered list items. In HTML, this property normally only applies to the li element type.
However, it is inherited, so can be set on a parent ol or ul element in order to affect the
style of all of that element’s children. For bulleted lists, the values disc, circle, and square

may be specified. For numbered lists, some of the normal values are decimal (1, 2, . . .),
lower-roman (i, ii, . . .), upper-roman (I, II, . . .), lower-alpha (a, b, . . .), and upper-alpha

(A, B, . . .). A value of none can also be specified to indicate that no marker (leading bullet
or number) should be generated for an li element.

A related li element type property is list-style-image, which has an initial value
of none. If a URI is specified for this property (using the url("...") syntax described in
Section 3.3), and if an image can be loaded from this URI, then this image will be used in
place of the normal marker as specified by list-style-type. Once again, this property is
inherited and is often set on parent elements rather than directly on li elements.

The list-style-position property can be used to change the location of the marker
relative to the content of an li. A browser normally generates two boxes for an li:
a special box to hold the marker, and a block box to hold the element content. If
list-style-position has its initial value of outside, the marker box is outside the content
block box. However, if the value is specified as inside, then the box generated for the
marker will be the first inline box placed within the content block box. The visual effect in
this case will be that the first line of the list item content is indented to make room for the
marker.

Finally, the shortcut property list-style can be used to specify values for any or all
of the mentioned properties, in any order.

3.10.2 Tables

For the most part, the box model properties discussed in this chapter, such as border-style
and padding, can be used with elements related to tables (table, td, etc.), although their
effect on table elements may vary slightly from their effect with other boxes. Furthermore,

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.11 Case Study 177

the values top, bottom, middle, and baseline may be specified for the vertical-align

property of td and th elements. A top value causes the top of the content of the cell to
coincide with the top of the row containing the cell, bottom makes the bottom of the content
coincide with the row bottom, and middle centers the content within the row. If multiple
cells specify baseline, then the baselines of their first lines of text will be aligned with one
another. If baseline is specified for a cell containing a single img element, then the bottom
of the image is treated as the baseline of the cell for alignment purposes. The baseline cells
are displayed as high as possible within the row while keeping the content of all cells within
the row.

CSS2 also specifies two different models for how borders should be handled: a
separate model in which each cell has its own border, and a collapse model in which
adjacent cell borders may be collapsed into a single border. The user agent style sheets for
both Mozilla 1.4 and IE6 apparently specify the separate model as the default. You can
override the default by assigning a value of collapse or separate to the border-collapse

style property of a table element. Full details of CSS support for tables are well cov-
ered in Chapter 17 of the CSS2 specification, which should not be hard to under-
stand if you have mastered the material in this chapter. So I will not cover tables
further here.

3.10.3 Cursor Styles

CSS specifies a number of different cursor styles that can be used. The initial value for
the cursor property is auto, which allows the browser to choose a cursor style as it deems
appropriate. Mozilla 1.4, for example, will display a text cursor when the mouse is over text,
a pointing finger when over a hyperlink, an arrow and hourglass when a link is clicked and a
new document is loading, and an arrow in most other contexts. Other keywords that can be
used to specify a value for the cursor property include default (often an arrow), text (used
over text that may be selected), pointer (often used over hyperlinks), and progress (often
used when a link is clicked). Some other keywords produce cursors that would normally
be seen outside the browser client area, such as move (used to indicate window movement),
various resizing arrows (e-resize, ne-resize, sw-resize, and other compass points), wait
(program-busy, often an hourglass), and help (often an arrow with a question mark).

Like some other properties, cursor is normally used by scripts running within the
browser, a topic covered in Chapter 5.

