
The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

© Copyright 2005 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Manager: Tara Woodman, Ellice Uffer
IBM Press Consulting Editor: Surekha Parekh
Cover design: IBM Corporation
Published by Pearson plc
Publishing as IBM Press

Library of Congress Catalog Number
2004111096

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com.

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com.

The following terms are trademarks or registered trademarks of International Business Machines Corpora-
tion in the United States, other countries, or both: DB2, Lotus, Tivoli, WebSphere, z/OS, Rational, IBM, the
IBM logo, and IBM Press. Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States, other countries, or both. Microsoft, Windows, Windows NT, and the Windows logo are
trademarks of the Microsoft Corporation in the United States, other countries, or both. Linux is a registered
trademark of Linus Torvalds. Intel, Intel Inside (logo), MMX, and Pentium are trademarks of Intel Corpora-
tion in the United States, other countries, or both. OSF/1 and UNIX are registered trademarks and The Open
Group is a trademark of the The Open Group in the United States and other countries. Other company, prod-
uct, or service names mentioned herein may be trademarks or service marks their respective owners.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458

ISBN 0-13-185587-5

Text printed in the United States on recycled paper at R.R. Donnelley & Sons in Crawfordsville, Indiana.
First printing, December, 2004

5887fm01.qxd_SR 11/30/04 02:07 PM Page iv

xxv

Foreword

When we first introduced the IBM® WebSphere® Application Server software (WebSphere), we
had a vision that we were creating the foundation for information computing for the next several
decades. We had as inspiration the IBM traditions of TPF, IMS, CICS®, DB2® and MQ—middle-
ware platforms that have been hosting mission-critical business applications for the last 40 years.
Only the future will tell whether our aspirations will be realized but in the short history that has
amassed so far every indication is that we have established a solid foundation for achieving
exactly that. WebSphere is used at some of the largest corporations in the world for both web-
based information-computing as well as core on-line transactional computing. Companies such
as eBay, Bank of Tokyo-Mitsubishi, Daimler-Chrysler Corporation, Dresdner Bank, Office
Depot, SAS Airlines, Toshiba, Siemens Medical Solutions, as well as thousands of other cus-
tomers use WebSphere to run their businesses.

At the end of 2003 we saw WebSphere take a commanding lead in the Java® 2 Enterprise
Edition (J2EE) Application Server marketplace—somewhere in the vicinity of 29%1 to 41%2

market-share, depending on how you count it. WebSphere has gained market-share over BEA,
Oracle, Sun or any other J2EE vendor. More importantly, the basic style of computing supported
by WebSphere as defined by the J2EE specification is rapidly growing in importance for mission-
critical business application deployments, representing a US$2.8B opportunity in 20033 just for
the middleware to support these environments.

But great stories like these are not just created from marketing charts—they result from the
culmination of an understanding of the marketplace, deep insight and experience in computing
technologies, a sharp and detailed long-term vision for what information computing can offer to
users and, at the end of the day, a great deal of hard work and perseverance—a dedication and
passion for pursuing the right things.

As you may be aware, IBM is a large and globally distributed company with development
organizations in dozens of cities throughout the world. This is one of the things that makes IBM a
great company—it allows us to maintain a high degree of cultural diversity. This, in turn, ensures

1IDC, May 2004
2Gartner Dataquest, May 2004
3Gartner Dataquest, May 2004

5887fm01.qxd_SR 11/30/04 02:07 PM Page xxv

that we retain a strong sensitivity to the needs of different users operating under different economic
and environmental conditions, and to remain tuned to the patterns of local concerns throughout the
world. However, that same diversity can also create huge challenges to development processes.
Diversity of culture also means diversity of opinions and perspectives and those differences show
up in the technical debates about what’s important and why.

Diversity of locale means operating over different time zones, and without the inherent
benefits of face-to-face communication. It means working through different holiday and vacation
schedules. It means having to matrix across different organizational, legal, geo-political, and
sometimes even language barriers. It means forging a common and mutual understanding where
none might occur naturally.

When we started the WebSphere project we had a choice between developing the entire
WebSphere offering at one location and developing it in a distributed fashion across multiple
development sites. The decision was not hard to make. We knew that WebSphere would have to
incorporate many different technologies—transaction management, state persistence and query,
distributed communication, security, administration, web processing, caching, workload man-
agement, messaging, resource management, multi-tasking and contention management, session
management, serviceability, high and continuous availability, performance and monitoring, and
on and on. We chose to leverage the skills, knowledge and deep histories that already existed
within IBM, at the locations that major in each of those technologies. We tapped messaging
resources from the MQ team in Hursley, England; query resources from the DB2 team in Santa
Teresa (now Silicon Valley Labs), CA; administration resources from the Tivoli team in Austin,
TX; integration and componentization resources from the OS/400® team in Rochester, Min-
nesota; tooling resources from the VisualAge® and now Rational® team in Toronto, Canada; web
processing and performance resources for the Servlet Express team in Raleigh, NC; scalable sys-
tems resources from the zOS® team in Poughkeepsie, NY; transaction management from the
Encina® resources in Pittsburg, PA and CICS resources in Hursley; etc. Sure, that made managing
the team and product more difficult (a lot more difficult!), but the alternative would have meant
reinventing all of that knowledge and skill and that was something that we did not want to do.

As I said earlier, building a successful product like WebSphere takes a lot of work. Going
essentially from scratch in 1999 to WebSphere V5 in 2004 has required painstaking refinement of
technologies to get them to blend well together, to meet the latest and (at first) rapidly evolving
industry standards, to balance and tune the disparity of workload types that different customers
experience, and to achieve both something that is easy to install and use and something that will
scale up to the largest of installations. We have done that in WebSphere by keeping to a few basic
architectural principles, including: maintaining a clean separation of concerns—don’t let one set
of issues coerce a different set of issues; minimizing the amount of functional duplication—it is
better to put more focus on getting one really good implementation than many poor implementa-
tions; on the other hand, not assuming one-size-fits-all—use the separation of concerns principle
to differentiate quality-of-service and scale differences for different users of the same function.

All of this, then, is set to a more fundamental backdrop. First, WebSphere is a machine—it
is an aggregation of functional parts that work together as a tool to help you get your job done

xxvi Foreword

5887fm01.qxd_SR 11/30/04 02:07 PM Page xxvi

more efficiently than if you had to do all the work yourself. Like all machines, the elegance and
utility of WebSphere can be measured by how well we have blended the characteristics of
strength, precision and tolerance—strength to hold up against the most demanding workloads;
precision to execute accurately, securely and efficiently every time it is used; and tolerance to
adapt to a wide variety of conditions and uses.

Second, the world is not static. WebSphere needs to support the extremes of usage scenar-
ios, but just as important, customers must be able to transition between different usage scenarios
with as little friction as possible—minimizing the friction of movement. You may start out with a
small web site but, over time, as your business grows so will the demands of your applications—
both in terms of the capacity of the underlying hosting environment as well as the sophistication
of what you need to do. Other customers will start out with simple tightly integrated business
functions, but later will grow to en-compass their entire business functionality across an enter-
prise service bus. WebSphere needs to be able to facilitate these transitions easily.

Third, the computing system will be touched by many different roles—end-users of the
application, deployers, developers, monitors, administrators, service centers, etc. Each of these
roles will develop their own, somewhat independent, perception of the utility of the middleware
in achieving their goals and responsibilities. WebSphere must optimize the productivity experi-
ence of each of these roles.

Fourth, modern distributed computing systems are fundamentally and inherently compli-
cated. Distributed systems combine a large number of moving parts with fragile and inefficient
transitional boundaries. This is like putting horse-drawn buggies, freight trucks, and Formula-1
race cars all on the same highway and then managing the entire thing to ensure everything and
everyone gets to where they need to go, does what needs to get done, and does so safely and reli-
ably. WebSphere must be able to manage this complexity, and mask out as much of that complex-
ity as possible.

The corollary to this is that the middleware is responsible for virtualizing the infrastructure
through an abstraction model that lets businesses focus on their business domain expertise and
adding value to their business. Without middleware, we often see application developers spend-
ing tremendous amounts of their time dealing with issues like connectivity to data systems,
including recovering from connection failures; managing state caches, including handling invali-
dations; protecting access to information and processes, including administering access policies;
and on and on—none of which has anything to do with taking orders, depositing checks, check-
ing inventory, tracking shipments, managing risk, and so forth. The responsibility of WebSphere
is to manage the distributed system on behalf of the application—freeing application developers
to focus their attention on other, more valuable things.

Fifth, to expand the macro-economics of computing we must maintain a high degree of
consistency in the fundamental aspects of information computing. As an analogy, the macro-
economics of transportation depends on there being more similarity between trucks than differ-
ences. Trucks have the same basic limitations on height, length and width which enables them to
fit on the same road structure; they use essentially the same driving configuration which enables a
larger pool of skilled drivers; they use the same fuel formulae which enables a broader distribu-

Foreword xxvii

5887fm01.qxd_SR 11/30/04 02:07 PM Page xxvii

tion channel for power; they use similar engine technologies which enables a large support struc-
ture; they conform to a uniform set of deck height assumptions which enables interchangeable
loading and terminal implementations. That’s not to say that there aren’t differences between
Mack trucks and Volvo trucks, but those differences are primarily around quality of service and
scale differences, not basic functional differences. Said a different way, WebSphere must con-
form to a set of broad industry standards. Those standards enable the expansion of the market-
place for application serving middleware, and more importantly for enabling customers to derive
value from their investment in applications designed to work on WebSphere.

The final backdrop to the principles of WebSphere architecture has to do with the extended
nature of information computing. WebSphere is a hosting environment for J2EE-based applica-
tions. But WebSphere is also the foundation of a much broader platform for information comput-
ing—including portal-serving, business integration, service- and event-oriented architectures,
service buses, client interaction and collaboration services. In this capacity, the application server
defines the fundamental execution model for the entire platform—the integrity model, the protec-
tion model, the availability model, the serviceability model, etc. WebSphere is, in some sense, the
network operating system for the information system.

This book is a microcosm of WebSphere itself. Ann, Mike Everett, Mike Casile, Keith,
Alan, Kyle, Dave, Tom, Yu, Dipak, Michel, Mihaela, and Radhika all exemplify exactly the kind
of dedication, expertise and diversity that you can find throughout the WebSphere development
and execution team. They hail from many different locations within IBM, and, like the rest of the
WebSphere team, have had to orchestrate and manage the development of this book across time-
zones and organizations.

The result, however, has been nothing short of outstanding. This book covers the full
breadth of the operational experience with WebSphere—from a basic overview of the product
through to configuration, deployment, administration, tuning and troubleshooting. Like Web-
Sphere, this book represents a tremendous effort—especially so when you consider that all of the
authors have real jobs to attend to through the day. I have absolutely no doubt that you will find
this book to be hugely informative—a great aid to getting the very best from your WebSphere
runtime.

I truly appreciate the effort these folks have made in producing this book. Just as impor-
tantly, I know I speak for the entire team when I convey how enormously grateful we are to the
many, many customers, administrators and developers that have embraced WebSphere; that have
discovered the value of WebSphere and have come to exploit WebSphere for the many benefits it
has to offer. For that we thank you.

—Rob High, IBM Distinguished Engineer;
WebSphere foundation, Chief Architect; and
Member, IBM Academy of Technology

xxviii Foreword

5887fm01.qxd_SR 11/30/04 02:07 PM Page xxviii

704

C H A P T E R 2 3

WebSphere
Performance
Tuning–z/OS

Objectives
This chapter covers the following concepts:

• Identify the measurements and perspectives of performance

• Optimal Testing Techniques

• Tuning impacts of WebSphere Configurations and Topologies and z/OS subsystems

• Impact of z/OS subsystems and Java

• Using the monitoring tools for WebSphere and z/OS and knowing which to apply to dif-
ferent types of problems

23.1 Overview
The purpose of this chapter is to assist you in tuning the performance of WebSphere V5 on your
z/OS system. The general focus will be on z/OS-specific items, as the previous chapter discussed
more general information. We mention tuning here as performance is not something to be consid-
ered only as an afterthought or when the application is perceived as not performing well (perfor-
mance problem). These are certainly times when performance does need more focus, but
performance should be considered from the earliest stages of any product life cycle.

z/Linux performance considerations are covered in Appendix H (z/Linux).

23.1.1 Problem versus Perception and z/OS Resources
When someone perceives and reports a performance problem, it is important to understand the
basis of the performance expectations relative to the application and the resources devoted to it.
Applications running in a J2EE environment tend to take more resources (specifically memory
and CPU) than typical legacy applications running on z/OS. If all tuning has been done correctly,

ch23.qxd 11/17/04 9:53 AM Page 704

it may be that the application simply requires more resources than were previously estimated.
This often happens when the application is modified and becomes more complex than originally
intended. You must also understand the z/OS resources “assigned” to your application.

It is beyond the scope of this document to discuss the cycle times or processor power of the
z/Series hardware configurations, but there are some important things to note:

• z/OS CPU resources tend to be shared. That is, your image/Logical Partition (LPAR) is
usually given some share or percentage of the total CPU resources available. This gets
complicated further when you consider that LPARs can take advantage of unused cycles
from other LPARs if they have shared CPUs and are not capped. A good Resource Man-
agement Facility (RMF) report can yield much information on this.

• Your z/OS LPAR or image will often be running WebSphere and one or more subsystems
(DB2, CICS, IMS, etc.). Thus, a direct comparison between WebSphere on the distrib-
uted platforms using these back-ends and WebSphere on z/OS using them must account
for the extra CPU cycles used by the back-end system itself.

• z/OS systems generally run a mixed workload and are not dedicated to WebSphere appli-
cations as are servers on distributed platforms. This makes it more important to under-
stand the impact that WebSphere is having on the other workloads and not just the overall
system performance.

• The importance of having sufficient memory (discussed later along with paging) for the
workload on the system cannot be overstated. There is little marginal cost for memory
and having insufficient memory can cause paging, which degrades performance.

A common issue with z/OS resources occurs when someone tests an application on their
workstation (e.g., a uniprocessor 2.4 GHz machine) and then moves it up to z/OS (the “big” box).
z/OS images for test or development are often given a very small share of a full z/OS machine.
We have seen images running as little as 150 MHz. Thus, instead of achieving a great perfor-
mance boost by moving to z/OS, performance actually degrades.

WebSphere z/OS, in nearly all cases, achieves equivalent performance to WebSphere on the
distributed platforms when comparing the same amount of CPU resource. On the other hand,
z/OS hardware tends to be more expensive than distributed platforms. The extra cost of z/OS
hardware is offset by its qualities of service (QOS) which are superior to other platforms. It is
generally a balancing act between QOS and cost as to how an application is deployed. This dis-
cussion is beyond the scope of this chapter.

23.2 Repeatable Performance Scenarios
23.2.1 Test System
In any performance tuning scenario, it is best to have a “controlled environment” such that run-
ning the same test multiple times will result in the same (or nearly the same) outcome. In addi-
tion, it should be a test system where running tests, recycling servers, modifying configurations,

23.2 Repeatable Performance Scenarios 705

ch23.qxd 11/17/04 9:53 AM Page 705

or adding heavy traces does not impact production. This isolates the impact of your changes to
the change itself and reduces “noise.”

This test system should also be similar to the production system so that it can be used to
accurately predict the performance of the production system. Items here would include software
levels, access to enterprise information servers (DB2, CICS, IMS, etc.), memory, and so on. The
actual CPU resource of a test system is normally smaller than the production system.

23.2.2 Test Tools
There are many excellent test tools that can be used to generate sample browser workloads. These
tools are ideal for performance work as the same scripts (same requests, same number of concur-
rent users, and same wait time) can be run repeatedly. We do not review individual tools available
in this document, other than to say that most of them can adequately drive load against your
system.

23.2.2.1 Scripts

When using the test tools, it is best to set up test scripts that resemble a particular set of functions
in the application. The simpler scripts may yield more predictable behavior and isolate smaller
levels of functionality. These are ideal, especially if a problem is occurring. For example, you
might want to create a test script for each individual transaction and capture performance data
with multiple users executing the same transaction. You might also want to have a test script with
multiple users concurrently executing all transactions so you can study the interactions of your
transactions

If it is feasible to create a representative workload without making updates to the database,
this is an ideal situation. If this is not the case, then the back-end data store needs to be periodi-
cally reset.

23.2.2.2 Restoring the Data for Each Test

Resetting the data store in DB2 is the most common requirement. This can be done via various
third party tools or simply by unloading and reloading the specified tables. The unload and reload
methods run quickly and reset the database to a consistent state before each test. While the unload
need only occur once (when the database is in an initial state that is ideal for the test), the reload
should run before each test. It is a good idea to also call run RunStats after each reload (can be an
added step in the reload job). Resetting other resources is beyond the scope of this chapter.

23.2.3 Simplification of Scenario
It is best to have the simplest possible scenario to re-create any situation on the system. Applica-
tions can become complex, including back-end data stores or execution environments, and net-
work infrastructure, including firewalls, and so on. Initial performance testing should include as
much of this complexity as is feasible. If a workload does not meet expectations, it is often best to
break it down into the simplest component parts feasible. This can isolate the problem compo-
nent(s), and it makes it easier for any external support to re-create and work on the problem.

706 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 706

TIP
Using test tools placed close to the system under test (SUT), it is often a simple proce-
dure to eliminate firewalls, Web servers, and other network components, thus isolating
the work in the J2EE server and the back ends.

23.3 Relevance of z/OS and Subsystems
In order to provide reliability and other qualities of service (QOS), z/OS has many subsystems,
and the WebSphere workload often requires modifications to the configurations of these subsys-
tems. An excellent source of information on this tuning can be found in chapters 9 and 10 of the
WebSphere Application Server for z/OS V5 Operations and Administration Manual at the follow-
ing URL: ftp://ftp.software.ibm.com/software/webserver/appserv/zos_os390/v5/bos5b1001.pdf.
Below is a brief mention of several of the key subsystems and their roles in keeping the
WebSphere container running well. All of them should be kept current on maintenance, and com-
ponent (and system) tracing should be turned off or minimized.

23.3.1 Transmission Control Protocol (TCP)
Transmission Control Protocol (TCP) and the network are critical to the response time perceived
by the customer when doing work on z/OS. It is best to have a fast network adapter (e.g., Gigabit
OSA) and to periodically monitor its performance. If tuned well, TCP should account for only a
small amount of the total response time (less than 2 percent) experienced by the customer. Fire-
walls are required in any production environment, but, again, tuning these is critical.

TIP
The resource utilization of the TCP address spaces can be determined with WLM and
RMF. It may also be a TCP issue if the controller address space is taking more than
1 percent CPU. To understand the low level details of TCP flows, your TCP Systems
Programmers can run a filtered packet trace.

23.3.2 UNIX System Services (USS)
USS is the environment where WebSphere runs. System traces can reveal a great deal about the
behavior of the application and the J2EE server. If misused, however, they can more than double
the path-length of some requests. A good reference for USS tuning can be found at

http://www-1.ibm.com/servers/eserver/zseries/zos/unix/perform/webtun.html.

23.3.3 Resource Recovery Services (RRS)
Resource Recovery Services are used extensively by WebSphere on z/OS to handle transactional
behaviors and access to all recoverable resources. There are numerous configuration options here
that can impact the operation of RRS. One key option is using a Coupling Facility (CF) logstream

23.3 Relevance of z/OS and Subsystems 707

ch23.qxd 11/17/04 9:53 AM Page 707

to avoid disk IO. Optimizations in this area have made database two-phase commit processing on
z/OS notably faster than on any other platform. A few key items to watch in RRS include

• Sizing the RRS logs so that they are not offloading too often or overflowing the CF

• Keep Main and Delayed logs in the CF

• Only use the archive log if absolutely needed (to do PD on an unstable system)

TIP
The most common RRS related issue is log size. WebSphere can increase the amount
of data logged and create a need for larger logs. Issues here can generally be seen in
the z/OS System log with an increase in log switching and archiving. If this is occur-
ring, then the RRS people may need to resize the logs. System Logger accounting
data can be found in SMF Type 88 records. Sample program IXGRPT1 in Sys1
.SAMPLIB shows how to produce a report using SMF Type 88 records.

23.3.4 Cross-System Coupling Facility (XCF)
The Cross-System Coupling Facility is less important to WebSphere V5 than to WebSphere V4.
In V4, servers with instances on different images within a SysPlex had to use a shared HFS,
which can cause intensive XCF activity. V5 no longer has this requirement. If shared HFSs are
being used, however, it is important that the owning image be the one that does the most IO (espe-
cially output) to the HFS.

GOTCHA
While Shared HFSs can be a great means of communication and centralization of con-
trol, improper use can have a severe performance penalty. Using them for logging can
be a particularly expensive practice.

TIP
While the first z/OS image (LPAR) to mount a shared hfs becomes the owner, there are
dynamic means of changing ownership. This is discussed in the UNIX System Ser-
vices Command Reference (SA22-7802).

TIP
A view of the XCF service class in RMF can help to isolate excessive CPU time being
used by XCF. If the XCF address space is taking more than 4 percent of a CPU engine,
a USS Systems Programmer should look more closely at XCF (it may or may not be
WebSphere related).

23.3.5 Workload Manager (WLM)
The z/OS Workload Manager differentiates WebSphere z/OS from the distributed platforms. On
WebSphere for z/OS, a server consists of a Controller address space and one or more Servant
address spaces (discussed later in the Topology section). WLM can be used to control the number

708 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 708

of Servants to meet goals defined for the various workloads. WLM is discussed in chapter 19,
Workload Management Overview: z/OS.

WLM can also balance workloads across clustered servers in certain situations (although
HTTP workload distribution is generally driven by the front-end mechanisms [such as the IHS
plug-in or Edge Servers] and EJB calls, in an optimal scenario, will not leave the server).

In the section on RMF and WLM, we discuss classifying work and creating reporting
classes so that the total cost of handling transactions can easily be determined.

TIP
It is advisable to limit the number of different classes of work routed through an indi-
vidual server. A Servant address space can service only one class of work at any time.
This means that many different classes of work will either result in many Servant
address spaces, or work queuing up for existing Servants to be reclassified.

23.3.6 Miscellaneous Considerations
There are miscellaneous items to keep in mind, including:

• In Resource Access Control Facility (RACF), set BPX.SAFFASTPATH on. This makes
security checks in the HFS quicker.

• In WebSphere V5, we recommend that you configure the Link Pack Area (LPA) as
recommended during install. This will allow all WebSphere address spaces to share the
40 Mb of load modules instead of each address space loading it into private memory.
This is a bit more difficult if you are coexisting with WebSphere V4. Only one of the ver-
sions can use LPA, and the other must use STEPLIB DD statements.

23.4 The Container
23.4.1 Topology
As with all platforms, the J2EE Server z/OS can be run as a stand-alone server, or servers can be
incorporated into cells and clustered with other servers. In the V5 release, cells cannot be hetero-
geneous. Cells must contain only z/OS servers, and they must all be contained within the same
sysplex. The restrictions should be eased in future releases. In that there are limitations on distrib-
uted platforms (i.e., CTG on distributed cannot fully participate in two-phase commit), there may
be compromises in running applications across different platforms.

At a more granular level, there is a difference between a distributed server and a z/OS
server. A distributed server is a single process that runs a JVM. A z/OS server consists of two or
more address spaces (processes) with different roles, each running a JVM. As shown in Figure
23.1, there is a Controller and one or more Servants. The Controller handles

1. Communications (it is the end point for container communication, including Message-
Driven Beans [MDB]). Of course, applications can use HTTP, Java Secure Socket

23.4 The Container 709

ch23.qxd 11/17/04 9:53 AM Page 709

Extension (JSSE), or other transport clients for specific outbound communication from
the Servant.

2. Most Object Requestor Broker (ORB) functionality.

3. Transactional behavior.

4. Security.

5. Executing authorized code.

The Servant is the JVM where the application(s) run. Servants are all on the same image
(LPAR). To achieve the parallelism and failover of splitting the work across multiple images, you
must set up servers under nodes on each image and cluster them.

Network Deployment is the more appropriate topology for a robust production environ-
ment as shown in Figure 23.2. The components in the topology are similar to the distributed plat-
forms, with the following differences:

1. A server is two or more address spaces.

2. A cell can consist only of z/OS nodes and is constrained to a single sysplex.

3. It is more common for z/OS images to contain multiple nodes and for a sysplex to con-
tain multiple cells.

TIP
WebSphere V5 can be architected in any number of ways. To accurately predict per-
formance of a production system, the architecture of a test system should be as close
as possible to the architecture of the production system.

710 Chapter 23 WebSphere Performance Tuning—z/OS

Figure 23.1 WebSphere z/OS V5 Controllers and Servants.

ch23.qxd 11/17/04 9:53 AM Page 710

23.4.2 Run Time Settings in the Controller
Many environmental settings have a direct impact on performance. As work arrives at the Con-
troller, it is classified and placed on the appropriate WLM queue (for WLM details, see chap-
ter 19). The WebSphere Administrator can control how the work is classified into Transaction
Classes. The WLM administrator can then use these Transaction Classes to classify the work into
Service Classes with defined goals. These goals will cause WLM to appropriately prioritize and
report on the WebSphere work on the system or sysplex. The WebSphere Controller should run
with a high-velocity goal as it is the initial dispatch point to potentially multiple Servants. Ser-
vants should also run with a high-velocity goal (not quite as high as the Controller) as dispatching
work should not be a bottleneck. Garbage Collection also runs under this class (nonenclave).
Prioritization of the enclaves is business-need dependent.

23.5 The Java Virtual Machine (JVM)
Each server has a JVM in the Controller and one in each Servant. The focus here is on the JVM in
the Servant where the application code executes. This JVM is used by the EJB container and the
Web container in the Servant. Understanding the behavior of the JVM as your application exe-
cutes is critical. If all goes well:

23.5 The Java Virtual Machine (JVM) 711

Figure 23.2 WebSphere z/OS V5 overall topology possibilities.

ch23.qxd 11/17/04 9:53 AM Page 711

1. Garbage collection (GC) should take 1 to 5 percent of the time

2. There should be no long waits (more than 6 seconds) for stopping the threads.

3. An Allocation Failure (AF) should never cause multiple GCs.

4. Compaction actions should be occurring on less than half of the GCs.

5. The percent free memory should not be reduced over time.

6. Appropriate methods should be Just In Time Compiled (JITted).

23.5.1 Garbage Collection
Garbage collection is the process the JVM uses to clean up objects that are no longer referenced.
Garbage Collections are started when the JVM receives Allocation Failures or System.gc() calls.
An allocation failure is a normal occurrence when there is insufficient free space in the JVM heap
to allocate a new object. This causes the JVM to do garbage collection to free up the memory uti-
lized by obsolete objects (objects with no references to them, or garbage).

TIP
As a programming best practice, explicit System.gc() calls should be avoided. The
JVM has complex algorithms to optimize garbage collection. Placing System.gc() calls
in the code causes extra garbage collections that interfere with the JVMs ability to
maintain itself. In addition, code may execute more often than expected causing
requests for garbage collection to queue up. As this occurs, it can prevent the JVM
from getting any real work done.

23.5.1.1 Understanding verboseGC Output

The simplest way to get an understanding of the health of the JVM is to turn on verbose garbage
collection (VerboseGC). This can be set via a checkbox in the Administrative Console by navi-
gating to Servers → Application Server → ServerName → Process definition → Java Virtual
Machine. Leaving VerboseGC running does not impose much overhead (less than 2 percent) on
the system. We recommend having it on for all test systems and even in production when new
code is running. The verboseGC output varies from one release of the JVM to the next, but
resembles what is seen in Listing 23.1.

Listing 23.1 Normal Garbage Collection output.

<AF[24]: Allocation Failure. need 68376 bytes, 88964 ms since last AF>

<AF[24]: managing allocation failure, action=2 (559688/268368384)>

<GC(30): GC cycle started Wed Jul 30 14:40:55 2003

<GC(30): freed 175851936 bytes, 65%% free (176411624/268368384), in 1642 ms>

<GC(30): mark: 1447 ms, sweep: 195 ms, compact: 0 ms>

<GC(30): refs: soft 0 (age >= 32), weak 0, final 89, phantom 0>

<AF[24]: completed in 1652 ms>

712 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 712

Table 23.1 shows the most value from this listing.
So, in this case it had been 89 seconds since the last allocation failure, and it took 1.65 sec-

onds to resolve this failure. Percent of time in GC is 1652 * 100 / (88964 + 1652), or 1.8 percent.
Any time this number climbs above 3 percent, it should be reviewed. It may be expected behavior
for some applications to require intense GC processing. Application characteristics that result in
GC burning a greater amount of CPU cycles include

1. System.gc() calls

2. Intensive object use and discarding. This can be reduced by:
a. Use of StringBuffer instead of String
b. Object reuse and pooling
c. Allocating arrays and vectors more accurately

23.5 The Java Virtual Machine (JVM) 713

<AF[24] Twenty-Fourth Allocation Failure since the JVM was started.

Need 68,376 Size of the request for memory that caused the failure.

88964 ms Number of milliseconds since last Allocation Failure.

559688/268368384 Free heap vs. total heap before GC. Nearly 600K available, but no chunk
big enough to alloc 68k bytes.

<GC(30) Thirtieth GC since JVM started (since the twenty-fourth Allocation Failure
is causing the thirtieth t garbage collection, then either System.gc() is being
called or large allocations are causing problems for the JVM (the case
here). Either of these conditions can raise a red flag.

Freed 39334152 Number of bytes freed.

65% Percent of free heap after GC. Memory leaks will cause this number to get
progressively smaller and compactions will have less positive impact.

176411624/268368384 Free heap vs. total heap after GC.

1642 ms Milliseconds that the GC process took (in a healthy JVM, these can be pre-
dominantly sub-second).

Compact 0 ms Compact time (no heap compaction was needed this GC). Compaction
occurs when the free space in the heap is fragmented.

Refs: soft 0 No soft references cleaned up here.

Age >= 32 Soft references NOT referenced in 32 GCs will be GC’d.

Completed in 1652 ms Total time taken to resolve allocation failure (usually a small amount, larger
than GC time).

Table 23.1 Breakdown of Garbage Collection Output

Item Description

ch23.qxd 11/17/04 9:53 AM Page 713

3. Allocation of extremely large objects

4. Memory Leaks

A less healthy GC might look like Listing 23.2.

Listing 23.2 Problem Garbage Collection.

<AF[52]: Allocation Failure. need 11825976 bytes, 9216 ms since last AF>

<AF[52]: managing allocation failure, action=2 (74646856/268368384)>

<GC(64): GC cycle started Wed Jul 30 14:50:26 2003

<GC(64): freed 68031744 bytes, 53%% free (142678600/268368384), in 4060
ms>

<GC(64): mark: 1631 ms, sweep: 188 ms, compact: 2241 ms>

<GC(64): refs: soft 0 (age >= 32), weak 0, final 14, phantom 0>

<GC(64): moved 129329 objects, 30644680 bytes, reason=1, used 24
more bytes>

<GC(64): stop threads time: 2306, start threads time: 2>

<AF[52]: managing allocation failure, action=3 (142678600/268368384)>

<AF[52]: managing allocation failure, action=4 (142678600/268368384)>

<AF[52]: clearing all remaining soft refs>

<GC(65): GC cycle started Wed Jul 30 14:50:28 2003

<GC(65): freed 12000 bytes, 53%% free (142690600/268368384), in 1717 ms>

<GC(65): mark: 1581 ms, sweep: 136 ms, compact: 0 ms>

<GC(65): refs: soft 8 (age >= 32), weak 0, final 0, phantom 0>

<GC(66): GC cycle started Wed Jul 30 14:50:32 2003

<GC(66): freed 1504 bytes, 53%% free (142692104/268368384), in 3724 ms>

<GC(66): mark: 1563 ms, sweep: 606 ms, compact: 1555 ms>

<GC(66): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>

<GC(66): moved 6613 objects, 1296464 bytes, reason=1>

<AF[52]: managing allocation failure, action=6 (142692104/268368384)>

<AF[52]: totally out of heap space>

<AF[52]: completed in 11989 ms>

Note that it took three GC actions to find space for a 12M object to be allocated, including about
four seconds in GC and two seconds in stopping threads.

TIP
Any allocation > 1M should be reviewed in the application, as it can be difficult to find
these very large contiguous spaces in memory. This resulted in almost 57 percent of
the last 21 seconds having been spent in GC.

714 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 714

23.5.1.2 Soft References

Some applications need to cache large amounts of data. This impacts the size of the heap and the
behavior of garbage collection. In some scenarios, the data that needs to be cached are difficult to
determine, and the application errs on the side of caching too much data. The best way to do this
is to use the java.lang.ref.SoftReference class to reference data in the cache. This allows for data
that are not used over a certain number of Garbage Collection cycles to be freed up automatically.

23.5.1.3 Memory Leaks

The verboseGC output can be used as a first step in determining if a memory leak exists. As the
Garbage Collection cycles proceed, watch for a pattern in the percent free value at the end of each
cycle. This may vary from cycle to cycle, but if it is consistently getting lower, it is highly likely a
result of a memory leak in the application.

TIP
If a memory leak is occurring in an application, there may be little choice but to recycle
a server. It may be worthwhile, however, to wait for java.lang.OutOfMemory exceptions
to be thrown. It may be that the JVM is avoiding doing a compression of the heap dur-
ing Garbage Collection (this is an expensive component of garbage collection) until it
is absolutely necessary. Thus, the free heap may go down for 10 or 20 consecutive
Garbage Collections, then may go back up as the JVM decides to do a more complete
Garbage Collection with compaction and possible elimination of soft references.

TIP
If a java.lang.OutOfMemory exception is thrown, take a z/OS SVCDUMP. The IBM
support team has tools and can use the dump to analyze the contents of the heap. In
addition, both the WSAM and Introscope products contain powerful leak detection
capabilities.

Heap Settings Ideal heap settings vary by application and environment. A smaller heap may
require more frequent Garbage Collection, and a larger heap may have a longer cycle of garbage
collection.

TIP
The “rule of thumb” is to keep your heap on the small side so that the cycles are short.
This allows for more servers to be brought up as well. This is, of course, a balancing
act. This is discussed in chapter 22, WebSphere Performance Tuning. We recommend
starting with a 256M heap and modifying as needed based on the behavior of your
workload under stress.

23.5.2 Just In Time (JIT) Compiler
The Just In Time Compiler (JIT) is essential to high performance Java applications. Its primary
function is to take frequently executed methods, and compile the byte-code into machine code, so
that it runs much faster. In nearly all environments, the settings for the JIT should not be modi-
fied. The JVM does a great job determining which methods to compile when based on how many

23.5 The Java Virtual Machine (JVM) 715

ch23.qxd 11/17/04 9:53 AM Page 715

times a method has been executed since the JVM was started. In the current JDK 1.31 on z/OS, a
method gets jitted after 2,000 executions.

GOTCHA
One big problem with modifying the jit threshold is that rarely executed methods can
get jitted (i.e., methods run just a few times at initialization of the J2EE server). Each jit-
ted method takes space in memory that could be used for other purposes.

23.5.3 Java Tracing
WebSphere V5 for z/OS is the first version to allow dynamic Java tracing. This is fully config-
urable from the Administrative Console just as on the distributed platforms.

GOTCHA
Now that it is dynamic, Java traces can be collected on production systems. You must
remember, though, that this does add overhead. So, it is best to turn it on for short
periods of time and hope to re-create the problem while it is on.

TIP
Some of the java trace commands we find most helpful on z/OS

F <WasProc>,DISPLAY,TRACE,JAVA (Display current settings)
F <WasProc>,TRACEJAVA=’*=all=enabled’ (Turn on all java tracing)
F <WasProc>,TRACEJAVA=’*=all=disabled’ (Turn off all java tracing)

And for more specific traces (i.e., jdbc, orb, transaction handling, …), simply use the
adminconsole to set the traces, and note what the javatracespec is. It can then be set
dynamically with this TRACEJAVA=’<javatracespec>’ command.

23.5.4 Java Stack Traces
The JVM in the Servant operates with a configurable number of “worker threads,” along with
some number of threads used by the JVM and the container for housekeeping. When applications
run slowly, it is often helpful to get a “snap-shot” of the current call stack on each of the worker
threads. You can extract call-stack information from a console dump. IBM support has several
tools for this purpose such as TBack and SvcDump, but it can be done manually as well. Listing
23.3 provides a set of instructions for the viewing thread call-stack information from the Servant
region with ASIDx 002C.

Listing 23.3 Instructions for taking a console dump and getting thread stack traces.

/dump comm=(WebSphereStackTrace) (dump console command)

/xx,ASID=(2C),SDATA=(RGN,TRT,CSA,NUC,PSA,GRSQ,LPA,SQA,SUM) (this
is a WTOR where xx is the message#, may need to be broken up)

After the dump completes, bring it into IPCS

IP SETDEF ASID(X'2C')

IP SUMM FORMAT ASID(x'2C')

IP VERBX LEDATA 'NTHREADS(*)'

716 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 716

This will result in a display of the call-stack of all threads. All worker thread stacks will
contain the Entry SR_ExecutionRoutine. Look for patterns in the top of the worker thread stacks.
IBM Support has some additional tools (tback and svcdump) for viewing the threads in the stack.
At the time of this writing, there are still some issues with being able to create a Java dump with
WebSphere and the current JVM (kill -3 <pid>). When this is resolved, there may be an ability to
use Thread Analyzer (an IBM tool that is freely available to analyze Java dumps from WebSphere
J2EE servers as discussed in Appendix B, WebSphere Tooling Reference) against z/OS Java
dumps (and the dumps will be simpler and quicker to take).

TIP
When looking at the worker threads, focus on frequently occurring call-stacks, and
look down from the top to find the first recognizable method. This may be difficult if the
server has not been up long, as non-jitted methods names do not show up in a dump.

23.6 Administration and Monitoring
General administration of WebSphere V5 on z/OS is the same as on distributed platforms and is
not the focus of this chapter, except where it impacts performance.

23.6.1 First, Read the Manual
The place to begin creating a WebSphere environment that performs well is the Operations and
Administration manual at the following URL: ftp://ftp.software.ibm.com/software/webserver/
appserv/zos_os390/v5/bos5b1001.pdf. Chapters 9 and 10 in this manual provide excellent detail
in setting up the containers to interact efficiently with the various z/OS subsystems.

23.6.2 RMF and WLM Overview
Using RMF, you can get some great insight into how your container and application are perform-
ing, and RMF generally has very low overhead. If WLM (which was covered in an earlier chap-
ter) is configured with reporting and service classes, then RMF can provide an accurate and
timely view of how your servers and workloads are performing. This may lead to refinement of
the WLM policy. The Operations and Administration manual discusses many of the WLM
details, and they are summarized from a WebSphere perspective in chapter 19 of this book. We
are summarizing them here along with some special tips and examples.

23.6.3 WebSphere and WLM Classification

23.6.3.1 Basic WLM Considerations

• Dynamic application environments simplify the WLM configuration such that you do
not need to create new Application Environments for each server created.

23.6 Administration and Monitoring 717

ch23.qxd 11/17/04 9:53 AM Page 717

• Be sure that System address spaces (Controller, Naming daemon, and Node Agent) run
with a high priority (i.e., SYSSTC). These are generally short-running tasks, and they
should have a high velocity goal.

• Servant address spaces need to be prioritized highly as well, although slightly lower than
the Controller. These handle dispatching and nonenclave work (Garbage Collection, user
threads, timers, etc.). Garbage collection is CPU-intensive, but, since it often stops all
threads, a delay can impact all work in the server. User-created threads in the JVM (not
something that is recommended, but it is sometimes necessary) will also run under the
priority of the address space.

• Application environments for work running under the Servants (discussed later in this
chapter) should be prioritized with a response-time goal. Keep in mind that the goal
should reflect all work. If this application environment is serving static Web content as
well as complex requests, the static content could skew the numbers.

• Classifying enclave and system work allows for granular RMF reporting to identify the
actual “cost” of the various workloads.

TIP
It is best to serve static content out of a Web server instead of the Application Server.
This avoids overhead for statics and allows the Application Server to use its cycles on
business critical application work.

23.6.3.2 Classifying Work into Enclaves

All of the business logic in the application occurs in the enclave created for the work. Enclaves
are discussed in the IBM Redbook OS/390 Workload Manager Implementation and Exploitation
which can be found at this URL: http://www.redbooks.ibm.com/redbooks/pdfs/sg245326.pdf.

The application enclave runs under the goal associated with its service class. By defining
WebSphere work into meaningful service classes, proper goals can be set both for monitoring and
for allowing z/OS to focus resources as needed to meet defined goals. The service class for an
enclave is generally set in one of two ways:

• Default service class for the WLM subsystem. CB is a predefined subsystem in WLM
(which has its roots in the product called Component Broker). You can define a default
service class for the CB subsystem. If all WebSphere requests can run under one service
class, this is the simplest and most straightforward way to define it

• Definition of a transaction class file in WebSphere to route URLs to transaction classes,
then classification rules in WLM to use the WebSphere transaction class and classify the
work into the appropriate service class. This is discussed in the next section.

Routing WebSphere URLs to Specific Service Classes Transaction Class Mapping allows for
a mapping of URLs in a Servant to specific transaction classes. These transaction classes can then
be mapped with WLM classification rules to WLM Service Classes and Reporting Classes.

718 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 718

Performance data for these WLM entities will then be reported in the RMF Workload Activity
reports. The Mapping is done with a text file that you specify for the server via the admin console
in Web Container _ Advanced Settings. The syntax of the file is

TranClassMap <Server:Port> <url> <TranClass>

For example:

TranClassMap *:* /trade/* TRADTCLS

This means that all work for the Trade application coming in to this server (or any server
that uses this file since the server is wild-carded) will have a WLM transaction class of
TRADTCLS. This can then be used in a WLM classification rule to route Trade work to a specific
Service Class and Reporting class. An example of doing this is shown in Figure 23.3.

Note that this classification rule is within the CB subsystem, and it is type TC (transaction
class). This will cause the work to run under the TRADSCLS service class, and RMF will report
on it in the TRADRPT reporting class.

The RMF section later in this chapter will provide a sample of the report output and how
this can then be used to determine information about the performance of the application in
production.

23.6.3.3 Classifying Nonenclave Work

To get a full picture of how WebSphere is running on the system, it is recommended that you also
isolate the performance of the Controller and Servant Address Spaces. The total cost of a
WebSphere workload includes its portion of time in the Controller and Servant Address spaces,
added to the time in the enclave (and while DB2 time is included in the enclave, CICS Transac-
tion Gateway, CICS, IMS, or any back-end systems may also need to be factored in the equation).
Figure 23.4 shows an example of the WLM classification rules within the STC subsystem to clas-
sify address spaces with the pattern MCV5S%% into a special Controller service class and to

23.6 Administration and Monitoring 719

Figure 23.3 WLM Classification rule to classify WebSphere URLs.

ch23.qxd 11/17/04 9:53 AM Page 719

route MCV5S%%S into a Servant service class. These, along with the enclaves that will be tied to
these address spaces, will report into the MCRPT1 reporting class. By having Controller, Ser-
vant, and enclave time reporting to the same reporting class, RMF does most of the work for us.

Handling the Servant Address Spaces and Threads In WebSphere, a server is defined as one
Controller and one or more Servants. This section discusses how to control the number of Servant
address spaces and the number of threads per address space. In general, it is best to let WLM
handle the number of address spaces, but there are controls in case they are needed. We would
suggest first not setting these and allow WLM to manage it. Changing these settings can have
unforeseen effects on system resources and on Servers that process requests for multiple service
classes.

Figure 23.5 shows an Administrative Console window under Server _ Server Instance
with a check-box for handling of multiple Servants. If checked, then a minimum and maximum
number of Servant address spaces can be selected. There are numerous factors to be considered in
determining if and how to use this functionality, including:

• Is there a problem with how WLM is managing it?

• How many threads are in each Servant (covered in the next section)?

• How many service classes are being serviced by this server (refer back to TranClass
Mapping)? A Servant address space can serve one service class at a time (due to storage
isolation issues that are beyond the scope of this book). If work arrives for more service
classes than are defined with the maximum setting, then a serious queuing problem could
occur.

BBOO_WORKLOAD_PROFILE is a setting for a server within ORB SERVICE _
Advanced Settings, used to determine the number of actual worker threads that will be started in
each Servant. You should avoid assuming that more threads are always better. While this can

720 Chapter 23 WebSphere Performance Tuning—z/OS

Figure 23.4 WLM Classification rules to classify WebSphere Nonenclave work.

ch23.qxd 11/17/04 9:53 AM Page 720

often be true in scenarios where an application makes calls to external servers, applications that
are CPU-intensive within the Servant address space will not benefit from additional threads and
may actually see a slight degradation in performance if too many worker threads exist in the
address space (and remember that, unless instructed otherwise, WLM can create another servant
address space if more threads are needed). The settings and the resulting number of worker
threads are

23.6 Administration and Monitoring 721

Figure 23.5 Server Instance control over Minimum and Maximum Servants.

Normal Either 1 or 3 depending on isolation level

CPUBOUND max((num_of_CPU-1),3)

IOBOUND min(30,max(5,num_of_CPU * 3))

LONGWAIT 40

Table 23.2 WLM Settings and Worker Threads

Setting Worker Threads

ch23.qxd 11/17/04 9:53 AM Page 721

TIP
Keep your z/OS LPAR size and your application behavior in mind when deciding on
how many threads or Servants to use. Threads are less expensive relative to system
resources, but a well-tuned server can use six threads to keep four or five engines very
busy. If the server makes calls to external servers (Soap, CICS, etc.), then additional
threads may be helpful since threads can be in a wait state.

23.6.3.4 RMF Considerations

Once your work is properly classified by WLM, RMF can provide a wealth of information. While
anything in RMF could be relevant to performance, the initial areas to focus on are discussed
below. Some important RMF/SMF considerations are

• Areas that highlight basic system performance (DASD response times, enqueues, the
Coupling Facilities, Crypto hardware, HFS performance, …) should be reviewed regu-
larly by your z/OS System Performance personnel.

• The RMF interval should be shorter during performance testing so that performance can
be seen at a more granular level (less smoothing of the spikes). This is a dynamic change,
and it can be undone dynamically.

• Workload Analysis can provide a great overall view of the application response time,
application path-length, and resource consumption.

• Partition data, CPU information, and memory information provide a great deal of infor-
mation about the overall system and how it is running.

The manual Resource Management Facility Report Analysis (http://publibz.boulder.ibm
.com/epubs/pdf/erbzra23.pdf) provides an excellent resource for understanding the detail of all of
the reports described here. You should review one set of reports for a time period of low Web-
Sphere workload volume and one set of reports for a time period of high WebSphere workload
volume. Collect the RMF data beginning just after the heavy workload starts and ending just
before the heavy workload ends (avoid ramp up or initialization periods unless those are of spe-
cific interest). Like many other z/OS components, RMF creates SMF records within a preas-
signed range. The SMF records of most interest to WebSphere applications are

• RMF records—record types 70–79

• System Logger—record type 88

• USS/HFS—record type 92

• HTTP—record type 103

• DB2—record types 100–102

722 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 722

• CICS—record type 110

• MQ—record types 115–116

• TCP—record types 118–119

• WebSphere—record type 120

23.6.3.5 RMF Reports

There are many different RMF reports. We are going to focus on those that report most directly
on WebSphere related information. Most examples are excerpts as the reports tend to be wider
than can be nicely viewed in this format.

Summary Report Begin by checking here since the summary report gives an overview of how
the overall z/OS system is performing. More detailed and specific reports need only be reviewed
if there is an indication of trouble in this report. Listing 23.4 is an excerpt of a typical RMF
Summary Report.

Listing 23.4 RMF Summary Report.

1 R M F S U M M A R Y R E P O R T

PAGE 001

z/OS V1R3 SYSTEM ID XXX1 START 06/16/2003-09.29.00 INTERVAL 00.14.59

RPT VERSION V1R2 RMF END 06/16/2003-10.29.00 CYCLE 1.000

SECONDS

0

NUMBER OF INTERVALS 4 TOTAL LENGTH OF INTERVALS 00.59.58

-DATE TIME INT CPU DASD DASD OMVS OMVS SWAP DEMAND

MM/DD HH.MM.SS MM.SS BUSY RESP RATE MAX AVE RATE PAGING

006/16 09.29.00 15.00 47.4 4.6 1299 1 1 0.00 0.11

06/16 09.44.00 14.59 44.6 4.1 1079 1 1 0.00 0.00

06/16 09.59.00 14.59 41.6 4.8 976.4 1 1 0.00 0.00

06/16 10.14.00 15.00 38.6 5.1 668.3 2 1 0.00 0.09

-TOTAL/AVERAGE 43.0 4.6 1006 2 1 0.00 0.05

This displays the obvious Date, Time, z/OS release, and Interval information. The impor-
tant information is listed for each interval. The specific items to look for in this report are
explained in Table 23.3.

23.6 Administration and Monitoring 723

ch23.qxd 11/17/04 9:53 AM Page 723

Partition Data Report This report shows a great deal of information about the entire system. It
puts CPU utilization in context with image weights, and it shows the overall utilization of all
LPARs on the image. Comparison of each LPAR with its associated weight helps determine
which enclaves are consuming the most resources. Listing 23.5 is an excerpt from an example
(with some line wrapping):

Listing 23.5 RMF Partition Data Report.

1 P A R T I T I O N D A T A R E P O R T

PAGE 2

z/OS V1R3 SYSTEM ID MVS1 DATE 06/16/2003 INTERVAL 15.00.715

RPT VERSION V1R2 RMF TIME 09.29.00 CYCLE 1.000 SECONDS

724 Chapter 23 WebSphere Performance Tuning—z/OS

Interval Length of the interval for RMF reporting. This should be reduced when
performance testing occurs to show a more granular report.

CPU Busy CPU utilization during the interval (since engines are either fully utilized
by this LPAR or NOT utilized by this LPAR, it is actually the percent of
time that the engines were fully utilized by this LPAR). This number is rel-
ative to the processors allocated to this LPAR and is impacted by the
weighting value of the LPAR.

Swap Rate Number of swaps per second during this interval. If this is < 2%, then the
Paging Report need not be reviewed.

Demand Paging Page Fault Rate. Ideally, this will be 0. If it gets above 1 or 2, then adding
memory can have a very positive effect. The old song says, “There’s no
paging like no paging.”

DASD Resp Average milliseconds required to complete an IO request. This should be
< 10 milliseconds. If not, check the DASD reports to see if a volume may
have caching enabled or if the spread of data is an issue. One exception is
the volume containing the JES2 Checkpoint Data Set which tends to have
higher utilization and longer response times than other DASD volumes.

DASD Rate Tied to DASD Response. This is DASD activity per second across all
devices. The higher this number, the more important the DASD Response.

Table 23.3 Key Data from RMF Summary Report

Term Definition

ch23.qxd 11/17/04 9:53 AM Page 724

-

MVS PARTITION NAME MVS1

IMAGE CAPACITY 392

NUMBER OF CONFIGURED PARTITIONS 4

NUMBER OF PHYSICAL PROCESSORS 10

CP 10

ICF 0

WAIT COMPLETION NO

DISPATCH INTERVAL DYNAMIC

-

------- PARTITION DATA ------- — AVERAGE PROCESSOR UTILIZATION PERCENTAGES —

0 -CAPPING— PROCESSOR- LOGICAL PROCESSORS —- PHYSICAL PROCESSORS —-

NAME S WGT DEF WLM% NUM TYPE EFFECTIVE TOTAL LPAR MGMT EFFECTIVE TOTAL

LPAR1 A 40 NO 0.0 6 CP 71.36 71.55 0.11 42.82 42.93

LPAR2 A 3 NO 0.0 2 CP 0.00 0.00 0.00 0.00 0.00

LPAR3 A 30 NO 0.0 5 CP 65.16 65.23 0.03 32.58 32.61

MVS1 A 27 NO 0.0 5 CP 47.05 47.37 0.16 23.53 23.68

PHYSICAL 0.24 0.24

----- ----- -----

TOTAL 0.55 98.93 99.47

Key Data from this Report (Listing 23.5) is highlighted in Table 23.4.

TIP
The highlighted sections in the report show that LPAR 1 is weighted at 40 (which in this
case means 40 percent based on a total weight of 100). Note that it is actually con-
suming 42.93 percent of the entire z/OS machine during this interval. z/OS can bal-
ance this but, if this is a regular occurrence, then you likely have a CPU shortage here.
If this is largely caused by WebSphere (which we can determine by the Workload
report discussed later in this section), then either the workload volume is growing, or
the application is not performing as well as when it was sized.

23.6 Administration and Monitoring 725

ch23.qxd 11/17/04 9:53 AM Page 725

726 Chapter 23 WebSphere Performance Tuning—z/OS

System ID z/OS Image that this report was run on.

Number of Physical Processors CPUs enabled on the system.

CP In those processors, how many are enabled as general purpose
processors.

ICF This is for engines dedicated for Integrated Coupling Facility
CPUs, and IFLs (Integrated Facilities for Linux) will also come
under this category.

The remainder are for each LPAR.

S Status A=Activated; D=De-activated.

WGT Weight of the LPAR. This is critical as it determines how much
resource the z/OS image in this LPAR actually has. The number
should be divided by the total weight (for all nondedicated
LPARs) to determine the relative weight. If weight is DED, then
this processor is dedicated to this engine (this is rare). Note:
LPAR weights are relative. In order to interpret the weight of this
LPAR, it should be compared to weights of the other LPARs on
this processor.

Capping This should always be NO, or one of the benefits of z/OS (shar-
ing resources) will be compromised. Capping is sometimes used
to protect a production LPAR, but it can cause some LPARs to be
CPU-starved while cycles go un-utilized. You can protect an
LPAR simply by giving it adequate weight.