3.11 Case Study

We’ll now create a style sheet suitable for our blogging application and also modify our pre-
vious view-blog document, formatting it using style properties rather than tables. For colors,
fonts, and to a lesser extent spacing, our style sheet will be similar to the Oldstyle style sheet
available as part of W3C’s Core Styles project (http://www.w3.org/StyleSheets/Core/),
giving us an opportunity to see some real-world styling (and something that looks much
better than anything I would have produced). Ultimately, the style sheet and markup changes
presented in this section will transform the view-blog page from that shown in Figure 2.31
to that shown in Figure 1.12.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

178 Chapter 3 Style Sheets

/* The W3C Core Styles, Copyright C© 1998 W3C (mit, inria, Keio). All
Rights Reserved. W3C liability, trademark, document use and software
licensing rules apply. See
http://www.w3.org/Consortium/Legal/ipr-notice.html

This is a modified version of the Oldstyle style sheet available
at http://www.w3.org/StyleSheets/Core/
A list of modifications made to the original Oldstyle style sheet is
at http://www.mathcs.duq.edu/˜jackson/webtech/OldstyleMods.txt */

/* Elements */
body {

background-color: #fffff5;
font-family: "Verdana", "Myriad Web", "Syntax", sans-serif;
font-size-adjust: .58;
margin: 1.5em 5%;
}

p {
margin-top: .75em;
margin-bottom: .75em;
}

h1 {
font-family: "Georgia", "Minion Web", "Palatino",

"Book Antiqua", "Utopia", "Times New Roman",
serif;

font-size-adjust: .4;
font-size: 2.0em;
font-weight: 600;
color: #C00;
}

hr {
height: 1px;
background-color: #999;
border-style: none;
}

FIGURE 3.36 Style rules for nonanchor elements.

The style sheet rules we create will all be stored in a file named style.css. Each of
the HTML documents for the application will be modified to include this style sheet file
using markup such as

<link rel="stylesheet" href="style.css" type="text/css" />

in the head element of the document. Note that the relative URL used in the href attribute
assumes that the HTML files and style.css file all reside within the same directory.

Figure 3.36 shows the first portion of the style.css file. The four rules shown each
have a selector string that is a type selector. The first rule states that the background color
of the body will be slightly off-white (recall that white is #ffffff). The default font family
(unless overridden by another element) will be Verdana or, if Verdana is not available to
the browser, one of three other font families listed (the final option is the generic sans-serif

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.11 Case Study 179

/* Hyperlinks */
a {

font-weight: bold;
text-decoration: none;
}

a:link {
color: #33F;
background: #fffff5;
}

a:visited {
color: #93C;
background: #fffff5;
}

a:active {
color: black;
background: #ccf;
}

a:hover {
color: #fffff5;
background: #33F;
}

FIGURE 3.37 Style rules for anchor elements.

family). The font-size-adjust property, which is not supported by IE6, has an effect if the
first font family is not available. Given an appropriate specified value, the size of the selected
font family is scaled so that its ex height is roughly the same as that of the first font family.
This should make the letters appear to be about the same size regardless of the font actually
used. Finally, notice that the left and right margins of the body are set at 5% of the width of
the browser window, providing side margins that change as the window width changes.

The p and h1 rules are reasonably straightforward, although the h1 rule does use a
numeric value for its font-weight property. This value corresponds to two steps bolder than
normal and one step lighter than bold. The hr rule turns off the border, which the user agent
style sheets for both IE6 and Mozilla 1.4 apparently turn on, and instead displays only a
1-pixel-high gray line. Note the use of both three-digit and six-digit color values.

Figure 3.37 shows the style rules related to hyperlinks (anchor elements). The first
rule makes links bold and removes the underlining that would normally be associated with
links. The remaining pseudo-class rules change the text and background colors of a hyperlink
depending on its status, as described earlier.

So far, we have been slightly adapting the W3C Oldstyle Core style for our purposes.
We next want to create a number of style rules specifically for the view-blog document.
Recall that this document has three overall segments: an image above two segments, the
blog entries on the left, and some navigation hyperlinks on the right. It is natural to lay
out these segments by creating div elements and positioning them using CSS. Figure 3.38
shows the structure of the body of the new document (still called index.html).