Processor Num Number of processors assigned to LPAR. This will impact CPU
utilization reporting and potentially allow for greater concur-
rency. Total of Processor Num should be <= 3 * CP (from head-
ing). That is, 3:1 is maximum good ratio for Logical Processors
vs. Physical processors.

Avg Util Logical Processors Total This should equal LPAR Busy Time Percentage from Summary
Report. It includes LPAR overhead and is a percentage of time
that the processors allocated to this LPAR were doing work for
this LPAR. This is affected by many of the other columns as well.

Avg Util Physical Processors Total This is the utilization spread out over all engines in the LPAR.
This should be compared to the weight of the LPAR. If it is at or
above the weight, then the LPAR was CPU-constrained during
this interval. If performance is sub-par and this is < weight, then
there is some other bottleneck.

Table 23.4 Key Data from RMF Partition Data Report

Term Definition

ch23.qxd 11/17/04 9:53 AM Page 726

CPU Activity As shown in Listing 23.6 this provides CPU model information which factors
into available MIPS. It also shows the CPU utilization information for this LPAR.

Listing 23.6 RMF CPU Activity report.

1 C P U A C T I V I T Y PAGE 1

z/OS V1R3 SYSTEM ID XXX1 DATE 06/16/2003 INTERVAL 15.00.715

RPT VERSION V1R2 RMF TIME 09.29.00 CYCLE 1.000 SECONDS

-CPU 2064 MODEL 210

0CPU ONLINE TIME LPAR BUSY MVS BUSY CPU SERIAL I/O TOTAL %I/O INTERRUPTS

NUMBER PERCENTAGE TIME PERC TIME PERC NUMBER INTERRUPT RATE HANDLED VIA TPI

0 100.00 53.20 67.44 049823 694.2 3.08

1 100.00 50.54 64.23 149823 645.9 2.83

2 100.00 46.69 60.27 249823 560.3 2.57

3 100.00 43.77 57.01 349823 564.2 3.26

4 100.00 42.65 55.76 449823 651.2 5.01

TOTAL/AVERAGE 47.37 60.94 3116 3.37

SYSTEM ADDRESS SPACE ANALYSIS SAMPLES = 900

- NUMBER OF ASIDS DISTRIBUTION OF QUEUE LENGTHS (%)

TYPE MIN MAX AVG 0 1 2 3 4 5 6 7-8 9-10 11-12

--- ----- ----- -------- ---- ---- ---- ---- ---- ---- --- ---- ---- ----

IN

READY 1 29 5.3 0.0 8.4 13.6 17.1 15.2 10.4 7.7 9.0 6.5 5.0

23.6 Administration and Monitoring 727

z/OS V1R3 OS specification.

System ID XXX1 Name of the LPAR that collected the RMF records.

-CPU 2064 Model 210 Processor specification, helps determine the overall capacity of the sys-
tem, used in conjunction with the Partition Data Report.

LPAR Busy Time Perc Percent of time this CPU was dispatched with work from this LPAR dur-
ing this interval In LPAR mode (the norm), this number is more important
than MVS Busy time.

MVS Busy Time Perc Percent of online time this CPU was busy overall during this interval.

IN READY queue Indication of queuing for CPU. Depending on number of processors.
Greater than 90% of samples should show with queue length less than 3 *
number of processors (this is the case here).

Table 23.5 Key Data from RMF CPU Activity Report

Term Definition

Key Data from this Report (Listing 23.6) is highlighted in Table 23.5.

ch23.qxd 11/17/04 9:53 AM Page 727

Workload Activity All of the preceding reports focused on the details and health of the overall
system. If the recommendations from the WLM section were taken, and the definitions made to
measure the WebSphere workload in a granular manner, then the Workload Activity reports on
Service and Report Classes can provide a great deal of info on the actual work flowing through
WebSphere. The following excerpts from Workload activity reports were taken from true runs of
a WebSphere Application. We show the Controller Service Class (MC5CTLR), the Servant
Service Class (MC5SVNT), and the enclaves (MCCLUST1).

Listing 23.7 is for the enclave as it contains some information not found (or not valuable) in
the other Workload Activity Reports.

Listing 23.7 Workload Activity report, enclave service class.

REPORT BY: POLICY=WEB_RAL WORKLOAD=CB SERVICE CLASS=MCCLUST1

CRITICAL =NONE

TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT —-SERVICE—— —SERVICE RATES-

AVG 6.00 ACTUAL 65 IOC 0 ABSRPTN 8950

MPL 6.00 EXECUTION 40 CPU 13041K TRX SERV 8950

ENDED 36198 QUEUED 25 MSO 0 TCB 93.4

END/S 148.99 R/S AFFINITY 0 SRB 0 SRB 0.0

#SWAPS 0 INELIGIBLE 0 TOT 13041K RCT 0.0

EXCTD 0 CONVERSION 0 /SEC 53674 IIT 0.0

AVG ENC 6.00 STD DEV 197 HST 0.0

REM ENC 0.00 APPL % 38.4

MS ENC 0.00

—-RESPONSE TIME--- EX PERF AVG --USING%-- ---- EXECUTION DELAYS %

HH.MM.SS.TTT VEL INDX ADRSP CPU I/O TOTAL QMPL CPU

GOAL 00.00.02.000 90.0%

ACTUALS

3090 99.0% 0.0% 0.5 9.9 0.0 0.0 52.1 45.1 7.0

--------RESPONSE TIME DISTRIBUTION--------

----TIME---- --NUMBER OF TRANSACTIONS-- ------PERCENT------

HH.MM.SS.TTT CUM TOTAL IN BUCKET CUM TOTAL IN BUCKET

< 00.00.01.000 35828 35828 99.0 99.0

<= 00.00.01.200 35840 12 99.0 0.0

<= 00.00.01.400 35842 2 99.0 0.0

<= 00.00.01.600 35842 0 99.0 0.0

<= 00.00.01.800 35842 0 99.0 0.0

<= 00.00.02.000 35842 0 99.0 0.0

<= 00.00.02.200 36196 354 100 1.0

728 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 728

<= 00.00.02.400 36197 1 100 0.0

<= 00.00.02.600 36198 1 100 0.0

<= 00.00.02.800 36198 0 100 0.0

<= 00.00.03.000 36198 0 100 0.0

<= 00.00.04.000 36198 0 100 0.0

<= 00.00.08.000 36198 0 100 0.0

> 00.00.08.000 36198 0 100 0.0

Key Data from this Report (Listing 23.7) is highlighted in Table 23.6.

23.6 Administration and Monitoring 729

Workload CB Workload classification from WLM. All WebSphere work is in the CB
subsystem.

Service Class MCCLUST1 WLM service class in which this workload runs. This is the class for
the enclave work.

Transactions AVG 6.00 Number of transactions concurrently being processed (on average).

Transactions END/S 148.99 Number of transactions in this class ended per second on average for
this interval.

TransTime Actual 65 Average response time during this interval (in milliseconds).

Service Rates APPL % 38.4 Average % of a single CPU used by running transactions. Note multi-
processor systems can have a number > 100% here as the workload
may consume cycles on any processor in the LPAR.

Goal 2 seconds 90% WLM response time goal for this service class.

Response Time Distribution Percentage distribution of response times (full report includes his-
togram). Breakouts are based on goal.

Table 23.6 Key Data from RMF Workload Activity Report

Term Definition

You can get a rough feel for CPU Time per transaction within the enclave if you know the
number of MIPS per engine of your processor (could look this up based on 2064/210 from the
CPU Activity report). The formula is: APPL % * MIPSPerEngine / (EndSecond * 100). In this
example, this would be 38.4 * 230.75 / (148.99 * 100) = .59 MIPS/tran. At this point, this does
not include CPU in the Controller or Servant (which is usually light) or the time spent in CTG or
CICS (DB2 time is reported in the enclave, but CTG and CICS are not). This example is for a
simple transaction driving an EJB; real work with DB2, XML, and so on, will likely be notably
longer.

ch23.qxd 11/17/04 9:53 AM Page 729

GOTCHA
It is not unusual for WebSphere Servers to do re-directions to other URLs. If this URL is
handled by this same server and transaction class, then the END/S number may be
double what the client perceives. Also, some Web pages may involve multiple individ-
ual requests, and again the perception of the client may be different than the transac-
tions as RMF reports them.

Listing 23.8 shows a similar report only for the Controller.

Listing 23.8 Controller Address Space Service Class report.

REPORT BY: POLICY=WEB_RAL WORKLOAD=CB SERVICE CLASS=MC5CTLR

CRITICAL =NONE

DESCRIPTION =MikeC WASV5 Controller ASIDs

TRANSACTIONS TRANS.-TIME HHH.MM.SS.TTT —-SERVICE—— —SERVICE RATES—

AVG 3.00 ACTUAL 0 IOC 4875 ABSRPTN 3885

MPL 3.00 EXECUTION 0 CPU 15030 TRX SERV 3885

ENDED 0 QUEUED 0 MSO 2812K TCB 0.1

END/S 0.00 R/S AFFINITY 0 SRB 16 SRB 0.0

#SWAPS 0 INELIGIBLE 0 TOT 2832K RCT 0.0

EXCTD 0 CONVERSION 0 /SEC 11655 IIT 0.0

AVG ENC 0.00 STD DEV 0 HST 0.0

REM ENC 0.00 APPL % 0.0

MS ENC 0.00

As is normal here, the Controller took a very small amount of CPU, and there is no work-
load distribution since there are no measurable transactions in this address space. The Servant
address space is similar (and, thus, not shown). If there is a significant amount of CPU consumed
in the Controller or Servant, it is worth further research to determine why. Typical Servant prob-
lems could be high garbage collection processing, user threads doing application work in the
region, or monitoring tools that do much of their work in the Servant and not in the enclaves.

The CTG and CICS service classes are also similar, but they can consume much larger
amounts of CPU. Unless the workload is highly isolated relative to other CICS workload, it may
be difficult to isolate the amount of CTG and CICS work that this application does relative to the
overall CICS workload. For this purpose, these service classes were not included in the reporting
class. It is always worth reviewing these service classes, however, to get an idea for resources
being consumed in the various elements on the system.

23.6.4 DB2
DB2 is likely the most common back-end or data store employed by WebSphere on z/OS. This
will focus on use of the standard Type 2 Java Database Connectivity (JDBC) driver. We focus on
monitoring performance from a JDBC and DB2 perspective. Tuning DB2 is beyond the scope of
this chapter.

730 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 730

23.6.4.1 JDBC Tracing and Reduction

Java Data Base Connectivity (JDBC) is the way that WebSphere or any Java application can con-
nect to DB2. Most current JDBC drivers implement the JDBC 2.0 spec. Soon most will be going
to the JDBC 3.0 spec. There are four types of JDBC drivers based on how they communicate
between the database client and the database server. The types are

Type 1: JDBC/ODBC bridge. Java interfaces to an ODBC layer in order to get to the
database server.

Type 2: Full Java provider that accesses a local database.

Type 3: Full Java provider that interfaces (usually over a network) to a specialized
daemon or code on the database server machine which then communicates with the
database server.

Type 4: Full Java provider that communicates directly to the database server.

Note that Types 2 and 4 are the only commonly used types. Type 2 can be used to a local data-
base client, which then uses database mechanisms (i.e., DRDA) to access a remote database server.

In addition to JDBC specification level, and driver type, with DB2, there is now a migration
on z/OS from the legacy Type 2 driver, to the universal driver that can operate as a Type 2 driver
or a Type 4 driver. JDBC trace can be set through the WebSphere Administrative Console on the
universal driver. Since most setups prior to DB2 Version 8 and WebSphere 5.02 (W502002), this
JDBC trace will focus on the legacy driver on z/OS which is Type 2.

JDBC Tracing can impact performance by more than 50 percent, and it is nondynamic (i.e.,
turning it on and off requires a recycle of the server), so it should only be enabled for verification
and/or for problem determination. JDBC Trace information is very valuable in understanding
what is flowing between the application and DB2. To enable JDBC trace, modify the
db2sqljJDBC.properties file (specified in was.env in your WebSphere configuration directory for
this server) and set the lines as shown in Listing 23.9.

Listing 23.9 db2sqljJDBC.properties directives to enable a trace.

DB2SQLJ_TRACE_FILENAME=</yourdir/yourhfsfile>

DB2SQLJ_TRACE_BUFFERSIZE=1024

Normally, the DB2SQLJ_TRACE_FILENAME directive should be commented out or removed as
this turns off the trace.

This trace will create two files: /yourdir/yourhfsfile and /yourdir/yourhfsfile.jtrace. The
jtrace (Java trace) is very large and very useful. It can be used to truly understand the flow of
requests and replies between the application and DB2. A typical flow, for example, of getting a
connection would appear as shown in Listing 23.10.

Listing 23.10 JDBC Jtrace excerpt from a prepared statement.

<2003.06.19 23:53:27.692> <Entry> <prepareStatement>
<COM.ibm.db2os390.sqlj.JDBC.DB2SQLJConnection@720d0865>
<WebSphere t=009c1288>

23.6 Administration and Monitoring 731

ch23.qxd 11/17/04 9:53 AM Page 731

-- <p#1=SQLText=SELECT distinct CORP1_STATE_CD, STATE_CODE
FROM DFBP50P.tst_bus_region_typ WHERE EFF_DT <= CURRENT DATE AND
(EXP_DT > CURRENT DATE OR EXP_DT IS NULL)>

<2003.06.19 23:53:27.696> <Entry> <Initialize>
<COM.ibm.db2os390.sqlj.JDBC.DB2SQLJJDBCCursor@218ec865>
<WebSphere t=009c1288>

--
<p#1=this=COM.ibm.db2os390.sqlj.JDBC.DB2SQLJJDBCCursor@218ec865[pS
TMT=0]>

--
<p#2=conn=COM.ibm.db2os390.sqlj.JDBC.DB2SQLJConnection@720d0865[pC
ONN=2938eb00]>

-- <p#3=Type=3>

-- <p#4=role=-101>

-- <p#5=nativeSQLText=SELECT distinct CORP1_STATE_CD,
STATE_CODE FROM DFBP50P.tst_bus_region_typ WHERE EFF_DT <= CURRENT
DATE AND (EXP_DT > CURRENT DATE OR EXP_DT IS NULL)>

-- <p#6=DB2StmtType=0>

-- <p#7=numParameters=0>

-- <p#8=metaData=0>

-- <p#9=ResultSetCount=0>

--
<p#10=JDBCProfile=COM.ibm.db2os390.sqlj.JDBC.DB2SQLJJDBCProfile@500c
c865>

-- <p#11=Section=350>

-- <p#12=cursorName=DB2OS390HOLD100>

<2003.06.19 23:53:27.698> <Exit> <Initialize>
<COM.ibm.db2os390.sqlj.JDBC.DB2SQLJJDBCCursor@218ec865>
<WebSphere t=009c1288>

<2003.06.19 23:53:27.698> <Entry> <prepare>
<COM.ibm.db2os390.sqlj.JDBC.DB2SQLJJDBCCursor@218ec865>
<WebSphere t=009c1288>

--
<p#1=COM.ibm.db2os390.sqlj.JDBC.DB2SQLJJDBCCursor@218ec865[pSTMT=5
48743dc]>

--
<p#1=DB2SQLJConnection=COM.ibm.db2os390.sqlj.JDBC.DB2SQLJConnectio
n@720d0865[pCONN=2938eb00]>

732 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 732

-- <p#2=TransactionState=1>

--
<p#3=COM.ibm.db2os390.sqlj.JDBC.DB2SQLJConnection@720d0865[pCONN=2
938eb00]>

<2003.06.19 23:53:27.756> <Exit> <prepare>
<COM.ibm.db2os390.sqlj.JDBC.DB2SQLJJDBCCursor@218ec865>
<WebSphere t=009c1288>

JTrace contains a wealth of information if you take a bit of time to understand the format
and learn to extract what you need. The non-JTrace file contains information that is likely more
valuable to a DB2 expert than to an application developer or WebSphere administrator. It is a
binary file that can be formatted to be viewable with the commands shown in Listing 23.11.

Listing 23.11 JDBC formatted and flowed traces.

db2sqljtrace fmt fname >fname.fmt (to get formatted version)

db2sqljtrace flw fname >fname.flw (to get flowed version)

Several configuration and application problems can be diagnosed with the jtrace files, including:

• Connections not being closed and returned to the pool.

• More SQL calls being executed than expected.

• Incorrect SQL being generated by an application.

• Commit/rollback issues (conn.setAutoCommit(true) issue).

• Improper usage of prepared statements (preparing statements that do not get executed).
Prepared statements are good to use as they can result in more hits on the dynamic cache.

All of these can manifest themselves as performance problems.

23.6.5 DB2 Tracing
DB2 Tracing on z/OS is completely dynamic and is excellent for understanding the behavior of your
application, relative to DB2, at a high level. In addition to being dynamic, most DB2 systems are
already running the type of tracing that can give an excellent high level view of the DB2 subsystem.

GOTCHA
If you use the legacy JDBC provider for z/OS and you have a local DB2 that passes the
requests through to a remote DB2, then your analysis should be of the remote DB2.
Specifically, if the local DB2 is trusted on the remote DB2, the signons on the remote
DB2 should be low compared with the number of requests.

23.6 Administration and Monitoring 733

ch23.qxd 11/17/04 9:53 AM Page 733

A common trace string is shown in Listing 23.12.

Listing 23.12 Standard DB2 trace options.

-<Db2CmdPref> start trace(stat) class(1 3 4 5 6) dest(smf)

-<Db2CmdPref> start trace(acctg) class(1 2 3) dest(smf)

These traces are generally already running on most DB2 systems. Report on these data by
doing an SMF extract of type 100–102 records for the time period in question. Then run a
DB2/PM postprocessing job against the data specifying:

Listing 23.13 DB2/PM control cards to review Accounting and Statistics Data.

DB2PM ACCOUNTING(REDUCE,

REPORT(LEVEL(SUMMARY,DETAIL),ORDER(PLAN)))

DB2PM STATISTICS(REDUCE,TRACE,

REPORT(LEVEL(SUMMARY,DETAIL)))

DB2PM EXEC

This will generate several reports.

23.6.5.1 System Parameter Report

The first item we review is the DB2PRMDD output. This provides all of the information from the
ZParms. ZParms are DB2 system parameter settings that your DB2 System Programmers can
modify if needed (but it does require a DB2 recycle). The items to focus on are

• MAX NO OF USERS CONCURRENTLY RUNNING IN DB2 (CTHREAD). This
should be at least 300 depending on the expected volume and concurrency.

• MAXIMUM KEPT DYNAMIC STATEMENTS (MAXKEEPD). This should be at least
500 as it controls the number of prepared statements kept in the cache (and, thus, do not
need to be re-prepared).

• CACHE DYNAMIC SQL (CACHEDYN). This turns on the dynamic caching which is
critical to performance in a dynamic SQL environment (i.e., JDBC).

• MAX NO OF BATCH CONNECTIONS (IDBACK). This may need to be increased with
high concurrency WebSphere applications (we use at least 250).

• CHECKPOINT FREQUENCY (CHKFREQ) should be increased if possible to reduce
DB2 overhead (we set this to 50,000)

23.6.5.2 Statistics Reports

You should then do a quick review of the statistics report which provides a view of overall DB2
subsystem health. The items to review are

734 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 734

• Volume of requests in SQL DML and SQL DDL sections (focus on prepares and describes).

• IDENTIFY and SIGNON requests under SUBSYSTEM SERVICES. This will identify
the amount of time DB2 spends in authenticating connections. This will be impacted by
the RunAS settings on EJBs and security settings from servlets.

• Various locking information under LOCKING ACTIVITY.

• Major focus on prepare requests in DYNAMIC SQL STMT with a focus on FULL vs.
SHORT (you want almost all short) as summarized by GLOBAL CACHE HIT RATIO (%).

23.6.5.3 Accounting Reports

The accounting report is similar to the statistics report, only here you can focus on a specific DB2
plan. If using DB2 local to WebSphere on z/OS, the plan should be DSNJDBC. It is also split by
Primary Authid on the thread, which can make for a long report requiring a great deal of filtering
effort. In some odd scenarios, with distributed usage, it is listed as ?RRSAF (work not actually
occurring under a plan). For the appropriate plan, you will want to review the same type of data as
you did in the Statistics Report, plus the following:

Listing 23.14 DB2/PM accounting report information.

PRIMAUTH: SRNAME1 PLANNAME: DSNJDBC

ELAPSED TIME DISTRIBUTION CLASS 2 TIME DISTRIBUTION

------------------------- --------------------- APPL

|==================================> 92% CPU |==> 4%

DB2 |===> 7% NOTACC ===================> 88%

SUSP |> 1% SUSP |====> 8%

AVERAGE APPL(CL.1) DB2 (CL.2) IFI (CL.5) CLASS 3 SUSPENSIONS AVERAGE TIME

--------- --------- ---------— --------- --------- ---------— ELAPSED TIME

1.212208 0.093436 N/P LOCK/LATCH(DB2+IRLM) 0.000202

NONNESTED 1.212208 0.093436 N/A SYNCHRON. I/O 0.000000

STORED PROC 0.000000 0.000000 N/A DATABASE I/O 0.000000

UDF 0.000000 0.000000 N/A LOG WRITE I/O 0.000000

TRIGGER 0.000000 0.000000 N/A OTHER READ I/O 0.000000

Continuation Lines w/in report

AV.EVENT HIGHLIGHTS

-------- --------------------------

0.36 #OCCURRENCES : 74873

0.00 #ALLIEDS : 0

0.00 #ALLIEDS DISTRIB: 74873

0.00 #DBATS : 0

0.00 #DBATS DISTRIB. : 0

23.6 Administration and Monitoring 735

ch23.qxd 11/17/04 9:53 AM Page 735

• Under ELAPSED TIME DISTRIBUTION look for Average ELAPSED TIME in Class 1
and Class 2 (Class 1 is total time from client connect to disconnect, Class 2 is time spent
actually doing DB2 work). If Class 2 is a small percentage of Class 1, then DB2 is not
likely a big factor.

• Review Class 3 (suspensions) to see if anything in particular stands out as having long
delays.

• A review of the DSNJDBC2 vs DSNJDBC3 packages can highlight the isolation level of
the work being done. DSNJDBC2 work is more efficient than DSNJDBC3 work (lower
isolation level). It is rare to see significant work under the DSNJDBC1 or DSNJDBC4
package.

• Consider the NOTACC (not accounted for) time. If it is high (as it is in this example), it
could be a sign of problems relative to swapping or other unaccounted-for time.

23.7 HTTP Front-End Handlers for WebSphere
Other chapters such as the Plug-in chapter covered the options and “how-to” portions of getting
workload to the WebSphere servers. This section focuses on performance implications of the var-
ious techniques. The factors we look at specifically are listed here, and a summary table at the end
of the section provides concise analysis.

• Impacts on performance, including usage of CPU resources

• Reliability

• Benefits/Functions

• Costs

While the overall options for front-ending have many permutations, including hardware,
software, and so on, we are going to focus on just a few. Clearly, in some cases, these can be com-
bined, and other options exist, but these are some of the most commonly used options. You will
note that the older WebSphere V4 plug-in using RMI/IIOP is not considered as its performance is
not as good as other options, and it is not supported in WebSphere V5.

23.7.1 Browser/Workload Direct to Controller HTTP/HTTPS Transport
The simplest setup is to have the source of the workload (usually browsers) pointed directly to the
HTTP or HTTPS transport in the WebSphere Controller. This will likely provide the fastest solu-
tion, but with few options and functions available. In WebSphere V5, there will be no http logging
performed (access, agent, referrer, …), although V5.1 does provide this (this is supported on dis-
tributed platforms, but not in the current HTTP Transport on z/OS). For the standard dynamic

736 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 736

WebSphere workload, where everything is served out of WebSphere on z/OS, this uses minimal
CPU time for routing. Functionally, however, it limits options relative to distributing the work
and/or caching results. All requests are handled by WebSphere, which is not the low-cost solution
for serving or caching static Web content. This is a reliable solution as there are fewer compo-
nents involved. It is also a low-cost solution since no additional software is necessary.

23.7.2 z/OS IHS HTTP/HTTPS Plug-in Forwarding
This is a recent z/OS IBM HTTP Server (IHS) function modeled after the plug-in functionality
on distributed Web servers. It has a minimal impact on performance since IHS is efficient, but it
will use CPU resources in the front-end, so, if your system is under high utilization, it could
compete with WebSphere for cycles. It is highly reliable and, for those who have historically used
IHS, configuration is quite easy. If it is being used for several Server Instances, it will keep ses-
sion affinity intact. It allows for all of the logging and debug features of IHS to be used in con-
junction with those provided by WebSphere V5 . Since it is part of z/OS, IHS does not incur
additional financial costs. This infrastructure allows for splitting workload (i.e., serving static
content directly from IHS with or without caching). It is usually the case that serving static files
from a Web server is faster than serving them out of an application server, and this will also avoid
some TCP hops.

23.7.3 Distributed HTTP/HTTPS Plug-in Forwarding
This is a simple and efficient way to front-end the WebSphere z/OS HTTP transport. Weighted
averages can be used to select z/OS and non-z/OS servers. Setting up the plugin-cfg.xml for a
z/OS server is no different than setting it up for a distributed server and WebSphere V5 on z/OS
can generate plug-in-cfg.xml files as well. It is important to be sure that there is enough available
bandwidth on the machine running IHS to avoid creating a bottleneck in presenting workload to
z/OS. As with the z/OS IHS, this allows for the workload to be split out as needed. Further infor-
mation on the plug-in can be found in chapter 10 (The WebServer Plug-in) and the plugin-
cfg.xml appendix.

23.7.4 WebSphere Edge Components
WebSphere Edge Components (formerly known as “The Edge Server”) provides a superset of the
facilities that the distributed IHS plug-in provides. With WebSphere V5, the Edge Components
can be exploited for all of their capabilities such as caching Web content, routing, and so on. Full
discussion of the Edge Components is beyond the scope of this chapter, but the Edge Compo-
nents can be used to reduce workload on back-end servers, reduce network latency and distance,
improve response time to the browser, and much more. It can be especially valuable in scenarios
where the back-end servers are highly utilized.

23.8 Cookbook Approach to Problem Resolution 737

ch23.qxd 11/17/04 9:53 AM Page 737

23.7.5 Note About Sysplex Distributor
Sysplex Distributor can play a role in many of the scenarios mentioned. In using Dynamic Vir-
tual IP Addressing (DVIPA) or Distributed DVIPA, it is simple to vary servers on and off with
little or no impact to clients. In addition, this can be used as a workload distributor. Sysplex Dis-
tributor and Distributed DVIPA do not consume a great deal of resources.

Table 23.6 is a summary of HTTP front-end handlers.

23.8 Cookbook Approach to Problem Resolution
When performance problems occur on WebSphere V5 for z/OS, there are a myriad of places to
look. The best solution we have found is to divide and conquer, and run the least intrusive tests
first (steps 1 through 5). The more intrusive tests generally require a test system and a load
generator.

738 Chapter 23 WebSphere Performance Tuning—z/OS

Browser Direct to Optimal for dynamic Highly Reliable, Low, little Low
Controller workload, inflexible in no additional points logging, no

that all work is done out of failure introduced. splitting up
of WebSphere AppServer. workload.
Can provide lowest
Response Times.

z/OS IHS Plug-in Very good, extra TCP Highly Reliable. Logging, Low
hop, but ability to serve One extra feature, static
static requests out of IHS but IHS is stable. caching,
is a plus. Some extra splitting load.
CPU cost.

Distributed Plug-in Very good, similar to Highly reliable. Same as for Low to
z/OS IHS but does re- Extra hop over z/OS IHS Mid
quire extra z/OS CPU network, but IHS but can place
resources. Make sure highly reliable. boxes closer
IHS box has sufficient to clients.
available bandwidth.

Edge Server Very good, including Highly reliable, Can be com- Mid
dynamic caching. many features to plex setup,

avoid single point but dynamic
of failure. caching fea-

tures are
worth it.

Table 23.6 Summary Table of HTTP Front End Handlers

Performance Reliability Benefits Costs

5887ch23.qxd_SR 11/23/04 03:51 PM Page 738

23.8.1 Nonintrusive Procedures
These steps can be performed on a production system and do not involve modifying the code.
They can be executed by either administrative or development personnel. An additional benefit to
these is that they involve full workload (production or created stress). Thus, the behavior of the
system will include all concurrency issues, as well as issues involved in an individual request.

Step 1: Look for the obvious

• Are there traces on (in WebSphere or on the system) that impact performance?

• Are the container configurations consistent with best practices?

• Are the system tuning items (covered in Operations and Administration) done?

• Are the performance goals reasonable, based on the application and the resources?

• Review VerboseGC and look for memory leaks?

Step 2: Simple controlled test

Run a simple, controlled (and easily repeatable) test and review the RMF data.
If response time or throughput goals are not being met and the CPU is not under heavy uti-

lization, there are likely external delays. Look for GRS contention and other delays in the RMF
reports. Look at the workload analysis for the enclaves to see what may be delaying them on the
system. Look at the APPL percent versus the response time in high and low usage times.

If the CPU is heavily utilized, determine the CPU seconds /Tran (discussed earlier) versus
the transaction volume. If the CPU Seconds/Tran are higher than expected, then application tun-
ing may be in order (Java tracing, Jinsight, and other actions discussed in the remainder of this
section).

Step 3: Dump

Taking one or more snapshots during a period of high volume can provide insight into where the
threads are spending their time. Use the method of displaying the trace-backs discussed earlier.
Focus on call-stacks that contain the SR_ExecutionRoutine CSECT. Look for patterns in the tops
of the call-stacks, especially leading into monitor locks, and so forth. This can often detect bottle-
necks in such areas as:

• Calls to back-end systems that are taking too long

• Calls to DB2

• Synchronized sections of an application or third-party product in use

• Excessive logging

23.8 Cookbook Approach to Problem Resolution 739

ch23.qxd 11/17/04 9:53 AM Page 739

Step 4: Container tracing

Starting in WebSphere V4 (and improving in V5), container tracing can be turned on and off
dynamically. This is a great way to help find the delays in your workload. Lightweight traces can
be turned on with the modify commands described in chapter 3 of Operations and Administra-
tion. The best details on the tracing can be found in Appendix A of Assembling J2EE Applica-
tions. A useful trace option is to turn on the basic trace with the console command:

/f <ServerProc>,tracebasic=(3,4,5,6)

Then create or allow some workload to occur, then:

/f <ServerProc>,traceinit

Step 5: Java Tracing

WebSphere V5 provides dynamic Java tracing which aids tremendously in isolating problems.
Via the Administrative console or via the commands in chapter 3 of Operations and Administra-
tion, very detailed Java tracing can be turned on and off dynamically.

23.8.2 Intrusive Procedures
These tests involve modifying code or stopping and starting servers. Thus, they are best done on
test or performance systems, and they generally do not involve running with stress on the system.

Step 6: WSAD profiling or Jinsight

Before the time of publishing, Jinsight functionality was replaced by WSAD profiling, and it is
recommended that this be used instead.

Jinsight is an IBM tool that allows all method calls in a JVM to be captured and timed.
Information on Jinsight (including download instructions) can be found at http://www106
.ibm.com/developerworks/java/library/j-jinsight/.

WSAD V5 incorporates much of the functionality of Jinsight. By using the profiling fea-
tures in WSAD, the developers should be able to get a feel for the expense of each of the items in
the call.

Jinsight (which is not a supported product) has the additional benefit of running this profil-
ing on the z/OS system which may have some different behaviors than the development system.
Jinsight tracing can be done with the generally available Jinsight 2. In reviewing Jinsight output,
we have found the following procedure to work best:

• Have an IBM person use Jinsight Live to capture multiple separate traces, one for each
key request and/or data path.

• For each result, load the file into Jinsight by starting Jinsight, and selecting File → Open
a Trace File and selecting the appropriate file. Then press the Load button.

740 Chapter 23 WebSphere Performance Tuning—z/OS

ch23.qxd 11/17/04 9:53 AM Page 740

• Select Views → Execution and you will be presented with the various work on each
thread. Use the mouse to turn most of the work on one or more threads yellow (start near
the left side of the work graphic, but not all the way to the left).

• Select Selected → Drill down from selected items → Call Tree. This provides an excel-
lent view of the amount of time taken by each method of the call. Focus more on the per-
centages than on the actual contribution column.

Step 7: Footprinting application

If none of the steps already discussed have isolated the problem to the point where it can be fixed,
then it is time to begin footprinting the code. This can be done elegantly with Log4J or JRAS, or
in a more homegrown method with System.out.println() or something of the sort. This should
help to isolate the methods that cause the problem.

23.9 Summary
You should now be familiar with the following concepts:

• The measurements of performance:
• Response Times
• Resource Utilization
• System throughput
• Scalability

• Understanding the importance of repeatablitiy and ability to re-create problems in
assessing impacts of changes.

• Understanding the impact of tuning of z/OS subsystems to the overall performance of
WebSphere on z/OS.

• Estimating the impact of various topologies on performance.

• Assessing the health of the JVM and garbage collection.

• Using the monitoring tools for WebSphere and z/OS and know which apply to different
types of problems.

• Selecting the front-end topology that best meets your needs for performance, reliability,
and simplicity.

23.9 Summary 741

ch23.qxd 11/17/04 9:53 AM Page 741

780

C H A P T E R 2 5

Problem Prevention
and Determination
Methodology

Objectives
This chapter covers the following concepts:

• Problem prevention best practices

• Change control best practices

• WebSphere best practices

• Working with IBM WebSphere support

25.1 Problem Prevention Best Practices
25.1.1 Testing Best Practices
One of the best ways to avoid and flush out problems prior to releasing a new application into the
production environment is to properly test it. To most, the concept of testing is an obvious prereq-
uisite to putting an application into the production environment. However, it is important to note
that the key is not just “testing,” but “proper testing”. To paraphrase a famous statement, it is not
whether you test, but how you test. A large percentage of the problems that occur in production
environments can be prevented if the application is properly tested. It is the goal of this section to
describe a test methodology that, when followed, will result in a significantly reduced risk of pro-
duction outages.

25.1.1.1 Properly Scaled Tests

Prior to testing an application, it is important to ensure the environment in which it is tested is
appropriate for that application. An appropriate test environment for an application is one that is a
scale model of its production environment, including all components from Web server to data-

ch25.qxd 11/17/04 9:55 AM Page 780

base. Having an exact replica of the production environment for testing may not always be eco-
nomically feasible; however, it is highly recommended that the test environment be an accurate
model of the production environment.

What Does It Mean to Have a Scale Model of Production in Test? Prior to discussing the
benefits of having a scale model of the production environment in test, it is important to clearly
articulate what we mean when using this phrase. It is broader than simply having a fraction of the
production computing power in the test environment. As an example, imagine a production
environment consisting of four machines, each with four processors. Two possible test
configurations may be

1. One 4-processor machine

2. Four 1-processor machines

While it is true that both of these proposed test environments have one-quarter the processing
power of the production environment, both leave out complexity. The first configuration, one
4-processor machine, disregards the complexity of having the application distributed across mul-
tiple systems. The second option, four 1-processor machines, ignores the impact of having mul-
tiple processors per machine. Although the number of processors per machine does not directly
affect the administrative configuration of the WebSphere environment, it does impact the ability
to troubleshoot the application. More specifically, this configuration increases the difficulty of
finding synchronization bugs.

Most synchronization problems are only found on multiple processor machines where true
multithreading and parallelization occur. Thus, not testing on multiprocessor servers can lead to
deploying an application, fraught with synchronization problems, into the production environ-
ment. A more correct scale would be to have four 2-processor machines or, at a minimum, two
2-processor machines.

Another key component to having a scale model of the production environment in test is to
ensure that the entire path length of the application is tested with no parts skipped, ensuring that
all tests are functionally and systematically complete. This includes having all database connec-
tions, Web servers, proxy servers, messaging servers, firewalls, and so on, configured and running
in the test environment as they will in production. Failing to test the entire environment may
result in deployment or run time failures.

Benefits of a Scale Model The most obvious reason for testing an application is for
correctness. It is important to verify that the application actually works as designed, but this is
only one of the reasons for testing. Another commonly overlooked reason for testing is to allow
you to become familiar with the dynamics of the application, its attributes in steady state, startup,
and under load in a safe environment. This is important because it will allow you to quickly
identify and isolate anomalies when the application enters the production environment. If the test
environment is not to scale of the production environment, then the dynamics observed will

25.1 Problem Prevention Best Practices 781

ch25.qxd 11/17/04 9:55 AM Page 781

change as the application moves to production, thus crippling your problem determination ability
and putting the company in a dangerous situation.

Maximizing performance tuning efforts is yet another reason for having a scale model of
the production environment in test. Performance is one of the key characteristics of any applica-
tion, often the second most important next to correctness. For an application to achieve maximum
performance, it must be tuned. Performance tuning is a highly iterative process dependent on
many parameters set both within an application server and the wider environment. If the test envi-
ronment is not to scale of the production environment, much of the hard work that went into tun-
ing the application and its environment is wasted because the parameters that achieved the best
results cannot be directly applied in production. A concrete example of a parameter that has a
large effect on an application server’s performance, thus an application’s performance, is the Java
Virtual Machine’s heap size. For example, if, by tuning, it is discovered that a maximum heap
size of 256 megabytes achieves the best performance in the test environment and the test environ-
ment is one-half scale of production, then this number can be doubled in production with a higher
degree of confidence than if the test environment were not to scale of production.

25.1.1.2 Isolated Test Environment

To ensure the accuracy of any test, it is important to mandate that the test environment be isolated
from other environments and activities. This is necessary to ensure that the observed behaviors
are the result of the application or services with which the application is interacting and not some
external event. An isolated test environment consists of machines dedicated to running Web-
Sphere, an isolated subnet, dedicated database, and any other external systems and resources.
One of the most frustrating situations when attempting to debug a problem is being unable to iso-
late its source, only to later find out that the problem occurred because of some external situation.

25.1.1.3 Test Scenarios

To ensure that an application is ready to be deployed in the production environment, care must be
taken to ensure that the scenarios under which it is tested are realistic. Realistic test scenarios
consist of two parts.

The first step in creating realistic test scenarios is to ensure that the scripts used for testing
the application are realistic examples of what a user might do in production. General usage sce-
narios are usually known prior to developing an application in the architecture phase; however,
like most things, enterprise applications are not always used the way their architects envisioned.
Instead, people use the application in the way that feels most intuitive to them. Therefore, it is
best to get test cases from the users themselves. There are several ways to gather this information,
which vary depending on what is being deployed into production.

If the application is an update to an existing application already in production, then real-
world usage can be tracked on the current production version of the application, either by logging
or with an external monitoring tool capable of capturing transactions.

If the application is completely new, with functions never before available to its users, then
the task of gathering real-world scenarios becomes more difficult. One option is to use IBM’s

782 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 782

Rational Unified process or the Extreme Programming paradigm at http://www.extreme
programming.org/, in which the end users are constantly evaluating the application as it is being
developed. Another option is to verify the application’s general functionality via some archi-
tected use cases then release the application to a small alpha or beta test group to gather more user
oriented test cases.

GOTCHA
A commonly forgotten step when creating test scripts is to validate the returned
results. By default, many of the stress-testing applications only check for a HTTP 200
response, which is insufficient when testing J2EE applications. If the results are not
verified, the application could be displaying incomplete Web pages or, worse yet, the
data for a different user.

Once the test cases have been created, the next step is to run them against the application in
the test environment. As it is important to gather realistic test scenarios, it is also important to run
a diverse mixture of these scenarios while testing the application. The mixture should be a repre-
sentative set of your user population. For instance, if there are six different user types expected in
the production environment and the majority (50 percent) are expected to be of one type (type A)
while the remaining 50 percent will be equally distributed among the five remaining user types,
then you will want to run the tests with a similar distribution. In this example 50 percent of the
virtual users would be executing test A while the remaining 50 percent would be distributed
evenly among the other test cases.

GOTCHA
It is important to capture and test all possible user types even if there is one user type
that is only used once in a great while. An example would be an administrator perform-
ing some weekly or monthly functions. Though this administrator may be less than
1 percent of the user population, it is important to understand the implications of that
user’s actions.

TIP
While monitoring the performance of the application and its dependent parts, also
monitor the statistics of the testing machine. Never let the stress testing software or
hardware be the bottleneck in a test environment.

Test Types After the test scenarios have been created, the next step is to execute them in
various test types. The first tests that should be run are those that verify the correctness of the
application. There are several others tests that go beyond just testing functionality of the
application which should also be run. Three of the most important tests are performance, stress,
and endurance. Describing the detailed steps required to execute each of these tests is beyond the
scope of this book, so we will give a brief overview of each and pointers to more in-depth
resources as appropriate.

The performance test is probably the most well-known test type. In a performance test, as
the name suggests, the goal is to optimize the performance tuning parameters to maximize the

25.1 Problem Prevention Best Practices 783

ch25.qxd 11/17/04 9:55 AM Page 783

overall performance of the applications being tested. The process for performance tuning Web-
Sphere Application Server is described in great detail in chapter 22 of this book and in the
whitepaper, WebSphere 4.0 Performance Tuning Methodology found at http://www.ibm.com

/software/webservers/appserv/doc/v40/ws_40_tuning.pdf. The paper was written for the 4.0 version of
WebSphere Application Server; however, the logic and methodology detailed is applicable to
every WebSphere release, including the latest, V5.1.

One of the main themes of this chapter, thus far, has been the importance of having a scale
model of your production environment in test. A key component of this is having an accurate
model of user workload to ensure that the planned capacity is enough to handle the estimated user
load. Stress testing is designed to apply user workload, above and beyond what is expected, in an
attempt to find the breaking point of the application and its environment. This type of test has sev-
eral benefits. First, it will help you better understand the characteristics of the application under
high load and what piece of the application is likely to fail. If a potential weak link can be identi-
fied, procedures can be put into place to deal with the problem, allowing you to be proactive
instead of reactive. The second benefit is that application bugs, which might not surface under
normal load, will get flushed out. One of the most prominent types of these bugs are those caused
by synchronization (or lack of it). Flushing out synchronization bugs is a function of time, load,
and parallelism. The larger these components are, the greater the possibility of finding a synchro-
nization problem. Stress testing increases the load part of this equation.

The last type of test we discuss is the endurance test. The length of the endurance test is
what differentiates it from all other tests. Most tests last several minutes or, at most, an hour, but
in the endurance test the application is run under heavy load, as expected in production, for many
hours or even days. The purpose of this is to uncover problems that may appear after extended
usage. There are many problems that fall into this category, including session problems, intermit-
tent failures, and the aforementioned synchronization bugs.

25.1.2 Change Control Best Practices
The production environment should be a strictly controlled environment. Failure to adhere to a
stringent change control policy can result in inexplicable problems in the production environ-
ment. This section describes some best practices associated with change control with the produc-
tion environment.

25.1.2.1 Restricting Administrative Privileges

The first step in ensuring proper change control is to limit the number of people who have admin-
istrative privileges on the production machines. Oftentimes we have encountered production sys-
tems on which many people in the organization have administrative privileges, leading to a
myriad of problems. This is especially problematic if the production machines are shared across
many departments within the organization. In most cases, each department will have their own
set of priorities, and, if the administrative privileges are not restricted to one or a select few
administrators, people can unwittingly make changes that impact other applications within the
environment.

784 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 784

25.1.2.2 Access History

Even with proper restriction on administrative privileges, problems can occur because of admin-
istrative errors. When they happen it is useful to have a log detailing who made the last change, at
what time, and from which remote machine. This is not to place blame but rather to identify what
actions caused the problem and to be able to inquire as to why that particular action was per-
formed. Once the problematic action is identified, an alternative procedure can be created to
avoid future outages.

Another reason to keep an access history is to identify hackers. By following the potential
hacker’s actions, you can see what techniques he/she is using to access your site, and you may be
able to identify their intentions if they should break in.

25.1.2.3 Backing Up Your Configuration

Prior to making any configuration change, it is a good idea to back up the current, working con-
figuration. WebSphere provides a utility, backupConfig, to aid this process. BackupConfig is
command line utility (found in the <WASND_ROOT>/bin and <WAS_ROOT>/bin directories)
that creates a backup of the installation’s configuration files, including application and server
data. BackupConfig can be run by executing the provided executable. Be aware that its default
behavior is to stop all WebSphere processes prior to performing the backup. This behavior can be
overridden by supplying the switch –nostop. The complete command would be backupConfig
–nostop.

TIP
When using WebSphere in a distributed environment, backupConfig only needs to be
run on the Deployment Manager.

To restore from a previously saved configuration, use the restoreConfig command. Like
backupConfig, restoreConfig’s default behavior is to stop the WebSphere processes prior to
restoring the configuration. Again, the –nostop command line option can be used to override the
default behavior.

TIP
Unfortunately, we are all human and it is possible to forget to back up the configuration
prior to making a change. Creating cron jobs, a scheduled execution of a task, is one
way to overcome this human limitation. By creating a daily or weekly cron job that runs
the backupConfig command, you can ensure that you have a recovery point even if
you forget to manually run the backupConfig command.

Beyond backing up the configuration, it is also a good idea to backup the entire WebSphere
installation directory immediately after installation, before and after any major changes, such as
adding a node to a cell. This is useful in the event an administrator accidentally deletes a critical
file, such as startupServer.bat or java.exe. Mistakes such as these are not uncommon, especially
when working from the command line and dealing with many different directories at once.

25.1 Problem Prevention Best Practices 785

ch25.qxd 11/17/04 9:55 AM Page 785

Regardless of whether this has happened in your organization before, it is best to protect against
these types of mistakes and create regular backups.

25.1.2.4 Maintain a Log History

Usually a problem is discovered only after several occurrences and perhaps not until an external
complaint is logged. By keeping a log history, you can uncover how long this problem has been
occurring and potentially find a pattern in the events that caused the problem to occur.

25.1.2.5 Documented Procedures

It is easy to forget a step when performing a complex operation such as installing WebSphere or
upgrading an application. The best way to avoid such errors is to document the steps for these
complex operations. The document should consist of clear and detailed steps with screen shots
that show expected results to avoid possible confusions and misinterpretations. Every administra-
tor should have a hard copy of these documents and follow them to the letter.

Execution of the procedures should involve, at the very least, two people. The first adminis-
trator executes the steps and the other verifies them.

TIP
Automating the documented procedures is an advanced technique that, when imple-
mented properly, eliminates all potential user error. The risk is that there is no human
control on the process. For more information on automated scripting, refer to chapter
20, Automated WebSphere Administration.

25.1.3 WebSphere Best Practices
IBM provides numerous white papers and articles about best practices and design patterns for
WebSphere. The WebSphere Developer Domain Web site is a great place to find many useful
WebSphere articles, including best practices-specific papers. A Web site that hosts an extensive
collection of best practices for administering the WebSphere Application Server Web site is also
available at http://www.software.ibm.com/wsdd/zones/bp. IBM best practices are reviewed and
updated for new versions of WebSphere. It is recommended you stay informed and follow the
best practices published by IBM.

25.1.3.1 Application Best Practices

Application performance and scalability is heavily influenced by the design of the application,
database, and other resources. The importance of following application best practices is underes-
timated in many cases. A good application design for performance and scalability follows certain
fundamental best practices and avoids common mistakes. Following the WebSphere application
best practices is a good starting point for designing applications with great performance and scal-
ability. Performance, in particular, suffers from poorly designed and implemented applications.

786 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 786

25.1.3.2 Code Reviews

Code reviews are an extremely effective way to find code bugs and, thus, prevent problems, but
many times they are not fully completed due to project deadlines or other time constraints. Code
reviews are performed by programmers who are not the authors of the code that is investigated. In
many cases code reviews are as effective as or even more effective than testing.

Code reviews include simple things like checking for naming conventions, code indenting
or adding Javadoc comments, and more complex tasks like code optimization or logic checking.
The tasks in the first category make your code easier to maintain and reuse, while tasks in the sec-
ond category check the correctness and improve the performance of your application. Code opti-
mization like caching data, efficient use of database connections, or eliminating unnecessary
object instantiation can significantly increase performance.

The good news is that you can use Java code analyzers to automate much of the code
review process. Most Java code analyzers detect things like unused or duplicate imports, unused
private and local variables, missing Javadoc comments, violation of naming conventions, and
empty “catch” blocks or “if” statements. You will still have to check for logic errors and code
optimization, but most of these simple (but time-consuming) code checking tasks are automated.

TIP
You can integrate Java code analyzers with Ant. In this way you can check your code
any time you run a unit test or complete a build.

25.1.4 WebSphere Fix Packs and Interim Fixes
In many cases, the solution to your problem may be as simple as applying a fix pack or interim
fix. For this reason, we recommend that you stay up to date with fix packs for your version of
WebSphere and check for interim fixes when problems occur. Although applying a fix pack
requires careful planning, this operation pays off in most cases by fixing or preventing problems.
It is recommended that you also keep current supporting products such as DB2, and so on.

TIP
Fix packs should be tested in nonproduction environment first. Occasionally features
in a fix pack may not be compatible with existing applications.

Interim fixes are WebSphere code fixes created for known individual problems and should
be applied when you have a critical problem without a valid workaround. Interim fixes are indi-
vidually tested and are integrated with the next WebSphere fix pack. Make sure that you check the
WebSphere Application Server fix packs and interim fixes Web site http://www.ibm.com/soft-
ware/webservers/appserv/was/support/ when a problem occurs in order to determine if this is a
documented problem. Each released version of WebSphere details the defects that were fixed in
its accompanied release notes. You can also create a “My support” profile to receive weekly
e-mail notifications about IBM product updates. For WebSphere, go to http://www-306

25.1 Problem Prevention Best Practices 787

ch25.qxd 11/17/04 9:55 AM Page 787

.ibm.com/software/webservers/appserv/was/support/ and select My Support from the right
menu.

25.2 Problem Determination Methodology
Often, when an error occurs in WebSphere, the user knows a problem has occurred but doesn’t
know what to do about it or what it means—the user just knows that something is broken. This
section takes you through WebSphere problem determination methodology, a series of rules to
follow when you encounter a problem, to help pinpoint its origin and take it to resolution.

Why is methodology important? The foundation of any problem determination process is
good methodology. Knowing how to go about determining if you have a problem, where the
problem exists, and the basics of how to solve that problem are important to any enterprise
project.

You might be asking, “Why not tell us how to troubleshoot WebSphere?” Troubleshooting
a product the size of WebSphere could fill a book on its own. WebSphere is a very large and com-
plex piece of software and to try to address in detail how to debug each specific component is
beyond the scope of an administration book. While this subsection does not cover detailed trou-
bleshooting of the application server, it does lay the foundation for troubleshooting your environ-
ment if and/or when a problem occurs. This methodology section lays out a set of rules you can
employ when doing in-depth problem determination. Following these rules when a problem
occurs can help expedite locating the problem (the first step in any problem determination
process) and then resolution.

25.2.1 Locating the Error in a Complex Environment
When a problem occurs, pinpointing its origin can take some detective work, especially in a com-
plex environment where multiple tiers with multiple products are integrated with one another.
Knowing where each product’s log files are located is an important step in knowing your environ-
ment, since the log files often provide very useful information. We have detailed where to locate
and how to read WebSphere’s log files in chapter 24, WebSphere Problem Determination Tools—
Logging and Tracing. Often, when troubleshooting in a complex environment, problem determi-
nation becomes a team effort, involving administrators and application developers from each
component in the environment.

This is especially true in the initial stages of determining where the problem resides (e.g.,
which tier, which component/product). Rarely is one person an expert in each component that
makes up the environment (e.g., the back-end, the Web server, the edge component, the authenti-
cation server, the application, etc.). It is often necessary to involve people from various roles to
assist in determining where the problem is or is not located. For example, if you are experiencing
the problem when testing a new build of an application, make sure the necessary application
developers are available to help determine if the error could be originating from the application
code. Or, if the error is occurring when accessing the back-end data store, involve the database
administrator to assist in determining if the error is originating from the database.

788 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 788

To help pinpoint the component where the problem exists, it is useful to create a diagram of
the path a request would take, assuming it did not fail, beginning with the client all the way to the
back-end, depicting each component the request touches. For example, assume that a request for
a simple servlet is failing. If you were to map the flow of a request in a simple environment begin-
ning from a browser, it might look something like the servlet request goes through the proxy fire-
wall to the network sprayer; from the network sprayer through the domain firewall to the Web
server; from the Web server through an additional firewall to WebSphere Application Server,
which then responds back to the Web server that responds to the browser.

At any one of these points, the request might fail. However, the request can be tracked by
looking at access and error logs of each of the components involved. Additionally, this might
require enabling trace on the various components to track the requests. For example, the access
log on WebSphere’s embedded HTTP Server might be enabled so you can verify that the request
from the Web server made it into WebSphere. Possibly, one of the components is throwing error
messages into the log files, or there are communication issues between two or more of the com-
ponents involved. Once the failing component(s) is located, a more thorough examination of the
error can begin. Problem determination of products outside the WebSphere Application Server or
products installed and running in WebSphere Application Server (like WebSphere Portal or a cus-
tom J2EE application) is out of the scope of this section. While this section is mainly geared
toward problem determination with regard to the WebSphere Application Server run time, some
of this methodology still applies to external products and applications.

25.2.2 Could the Error Be Valid?
Once the error is isolated to a particular component(s) within the environment, one of the first
things to evaluate is the error code, message, and any associated stack trace that appears. Often
these error codes and/or messages provide useful information as to what went wrong. Most prod-
ucts and protocols also have guides that provide additional information on particular error codes.
WebSphere has a Message Reference guide that is a subsection of the InfoCenter documentation.
This Message Reference section has a description of each error code that WebSphere can log in

25.2 Problem Determination Methodology 789

Figure 25.1 Example request path through enterprise environment.

ch25.qxd 11/17/04 9:55 AM Page 789

its trace or log files. For information on how to read or locate WebSphere error codes and mes-
sages, please refer to chapter 24. Also, in Table 25.1, we are providing information on where to
locate additional commonly used IBM product documentation, as well as protocol error codes.