The corresponding style rules are given in Figure 3.39. The first two rules center the
top image and the body (main portion) of the document, which contains the blog entries
and navigation links. It also fixes a width for the body portion of the document. This value

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

180 Chapter 3 Style Sheets

<div class="imgcentered">
<!-- Banner image -->
<img src="banner.gif" width="438" height="120"

alt='"My Own Blog!" Banner' />
</div>
<div class="bodycentered">

<div class="leftbody">
<!-- Blog entries -->
<div class="entry">

...
</div>
<hr />
<div class="entry">

...
</div>

</div>
<div class="rightbody">

<!-- Side information -->
...

</div>
</div>

FIGURE 3.38 Structure of the HTML document for the view-blog page using CSS rather than a table for layout.

/* Classes for view-blog page */
.imgcentered {

width: 438px;
margin-left: auto;
margin-right: auto;
}

.bodycentered {
width: 660px;
margin-left: auto;
margin-right: auto;
}

.leftbody {
width: 410px;
float: left;
}

.rightbody {
width: 230px;
float: right;
}

.entry {
margin-top: .75em;
margin-bottom: .75em;
}

FIGURE 3.39 Style rules for div elements used for positioning.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Section 3.11 Case Study 181

<div class="datetime">AUGUST 9, 2005, 5:04 PM EDT</div>
<div class="entrytitle">I'm hungry</div>
<div class="entrybody">

<p>
Strange. I seem to get hungry at about the same time
every day. Maybe it's something in the water.

</p>
</div>
<hr />

FIGURE 3.40 Markup for a blog entry.

is narrow enough to be viewed without horizontal scrolling on almost any modern monitor,
yet wide enough to display a reasonable number of words per line in the blog entries. The
div’s for the entries and navigation links are then floated to the left and right, respectively,
within this body div. Notice that the sum of the widths of these div’s is 20 px less than the
width of the containing div, providing some visual separation between the blog entries and
the navigation links. The final rule defines vertical spacing between blog entries, or more
specifically, between blog entries and the horizontal rule separating them.

We can also use CSS to style the components of a blog entry. For example, the markup
for the first entry of our example is shown in Figure 3.40, and Figure 3.41 gives style rules
corresponding to this markup. Given the earlier discussion, these rules should not need any
explanation.

Finally, let’s use CSS to add a “displayed quote” feature, as illustrated in Figure 3.42.
The basic idea is that if markup such as

.datetime {
color: #999;
font-size: x-small;
}

.entrytitle {
/* based on h2 of Oldstyle */
font-family: "Georgia", "Minion Web", "Palatino",

"Book Antiqua", "Utopia", "Times New Roman",
serif;

font-size-adjust: .4;
font-size: 1.75em;
font-weight: 500;
color: #C00;
margin-top: .25em;
}

.entrybody {
font-size: small;
}

FIGURE 3.41 Style rules used for formatting components of a blog entry.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

182 Chapter 3 Style Sheets

FIGURE 3.42 Example of a displayed quote (in a preview window, which suppresses the navigation links).

It's more important than that.

is included within text, then the content of the span will be displayed within the entry and
also floated to the left of the enclosing text, enlarged, and enclosed within a three-sided,
dotted border. This displayed-quote feature is not foolproof: if the span is included near the
bottom of the text, then it might overlap with the next entry, since a floated element is taken
out of the normal flow. But, if used carefully, it provides an interesting effect.

Figure 3.43 gives a suitable rule for producing the displayed-quote effect. One thing
to notice is that the three-sided border was created using two declarations, and that the order
of these declarations is important (the second rule overrides a portion of the first due to the
cascade rules).