Sometimes, pertinent information can be located in different product log files, which can
be aligned by timestamp. For example, an exception occurring in the database could provoke
error messages to be logged in the application server log files, as well as the Web server logs.
Once you locate one error message, you can use its associated timestamp to cross-reference the
database, application server, Web server, log files, and so on. This is also a good technique to use
when locating the root of the error.

TIP
It is important to have the system clocks synchronized on each machine such that
time stamping cross-referencing can be easily used. If the system clocks are not syn-
chronized, the logs can still be cross-referenced; however, the times must be skewed
appropriately.

790 Chapter 25 Problem Prevention and Determination Methodology

Product or Reference
Protocol Guide Where to Locate

WebSphere Message Reference Online InfoCenter Documentation:
Application Server Section of Info

Center Documentation
www.ibm.com/software/webservers/appserv/
infocenter.html

DB2 Universal Message Reference, Online DB2 Core Documentation:
Database vol. 1 and 2 Guides

www.ibm.com/cgi-bin/db2www/data/db2/udb/
winos2unix/support/v8pubs.d2w/en_main

IBM Http Server Troubleshooting Online Infocenter Documentation:
Section of InfoCenter
Documentation

www.ibm.com/software/webservers/httpservers/
doc/v1326/manual/ibm/index.html

Apache Server Online Documentation Online Apache Documentation Project:
and FAQ

httpd.apache.org/docs-project/

Hypertext Transfer Status Code Section Online RFC 2616:
Protocol (HTTP) of RFC2616

www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Table 25.1 IBM Product and Protocol Message Reference Guides

Message

ch25.qxd 11/17/04 9:55 AM Page 790

When tackling a problem, it is always good to first assume that the error is valid before
declaring that there is a bug or a defect in the running product. The error code and associated
message can often be enough for you to diagnose and fix the problem.

For example, let us take a look at a fix pack installation problem scenario. Upon installing a
fix pack onto an existing WebSphere configuration, an error occurs preventing the installation. The
initial reaction to such a failure could be to assume that there is a defect with the installation or the
WebSphere run time. Listing 25.1 depicts a portion of a reproduced log file with the problem.

Listing 25.1 Portion of log file from failing installation of a WebSphere fix pack.

...

Results:

===

Time Stamp (End) : 2003-07-15T17:08:42-04:00

EFix Component Result : failed

EFix Component Result Message:

===

WUPD0239E: Fix removal failure: The processing of fix
WAS_WSADIE_ND_01_16-2003_5.0_cumulative, component prereq.wsadie
failed. See the log file

C:\\WebSphere\DMgr\properties\version\log\20030715_210842_WAS_WSADIE_ND
_01-16-2003_5.0_cumulative_prereq.wsadie_uninstall.log for processing
details.

===

EFix Component Installation ... Done

Exception: WUPD0223E: Fix uninstall failure: The update for component
{1} for fix pre-req.wsadie could not be installed .

...

As you can see from the log file excerpt, an exception occurred that prevented the installa-
tion. This log file also referenced an additional file for more information (see the highlighted
portion of the log file above). Upon investigation of the referenced log file, 20030715_
210842_WAS_WSADIE_ND_01-16-2003_5.0_cumulative_prereq.wsadie_uninstall.log, addi-
tional information about the problem is uncovered. Listing 25.2 shows a reproduced portion
of the referenced log file, 20030715_210842_WAS_WSADIE_ND_01-162003_5.0_
cumulative_prereq.wsadie_uninstall.log.

Listing 25.2 Portion of log file from failing installation of a WebSphere fix pack.

...

2003-07-15T17:08:42-04:00 Applying entry 1 of 5 20% complete

2003-07-15T17:08:42-04:00 Preprocessing entry (restore):

25.2 Problem Determination Methodology 791

ch25.qxd 11/17/04 9:55 AM Page 791

2003-07-15T17:08:42-04:00 No EAR processing noted.

2003-07-15T17:08:42-04:00 Next entry name: lib/jdom.jar

2003-07-15T17:08:42-04:00 entry path: C:\WebSphere\DMgr\lib\jdom
.jar

2003-07-15T17:08:42-04:00 Error 16--File could not be deleted:

C:\WebSphere\DMgr\lib\jdom.jar

2003-07-15T17:08:42-04:00 Fetching entry ...

2003-07-15T17:08:42-04:00 Preprocessing entry (restore):

2003-07-15T17:08:42-04:00 No EAR processing noted.

2003-07-15T17:08:42-04:00 Next entry name: lib/marshall.jar

2003-07-15T17:08:42-04:00 entry path: C:\WebSphere\DMgr\lib\
marshall.jar

2003-07-15T17:08:42-04:00 Error 16--File could not be deleted:

C:\WebSphere\DMgr\lib\marshall.jar

2003-07-15T17:08:42-04:00 Fetching entry ...

2003-07-15T17:08:42-04:00 Preprocessing entry (restore):

...

Again, we have highlighted the errors in the log file excerpt—you can see that some of the jar
files being replaced during the installation of the fix pack could not be removed.

TIP
A log file can have a tremendous amount of information in it. Sometimes searching for
“rror” or “xception” can help pinpoint problems easily. Notice in both search string the
“E” was left off such that capitalization does not limit the search.

Since these jar files could not be removed, the installation was failing. With this information in
hand, we can begin to diagnose the problem—first assuming that the error was valid. Why
couldn’t the files be removed? The following options could all be valid possibilities:

• The jar files did not exist in the first place.

• The person running the installation did not have the appropriate permissions to remove
files on the operating system.

• The files were locked by a running process.

After validating that the jars did exist and the installer had the appropriate permissions, the
last option was investigated. A quick check of all running processes uncovered that WebSphere
was still running while the fix pack was attempting to be installed. Since WebSphere was still
running, it had locked the jar files to prevent run time corruption. So, in fact, the problem was not
a defect or bug in WebSphere’s installation of the fix pack; instead it was a valid response to an
invalid operation (note that the fix pack installation directions require all WebSphere processes to
be stopped before running the installation program). Once all WebSphere processes were
stopped, the fix pack installation was successful.

792 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 792

25.2.3 What Has Changed?
When an error occurs, another technique to help pinpoint the root of the problem is to determine
what might have changed to invoke the error. For example, did the error occur just after you ran a
new test scenario, or did the error begin after you adjusted some TCP configurations on your
operating system? Rarely does an error “just begin happening” if nothing was changed in the
environment (network, operating system, application, server configuration, etc.). Therefore, it is
an important part of problem determination to uncover what might have changed to invoke the
problem at hand.

In an earlier section, Change Control Best Practices, a change control process was detailed
as a best practice for problem prevention. If this system is in place and adhered to, determining if
something in the environment has changed becomes much easier. Also, note that when we say
“environment” we do not just mean WebSphere administration. The environment encompasses
much more than this—it includes items such as the operating system settings, application config-
uration and code, test cases, configuration of supporting products either running on WebSphere
or communicating with WebSphere, such as the Web server, back-end, authentication server, por-
tal server, edge components, and so on. Determining if something has changed can be more than
asking yourself if you have recently altered a configuration setting (unless you are the only one
with administrator privileges to every server in the environment). Communication, therefore, is
the key, especially in a complex environment. We are often surprised how, in some environments,
communication between the administrators of various components (WebSphere, Database, net-
work, etc.), as well as with application development, is minimal. Often, an administrator will call
a product support line before calling a coworker in a different department to see if they might
have altered a configuration.

Pinpointing the change does not mean that a bug does not exist, nor does it mean that the
problem is now solved. Often there is a good reason for the change that has been effected. How-
ever, knowing what the change is and how it affects the system is important in finding a solution
(whether it is a product bug fix, a configuration tweak, etc.).

25.2.4 Simplify, Simplify, Simplify
When you are running in a complex environment and an error occurs, finding the problem can
sometimes be equated to finding a “needle in a haystack.” With so many different products and
configurations involved, solving the problem becomes like solving a multiple variable algebra
problem: the greater the number of variables involved, the more complex it is to solve.

Also, there is not always just one item that causes a problem to occur. Rather, it can be a
combination of settings, coupled with a particular path through running application code, that
triggers the error. To help limit some of the variables in the problem, it is wise to strip the envi-
ronment back to the simplest possible running environment in which the error still occurs.

The best problem determination environment is one where the error can be reproduced with
the simplest test scenario, running the simplest application code, deployed in the simplest
environment. In this environment, not only is it easier to describe the problem to support (if

25.2 Problem Determination Methodology 793

ch25.qxd 11/17/04 9:55 AM Page 793

necessary), but also it limits the number of variables involved in the problem, making it easier to
determine a solution.

25.2.4.1 The Simplest Test Scenario

Evaluate the test scenario that prompts the error to occur. If the test scenario is testing multiple
conditions, can the test be limited to only the condition that fails? By narrowing what is tested
until you have located the simplest test scenario that still causes the failure, you can save time
when rerunning the test scenario, as well as narrow the number of variables when reproducing the
test. You might discover that it is the sequence in which the tests are run that causes the problem,
and/or eliminate the components that appear to not related to the failure.

Additionally, if the failure is occurring during load testing, try to find the minimum amount
of load that still reproduces the problem. For example, if the test does not fail with a single user,
but fails with two users, there might be a thread synchronization error. If the tests only fail under
high load, it might be that your application or environment needs to be tuned for performance
(please see chapters 21 through 23 of this book to learn about performance as relates to
WebSphere).

25.2.4.2 The Simplest Application

When running a complex application, it is often difficult to determine whether the source of the
error resides in the running application, in the WebSphere run time, or in some other area. If you
can eliminate the running application in the simplified environment by reproducing the error with
an alternate, much simpler application, that is very beneficial. You can eliminate the enterprise
application as the source of the problem by attempting to reproduce the error with one of the IBM
WebSphere sample applications that are installed with WebSphere or by creating a very simple
application that forces the error to occur.

TIP
The technique of using an IBM WebSphere sample application or a simple sample
application that can reproduce the problem is especially beneficial when working with
IBM support. If using a created simple application, include it with any documentation
that is provided to WebSphere support, with a description of what it does and the error
it causes. This can help expedite support’s interaction in determining the problem.

25.2.4.3 The Simplest Environment

To locate the origin of the problem, either a product or a WebSphere component level, it is best to
reproduce the problem with the simplest configuration possible. For example, if the problem is
occurring with a Web application, remove the Web server from the environment by accessing the
application directly via WebSphere’s embedded HTTP server. If the problem is with persistent
Enterprise Java Beans (EJBs), try to manually invoke some of the update or select queries on the
back-end to validate that they run correctly. Some other suggestions for simplifying the problem
determination environment include

794 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 794

• Disabling work load management (distributed only)

• Disabling security

• Disabling the JIT compiler

• Moving the test clients onto a machine that has a direct route to WebSphere (rather than
having to go through firewalls or edge components)

25.2.5 Do You Have Enough System Resources?
When failures begin to occur during load tests, sometimes it is not due to a run time failure, but
rather a potential performance issue. Please refer to the Part 5, WebSphere Performance, of this
book for additional information on performance monitoring and tuning. However, do remember
that every machine will have its limits. In some situations, additional hardware will be needed to
support particular load requests.

Performance monitoring can also uncover problems such as memory leaks that can
severely impact application performance. It is highly recommended to tune your application
before releasing it in a production environment.

25.2.6 What to Do If the Problem Is in Production
When a failure occurs in a production environment, it is often a critical situation. If you believe the
problem to be a WebSphere run time defect, it will be important to contact IBM WebSphere support
(1-800-IBM SERV) immediately so they can begin investigating the problem. It is also important to
make sure that no information surrounding the failure is lost. It is a best practice to backup all log
files, including database and Web server logs, if applicable, so they can be referred to later, if neces-
sary. Until a solution is found, rollback or disable any change or update that might have invoked the
problem. In parallel, it is pertinent to try to reproduce the problem in a test environment. A problem
that can be reproduced in test will lend itself to easier problem determination since detailed traces
and logging can be enabled without fear of affecting performance or up-time in the production envi-
ronment. It also provides an experimental environment for being able to freely alter configuration
parameters, as well as providing a simpler, less complex problem determination environment.

TIP
When the cause of the problem is determined, use it as a lesson learned. It is impor-
tant that the failing scenario works its way back into the test suite that is run before any
application is released in production. This way, the problem can be prevented in the
future. Be sure to update procedures and test cases to avoid this problem in the future.

25.2.7 Where to Go for Help
IBM has an extensive WebSphere support Web site that contains self-help and problem sub-
mission information. This page should always be used before contacting IBM support. The
WebSphere support Web site is accessible at http://www.ibm.com/software/webservers/
appserv/was/support/.

25.2 Problem Determination Methodology 795

ch25.qxd 11/17/04 9:55 AM Page 795

The self-help section of the WebSphere support Web site contains links to several online
resources meant to help you troubleshoot a WebSphere problem. Using this site, you can search
on keywords to find Frequently Asked Questions (FAQs), Technotes, Hints and Tips, and other
documents that address existing WebSphere problems. FAQs document common problems and
solutions. Hints and Tips contain information about installing, configuring, and troubleshooting
WebSphere. Technotes are documents containing customer-reported problems and solutions. You
can also download WebSphere tools and utilities, as well as WebSphere fix packs and interim
fixes. The support page also contains links to educational material such as IBM online publica-
tions, redbooks, and white papers.

The WebSphere InfoCenter is another resource for self-help. The InfoCenter is available
online at http://www.ibm.com/software/webservers/appserv/infocenter.html or it can be down-
loaded as a PDF file. The local version of the InfoCenter is also available as an Eclipse
documentation plug-in and can be downloaded from http://www.ibm.com/software/webservers/
appserv/infocenter.html. To view the local documentation, you also need to install the IBM
WebSphere Help System, which is a viewer for displaying product or application information
developed as Eclipse documentation plug-ins. The IBM WebSphere Help System is built on open
source software developed by the Eclipse Project. The InfoCenter contains a problem determina-
tion section, and you can also search the InfoCenter using keywords.The developerWorks Web
site contains very good information for WebSphere developers in the section dedicated to
WebSphere, which is available at http://www.ibm.com/developerworks/websphere/. The
WebSphere developerWorks is a great source for articles and best practices related to WebSphere
products. The site also provides other features like code downloads, technology previews, and
forums.

Other helpful WebSphere resources are the WebSphere newsgroups and WebSphere user-
group forums. There are several such newsgroups and forums, and they usually contain very
useful information provided by WebSphere users. Some of these newsgroups are monitored by
IBM personnel, helping to ensure the integrity of information included within those news-
groups.

WebSphere Studio Application Developer and Site Developer V5.1 have a new feature that
allows you to search on keywords for several products, including WebSphere Application Server.
This new feature is provided in the form of several product-specific plug-ins. The search is per-
formed on resources like the WebSphere support Web site, the WebSphere InfoCenter, and
Google newsgroups. Access to these resources is provided from one central product-specific
page. Besides search capabilities, the plug-ins also provide a collection of local documents for
self-support. These documents are copies of FAQs, Technotes, Hints and Tips, and other
resources that are frequently used by WebSphere support personnel. One advantage of having
these local documents is that they are searched when you perform a search through the
WebSphere Studio Application Developer or Site Developer Help menu. To access the product
plug-ins, select Help → Help Contents from the main menu, and then click on Support informa-
tion of the left side of the page. Please see Figure 25.2.

796 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 796

25.3 Working with IBM WebSphere Support
There are times when you need to work with IBM WebSphere support personnel to troubleshoot
a WebSphere problem. The goal of this section is to familiarize you with the process of resolving
a WebSphere problem with the help of IBM WebSphere support. We will tell you how to open a
Problem Management Record (PMR), what information to have ready, and when you should
involve IBM support to resolve a WebSphere problem.

25.3.1 When to Involve WebSphere Support
You have already tried to solve the problem by yourself. By now, you have searched the
WebSphere support Web site, newsgroups, WebSphere Developer Domain, and other resources
in order to determine if this is a known problem. You have also checked the latest WebSphere fix
packs and interim fixes. Unfortunately you haven’t found a match. It’s time to engage IBM
WebSphere customer support.

25.3.2 How to Open a PMR
There are two ways to open a Problem Management Record (PMR). You can submit an electronic
PMR using the Electronic Service Request (ESR) tool, or you can call IBM customer support
(1-800-IBM-SERV). ESR is a Web-based problem submission tool and is available from the

25.3 Working with IBM WebSphere Support 797

Figure 25.2 WebSphere Studio Application Developer Support information.

ch25.qxd 11/17/04 9:55 AM Page 797

problem submission page at http://www.ibm.com/software/support/probsub.html. In order to use
the ESR tool, you have to be enrolled in the IBM Passport Advantage Program and be registered
as an authorized caller. Authorized callers are registered by the site technical contact, a person in
your company who is responsible for maintaining the list of persons (in your company) author-
ized to use the ESR tool for problem submission. Once your site technical contact adds you as an
authorized caller, you will be able to use the problem submission page to create a user ID and
password. The user ID and password will be required to access the ESR tool. The ESR tool
allows you to open new PMRs, as well as work with your existing PMRs.

TIP
The IBM Customer Number or Customer ID consists of 7 or 10 digits and is used to
identify an IBM Passport Advantage support contract for a customer. Your company
may have several contracts. Check with your site technical contact to determine the
correct IBM Customer Number or Customer ID to use.

The following steps are required to submit a new PMR:

1. Click on your customer number.

2. Click on the Report a New Problem button.

3. Select the product for which you want the PMR to be created.

4. Select a component from the drop down list.

5. If necessary, edit the contact information in the Report a New Problem page.

6. Complete the rest of the fields in the Report a New Problem: Environment, Severity,
Problem description, etc.

7. Click on Submit Problem Report. A page confirming that your PMR has been submitted
to a support queue will be displayed.

Once the queued PMR is processed, a PMR number will be assigned to it and e-mailed to you.
Keep this PMR number handy since you will need it every time you update the PMR or talk to
IBM support.

TIP
The list of products and the list of components for which you can open PMRs can be
quite long. You can use the Product Search and Component Search functions to find a
specific product or component.

TIP
You can create and update a user profile in the ESR tool, with personal information like
your phone number, e-mail, pager, and so forth. This profile will be used when you
submit a PMR via the ESR tool. To access your profile, go to Update Maintenance
Agreements from the main support page.

Figure 25.3 illustrates the ESR page that allows you to create a new PMR.

798 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 798

The other way to submit a PMR is to call IBM customer support (1-800-IBM-SERV).
When you call IBM customer support, you will also need information such as your company’s
customer number, product, component, and so forth, similar to the information required by the
ESR tool.

25.3.3 What Information to Have Ready
No matter how you open the PMR, electronically or by phone, you will need to provide informa-
tion that will help the support personnel resolve your problem. Needless to say, you should be as
specific as possible when describing the details of the problem. If you can re-create the problem,
make sure you document the steps for IBM support. Also, gather as much background informa-
tion as possible. For example, don’t forget to specify what your environment is, what WebSphere
fix packs you have installed, what Operating System and version you run, what changes you
made to the system, and so on. If any messages or errors were logged, send these logs to IBM
support. Any relevant information will help the IBM support personnel resolve your problem as
quickly as possible. Basic background information is often missing from the PMR description,
and this can significantly increase problem resolution time.

25.3 Working with IBM WebSphere Support 799

Figure 25.3 ESR page for creating a new PMR.

ch25.qxd 11/17/04 9:55 AM Page 799

Another important piece of information you will be required to provide is the severity of
the problem. Use the business impact as measure for determining the problem severity. For
example, the most severe problems, those having a critical business impact, should be assigned a
severity 1, while minor problems should have a severity 4.

It may also be useful to run the collector tool and have the output jar file ready to send to the
IBM support personnel. For more information about the collector tool, refer to chapter 7, Getting
Started with WebSphere—An Overview.

25.3.4 What to Expect
If a WebSphere defect is found, then an Authorized Program Analysis Report (APAR) is created for
this problem. If a workaround can be implemented while the APAR is resolved, and before the fix is
delivered, then IBM Support will provide instructions on how to do this. Note that making a fix
available requires time-consuming operations such as comprehensive testing, packaging, and so on.

25.4 Summary
You should now be familiar with the following concepts:

• How to create an appropriate test. Specifically, it should be a scale model of the produc-
tion environment.

• Which test types should be run to minimize the risk of encountering a problem in the pro-
duction environment. These test types are correctness tests, performance tests, stress
tests, and endurance tests.

• How to generate realistic test scenarios and proper workload mixes. These should be
derived from real-world users.

• How to enact proper change control by restricting administrative privileges, logging
administrative accesses, regularly creating backups of your configuration, keeping a log
history, and documenting procedures.

• When locating an error in a complex environment, it is useful to diagram the path of the
request, beginning with the client all the way to the back-end.

• Once an error has been located, first assume that the error is valid until it can be verified
that it happened under erroneous circumstances.

• When an error occurs, try to determine what, if anything, might have changed in the envi-
ronment that could have contributed to the condition which promoted the error.

• Try to re-create the error with the simplest test scenario, the simplest application, and the
simplest environment.

• WebSphere interim fixes and fix packs.

• What resources are available for WebSphere support.

• Working with IBM WebSphere support to resolve a WebSphere problem.

800 Chapter 25 Problem Prevention and Determination Methodology

ch25.qxd 11/17/04 9:55 AM Page 800

939

Index

1.x methods, security, 530

A
AAT (Application Assembly Tool),

169, 189, 435
Access

Administrative Console, 170–173
databases, 212. See also JDBC
directories, 174–179

MVS, 184–185
z/OS, 179–184

First Steps utility, 166–169
histories, 785
intent, 442
previous versions, 245
RACF, 709
RSS, 707
servers, 186–187
thread pools, 206
UDDI Registry, 333–338
user id, 140

Accounting reports, 735
ACID (Atomicity, Consistency, Iso-

lation, and Durability), 238
Activity logs, 752, 755
Adding

security roles (ATK), 472
servers, 96–97
variables, 819

Addnode scripts, running, 97
Addresses

servant region address space out-
put, 806

spaces
Controller, 730
output, 814
policies, 610
sections, 810
Servants, 720
z/OS, 32–36

SSL configuration, 380–382
user registry configuration,

363–370
z/OS, 422–427

services, 22
sessions, 223–231, 233–240
System Administrator (J2EE), 433
TCM, 616
tools, 188–195

backupConfig, 191
dumpNameSpace, 192
restoreConfig, 191
UDDI User Console, 192
VersionInfo, 191
wsadmin, 191
XML_SOAP Administrative,

192
topologies, 41
variables, 222
workload management (WLM),

14, 545. See also Workload
management (WLM)

capabilities of, 551
clusters, 546–557, 562–571
EJB, 571–577
EJB/HTTP client comparisons,

551–556
z/OS, 717–725, 727–735. See also

z/OS
Administrative Console, 19, 168–173

Base applications, 147–149
binding configuration, 245–247
HTTP plug-ins, 26
tracing, 762–770
viewing, 84–85, 95
Web server plug-ins

communication security,
268–274

configuration, 259–268
Administrative roles, security, 394

z/OS
diagnostics, 813–814
reviewing output, 805–813

Admin trace, 766. See also Tracing
Administration

administration services, 22
Administrative Console. See

Administrative Console
clustering, 30–31
Deployment Manager, 14

agents, 17
cells, 17–18
nodes, 148–156, 158–163

distributed management models,
27–30

ikeyman utility, 269–271
installation, 62
JMS, 285–290, 292–298

MQ Connection Pooling, 301
optimization, 300
security, 298–300
troubleshooting, 302
z/OS, 303–310, 313–325

JMX, 628–634
plug-ins, 253–255. See also Plug-

ins
preinstallation, 105
privilege restrictions, 784
RMF, 705
security, 362

authentication configuration,
370–375

authentication protocol configu-
ration, 383–385

files, 391
global security configuration,

377–379
JAAS configuration, 386–388
overriding global security, 389
performance, 390

indx.qxd 11/17/04 10:18 AM Page 939

Administrative Scripting Tool. See
Wsadmin tool

Advantages of clusters, 550
Affinity, sessions, 226, 267
Agents, nodes, 17
Aliases

Host Aliases link, 261
hosts, 220

Allocation of target data sets, 118–119
American Standard Code for Infor-

mation Exchange (ASCII), 8
Analysis

APAR, 800
application view, 678–679
end user view, 665–666
installation, 62

administration, 62
application prerequisites, 65
hardware prerequisites, 65
performance, 64–65
security, 62–64

Log Analyzer, 775–778
records, 777
system view, 667–675, 678
Thread Analyzer, 11
Tivoli Performance Viewer,

663–665
topologies, 38, 43

administration, 41
availability, 42
costs, 40–41
performance, 41
scalability, 42
security, 39
session state, 42–43
z/OS, 53–59

Ant, 437, 624–627
Apache, monitoring, 675
APAR (Authorized Program Analy-

sis Report), 800
APF (authorized program facility),

321
APIs (Application Programming

Interfaces). See also Inter-
faces

JavaMail, 25
JDBC, 21
JTA, 20

Application Assembler (J2EE),
432–433

Application Assembly Tool (AAT),
169, 434–435

Application Client Container, 26
Application Client Resource Config-

uration tool, 190
Application Component Provider

(J2EE), 432
Application Response Measurement.

See ARM
Application server facility (ASF), 283
Application Server Toolkit (ASTK),

436–437
Application Servers. See also Servers

automation, 614

940 Index

Ant tasks, 624–627
code, 640–648
command line scripts, 623–624
installation response files,

616–617
JMX, 628–634
shell scripts, 618–623

wsadmin tool, 635–640
configuration, 203–208
creating, 199–200
JMS, 281–283
memory, 231
node configuration, 117
ORB, 208
performance, 681–699, 701–703
plug-ins, 268–274
templates, 201
transaction services, 209–211
Web server plug-ins, 253–255

Applications
administration services, 22
Administrative Console, 23–25
availability, 504
Base, 147–149
best practices

change control policies, 784–785
fix packs/interim fixes, 787
problem determination method-

ologies, 788–796
support, 797–800
testing, 780–783
white papers, 786

clustering, 30–31
configuration repository, 22–23
default installations, 168
deployment

checklists, 508
installation, 510–517, 521–531
planning, 502–508
postinstallation, 532–539
testing, 539
tools, 509
uninstallation, 542
updating, 539–541

distributed management models,
27–28, 30

editors, 8
EJBs

containers, 20
performance tuning, 697
security, 470–478, 483–493

Enterprise Applications, 25
environments, 604

configuration, 219
monitoring, 653–657
variables definition, 222–223
virtual hosts, 220
WLM policies, 610

executable locations, 139
failover, 504
footprinting, 740
HTTP

performance tuning, 699–701
plug-ins, 26

installation
administration, 41
availability, 42
costs, 40–41
performance, 41
planning, 38, 43
prerequisites, 65
scalability, 42
security, 39
session state, 42–43

IVT, 82
J2EE

AAT, 434–435
Ant, 437
Application Assembler,

432–433
Application Component

Provider, 432
assembly, 433–434, 451–456
ASTK, 436–437
Deployer, 433
development roles, 431–432
EAR files, 433–434
packaging, 438–442, 444–451
Product Provider, 432
security, 451
System Administrator, 433
Tool Provider, 432
WebSphere Studio, 435
workload management (WLM)

JavaMail services, 25
JCA, 20, 212
JDBC, 21
JMS, 21, 280

Application Server providers,
281–283

management, 285–287, 289–298
MQ Connection Pooling, 301
optimization, 300
performance tuning, 692–693
queues, 281
security, 298–300
topics, 281
topologies, 284
troubleshooting, 302
Web services, 284
z/OS, 303–310, 313–323, 325

JTA/JTS services, 20
login configuration, 387
monitoring, 653
naming service, 21
ORB, 694–696
paths, 804
performance, 681. See also Opti-

mization
application view, 678–679
end user view, 665–666
JVMPI, 663
PMI, 657–659
Request Metrics, 659–662
system view, 667–675, 678
Tivoli Performance Viewer,

663–665
preinstallation, 107

indx.qxd 11/17/04 10:18 AM Page 940

Index 941

rollbacks, 507
security, 458, 504

constraint creation, 464–466
declarative, 458
Deployment Descriptor, 459
mapping, 495–499
performance, 500
policy file configuration,

493–495
programmatic, 458
references (roles), 467–468
roles, 460–464, 468–469
services, 22

servers, 144–146, 161–162
session management, 223–231,

233–240
SoapEarEnabler tool, 343
tools

AAT, 189
Application Client Resource

Configuration, 190
ATK, 190
Ejbdeploy, 190

upgrading, 504, 507
views, 678–679
Web Container, 19–20, 698
Web services, 25, 326–328

implementation, 329–330
installation, 332

Web applications. See Web appli-
cations

WLM. See Workload management
(WLM)

Appserversetupuddi.jacl script
parameters, 339

Architecture, 12–13
applications

checklists, 508
deployment, 502–508
installation, 510–517, 521–531
postinstallation, 532–539
testing, 539
tools, 509
uninstallation, 542
updating, 539–541

components, 19
administration services, 22
Administrative Console, 23–25
Application Client Container,

26
clustering, 30–31
configuration repository, 22–23
distributed management mod-

els, 27–28, 30
EJB Container, 20
Enterprise Applications, 25
HTTP plug-ins, 26
JavaMail services, 25
JCA services, 20
JDBC, 21
JMS, 21
JTA/JTS services, 20
naming services, 21
security services, 22

Web Container, 19–20
Web services, 25

JCA, 212
naming

bindings, 245–247
bootstrap ports, 243–244
distributed namespace bindings,

244
dumpName Space tool,

247–251
interoperability, 244–245
namespace partitions, 242–243

Network Deployment, 14
Base Topology, 15
cells, 17–18
distributed management mod-

els, 27–30
nodes, 17
server processes, 16

PMI, 657–659
Request Metrics, 659–662
versions, 14
z/OS, 31–36

Archives, EAR files, 25
Arguments, command line (JVM),

689
ARM (Application Response Mea-

surement), 657
ASCII (American Standard Code for

Information Exchange), 8
ASF (application server facility), 283
Assemblers, 432–433
Assembly

AAT, 189
Application Client Resource Con-

figuration tool, 190
ATK, 190
Ejbdeploy tool, 190
J2EE applications, 433–434,

451–456
AAT, 434–435
Ant, 437
ASTK, 436–437
packaging, 438–442, 444–451
security, 451
WebSphere Studio, 435

Assembly Toolkit (ATK), 169
Assignment of ports, 75, 90
ASTK (Application Server Toolkit),

436–437
ATK (Assembly Toolkit), 169, 190,

472
Atomic updates, 209–211
Atomicity, Consistency, Isolation,

and Durability (ACID), 238
Attributes

CB service class, 592
ConnectTimeout, 255, 276
LoadBalance, 266–267
LoadBalanceWeight, 267
MaxConnections, 268
RetryInterval, 255, 275

Authentication, 22, 361
configuration, 370–375

protocol configuration, 383–385
JMS, 298–300

Authorization, 22
data sets, 138
JMS, 298–300
SAF, 402–403

Authorized Program Analysis Report
(APAR), 800

Authorized program facility (APF),
321

Automation, 614
Ant tasks, 624–627
code, 640–648
command line scripts, 623–624
disabling startup, 536
installation response files,

616–617
JMX, 628–634
shell scripts, 618–623
wsadmin tool, 635–640

Availability
applications, 504
topologies, 42

B
Backing up configurations, 785
Backup server configurations, 268
BackupConfig

commands, 102
tools, 191

Base applications. See also Applica-
tions

configuration, 117
creating, 136
customization jobs, 823
federating, 159
Network Deployment, 15
JMS, 284
starting, 147–149

Best practices, 780–783. See also
Optimization

change control policies,
784–785

fix packs/interim fixes, 787
problem determination method-

ologies, 788–796
support, 797–800
white papers, 786

Bin folders, 175
Binaries, application reinstallation,

540
Bindings

configuration, 245–247
connection factory, 516
default, 512
distributed namespaces, 244
EJB 1.1 CMP, 516
files, 517

Boolean custom properties, 207
Bootstrap ports, 243–244
Bottlenecks, 684. See also Trou-

bleshooting
BPXPRMxx members, updating,

139

indx.qxd 11/17/04 10:18 AM Page 941

Buffers
CTRACE, 126
TCP, 687

Business types, 588

C
C++, tracing, 821
Caching

dynamic, 440
Dynamic Cache services, 204, 696
EJBs, 441, 697
PreparedStatement, 702

Capabilities of workload manage-
ment (WLM), 551–556. See
also Workload management
(WLM)

CB service class attributes, 592
CBSTC service class, 606
CCF (Cryptographic Coprocessor

Facilities), 425
CEEDUMP, 810–811
Cells

Deployment Manager, 17–18, 159
multicell topologies, 48–49
naming, 91, 150
partitions, 242
servers

adding, 96–97
viewing, 95

z/OS
address spaces, 36
servers, 709–711

Certificates, security, 269–271
CF (Coupling Facility), 707
Change control policies, 784–785
Channels, deployment, 345–346
Checklists

deployment, 508
tools, 509

CICS transactions, 595
Classes

EJBROLE, 424
folder, 175
reloading, 523
reports, 606–607
services, 591–592

CBSTC, 606
resource groups, 601–603
TSOPRD, 596

Classification
groups, 601, 604
non-enclave work, 719
rules, 601
WLM, 717–720

Classloaders, 445, 503–504, 817
Classpath requirements, 503
Cleanup Interval, 697
Clients

Application Client Container, 26
Application Client Resource Con-

figuration tool, 190
J2EE application assembly, 452
JMS, 692–693
JMX, 628–634

942 Index

memory, 231
non-WebSphere, 245
PMI, 657–659–662
previous versions, 244
timeouts, 210
workload management (WLM)

capabilities of, 551
clusters, 546–548, 550–560,

562–571
EJBs, 551–556, 571–577

ClientUpgrade tool, 188
CLOSE_WAIT state, 686
Cloudscape folder, 175
Clusters, 30–31

deployment, 507
EJB requests, 555–556
server configuration, 260
workload management (WLM),

546, 557–564
advantages of, 550
configuration, 564–565
disadvantages of, 550–551
optimization, 567–569
runtime controls, 565–567
troubleshooting, 569–571
types of, 547–548

z/OS address spaces, 36
Code

automation, 640–648
J2EE deployment, 444–451
reviews, 787
sharing, 505

Coefficient configuration, 608, 612
Coexisting applications

configuration, 75
installation, 59

Collector tool, 194
Command-line

arguments (JVM), 689
scripts, 623–624
tools, 23–25

Commands
backupConfig, 102
D WLM,APPLENV=*, 813
D WLM,SYSTEMS, 580
Modify, 581
ndd -get, 686
ndd set, 686
oping, 130
ps, 9
startManager, 186
startNode, 187
stopManager, 186
stopNode, 187
TCL, 635
updateSilent, 101
updateWizard, 101
WebSphere, 10

Common code, 444–451. See also
Code

Common Object Request Broker
Architecture (CORBA),
241

performance tuning, 694–696

naming service (CosNaming), 21,
244

Common Object Services Naming
Protocol. See COS Naming

Common utility jar deployment, 505
Communication

plug-ins, 253–255
security, 268–274
z/OS, 805–813

Compilers
JIT, 689
JVM, 715

Component trace (CTRACE), 126,
144, 811

Components
Administrative Console, 23–25
administration services, 22
Application Client Container, 26
Application Servers

configuration, 203–208
ORB, 208
transaction services, 209–211

clustering, 30–31
configuration repository, 22–23
cooperation, 804
distributed management models,

27–30
EJB Container, 20
Enterprise Applications, 25
HTTP plug-ins, 26
installation, 76, 90
J2EE applications

Application Assembler,
432–433

Application Component
Provider, 432

Deployer, 433
development roles, 431–432
Product Provider, 432
System Administrator, 433
Tool Provider, 432

JavaMail services, 25
JCA services, 20
JDBC, 21
JMS, 21, 280

Application Server providers,
281–283

management, 285–287, 289–298
MQ Connection Pooling, 301
optimization, 300
queues, 281
security, 298–300
topics, 281
topologies, 284
troubleshooting, 302
Web services, 284
z/OS, 303–307, 309–325

JTA/JTS services, 20
naming services, 21
security, 360–362

administration, 362
administrative roles, 394
authentication configuration,

370–375

indx.qxd 11/17/04 10:18 AM Page 942

Index 943

authentication protocol configu-
ration, 383–385

files, 391
global security configuration,

377, 379
JAAS configuration, 386–388
naming, 395
operations, 392
overriding global security, 389
performance, 390
permissions, 394
SSL configuration, 380–382
trace specifications, 396–399
UNIX operations, 392–393
user registry configuration,

363–370
security service, 22
Web Container, 19–20
Web services, 25, 332
WebSphere Component, 774
WebSphere Edge, 737
z/OS, 31–36

Config folder, 175
Configuration

administration, 41
Administrative Console, 170–173
Application Client Resource Con-

figuration tool, 190
Application Servers, 199–200

components, 203–208
ORB, 208
templates, 201
transaction services, 209–211

applications
checklists, 508
installation, 510–517, 521–531
logins, 387
postinstallation, 532–539
testing, 539
tools, 509
uninstallation, 542
updating, 539–541

availability, 42
backing up, 102, 785
backup servers, 268
backupConfig tool, 191
base applications. See Base appli-

cations
bindings, 245, 247
bootstrap ports, 243–244
clusters, 564–565

optimization, 567–569
runtime controls, 565–567
troubleshooting, 569–571

coefficient, 608, 612
coexisting, 75
costs, 40–41
data sources, 211–219
database sessions, 228
disk speed, 684
distributed namespace bindings,

244
dumpNameSpace tool, 192
EJBs, 571

containers, 208, 697
workload management (WLM),

572, 575
environments, 219

variables, 222–223
virtual hosts, 220

generic JMS providers, 296–298
heaps, 715
HTTP, 699–701

sessions, 223–231, 233–240
Transports, 205

ISPF panels, 114–118
JDBC, 211–219
JMS, 284, 692–693

management, 285–287,
289–298

MQ Connection Pooling, 301
optimization, 300
security, 298–300
troubleshooting, 302
z/OS, 303–310, 313–325

job customization, 133–135
JVM

initial heap sizes, 688
maximum heap sizes, 689

Listener Ports, 287
LoadBalance attribute, 266–267
LoadBalanceWeight attribute, 267
log files, 745

HTTP Servers, 759–762
installation, 756
JVM, 746–750
plug-ins, 758–759
processes, 750–752
services, 752–755
specialty, 755
updates, 756–757
utilities, 762

LPARs, 9
manual system changes, 137–147
MaxConnections attribute, 268
MBeans, 523
message listener service, 286
method permissions, 474–476
MIME types, 220
namespaces, 344
network deployment, 148–150,

152–163
options, 116
ORB, 694–696
overriding, 514
performance, 41
primary servers, 268
providers, 289
queues, 291
replication, 234
repositories, 22–23
restoreConfig tool, 191
RSS, 707
Run-As role, 481
saving, 291
scalability, 42
security

administration, 362

authentication configuration,
370–375

authentication protocol configu-
ration, 383–385

certificates, 269–271
constraints, 464–466
customization, 132–133
files, 391
global security configuration,

377–379
JAAS configuration, 386, 388
mapping, 495–499
overriding global security, 389
performance, 390, 500
planning, 39
policy files, 493–495
references, 467–468, 477–478
roles, 461–464
Run-As roles, 468–469
SSL configuration, 380–382
user registry configuration,

363–370
servers

clusters, 260
customization, 127–131

session state, 42–43
SSL, 271–274
startup, 535
system environment customiza-

tion, 122
target data set allocation, 118–119
TCM, 616
TCP, 685–688
thread pools, 206, 288
tracing, 762–774
UDDI

Registry, 333–338
User Console tool, 192

URIs, 263
Use Binary Configuration, 522
variables

definition, 118–127
saving, 136

VersionInfo tool, 191
view the generated instructions

option, 135–136
virtual hosts, 261–263
Web containers, 698
Web module security, 460–469
Web server plug-ins

communication security,
268–274

failover, 275–278
files, 259–268
logging, 278
tracing, 278

WebSEAL, 375
WebSphere MQ JMS Provider,

293–296
wsadmin tool, 191
XML_SOAP Administrative tool,

192
z/OS

logging, 823–825, 828–838

indx.qxd 11/17/04 10:18 AM Page 943

Configuration (cont.)
planning, 53–59
troubleshooting, 805, 817–822

Connection Factory
bindings, 516
Connection Pools, 282
Web Sphere MQ, 294

ConnectionPoolDataSource attribute,
212

Connections
databases, 701–703
HTTP performance tuning,

699–701
JCA, 212
JDBC, 21, 211–219
MaxConnections attribute, 268
MQ Connection Pooling, 301
pooling, 21, 212
TCP/IP, 686–688
TcpTimedWaitDelay values, 685
Tivoli Performance Viewer, 663

ConnectTimeout attribute, 255, 276
Constraints, creating, 464–466
Containers

EJB, 208
performance tuning, 697
service policies, 587
tracing, 739
Web

performance tuning, 698
properties, 204

WLM policies, 610
z/OS topologies, 709, 711

Control
change control policies, 784–785
deployment manager, 152
loss of (z/OS), 802–803
runtime clusters, 565–567

Controllers
address space, 730
Controller Service Class

(MC5CTLR), 727
HTTP/HTTPS transports directed

to, 736
z/OS runtime, 711

Cooperation, z/OS, 803–805
CORBA (Common Object Request

Broker Architecture), 241
performance tuning, 694–696
naming service (CosNaming), 21,

244
Core system performance, 667
COS Naming (Common Object Ser-

vices Naming Protocol), 21,
241

Costs, planning, 40–41
Coupling Facility (CF), 707
CPU utilization, 725
Cross-System Coupling Facility

(XCF), 708
Cryptographic Coprocessor Facilities

(CCF), 425
CSIv2 protocol, 384
CTRACE (component trace), 126,

144, 811

944 Index

Custom properties, Application
Servers, 207

Customization
base customization jobs, 136, 823
clusters, 566
configuration files, 263–268. See

also Configuration
federation customization jobs, 824
HTTP properties, 699–701
integrated JMS provider cus-

tomization jobs, 824
ISPF panels, 114–118
JMS, 300
jobs, 133–135

executing, 141
JMS, 323

LoadBalance attribute, 266–267
LoadBalanceWeight attribute, 267
manual system changes, 137–147
MaxConnections attribute, 268
network deployment jobs, 824
security, 132–133
servers, 127–131, 312
Session Management, 224
SMP/e installation, 113
system environment, 122
target data set allocation, 118–119
user registry, 367
variables

definition, 118–127
saving, 136

view the generated instructions
option, 135–136

Web services, 351–359
Cycles (development)

Application Assembler (J2EE
applications), 432–433

Application Component Provider
(J2EE applications), 432

Deployer (J2EE applications), 433
J2EE applications, 431–432
Product Provider (J2EE applica-

tions), 432
System Administrator (J2EE

applications), 433
Tool Provider (J2EE applications),

432

D
D WLM,APPLENV=* command, 813
D WLM,SYSTEMS command, 580
Daemons

control process information, 153
z/OS topologies, 55

DASD (Direct Access Storage
Devices), 32, 815

Data sets
allocation, 118–119
authorization, 138

Data sources
configuration, 211–219
mapping, 526

Data store restoration, 706
Databases

connection pooling, 701–703

JDBC, 21, 211–219
memory, 238–240
sessions, 227–228, 231–240
threads, 675
UDDI registry access, 333–338

DB2
data store restoration, 706
tracing, 733–735

DB2SQLJ_TRACE_FILENAME
directive, 731

Debugging wsadmin scripts, 639
Declarative security, 458
Default application installation,

168
Default bindings, generating, 512
Default dataSource mappings, 525
Default tools, 188–195
Default Virtual Host menu, 262
Default virtual hosts, 222
Definitions

services, 584–586
variables, 118–223

Demilitarized zones (DMZs), 39
Deployer (J2EE), 433
Deployment

applications
checklists, 508
installation, 510–517, 521–531
planning, 502–508
postinstallation, 532–539
testing, 539
tools, 509
uninstallation, 542
updating, 539–541

channels, 345–346
common code (J2EE), 444–451
Deployer (J2EE), 433
EJBs, 523
filters, 346–347
hot, 541
Network Deployment, 14

Base Topology, 15
cells, 17–18
distributed management mod-

els, 27–30
JMS, 284
nodes, 17
server processes, 16
troubleshooting, 100–102
WebSphere Application Server

Base Edition, 69–74,
76–85

WebSphere Application Server
Network Development Edi-
tion, 85–96, 98–100

networks, 824
tools

AAT, 189
Application Client Resource

Configuration, 190
ATK, 190
Ejbdeploy, 190

UDDI references, 347–350
utility jars, 505
Web services, 523

indx.qxd 11/17/04 10:18 AM Page 944

Index 945

Deployment Descriptor
EJBs, 474
security, 459

Deployment Manager, 14
agents, 17
cells, 17–18
nodes, 148–150, 152–163
topologies, 41

Deploytool folder, 177
Design, 13. See also Configuration

administration, 41
availability, 42
components, 19

administration services, 22
Administrative Console,

23–25
Application Client Container,

26
clustering, 30–31
configuration repository, 22–23
distributed management mod-

els, 27–30
EJB Container, 20
Enterprise Applications, 25
HTTP plug-ins, 26
JavaMail services, 25
JCA services, 20
JDBC, 21
JMS, 21
JTA/JTS services, 20
naming services, 21
security services, 22
Web Container, 19–20
Web services, 25

costs, 40–41
Network Deployment, 14

Base Topology, 15
cells, 17–18
distributed management mod-

els, 27–30
nodes, 17
server processes, 16

performance, 41
scalability, 42
security, 39
session states, 42–43
versions, 14
z/OS, 53–59

Destinations
JMS topics, 292
WebSphere MQ Queue, 294

Development (J2EE applications)
AAT, 434–435
Ant, 437
Application Assembler, 432–433
Application Component Provider,

432
assembly, 433–434, 451–456
ASTK, 436–437
Deployer, 433
EAR files, 433–434
packaging, 438–442, 444–451
Product Provider, 432
roles, 431–432
security, 451

System Administrator, 433
Tool Provider, 432
WebSphere Studio, 435

Diagnostic trace, 764. See also Trac-
ing

Diagnostics. See also Troubleshooting
table of environment variables,

825
Thread Analyzer, 11
z/OS, 813–814

Direct Access Storage Devices
(DASD), 32, 815

Directives, DB2SQLJ_TRACE_
FILENAME, 731

Directories. See also Files
installation, 77, 521
JNDI, 21
SMP/e, 111–113
structures, 174–179

MVS, 184–185
z/OS, 179–184

transactions, 210
Disadvantages of clusters,

550–551
Discretionary goals, 594
Disk speed, tuning, 684
DISK utilization monitoring, 669
Display Active Users option, 9
Distributed DVIPA, 737
Distributed HTTP/HTTPS plug-in

forwarding, 737
Distributed management models,

27–28, 30
Distributed namespace bindings,

244
Distributed platforms, 7

directories, 174–179
MVS, 184–185
z/OS, 179–184

z/OS
comparing, 8–9
QoS, 9
WebSphere on, 10–11

Distributed session parameters, 238
Distribution. See also Workload

management (WLM)
capabilities of, 551
clusters, 546–557, 559–560,

562–571
EJB, 571–572–577
EJB/HTTP client comparisons,

551–556
DMZs (demilitarized zones), 39
Documentation

First Steps utility, 166–169
installation, 109
procedures, 786

Domains, replication of, 233–234
Downloading view the generated

instructions option, 135–136
DumpNameSpace tool, 192,

247–251
Duration of service classes, 595
DVIPA (Dynamic Virtual IP

Addressing), 737

Dynamic Cache services, 204,
696–703

Dynamic caching, 440
Dynamic Java tracing, 716
Dynamic reloading, 541
Dynamic Virtual IP Addressing

(DVIPA), 737
Dynamic Web content, packaging,

438–442, 444–451

E
EAR (enterprise application archive)

files, 25
assembly, 456
J2EE applications, 433–434
SOAP installation, 344–347

EBCDIC (Extended Binary Coded
Decimal Interchange Code),
8

Edge Components, 737
Editing

configuration files, 263–268
links, 111

Editors, 8
EJB 1.1 CMP bindings, 516
Ejbdeploy tool, 190, 524
EJBROLE class, 423–424
EJBs (Enterprise Java Beans), 3

caching, 441
containers, 20, 208, 697
data source mapping, 526
deployment, 523
Excludes List, 488–493
JNDI names, 525
levels, 480–486
lookups, 552–554
modules, 454, 505
monitoring, 672
naming services, 21
PMI Request Metrics, 661
requests, 555–556, 572
security, 470–478, 483–493
workload management (WLM),

551–556, 571
configuration, 572, 575
optimization, 575–576
troubleshooting, 576–577

Electronic Service Request (ESR)
tool, 797

Enabling
SoapEarEnabler tool, 343
SOAPenabled EAR files,

344–347
tracing, 762–771

Enclaves (MCCLUST1), 727
End user view, 665–666
Enterprise application archive. See

EAR files
Enterprise Applications, 25. See also

Applications
Enterprise Java Beans. See EJBs
Environments

applications, 604
automation, 614

Ant tasks, 624, 627

indx.qxd 11/17/04 10:18 AM Page 945

Environments (cont.)
code, 640–648
command line scripts, 623–624
installation response files,

616–617
JMX, 628–634
shell scripts, 618–623
wsadmin tool, 635–640

best practices
change control policies, 784–785
fix packs/interim fixes, 787
problem determination method-

ologies, 788–796
support, 797–800
testing, 780–783
white papers, 786

cluster deployment, 507
configuration, 219
isolated test, 782
table of environment variables, 825
variables

creating, 223
management, 222

views, 653–657
virtual hosts, 220
WLM policies, 610

Errors. See also Troubleshooting
locating, 788–789
logs, 814–816
validation, 789–794

ESR (Electronic Service Request)
tool, 797

Etc folder, 177
Event timelines, 816
Excludes List, 488, 492–493
Executable program locations, 139
Execution

jobs, 141
Log Analyzer, 776–778
previous versions, 244

Extended Binary Coded Decimal
Interchange Code
(EBCDIC), 8

Extensible Markup Language. See
XML

Extensions
IBM Extensions, 439
JMX, 628–634

F
Failover

applications, 504
Web server plug-ins, 275–278

Federating base nodes, 159
Federation customization jobs, 824
FFDC (first failure data capture), 778
Files

bindings, 517
configuration, 259–268
EAR, 25

assembly, 456
J2EE applications, 433–434
SOAPenabled, 344–347

httpd.conf configuration, 78

946 Index

installation responses, 616–617
log, 745

formatting, 772–774
HTTP Servers, 759–762
installation, 756
JVM, 746–750
plug-ins, 758–759
processes, 750–752
services, 752–755
specialty, 755
troubleshooting, 792
updates, 756–757
utilities, 762

permissions, 394
plug-in log, 278
resources.xml, 23
security, 391
SoapEarEnabler tool, 343

Filters
deployment, 346–347
EJBs, 661
PMI Request Metrics, 661
URI, 661

FIN_WAIT_2 state, 686
Firewalls, 105–106. See also Security
First failure data capture (FFDC), 778
First Steps utility, 166–169, 177
Fix packs, 100–102, 787. See also

Troubleshooting
Flow

ISPF panels, 114–118
requests, 674

Folders, 174. See also Directories;
Files

Footprinting applications, 740
Formatting. See also Configuration

log files, 772–774
plug-in log, 278
tracing, 772–774

Forwarding distributed
HTTP/HTTPS plug-ins, 737

Frameworks, 545. See also Workload
management (WLM)

Front-end handlers, 736–737, 740
Fully qualified names, 244

G
Garbage collection

JVM, 689, 712–715
monitoring, 676
tracing (JVM), 817–822

Generating
customization jobs, 133–135
default bindings, 512

Generic JMS providers, 281–283,
296–298

GetHostByName() method, 130
Global security. See also Security

configuration, 377, 379
overriding, 389

Global security, 362. See also Security
Goals

discretionary, 594
velocity, 593–594

Graphical installations, 616–617
Graphical installer, 67
Groups

classification, 601–604
resources, 601–603
roles, 495–499
security, 529
service policies, 587
transactions, 587–590

H
HandleNotification() method, 634
Hardware

installation prerequisites, 65
performance tuning, 684
preinstallation, 107–108
zSeries, 8

Heaps
configuration, 715
JVM, 688–689

Help, 795–796. See also Trou-
bleshooting

Heterogeneous work, service classes,
595

HFSs (hierarchical file systems), 110
High volume period snapshots, 739
HIS (IBM HTTP Server), 736, 824
Histories

access, 785
logs, 786

HME* prefixes, 806
Horizontal clusters, 548
Hostnames

deployment manager, 153
selection of, 91, 150

Hosts
Aliases link, 261
naming, 78
virtual

configuration, 220, 261–263
installation, 516
mapping, 528

Hot deployments, 541
HotSpots, JVM, 692
HTTP (Hypertext Transfer Protocol)

front-end handlers, 736–740
log files, 759–762
optimization, 699–701
performance tuning, 699–701
plug-ins, 26
ports, 131
session management, 223–231,

233–240
transports, 205, 271–274
Web services, 330
workload management (WLM),

551–556
Httpd.conf configuration file, 78

I
IBM Extensions, 439
IBM HTTP Server (IHS), 736, 824
IBM Key Management Utility (ikey-

man), 269, 271

indx.qxd 11/17/04 10:18 AM Page 946

Index 947

IBM Tivoli Monitoring for Transac-
tion Performance (ITMTP),
666

IIOP (Internet Inter-ORB Protocol),
551

Image partitions, 705
Implementation. See also Configura-

tion
EJB containers, 697
HTTP, 699, 701
JMS, 692–693
ORB, 694–696
Web containers, 698
Web services, 329–330