/* For displaying a quote */
.dquote {

float: left;
font-size: larger;
padding: 1px;
margin-right: 5px;
width: 10em;
border-style: dotted;
border-left-style: none;
border-color: #999;
}

FIGURE 3.43 Style rules for span element used to display a quote.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Exercises 183

3.12 References

The primary reference for the material covered in this chapter is the CSS2 recom-
mendation [W3C-CSS-2.0], and I have also consulted a version of the CSS 2.1 can-
didate recommendation [W3C-CSS-2.1] for guidance on which aspects of CSS2 seem
most likely to find widespread support by browsers. The W3C home page for CSS,
http://www.w3.org/Style/CSS/, contains links to all CSS recommendations as well as to
CSS-related development software, books, tutorials, discussion groups, and other resources,
including a CSS validator. Preliminary versions of CSS3 are also available at this site.

As mentioned earlier in Section 3.3, versions of Internet Explorer prior to IE6 did
not fully support even CSS1, and IE6 also does not follow the CSS recommendation un-
less you use an appropriate document type declaration in your HTML document. See
http://msdn.microsoft.com/library/en-us/dnie60/html/cssenhancements.asp for infor-
mation on CSS in pre-IE6 versions of Internet Explorer as well as for details on how to
turn on CSS-compliance in IE6. http://www.mozilla.org/catalog/web-developer/css/ is
Mozilla’s documentation for CSS developers, which contains few details on Mozilla’s sup-
port for CSS2 at the time of this writing (but see the next paragraph for other ways to learn
about Mozilla’s CSS support).

Going forward, as new browsers continue to emerge and older browsers become
more rare, you will want to periodically acquaint yourself with emerging browser CSS
capabilities. A preliminary set of CSS2 tests (and other helpful CSS information com-
piled by Eric Meyer, who has written extensively about CSS) is currently available at
http://www.meyerweb.com/eric/css/. Presumably, a final CSS2 suite will eventually be
available at the W3C site (a CSS1 suite is already available there). You can run such tests
on various browsers yourself or rely on the results of tests performed by others. For ex-
ample, as I wrote this chapter, I referred to the results of tests run by Christopher Hester
(http://www.designdetector.com/articles/CSS2TestSuiteFailures.php) for information
about CSS2 support (and lack thereof) in Mozilla and IE6. While this resource may or may
not be up to date when you read this, a bit of Web searching for “CSS test suites” should
provide the information you need.

Exercises

3.1. Practice writing simple style rules. In the following exercises, make use of the following
declarations (one per line):
background-color: silver ;
font-size: larger ;
These will be referred to as “the background declaration” and “the text declaration,”
respectively.

(a) Write CSS style rules that apply the background declaration to div elements and
the text declaration to strong elements.

(b) Write a single style rule that applies both the background and text declarations to
both p and em elements.

(c) Write a single style rule that applies the background declaration to HTML elements
having a value of Nevada for their id attributes as well as to elements belonging to
the shiny class.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

184 Chapter 3 Style Sheets

(d) Write a style rule that applies the text declaration to span elements that belong to
the bigger class.

(e) Write a style rule that applies the text declaration to span elements that are descen-
dants of other span elements.

(f) Write a style rule that applies the background declaration when the cursor hovers
over a hyperlink.

3.2. Create three external style sheets, using a different subset of the style rules you wrote
for the previous exercise in each style sheet. Then write a complete XHTML 1.0 Strict
document that uses all of your style rules.

(a) Your document should treat your style sheets as being of three different types:
� A non-persistent and preferred style sheet
� An alternate style sheet
� A style sheet used only if the XHTML document is printed

(b) Use the @import rule to have the first of your style sheets import the second, which
imports the third. Your XHTML document should treat the first style sheet as a
persistent style sheet.

3.3. Write an embedded style sheet (including the appropriate HTML tags) that sets the value
of the font-family property to Gill Sans Bold SmallCaps & OSF for all elements of
the document.

3.4. Assume that the author, user, and user agent style sheets for an HTML document are as
follows:
� Author:

div { color:blue }
p { color:green;

font-size:smaller !important }
.hmm { color:fuchsia }

� User:
p { color:white;

background-color:black;
font-size:larger !important }

body { color:yellow }
� User agent:

body { color:black }
Assume that these are the only style rules for the document (i.e., no style attributes
appear).

(a) What specified value will the browser use for the color property of p elements?
For the background-color property of p elements? For the font-size property?
Do any of your answers change if the p element belongs to the hmm class? Justify
your answers.

(b) What specified value will the browser use for the color property of div elements?
Does your answer change if the div element belongs to the hmm class? Does the
value depend on which element type contains the div? Justify your answers.

(c) What color value will be given to a ol element that is a child of the body element,
assuming that neither the ol element nor the body element belongs to the hmm class?
Does your answer change if the body element (not the ol element) belongs to the
hmm class? Justify your answers.

(d) Assume now that the user agent rule is changed to

* { color:black }

and answer the previous question.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Exercises 185

3.5. (a) Write a style rule to create a class named quote. This rule should set the top and
bottom margins to 0 and the left and right margins to 4em. The rule should contain
a single (shortcut) declaration.

(b) Explain why em might be a better length unit to use for the task of indenting quoted
text than px or one of the absolute length units.

3.6. Based on the textbook description of a typical browser’s implementation of the CSS px
(pixel) length measure, quantify how a 1px length changes if a monitor’s resolution is
changed from 1024 by 768 to 1280 by 1024.

3.7. Picture “framing.”

(a) Write a style rule that will place a nice “frame” around img elements. The “frame”
should be brown. The inside edges of the “frame” should touch the outside edges
of the image. There should be 10-px distance between adjacent images (either
horizontally or vertically). See the left image in Figure 3.44.

(b) Modify your style rule to “mat” your images. In particular, there should now be
a 3-px gap between the outside edges of your images and the inside edges of the
“frames.” This gap should be a tan color. See the right image in Figure 3.44.

3.8. Figure 3.22 shows a client area wider than the canvas. Explain how such a situation could
occur in an HTML document.

3.9. The em and ex units are both related to the height of characters; there is no unit related
to character width. Give a rationale for this difference.

3.10. Create an HTML document and CSS style sheet that together produce the stairstep effect
shown in Figure 3.45. The right sides of the steps should line up in the middle of the
document, regardless of the width of the browser window. Also, each step should have
the same height as all other steps, regardless of the number of lines of text contained in
the step (see the lowest step in the figure, for example).

3.11. Assume that an HTML document uses the following style sheet:
body { margin:5px; border:0; padding:2px }
div { margin: 3px; border:1px solid blue; padding:4px }

FIGURE 3.44 Two “framed” images. The right image is “matted.” (Graphics courtesy of Ben Jackson.)

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

186 Chapter 3 Style Sheets

FIGURE 3.45 Stairsteps containing text.

Relative to the upper left corner of the initial containing block, for each of the three
div elements in the following HTML body give the coordinates of the upper left
corner of the content area of the block box generated by that div. Show/explain
your work.

<body>
<div id="div1">

<div id="div2">
</div>

</div>
<div id="div3"></div>

</body>

3.12. Assume that the normal value for the line-height property of a given font corre-
sponds to the value 1.2em. Also assume that the height of the baseline above the
bottom of a character cell in this font is 0.2em. If a value of 2em is specified for
line-height, what is the corresponding half-leading value? What is the height of the
baseline above the bottom of a line box containing only text in the given font and given
that the line-height value is 2em?

3.13. Assume that the line-height value for a block box is 2em.

(a) Assume that one of the line boxes within this block box contains an image with
height equal to 1.5em and a default value for vertical-align. If you knew the
height of character cells as well as the height of the baseline within a character cell
for the block box’s font, how could you use this information to determine whether
or not the height of the line box containing the image would need to be increased
to make room for the image?

(b) If one of the line boxes contains an inline element having a specified font size twice
the font size for the containing block box, will the baseline height of this line box
necessarily be greater than it is in line boxes that contain only text in the default
font? Explain.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Exercises 187

3.14. (a) Identify at least three problems with the following style declaration:

font: 2em/12pt italic "Times New Roman" serif

(b) Rewrite the declaration so that it is syntactically correct.