Importance of service classes, 595
Inactivity timeouts, clients, 210
Indexes, 317
InfoCenter, installation of, 167
Infrastructure, 657. See also PMI
Initial heap sizes (JVM), 688
Initial verification tests, 147
InstallableApps folders, 177
Installation, 109

administration, 41, 62
application prerequisites, 65
Application Servers, 199
applications, 168, 510–517,

521–531
availability, 42
Base applications, 284
coexisting, 59
components, 76, 90
costs, 40–41
directories, 77, 521
documentation, 109
First Steps utility, 166–169
fix packs, 102
graphical installer, 67
hardware prerequisites, 65
HTTP Server, 77
InfoCenter, 167
Linux, 69

WebSphere Application Server
Base Edition, 69–76, 78–85

WebSphere Application Server
Network Development Edi-
tion, 85–96, 98–100

logs, 756, 823
migration, 65–67
paths, 91
performance, 41, 64–65
planning, 38, 43, 62
preinstallation, 105

administration, 105
applications, 107
hardware, 107–108
migration, 108–109
performance, 107
security, 105–106

registration, 93
response files, 616–617
scalability, 42
security, 39, 62–64
session state, 42–43

shell scripts, 618–623
silent installer, 68
SMP/e, 109–110

customization, 113
HFSs, 110
link editing, 111
program directories, 111–113

SOAPenabled EAR files, 344–347
status of, 80
summaries, 79, 92
testing, 83
tools, 188–195

backupConfig, 191
ClientUpgrade, 188
dumpNameSpace, 192
restoreConfig, 191
UDDI User Console, 192
VersionInfo, 191
WasPostUpgrade, 189
WasPreUpgrade, 188
wsadmin , 191
XML_SOAP Administrative,

192
troubleshooting, 100–102, 791
types, 44

mixed servers, 50–53
multicell/multitier, 48–49
single servers, 45–46
three-tier, 46–47

verification, 82
Verify Installation utility, 167
virtual hosts, 516
Web server plug-ins, 256–259
Web services, 332

Network Deployment, 333
UDDI Registry access,

333–338
Web Services Gateway, 338–343

Installation Verification Test (IVT),
82, 618

Integrated JMS provider customiza-
tion jobs, 824

Integrated System Productivity Facil-
ity (ISPF), 8

Integration
Web servers, 253–255
Web services, 326–328

implementation, 329–330
installation, 332

Interactive problem control system
(IPCS), 126, 137, 811

Interactive System Productivity
Facility (ISPF), 806

Interfaces
graphical installer, 67
JavaMail, 25
JDBC, 21
JMS, 692–693
JNDI, 21
JTA, 20
JVMPI, 657
ORB, 694–696
silent installer, 68

Interim fixes, 100–102, 787

Internal buffers, 126
Internal JMS server configuration,

285, 291
Internet Inter-ORB Protocol (IIOP),

551
Interoperability

bindings, 245, 247
naming architecture, 244–245
Web services, 329

Interpreting WebSphere Component
messages, 774

Intervals
Cleanup Interval, 697
reloading, 523
Sun Solaris, 686
TCP_ABORT_CINTERVAL, 687
TCP_KEEPALIVE_INTERVAL,

686
TCP_TIME_WAIT_INTERVAL,

686
Introductory text, installation of, 72
IPCS (interactive problem control

system), 126, 137, 811
Is-growable option, 699
Isolated test environments, 782
Isolation levels, 530
ISPF (Interactive System Productiv-

ity Facility), 8, 114–116,
351–359, 806

Item segregation, 611
ITMTP (IBM Tivoli Monitoring for

Transaction Performance),
666

IVT (Installation Verification Test),
82, 618

J
J2EE (Java 2 Enterprise Edition), 3

applications, 545
assembly, 433–434, 451–456

AAT, 434–435
Ant, 437
ASTK, 436–437
packaging, 438–442, 444–451
security, 451
WebSphere Studio, 435

development
Application Assembler,

432–433
Application Component

Provider, 432
Deployer, 433
Product Provider, 432
roles, 431–432
System Administrator, 433
Tool Provider, 432

EAR files, 433–434
JMS, 280

Application Server providers,
281–283

management, 285–287,
289–298

MQ Connection Pooling, 301
optimization, 300

indx.qxd 11/17/04 10:18 AM Page 947

J2EE (cont.)
queues, 281
security, 298–300
topics, 281
topologies, 284
troubleshooting, 302
Web services, 284
z/OS, 303–310, 313–325

roles, 805
J2EE Connector Architecture (JCA),

20, 212
JAAS (Java Authentication and

Authorization Service), 362,
386–388

Java
folders, 177
stacks, 716
tracing, 716, 819

Java 2 Enterprise Edition. See J2EE
Java Authentication and Authoriza-

tion Service (JAAS), 362,
386–388

Java Database Connectivity. See JDBC
JavaMail services, 25
Java Management Extensions. See

JMX
Java Message Service. See JMS
Java Naming and Directory Interface

(JNDI), 21, 525
Java Secure Socket Extension

(JSSE), 362
Java Server Pages. See JSPs
Java Transaction API (JTA), 20
Java Transaction Services (JTS), 20
Java Virtual Machine. See JVM
Java Virtual Machine Profiler Inter-

face. See JVMPI
JCA (J2EE Connector Architecture),

20, 212
JCL (job control language), 10, 114,

810
JDBC (Java Database Connectivity),

3, 21
configuration, 211–219
trace, 817
tracing, 730

JES (Job Entry Subsystem), 588, 806
JESJCL, printing JCL, 810
Jinsight output, 740
JIT (just in time) compilers, 689, 715
JMS (Java Message Service), 3, 21,

280
Application Server providers,

281–283
integrated provider customization

jobs, 824
management, 285–290, 292–298
MQ Connection Pooling, 301
optimization, 300, 692–693
queues, 281
security, 298–300
topics, 281
topologies, 284
troubleshooting, 302

948 Index

Web services, 284, 331
z/OS, 303–310, 313–325

JMX (Java Management Extensions),
3, 628–634

JNDI (Java Naming and Directory
Interface), 21, 525

JOB cards, 134. See also Jobs
Job control language (JCL), 10, 114,

810
Job Entry Subsystem (JES), 588, 806
Jobs

customization, 133–135
execution, 141
JMS, 323
ordering, 141

JSPs (Java Server Pages), 3
EJB containers, 20
precompilation, 442, 521
Web Container, 19–20

JSSE (Java Secure Socket Exten-
sion), 362

JTA (Java Transaction API), 20
JTrace, 732
JTS (Java Transaction Services), 20
Just in time (JIT) compilers, 689
JVM (Java Virtual Machine)

garbage collection, 689–691,
712–715

HotSpot, 692
JIT, 715
log files, 746–750, 823
Maximum Heap Size parameter,

202
optimization, 688–691
tracing, 817–822
z/OS, 711–716

JVMPI (Java Virtual Machine Pro-
filer Interface), 657, 663

K
Keepalives

MaxKeepAliveRequests, 700
TCP, 686

L
Languages

installation, 72, 87
TCL, 635

LaunchPad, starting, 86
LDAP (Lightweight Directory

Access Protocol), 365
Leaks, memory, 715
Levels, EJBs, 480–486
Lib folder, 175, 177
Licenses

agreements, 73, 88
information, 116

Lifetimes, transactions, 210
Lightweight Directory Access Proto-

col (LDAP), 365
Lightweight Third Party Authentica-

tion (LTPA), 361, 370–375
Link Pack Area (LPA), 709
Linkage indexes(LX), 317

Links
editing, 111
Host Aliases, 261
Verify Installation, 167
Web server plug-in security,

268–274
Linux

installation, 69
monitoring, 671
WebSphere Application Server

Base Edition, 69–76, 78–85
WebSphere Application Server

Network Development Edi-
tion, 85–96, 98–102

Listener Ports, 282
configuration, 287
Messaging Beans, 525

Lists, Excludes List (EJB), 488,
492–493

LoadBalance attribute, 266–267
LoadBalanceWeight attribute, 267
Loading properties tables, 137
Local OS user registry, 363
Local server partitions, 242
Locating errors, 788–789. See also

Troubleshooting
Locations

executable programs, 139
system, 150

Log Analyzer, 194
Log files, 745

FFDC, 778
formatting, 772–774
histories, 786
HTTP Servers, 759–762
installation, 756
JVM, 746, 748–750
Log Analyzer, 775–778
merging, 777
plug-ins, 758–759
processes, 750–752
services, 752–755
specialty, 755
troubleshooting, 792
updates, 756–757
utilities, 762

Logger, 814–816
Logging Web server plug-ins, 278.

See also Execution; Starting
Logical Partition. See LPAR
Logical roles, 467. See also Roles
Login configuration, 387
Logs

error, 814, 816
files. See Files
folders, 177
installation, 823
JVM, 823
plug-ins, 824
processes, 823
SDSF, 816
startup, 823
transactions, 210
Web servers, 824

indx.qxd 11/17/04 10:18 AM Page 948

Index 949

Lookups, EJB, 552–554
Loss of control, 802–803
LPA (Link Pack Area), 709
LPAR (Logical Partition), 705

configuration, 9
CPU utilization, 725

LTPA (Lightweight Third Party
Authentication), 361,
370–375

LX (linkage indexes), 317

M
Management

administration services, 22
Administrative Console. See

Administrative Console
clustering, 30–31
Deployment Manager, 14

agents, 17
cells, 17–18
nodes, 148–156, 158–163

distributed management models,
27–30

ikeyman utility, 269–271
installation, 62
JMS, 285–290, 292–298

MQ Connection Pooling, 301
optimization, 300
security, 298–300
troubleshooting, 302
z/OS, 303–310, 313–325

JMX, 628–634
plug-ins, 253–255. See also Plug-

ins
preinstallation, 105
privilege restrictions, 784
RMF, 705
security, 362

authentication configuration,
370–375

authentication protocol configu-
ration, 383–385

files, 391
global security configuration,

377–379
JAAS configuration, 386–388
overriding global security, 389
performance, 390
SSL configuration, 380–382
user registry configuration,

363–370
z/OS, 422–427

services, 22
sessions, 223–231, 233–240
System Administrator (J2EE), 433
TCM, 616
tools, 188–195

backupConfig, 191
dumpNameSpace, 192
restoreConfig, 191
UDDI User Console, 192
VersionInfo, 191
wsadmin, 191

XML_SOAP Administrative,
192

topologies, 41
variables, 222
workload management (WLM),

14, 545. See also Workload
management (WLM)

capabilities of, 551
clusters, 546–557, 562–571
EJB, 571–577
EJB/HTTP client comparisons,

551–556
z/OS, 717–725, 727–735. See also

z/OS
Manual system changes, 137–147
Mapping

data sources, 525–526
Run-As roles, 498–499, 529
security roles, 529
server modules, 529
virtual hosts, 528

MaxConnectBacklog parameter,
276

MaxConnections attribute, 268
Maximum heap sizes (JVM), 689
Maximum Pool Size, 701
MaxKeepAliveRequests, 700
Mbeans, creating, 523
MDBs (message-driven beans), 21,

470, 280
Measurements, 657. See also ARM;

Monitoring
Member clusters, 565
Memory

database replication comparisons,
238–240

leaks, 715
monitoring, 669
optimization, 685
persistence, 235
Session management, 231
vmstat tool, 671

Menus, Default Virtual Host, 262
Merging log/trace files, 777
Message listener service, 286, 692
Message-driven beans (MDBs), 21,

280, 470
Messages

JMS, 21, 692–693
listener ports, 525
RACF, 816
start, 99
WebSphere Component, 774

Methods
1.x, 530
getHostByName(), 130
handleNotification, 634
permissions, 474–476
reload, 706
unload, 706

Metrics, 657. See also Request Met-
rics

Microsoft Windows performance
tuning, 685

Migration, 65–67
folders, 175
preinstallation, 108–109

MIME (Multi-Purpose Internet Mail
Extensions), 220, 261

Minimum Pool Size, 702
Mixed server topologies, 50–53
Models

distributed management, 27–28,
30

scale, 781
Modification. See also Customiza-

tion
Administrative Console, 170–173
Application Client Resource Con-

figuration tool, 190
Application Servers, 199–200

components, 203–208
ORB, 208
templates, 201
transaction services, 209–211

applications
checklists, 508
installation, 510–517, 521–531
logins, 387
postinstallation, 532–539
testing, 539
tools, 509
uninstallation, 542
updating, 539–541

availability, 42
backing up, 102, 785
backup servers, 268
backupConfig tool, 191
base applications. See Base appli-

cations
bindings, 245, 247
bootstrap ports, 243–244
clusters, 564–565

optimization, 567–569
runtime controls, 565–567
troubleshooting, 569–571

coefficient, 608, 612
coexisting, 75
costs, 40–41
data sources, 211–219
database sessions, 228
disk speed, 684
distributed namespace bindings,

244
dumpNameSpace tool, 192
EJBs, 571

containers, 208, 697
workload management (WLM),

572, 575
environments, 219

variables, 222–223
virtual hosts, 220

generic JMS providers, 296–298
heaps, 715
HTTP, 699–701

sessions, 223–231, 233–240
Transports, 205

ISPF panels, 114–118

indx.qxd 11/17/04 10:18 AM Page 949

Modification (cont.)
JDBC, 211–219
JMS, 284, 692–693

management, 285–287, 289–298
MQ Connection Pooling, 301
optimization, 300
security, 298–300
troubleshooting, 302
z/OS, 303–310, 313–325

job customization, 133–135
JVM

initial heap sizes, 688
maximum heap sizes, 689

Listener Ports, 287
LoadBalance attribute, 266–267
LoadBalanceWeight attribute, 267
log files, 745

HTTP Servers, 759–762
installation, 756
JVM, 746–750
plug-ins, 758–759
processes, 750–752
services, 752–755
specialty, 755
updates, 756–757
utilities, 762

LPARs, 9
manual system changes, 137–147
MaxConnections attribute, 268
MBeans, 523
message listener service, 286
method permissions, 474–476
MIME types, 220
namespaces, 344
network deployment, 148–150,

152–163
options, 116
ORB, 694–696
overriding, 514
performance, 41
primary servers, 268
providers, 289
queues, 291
replication, 234
repositories, 22–23
restoreConfig tool, 191
RSS, 707
Run-As role, 481
saving, 291
scalability, 42
security

administration, 362
authentication configuration,

370–375
authentication protocol configu-

ration, 383–385
certificates, 269–271
constraints, 464–466
customization, 132–133
files, 391
global security configuration,

377–379
JAAS configuration, 386, 388
mapping, 495–499
overriding global security, 389

950 Index

performance, 390, 500
planning, 39
policy files, 493–495
references, 467–468, 477–478
roles, 461–464
Run-As roles, 468–469
SSL configuration, 380–382
user registry configuration,

363–370
servers

clusters, 260
customization, 127–131

session state, 42–43
SSL, 271–274
startup, 535
system environment customiza-

tion, 122
target data set allocation, 118–119
TCM, 616
TCP, 685–688
thread pools, 206, 288
tracing, 762–774
UDDI

Registry, 333–338
User Console tool, 192

URIs, 263
Use Binary Configuration, 522
USS, 140
variables

definition, 118–127
saving, 136

VersionInfo tool, 191
view the generated instructions

option, 135–136
virtual hosts, 261–263
Web containers, 698
Web module security, 460–469
Web server plug-ins

communication security,
268–274

failover, 275–278
files, 259–268
logging, 278
tracing, 278

WebSEAL, 375
WebSphere MQ JMS Provider,

293–296
wsadmin tool, 191
XML_SOAP Administrative tool,

192
z/OS

logging, 823–825, 828–838
planning, 53–59
troubleshooting, 805, 817–822

Modify command, 581
Modify Trace, 764. See also Tracing
Modules

clients, 452
EJB assembly, 454
installation, 512
separating, 505
servers, 529
Web

assembly, 453
security configuration, 460–469

Monitoring
EJBs, 576, 672
Garbage Collection, 676
memory, 669
performance, 653

application view, 678–679
end user view, 665–666
environments, 653–657
JVMPI, 663
PMI, 657–659
Request Metrics, 659–662
system view, 667–678
Tivoli Performance Viewer,

663–665
z/OS, 717–725, 727–735

servers, 675
servlets, 672
sessions, 673
threads, 675
tools

Tivoli Performance Viewer, 193
vmstat tool, 671

Web servers, 675
MQ Connection Pooling, 301
Multi-Purpose Internet Mail Exten-

sions (MIME), 220, 261
Multicell topologies, 48–49
Multiple hostnames, 220
Multiple logical partitions, 9. See

also LPARs
Multiple log/trace files, merging, 777
Multiprocessed Web servers, 277
Multithreaded Web servers, 277
Multitier topologies, 48–49
MVS

directories, 184–185
z/OS, 10–11

N
Namespaces

configuration, 344
distributed namespace bindings,

244
dumpName Space tool, 247–251
partitions, 242–243

Naming
architecture

bindings, 245–247
bootstrap ports, 243–244
distributed namespace bindings,

244
dumpName Space tool,

247–251
interoperability, 244–245
namespace partitions, 242–243

cells, 91, 150
hostnames, 91
hosts, 78
JNDI, 525
nodes, 78, 91, 150
SDSF, 130
security, 395
servers, 150
services, 21
variable management, 222

indx.qxd 11/17/04 10:18 AM Page 950

Index 951

NAS (network attached storage), 38
Native JMS providers, 282
Native logs, 750, 752
Navigation. See also Interfaces

Administrative Console, 172–173
directories, 174–179

MVS, 184–185
z/OS, 179–184

license information, 116
splash screens, 116

ND (Network Deployment)
Base Topology, 15
cells, 17–18
distributed management models,

27–30
installation

WebSphere Application Server
Base Edition, 69–74, 76–85

WebSphere Application Server
Network Development Edi-
tion, 85–96, 98–100

nodes, 17
server processes, 16
troubleshooting, 100–102
Web services, 332

installation, 333
UDDI Registry access,

333–338
Web Services Gateway installa-

tion, 338–3343
z/OS, 32

Ndd -get command, 686
Ndd set command, 686
Network attached storage (NAS), 38
Network deployment. See ND
Networks

deployment. See also ND
configuration, 148–156,

158–163
customization jobs, 824

optimization, 685
upstream queuing, 683

Node-persistent partitions, 242
Nodes, 17

application server configuration,
117

commands, 187
deployment manager, 148–156,

158–163
federating, 159
naming, 78, 91, 150
z/OS address spaces, 35

Non-enclave work, classification of,
719

Non-WebSphere clients, 245

O
Object Management Group (OMG),

383
Object Request Broker. See ORB
Oedit program, 8
OMG (Object Management Group),

383
Operating systems, 7

JVM settings, 690

Linux
installation, 69
WebSphere Application Server

Base Edition, 69–76, 78–85
WebSphere Application Server

Network Development Edi-
tion, 85–96, 98–102

performance, 685
Microsoft Windows, 685
Sun Solaris, 686–688

z/OS, 31
address spaces, 32–36
comparing distributed operating

systems, 8–9
QoS, 9
WebSphere on, 10–11

Operations (security), 392
administrative roles, 394
file permissions, 394
UNIX, 392–393

Operations and Administration man-
ual, 717

Oping command, 130
Optimization. See also Configura-

tion; Performance; Trou-
bleshooting

applications, 681
clusters, 567–569
EJBs

containers, 697
workload management (WLM),

575–576
HTTP, 699, 701
installation

application prerequisites, 65
hardware prerequisites, 65
planning, 64–65

JMS, 300, 692–693
JVM, 688–691
memory, 685
networks, 685
ORB, 694–696
plug-ins, 275–278
preinstallation, 107
security, 390, 500
testing, 783
tools, 193
topologies, 41
web containers, 698
z/OS, 704–705, 801–802

communication practices,
805–813

configuration, 805, 817–822
container, 709–711
cooperation, 803–805
diagnostics, 813–814
error logs, 814–816
HTTP front-end handlers,

736–737, 740
JVM, 711–716
logging, 823–832, 834–838
loss of control, 802–803
monitoring, 717–725, 727–735
RACF, 816
separation of J2EE roles, 805

subsystems, 707–708
system consoles, 816
testing, 705–706
timeline of events, 816
WLM policies, 583–592,

594–601, 603–612
Optional command line arguments

(JVM), 689
Options. See also Optimization

base applications, 136, 823
clusters, 566
configuration files, 263–268. See

also Configuration
federation customization jobs, 824
integrated JMS provider cus-

tomization jobs, 824
is-growable, 699
ISPF panels, 114–118
jobs, 133–135
manual system changes, 137–147
network deployment customiza-

tion jobs, 824
security, 132–133
servers, 127–131, 312
Session management, 224
SMP/e customization, 113
system environment, 122
target data set allocation, 118–119
variables

definitions, 118–127
saving, 136

view the generated instructions,
135–136

ORB (Object Request Broker), 208
EJBs

configuration, 572, 575
optimization, 575–576
troubleshooting, 576–577

optimization, 694–696
pass by references, 694
Request Timeout value, 695
thread pools, 695

Ordering jobs, 141
Output

addresses spaces, 814
error logs, 816
Jinsight, 740
servant region address space refer-

ences, 806
z/OS, 805–813

Overriding
configuration, 514
default EJB requests, 556
global security, 389

P
Packaging, 438–442, 444–451
PAM (Pluggable Authentication

Module), 362
Panels, ISPF customization, 114–118
Parameters

appserversetupuddi.jacl script,
339

distributed sessions, 238
JVM Maximum Heap Size, 202

indx.qxd 11/17/04 10:18 AM Page 951

Parameters (cont.)
MaxConnectBacklog, 276
SoapEarEnabler tool, 344
system reports, 734
thread pools, 206
WSGW.jacl script, 341

Partitioned data set extended
(PDSE), 110

Partitions
cell-persistent, 242
configuration, 9
dumpName Space tool, 247–251
local server, 242
LPARs, 705
namespaces, 242–243
node-persistent, 242
reports, 723
system, 242
transient, 242

Pass by references, 694
Passwords, 383. See also Security
Paths

applications, 804
errors, 788–789
installation, 91

PDSE (partitioned data set
extended), 110

Peer-to-Peer mode, 231
Perfmon, 667
Performance. See also Configuration;

Customization; Trou-
bleshooting

application view, 678–679
core systems, 667
end user view, 665–666
environments, 653–655, 657
installation

application prerequisites, 65
hardware prerequisites, 65
planning, 64–65

JMS, 300
JVMPI, 663
monitoring, 653
optimization, 680

Application Server, 681–699,
701–703

types of, 681
PMI, 657–659
Request Metrics, 659–662
preinstallation, 107
security, 390, 500
system view, 667–678
testing, 783
Tivoli Performance Viewer, 193,

663–665
topologies, 41
z/OS, 704–705, 801–802

communication practices,
805–806, 808–813

configuration, 805, 817–822
containers, 709–711
cooperation, 803–805
diagnostics, 813–814
error logs, 814–816

952 Index

HTTP front-end handlers,
736–740

JVM, 711–716
logging, 823––832, 834–838
loss of control, 802–803
monitoring, 717–728, 730–735
RACF, 816
separation of J2EE roles, 805
subsystems, 707–708
system console, 816
testing, 705–706
timeline of events, 816
WLM policies, 583–592,

594–604, 606–612
Performance Monitoring Infrastruc-

ture. See PMI
Period aging for service classes, 595
Permissions

file security, 394
methods, 474–476

Persistence
memory, 235
sessions, 227–234, 238–240

Planning
applications, 502–508
installation, 62

administration, 62
application prerequisites, 65
hardware prerequisites, 65
performance, 64–65
security, 62–64

topologies, 38, 43
administration, 41
availability, 42
costs, 40–41
performance, 41
scalability, 42
security, 39
session states, 42–43
z/OS, 53–59

Platforms, 7. See also Operating sys-
tems

directories, 174–175, 177–179
MVS, 184–185
z/OS, 179–184

JVM settings, 690
z/OS, 31

address spaces, 32–36
comparing distributed operating

systems, 8–9
QoS, 9
WebSphere on, 10–11

Plug-ins
distributed HTTP/HTTPS for-

warding, 737
HTTP, 26
log files, 758–759, 824
tracing, 771
updating, 273–274
Web server, 253–255

communication security,
268–274

configuration, 259–268
failover, 275–278

installation, 256–258
logging, 278
preinstallation, 256
tracing, 278
verification, 258–259

Pluggable Authentication Module
(PAM), 362

PMI (Performance Monitoring Infra-
structure), 657–662

PMR (Problem Management
Record), 797

Policies
change control, 784–785
garbage collection (JVM), 689
security configuration, 493–495
workload management (WLM),

583–592, 594–604,
606–612

Pools
connections, 21, 212
databases, 701–703
MQ Connection Pooling, 301
threads, 206

configuration, 288
ORB, 695

Ports. See also Connections; Net-
works

Application Servers, 205
assignments, 75, 90
bootstrap, 243–244
coexisting configurations, 75
deployment manager, 153
firewall preinstallation, 105–106
HTTP, 131
Listener Ports, 282

configuration, 287
Messaging Beans, 525

reservations, 139
Postinstallation of applications,

532–539. See also Installa-
tion

Precompilation of JSPs, 442, 521
Prefixes, HME*, 806
Preinstallation, 105. See also Instal-

lation
administration, 105
applications, 107
hardware, 107–108
migration, 108–109
performance, 107
security, 105–106
Web server plug-ins, 256

PreparedStatement, 702
Prerequisites, checking for, 89
Previous versions

access, 245
clients, 244

Primary server configuration, 268
Printing

dumpName Space tool, 247–251
JCL, 810

Private UDDI Registries, 333–338
Privileges, administrative restric-

tions, 784

indx.qxd 11/17/04 10:18 AM Page 952

Index 953

Problem determination. See also
Troubleshooting

methodologies, 788–796
z/OS, 801–802

communication practices,
805–813

configuration, 805, 817–822
cooperation, 803–805
diagnostics, 813–814
error logs, 814–816
logging, 823–832, 834–838
loss of control, 802–803
RACF, 816
separation of J2EE roles, 805
system console, 816
timeline of events, 816

Problem Management Record
(PMR), 797

Procedures, documentation, 786
Processes

log files, 750–752, 823
servers, 16

Product Provider (J2EE), 432
Production

scale models, 781
troubleshooting, 795

Profiles, WSAD, 740
Program directories, 111–113. See

also Directories
Programmatic security, 458
Programming

automation, 640–648
code. See also Code

reviews, 787
sharing, 505

Programs. See Applications
Propdefaults folder, 175
Properties

Application Servers
configuration, 203–208
transaction services, 209–211

HTTP, 699, 701
Queue Connection Factory, 290
replication, 234
servers, 285
Session Management, 224
tables, 137
Web containers, 204