(c) Assume that the corrected style declaration applies to an element E contained within
an element to which the following declaration applies:

font-weight:bold

What will be the value of E’s font-weight property?

3.15. The following HTML document produces an image followed by a label that is roughly
vertically centered with respect to the image:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>
CenteredText.html

</title>
<style type="text/css">

.labeledImage { font-size:100px }

.image { vertical-align:middle; height:100px }

.label { vertical-align:middle;
font-size:medium; font-weight:bold }

</style>
</head>
<body>

<div class="labeledImage">
<img src="../images/CFP1.png" alt="cucumber"

class="image" />
A cucumber.

</div>
</body>

</html>

(a) How would the rendered document differ if the vertical-align declaration were
removed from the label rule? Why?

(b) How would the rendered document differ if the vertical-align declaration were
removed from the image rule? Why?

(c) There is a large space between the image and the label when the document is ren-
dered. Why is such a large space present, and how can a smaller space be displayed
instead?

3.16. Consider the following markup:

<p style="font-size:12pt; line-height:1.15em">
This paragraph has
line-height:1.15em
which is "normal".

</p>

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

188 Chapter 3 Style Sheets

FIGURE 3.46 Rendering of markup with different font sizes.

The Mozilla browser rendering of this markup in a narrow window is shown in
Figure 3.46. Why does text in the second line overlap the others? What small change to
the markup would fix this problem?

3.17. Both the vertical-align property and relative positioning can be used to move an inline
box vertically. Give a style rule for each approach that could be used to move an inline
box up a distance of 1 cm. In addition to moving the box up, what other display change(s)
might occur if the vertical-align approach is used?

3.18. Some Web pages create a navigation bar (navbar) on the left side of the page and the
main content in a wider column on the right side of the page. Write style rules that could
be used to wrap the content around the navbar. That is, at the top of the canvas the navbar
and content should each be displayed side by side. However, lower on the canvas, when
the bottom of the navbar is reached, the content area should extend across the entire
width of the browser client area.

3.19. Assume that you want to lay out a number of playing card images so that they overlap
one another, as shown at the top and bottom of Figure 3.47. Would it be easier to use
absolute or relative positioning to accomplish this? Explain.

3.20. Write a style sheet that will cause the li elements within any ol element to be numbered
in an outline style: the top-level li elements should use uppercase Roman numerals, the
next level uppercase letters, the next level lowercase Roman numerals, then lowercase
letters, and finally decimal numerals at the fifth level.

Research and Exploration

3.21. Create a document that displays two boxes. The first box should have a thin border and
a width of 6 in. The second box should have an equivalent width in pixels, using the
relation 1 in. = 96 px. Now answer the following questions using the browser(s) assigned
by your instructor:

(a) Do the two boxes appear to be the same length when displayed by your browser?

(b) Measure the first box with a ruler. How many inches (or centimeters) across is it?
If the width of the second box differs from the first, measure it as well.

(c) Print your document. Now what are the actual widths of the boxes?

3.22. Locate a Web site (or visit a site specified by your instructor) that displays the colors
of the so-called “browser-safe color palette,” a collection of colors that can reliably be

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Exercises 189

FIGURE 3.47 Overlapping images of playing cards (face card and card back images courtesy of Ben Jackson)

displayed even using video cards that are capable of showing only 256 different colors
simultaneously.

(a) How many colors are contained in this palette?

(b) Of the colors red, orange, yellow, green, blue, purple, and brown, identify the
color(s) that seem to have the most different shades in the browser-safe palette and
the color(s) that have the fewest.

(c) Visit some popular Web sites (as directed by your instructor) and analyze their use
of CSS color values by viewing document and style sheet sources. Which sites use
the browser-safe palette and which do not?

3.23. Identify all of the color keywords containing “gray” or “grey” at http://www.w3.org/
TR/SVG11/types.html#ColorKeywords. Create an HTML document and CSS style sheet
that can be used to test a browser’s support for these keywords. Use your document to test
and report on the support for these color keywords provided by IE6 (or other browser(s)
as assigned by your instructor).

Refer to the CSS2 recommendation [W3C-CSS-2.0]—or a later W3C recommendation
as specified by your instructor—in order to answer the following questions.

3.24. Give a style sheet rule for the body element of a document that will cause a background
image to be repeated across the vertical center of the browser client area. The image
should remain in the center of the window even if the window is scrolled (see Fig. 3.48,
in which “Draft . . . ” is an image).

3.25. Describe what the fixed value for the position style property does when viewing a
document in a browser. Give an example of how this feature might be useful. Test to see
which browsers (as assigned by your instructor) support this value for position (IE6
does not).

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

190 Chapter 3 Style Sheets

FIGURE 3.48 A background image containing “Draft . . . ” is repeated across the center of the browser client area.

Projects

3.26. Create an external style sheet to be used with the HTML reference pages you wrote for
Exercise 2.30 in order to accomplish the following (with minimal changes to your HTML
source):

(a) Use a seashell background color for all pages (seashell is one of the SVG color
keywords).

(b) Change the style of the bullets used in the short list of two hyperlinks (you choose
the style).

(c) Define alternative colors for all four of the anchor pseudo-classes.

(d) Make table captions boldface, and table headers (th elements) normal weight but
italicized.

(e) Use a 14-pt sans serif font for all td elements.

(f) Force text in cells that span multiple rows to be displayed at the top of the cell,
rather than the default middle of the cell.

(g) On the definition pages, cause each term and its definition to be displayed in a box
that has a 3-px solid yellow border. The box should occupy 75% of the width of the
client area (or frame, if you completed the framed version of the earlier assignment)
and should be centered.

(h) The W3C suggests the following markup be included in a Web page that is valid
XHTML 1.0:

<p>
<img

src="http://www.w3.org/Icons/valid-xhtml10"
alt="Valid XHTML 1.0!" height="31" width="88" />

</p>

Use this markup on all of your valid XHTML 1.0 pages. Also include a class
specification (of your choosing) in the img element. Then, without further change
to this markup, write a style rule that will make these images appear on the right
side of the browser client area and display the images at roughly half the height and
width shown.

P1: OSO/OVY P2: OSO/OVY QC: OSO/OVY T1: OSO

GTBL013-03 GTBL013-Jackson-v10 July 12, 2006 10:36

Exercises 191

3.27. (a) Create an HTML document that renders similarly to Figure 3.47. Card images can
be found in the images/PlayingCards directory of the example files download
available at the Web site given in the Preface.

(b) Write a Java program that creates an HTML document such as the one just described.
Your program should accept as input the number of cards to be held in each hand
(the upper and lower parts of the figure represent hands held by players of a card
game). The program should randomly select the images to display for all face-up
cards (the right card in the second row and all of the cards in the lower hand). You
will probably want to use the java.util.Random package for randomly selecting
card images, but be careful not to display the same card image twice.

3.28. The following questions suggest extensions to the case study of Section 3.11. Implement
a subset of the following requirements as specified by your instructor.

(a) Use CSS to style the comments document described in Exercise 2.33. First, link the
comments document to the style.css file described in Section 3.11 (and available
for download from the textbook Web site given in the Preface). Then add classes
to style.css appropriate for styling various elements of the comments document,
including each comment as a whole and the individual components of a comment:
author name, comment heading, and comment body. Your class rules should center
the comment heading over the comment body and right-justify the author name
following the body. Finally, rewrite the document to use your new class definitions.

(b) Add a companion to the dquote class, named drquote, that is like dquote except
that it floats text to the right instead of the left. Also, text within the floated box
should be right-justified rather than left-justified, and the box border should be open
on the right and closed on the left. Create an example document that demonstrates
the use of your class.

(c) Use the validator at http://jigsaw.w3.org/css-validator/ to ensure that the
style sheet rules added in (a) and (b) are valid CSS. Turn in a copy of the Web page,
showing your validation results.