Protocols
authentication, 361
COS Naming, 241
HTTP, 699–701
IIOP, 551
LDAP, 365
TCP

buffers, 687
configuration, 685–688
keepalives, 686
z/OS, 707

TCP/IP, 382, 686–688
Providers

Application Component Provider
(J2EE), 432

JDBC configuration, 211–219

JMS configuration, 289
Product Provider (J2EE), 432
Tool Provider (J2EE), 432

Ps command, 9

Q
QoS (quality of service), 9, 705
Queue Connection Factory proper-

ties, 290
Queue Manager, 313
Queues

internal JMS servers configura-
tion, 291

JMS, 281, 291
performance tuning, 682–683
requests, 674
upstream queuing networks, 683
WebSphere MQ JMS configura-

tion, 294

R
RACF (Resource Access Control

Facility), 403–413, 415–422,
709

JMS, 323
messages, 816

Records
analyzing, 777
JES, 806
SMF, 138

Recovery, 707
Reduction, JDBC, 730
Redundancy, 42
References

J2EE, 443
log files, 745

HTTP Servers, 759–762
installation, 756
JVM, 746–750
plug-ins, 758–759
processes, 750–752
services, 752–755
specialty, 755
updates, 756–757
utilities, 762

pass by, 694
resources, 528
security roles, 467–478
servant region address space out-

put, 806
soft, 715
UDDI deployment, 347–350
Web server plug-ins, 263

Registration, 93, 165
Registries (UDDI)

access, 333–338
installation, 332

Reinstallation. See also Installation
applications, 540
interim fixes, 102

Relative names, 244
Reloading

classes, 523
dynamic, 541

intervals, 523
methods, 706
servlets, 440

Remote objects, 208
Replication

databases, 238–240
domains, 233–234
memory, 235

Reports
accounting, 735
APAR, 800
classes, 606–607
partitions, 723
RMF, 705, 723
segregation of data, 611
statistics, 734
summary, 723
system parameters, 734
workload activity, 727

Repositories, 22–23
Request Metrics, 657–662
Requests

EJB, 555–556, 572
flows, 674
LoadBalanceWeight attribute, 267
MaxKeepAliveRequests, 700
ORB, 208, 695
performance

Application Server, 681–699,
701–703

optimization, 680
types of tuning, 681

virtual hosts, 220
Requirements

classloaders, 503
classpath, 503

Reservations, ports, 139
Resource Access Control Facility

(RACF), 403–413, 415–422,
709

JMS, 323
messages, 816

Resource Management Facility
(RMF), 705

testing, 739
z/OS, 722–733

Resource Management Facility
Report Analysis, 722

Resource Monitoring Facility
(RMF), 667

Resource Recovery Services (RRS),
158

starting, 143–144
z/OS performance, 707

Resources
groups, 601, 603–604
references, 528
troubleshooting, 795

Resources.xml files, 23
Responses, 657. See also ARM
Restoration of data stores (DB2), 706
RestoreConfig tool, 191
Restriction of administrative privi-

leges, 784. See also Security

indx.qxd 11/17/04 10:18 AM Page 953

RetryInterval attribute, 255, 275
Reviewing. See also Viewing

code, 787
z/OS output, 805–813

Revisions. See also Editing; Modifi-
cation

configuration files, 263–268
links, 111

RMF (Resource Management Facil-
ity), 705

testing, 739
z/OS, 722–733

RMF (Resource Monitoring Facil-
ity), 667

Roles
J2EE development, 431–432

Application Assembler,
432–433

Application Component
Provider, 432

Deployer, 433
Product Provider, 432
separation of, 805
System Administrator, 433
Tool Provider, 432

mapping, 495–497
Run-As roles, 498–499, 529
security, 460

creating, 461–464
EJB, 472
mapping, 529
references, 467–478
Run-As roles, 468–469,

479–481
Rollbacks, clustered environments,

507
Routes, Web server plug-ins,

264–265
RRS (Resource Recovery Services),

158
starting, 143–144
z/OS performance, 707

Rules, classification, 601
Run-As roles, 479

configuration, 481
mapping, 498–499, 529
security, 468–469

Running. See also Execution
addnode scripts, 97
Log Analyzer, 776–778

Runtime
C++, 821
cluster controls, 565–567
code sharing, 505
Java, 819
z/OS controllers, 711

S
SAF (System Authorization Facility),

402–403
Samples Gallery (First Step utility),

168
Saving

configurations, 291, 785

954 Index

tracing, 769
variables, 136

Scalability of topologies, 42
Scale models, production tests, 781
Scaling testing, 780
Scenarios, test, 782
Scripts

addnode, 97
appserversetupuddi.jacl parame-

ters, 339
command line, 623–624
shell, 618–623
startServer, 624
wsadmin tool, 191, 635, 639
WSCP, 635
WSGW.jacl parameters, 341
z/OS, 706

SDSF (System Display and Search
Facility), 9, 130, 806, 816

Searching
logs, 823–832, 834–838
names, 130

Sections, address space output, 810
Secure Sockets Layer (SSL), 362

certificates, 269–271
configuration, 271–274, 380–382
Repertoire, 426

Security, 360–362
1.x methods, 530
administration, 362

authentication configuration,
370–375

authentication protocol configu-
ration, 383–385

files, 391
global security configuration,

377–379
JAAS configuration, 386–388
overriding global security,

389
performance, 390
SSL configuration, 380–382
user registry configuration,

363–370
applications, 458, 504

declarative, 458
Deployment Descriptor, 459
mapping, 495–499
performance, 500
policy file configuration,

493–495
programmatic, 458
roles, 460

communication, 268–274
constraints, 464–466
customization, 132–133
EJB applications, 470–478,

483–493
installation, 62–64
J2EE applications, 451
JMS, 298–300
naming, 395
operations, 392

administrative roles, 394

file permissions, 394
UNIX, 392–393

planning, 39
preinstallation, 105–106
Queue Manager, 313
roles

creating, 461–464
EJB, 472
mapping, 529
references, 467–478
Run-As roles, 468–469, 479–481

services, 22
trace specifications, 396–399
Web applications, 460–469
Web containers, 271–274
z/OS, 402

administration, 422–427
RACF, 403–413, 415–422
SAF, 402–403
started task procedures,

409–410
UNIX, 407–409

Segregation of data reports, 611
Selection

of components, 76, 90
of hostnames, 91
of installations, 76
of languages, 72, 87
of topologies, 38

Separation
of J2EE roles, 805
of modules, 505

Servant region address space output,
806

Servant Service Class (MC5SVNT),
727

Servants
addresses spaces, 720
JVM, 711–716
processes, 152
threads, 720

ServerCluster attribute, 255
Servers

adding, 96–97
Apache, 675
Application Servers

configuration, 203–208
creating, 199–200
JMS, 281–283
ORB, 208
templates, 201
transaction services, 209–211
Web services, 284

applications
deployment, 503
environments, 604
starting, 144–146, 161–162

ASTK, 436–437
automation, 614

Ant tasks, 624, 627
code, 640–648
command line scripts, 623–624
installation response files,

616–617

indx.qxd 11/17/04 10:18 AM Page 954

Index 955

JMX, 628–634
shell scripts, 618–623
wsadmin tool, 635–640

backup configuration, 268
clustering, 30–31, 260
customization, 127–131, 312
HTTP

installation, 77
log files, 759–762
plug-ins, 26

IHS, 736
JMS

management, 285–287,
289–298

MQ Connection Pooling, 301
optimization, 300
security, 298–300
troubleshooting, 302
z/OS, 303–310, 313–325

JVM, 711–716
local partitions, 242
memory, 231
modules, 529
naming, 150
performance tuning, 681–698
plug-ins, 758–759
PMI, 657–662
primary configuration, 268
processes, 16
properties, 285
start messages, 99
starting, 82, 99, 167, 186–187
STC, 583
stopping, 167, 186–187
topologies

mixed servers, 50–53
multicell/multitier, 48–49
single servers, 45–46
three-tier, 46–47

viewing, 95
Web servers

logs, 824
monitoring, 675
plug-ins, 253–255

workload management (WLM)
capabilities of, 551
clusters, 546–551, 557–560,

562–571
EJB, 571–572, 575–577
EJB/HTTP client comparisons,

551–556
z/OS

address spaces, 34
cells, 709, 711

Service Level Agreements (SLA),
201

Services
administration, 22
classes, 591–592

CBSTC, 606
resource groups, 601–603
TSOPRD, 596

definitions, 584–586
Dynamic Caching, 204, 696

JavaMail, 25
JCA, 20
JMS, 21. See also JMS
JTA/JTS, 20
log files, 752, 755
message listener, 286, 692
naming, 21
policies, 587
security, 22
transactions, 209–211
Web services, 25, 326–330

Servlets
EJBs

configuration, 572, 575
containers, 20
optimization, 575–576
troubleshooting, 576–577

monitoring, 672
naming services, 21
reloading, 440
Web Container, 19–20

Session Pools, 282
Sessions

affinity, 267
JMS, 693
management, 223–228, 231–240
monitoring, 673
persistence, 238
pools, 282
shared, 504
state, 42–43

Sharing
code, 505
sessions, 504

Shell scripts, 618–623
Showlog tool, 195
Silent installations, 616–617
Silent installer, 68
Simple Object Access Protocol. See

SOAP
Simple paths, applications, 804
Simple WebSphere Authentication

Mechanism (SWAM), 361,
370

Single server topologies, 45–46
Single Signon (SSO), 375
Sizes, heaps (JVM), 688–689
SLA (Service Level Agreements), 201
SMP (symmetric multiprocessor)

machines, 41. See also Clus-
ters

SMP/e installation, 109–110
customization, 113
HFSs, 110
link editing, 111
program directories, 111–113

Snapshots, high volume periods,
739

SOAP (Simple Object Access Proto-
col), 3

EAR file installation, 344–347
SoapEarEnabler tool, 343
Web services

implementation, 329–330

installation, 332
XML_SOAP Administrative tool,

192
SoapEarEnabler tool, 343
Soft references, 715
Software. See Applications
Solaris (Sun) performance tuning,

686–688
Spaces, addresses, 32–36. See also

Addresses
Specialty log files, 755
Specifications

J2EE
Application Assembler,

432–433
Application Component

Provider, 432
Deployer, 433
development roles, 431–432
Product Provider, 432
System Administrator, 433
Tool Provider, 432

values, 686
Speed, disk, 684
Splash screens, navigation, 116
SSL (Secure Sockets Layer), 362

certificates, 269–271
configuration, 271–274,

380–382
Repertoire, 426

SSO (Single Signon), 375
Stacks, Java traces, 716
Standard logs, JVM, 746–750
Started Task Control (STC), 583
Started task procedures, 409–410
Starting. See also Execution; Instal-

lation
Administrative Console, 163,

170–173
application servers, 144–146,

161–162
Base applications, 147–149
CTRACE writer, 144
First Steps utility, 166–169
LaunchPad, 86
Log Analyzer, 776–778
RRS, 143–144
servers, 82, 99, 167, 186–187
start messages, 99
weights, 537

StartManager command, 186
StartNode command, 187
StartServer script, 624
Startup

configuration, 535
logs, 823

Statements, STEPLIB DD, 709
States

CLOSE_WAIT, 686
FIN_WAIT_2, 686
TIME_WAIT, 685

Static Web content, packaging,
438–442, 444–451

Statistics, reports, 734

indx.qxd 11/17/04 10:18 AM Page 955

Status
installation, 80
SDSF, 806

STC (Started Task Control), 583
STEPLIB DD statements, 709
STI (Synthetic Transaction Investiga-

tor), 666
StopManager command, 186
StopNode command, 187
Stopping servers, 167, 186–187
Structure of directories, 174–179

MVS, 184–185
z/OS, 179–184

Subsystems
classification, 602
JES, 588, 806
workloads, 588. See also Work-

load management (WLM)
z/OS

performance, 707
RRS, 707
TCP, 707
USS, 707
WLM, 708
XCF, 708

Summaries
installation, 79, 92
z/OS, 723

Sun Solaris performance tuning,
686–688

Support, 137, 797–800. See also
Resources; Troubleshooting

SUT (system under test), 707
SWAM (Simple WebSphere Authen-

tication Mechanism), 361,
370

Symbolic names, 222
Symmetric multiprocessor machine

(SMP), 41. See also Clusters
Symptoms database, analyzing,

777
Synchronization, 23, 423
Synthetic Transaction Investigator

(STI), 666
Sysplex Distributor, 737
SYSPRINT, 811, 814
System Administrator (J2EE), 433
System Authorization Facility (SAF),

402–403
System console, z/OS, 816
System Display and Search Facility

(SDSF), 9, 130, 806, 816
System environment customization,

122
System locations, 122–123, 150
System memory optimization, 685
System output (SYSOUT), 810
System parameter reports, 734
System partitions, 242
System resources, troubleshooting,

795
System under test (SUT), 707
System view, 667–678. See also

Views

956 Index

T
Tables

environment variables, 825
properties, 137

TAI (Trust Association Interceptor),
374

Target data sets, 118–119
Tasks, Ant automation, 624, 627
TCL (Tool Command Language), 635
TCM (Tivoli Configuration Man-

ager), 616
TCP (Transmission Control Protocol)

buffers, 687
configuration, 685–688
keepalives, 686
z/OS performance, 707

TCP/IP (Transmission Control Proto-
col/Internet Protocol)

connections, 686–688
JMS, 322

TcpTimedWaitDelay value, 685
TCP_ABORT_CINTERVAL, 687
Tcp_conn_request_max value, 688
TCP_KEEPALIVE_INTERVAL,

686
TCP_TIME_WAIT_INTERVAL, 686
Temp folder, 178
Templates, Application Severs, 201
Testing

applications, 539
best practices, 780–783

change control policies,
784–785

fix packs/interim fixes, 787
problem determination method-

ologies, 788–796
support, 797–800
white papers, 786

hardware performance tuning, 684
initial verification tests, 147
installation, 83
IVT, 618
RMF, 739
scale models of production, 781
z/OS, 705–706

Tex, installation of, 72
ThinkDynamic Orchestrator (TIO),

616
Thread Analyzer, 11
Threads

monitoring, 675
pools, 206

configuration, 288
ORB, 695

security synchronization, 423
Servants, 720
Web containers, 698

Three-tier topologies, 46–47
Time Sharing Option (TSO), 9
Timelines, 816
Timeouts

ORB, 695
transactions, 210

TIME_WAIT state, 685

TIO (ThinkDynamic Orchestrator),
616

Tivoli Configuration Manager
(TCM), 616

Tivoli Performance Viewer, 193, 576,
663–665

Tool Command Language (TCL),
635

Tool Provider (J2EE), 432
Tools, 188–195

AAT, 169, 189, 434–435
Administrative Console, 23–25,

170–173
Ant, 437
Application Client Resource Con-

figuration, 190
ASTK, 436–437
ATK, 190
backupConfig, 191
ClientUpgrade, 188
Collector, 194
deployment, 509, 524
dumpNameSpace, 192, 247–251
Ejbdeploy, 190
end user view monitoring, 666
ESR, 797
First Steps, 166–169
ikeyman, 269–271
IPCS, 126, 811
ITMTP, 666
Log Analyzer, 194
restoreConfig, 191
Showlog, 195
SoapEarEnabler, 343
table of environment variables,

825
test, 705–706
Thread Analyzer, 11
Tivoli Performance Viewer, 193,

663–665
Topaz Real User Monitor, 666
UDDI User Console, 192
UpdateInstaller, 101
Verify Installation, 167
VersionInfo, 191
vmstat, 671
WasPostUpgrade, 189
WasPreUpgrade, 188
WebSphere Studio, 435
wsadmin, 191, 510

automation, 635–640
debugging, 639

XML_SOAP Administrative, 192
Topaz Real User Monitor, 666
Topics (JMS), 281

configuration, 292
destinations, 292

Topologies
administration, 41
availability, 42
Base Topology, 15
costs, 40–41
JMS, 284
performance, 41

indx.qxd 11/17/04 10:18 AM Page 956

Index 957

planning, 38, 43
scalability, 42
security, 39
selection, 38
session state, 42–43
types, 44

mixed servers, 50–53
multicell/multitier, 48–49
single servers, 45–46
three-tier, 46–47

z/OS, 53–59, 709–711
TPV. See Tivoli Performance Viewer
Trace specifications, 396–399
Tracebacks, 811
Tracing, 126

C++, 821
configuration, 762–771
containers, 739
DB2, 733–735
FFDC, 778
formatting, 772–774
Garbage Collection (JVM),

817–822
Java, 716, 819
JDBC, 730, 817
JVM, 817–822
merging, 777
Web server plug-ins, 278

Tranlog folder, 178
Transactions

CICS, 595
ITMTP, 666
JTS, 20
services, 209–211
TSO, 596
z/OS, 587–590

Transforms folder, 175
Transient partitions, 242
Transmission Control Protocol. See

TCP
Transmission Control Protocol/Inter-

net Protocol. See TCP/IP
Transports

configuration, 273–274
HTTP Transports, 205
Web containers, 271–274

Troubleshooting
best practices, 780–783

change control policies,
784–785

fix packs/interim fixes, 787
problem determination method-

ologies, 788–796
support, 797–800
white papers, 786

clusters, 569–571
EJB, 576–577
installation, 83, 100–102, 791
JMS, 302
Linux, 100–102
log files, 745, 792

HTTP Server, 759–762
installation, 756
JVM, 746–750

Log Analyzer, 775–778
plug-ins, 758–759
process, 750–752
service, 752–755
specialty, 755
update, 756–757
utility, 762

production, 795
system resources, 795
Thread Analyzer, 11
tools

Collector, 194
dumpName Space tool, 247–251
Log Analyzer, 194
Showlog, 195

wsadmin scripts, 639
z/OS, 801–802

communication practices,
805–813

configuration, 805, 817–822
cooperation, 803–805
diagnostics, 813–814
error logs, 814–816
logging, 823–825, 828–838
loss of control, 802–803
RACF, 816
separation of J2EE roles, 805
system console, 816
timeline of events, 816

Trust Association Interceptor (TAI),
374

TSO (Time Sharing Option), 9, 596
TSOPRD service class, 596
Tuning. See also Optimization

applications, 681
clusters, 567–569
EJB

containers, 697
workload management (WLM),

575–576
HTTP, 699–701
JMS, 300, 692–693
JVM, 688–691
ORB, 694–696
performance, 680–699, 701–703
tools, 193
Web containers, 698
z/OS, 704–705

containers, 709–711
HTTP front-end handlers,

736–737, 740
JVM, 711, 713–716
monitoring, 717–725, 727–735
subsystems, 707–708
testing, 705–706

Types
of businesses, 588
of clusters, 547–548
of installation, 76
of log files, 745

HTTP Server, 759–762
JVM, 746–750
plug-ins, 758–759
processes, 750–752

services, 752–755
specialty, 755
updates, 756–757

of MIME, 220, 261
of performance tuning, 681
of queues, 682–683
of topologies, 44

mixed servers, 50–53
multicell/multitier, 48–49
single servers, 45–46
three-tier, 46–47

tests, 783

U
UDDI (Universal Description, Dis-

covery, and Integration), 3
reference deployment, 347–350
Registry

access, 333–338
installation, 332

User Console tool, 192
UDDIReg folder, 179
Uniform Resource Indicators. See

URIs
Uninst folder, 174
Uninstallation of applications, 542.

See also Installation
Universal Description, Discovery,

and Integration. See UDDI
UniversalDriver folder, 178
UNIX

monitoring, 671
security, 392–393
z/OS, 407–409

Unix System Services (USS), 8, 110,
707

Unload methods, 706
UpdateInstaller tool, 101
UpdateSilent command, 101
UpdateWizard command, 101
Updating

applications, 539–541
atomic updates, 209–211
BPXPRMxx members, 139
configuration files, 259
log files, 756–757
plug-ins, 273–274
security, 460
WLM, 137, 159

Upgrading
applications, 504, 507
ClientUpgrade tool, 188
WasPostUpgrade tool, 189
WasPreUpgrade tool, 188

Upstream queuing networks, 683
URIs (Uniform Resource Indicators)

configuration, 263
namespaces, 344
PMI Request Metrics, 661

Use Binary Configuration, 522
User defined workloads, 589
User ID

access, 140
security, 409–410

indx.qxd 11/17/04 10:18 AM Page 957

User registry security configuration,
363–370

Users
roles, 495–499
security roles, 529

Using test tools, 707
USS (Unix System Services), 8, 110

directories, 180
modification, 140
z/OS performance, 707

Util folder, 178
Utilities, 188–195

AAT, 169, 189, 434–435
Administrative Console, 23–25,

170–173
Ant, 437
Application Client Resource Con-

figuration, 190
ASTK, 436–437
ATK, 190
backupConfig, 191
ClientUpgrade, 188
Collector, 194
deployment, 509, 524
dumpNameSpace, 192, 247–251
Ejbdeploy, 190
end user view monitoring, 666
ESR, 797
First Steps, 166–169
ikeyman, 269, 271
IPCS, 126, 811
ITMTP, 666
Log Analyzer, 194
restoreConfig, 191
Showlog, 195
SoapEarEnabler, 343
table of environment variables,

825
Thread Analyzer, 11
Tivoli Performance Viewer, 193,

663–665
Topaz Real User Monitor, 666
UDDI User Console, 192
UpdateInstaller, 101
Verify Installation, 167
VersionInfo, 191
vmstat, 671
WasPostUpgrade, 189
WasPreUpgrade, 188
WebSphere Studio, 435
wsadmin, 191, 510

automation, 635–640
debugging, 639

XML_SOAP Administrative, 192
Utility jar deployment, 505
Utility log files, 762
Utilization

CPU, 725
DISK monitoring, 669

V
Validation, errors, 789–794
Values

ORB Request Timeout, 695

958 Index

specification, 686
TcpTimedWaitDelay, 685
tcp_conn_request_max, 688
tcp_keepinit value, 687
-Xverify:none, 689

Variables
adding, 819
defining, 118–223
deployment manager nodes, 150
management, 222
saving, 136
table of environment, 825

Velocity goals, 593–594
Verbose garbage collection (Ver-

boseGC), 689, 712–715
Verification

First Steps utility, 166–169
initial verification tests, 147
installation, 82
IVT, 618
Web server plug-in installation,

258–259
Verify Installation utility, 167
VersionInfo tool, 191–192
Versions, 14

installation
WebSphere Application Server

Base Edition, 69–76, 78–85
WebSphere Application Server

Network Development Edi-
tion, 85–96, 98–100

migration, 65–67, 108–109
Network Deployment, 14

Base Topology, 15
cells, 17–18
distributed management mod-

els, 27–30
nodes, 17
server processes, 16

previous
access, 245
executing clients, 244

troubleshooting, 100–102
Vertical clusters, 547
Vi editor, 8
View the generated instructions

option, 135–136
Viewing

Administrative Console, 84–85,
95

fix packs, 102
JVM log files, 750
process log files, 752
servers, 95

Views, 653–657
Virtual hosts, 254

configuration, 220, 261–263
installation, 516
mapping, 528

Vmstat tool, 671

W
WasPostUpgrade tool, 189
WasPreUpgrade tool, 188

WDSL URI namespaces, 344
Web applications

module configuration, 460–469
security, 460

Web Container, 19–20
optimization, 698
properties, 204
security, 271–274

Web folders, 178
Web modules

assembly, 453
separating, 505

Web servers
logs, 824
monitoring, 675
plug-ins, 253, 255

communication security,
268–274

configuration, 259–268
failover, 275–278
installation, 256–258
logging, 278
preinstallation, 256
tracing, 278
verification, 258–259

Web services, 25, 326–328
deployment, 523
implementation, 329–330
installation, 332
JMS, 284
Network Deployment

installation, 333
UDDI Registry access,

333–338
Web Services Gateway installa-

tion, 338–343
SOAP, 344–347
SoapEarEnabler tool, 343
UDDI reference deployment,

347–350
z/OS customization, 351–359

Web Services Description Language.
See WSDL

Web Services Gateway
installation, 332, 338–343
z/OS, 351–359

Web Services Invocation Framework
(WSIF), 328

Web sites, Help, 795–796
WebSEAL, 375
WebSphere Application Monitor

(WSAM), 663
WebSphere Application Server Base

Edition installation, 69–76,
78–85

WebSphere Application Server Net-
work Deployment Edition

installation, 85–96, 98–100
troubleshooting, 100–102

WebSphere Control Program
(WSCP), 635

WebSphere JMS Provider, 282
WebSphere MQ JMS Provider, 283,

293–296

indx.qxd 11/17/04 10:18 AM Page 958

Index 959

WebSphere Studio, 435
Weights

clusters, 565
starting, 537

White papers, best practices, 786
Windows (Microsoft)

performance tuning, 685
PerfMon, 667

Wizards
installation, 74. See also Installa-

tion
UpdateInstaller, 101

WLM. See Workload management
(WLM)

WLM application environment defi-
nitions, 137

Workload activity reports, 727
Workload management (WLM), 14,

137, 159, 545
capabilities of, 551
clusters, 546, 557–564

advantages of, 550
configuration, 564–565
disadvantages of, 550–551
optimization, 567–569
runtime controls, 565–567
troubleshooting, 569–571
types of, 547–548

EJB, 571
configuration, 572, 575
optimization, 575–576
troubleshooting, 576–577

EJB/HTTP client comparisons,
551–556

z/OS, 579–583
classification, 717–720
performance, 708

policies, 583–587, 589–597,
600–612

Workload policies, 587–590
Workstations, 135–136
WSAD profiles, 740
Wsadmin tool, 191, 510

automation, 635–640
debugging, 639

WSAM (WebSphere Application
Monitor), 663

WSCP (WebSphere Control Pro-
gram), 635

WSDL (Web Services Description
Language), 3

WSGW folders, 179
WSGW.jacl script, parameters, 341
WSIF (Web Services Invocation

Framework), 328
Wsinstance folders, 175
Wstemp folders, 179

X
XCF (Cross-System Coupling Facil-

ity), 708
XML (Extensible Markup Language)

resources.xml files, 23
tracing, 770–771

-Xverify:none value, 689

Z
z/OS, 7

address spaces, 32–36
architecture, 31
directories, 179–184
distributed operating systems, 8–9
JMS, 303–310, 313–325
performance, 704–705

containers, 709–711
HTTP front-end handlers,

736–740
JVM, 711–716
monitoring, 717–725,

727–735
subsystems, 707–708
testing, 705–706

QoS, 9
security, 402

administration, 422–427
RACF, 403–413, 415–422
SAF, 402–403
started task procedures,

409–410
UNIX, 407–409

topologies, 53–59
troubleshooting, 801–802

communication practices,
805–813

configuration, 805, 817–822
cooperation, 803–805
diagnostics, 813–814
error logs, 814–816
logging, 823–832, 834–838
loss of control, 802–803
RACF, 816
separation of J2EE roles, 805
system console, 816
timeline of events, 816

Web service customization,
351–359

WebSphere on, 10–11
workload management (WLM),

579–583
z/SAS protocol, 427
zSeries hardware, 8

indx.qxd 11/17/04 10:18 AM Page 959

	Foreword
	Chapter 23: WebSphere Performance Tuning–z/OS
	Chapter 25: Problem Prevention and Determination Methodology
	Index

