
1

C H A P T E R 1

Introduction to the
Mainframe

The mainframe is the backbone of many industries that are the lifeblood of the global economy.
More mainframe processing power is being shipped now than has ever been shipped. Businesses
that require unparalleled security, availability, and reliability for their “bet your business”
applications depend on the IBM zSeries® mainframe, which runs the z/OS operating system and
is protected by the IBM Resource Access Control Facility (RACF).

In this book, we explain the basics of z/OS, focusing on z/OS security and RACF. This chapter
describes the evolution of the mainframe and the reasons it is the leading platform for reliable
computing. It also explains how to use the key elements of z/OS.

1.1 Why Use a Mainframe?
This book introduces security administrators to the world of z/OS. We expect that you already
have experience with Linux, UNIX, or Windows. Using this prerequisite knowledge, we teach
you how to use the mainframe and how to configure RACF, the security subsystem. At the end of
each chapter, we list sources for additional information.

If you are the kind of person who wants to go right to typing commands and seeing results,
skip on over to Section 1.2, “Getting Started,” to learn about the z/OS Time Sharing Option (TSO)
environment. However, we recommend that you read the rest of this section to understand the
mainframe design philosophy. Many of the differences between the mainframe and other operat-
ing systems only make sense if you understand the history and philosophy behind mainframes.

1.1.1 A Little History
Few industries have had the rapid, almost explosive growth that we have seen in the information
technology industry. The term computer originally referred to people who did manual calcula-
tions. The earliest nonhuman computers were mechanical devices that performed mathematical

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 1

computations. Mechanical devices evolved into vacuum tube devices, which, in turn, were
replaced by transistorized computers, which were replaced by integrated circuit devices.

Where do mainframes fit in? The mainframes we use today date back to April 7, 1964, with
the announcement of the IBM System/360™. System/360 was a revolutionary step in the devel-
opment of the computer for many reasons, including these:

• System/360 could do both numerically intensive scientific computing and input/output
intensive commercial computing.

• System/360 was a line of upwardly compatible computers that allowed installations to
move to more powerful computers without having to rewrite their programs.

• System/360 utilized dedicated computers that managed the input/output operations,
which allowed the central processing unit to focus its resources on the application.

These systems were short on memory and did not run nearly as fast as modern computers.
For example, some models of the System/360 were run with 32K (yes, K, as in 1,024 bytes) of
RAM, which had to accommodate both the application and the operating system. Hardware and
software had to be optimized to make the best use of limited resources.

IBM invested $5 billion in the development of the System/360 product line. This was a
truly “bet your company” investment. Five billion dollars represented more than one and a half
times IBM’s total 1964 gross revenue of $3.2 billion. To put it into perspective, given IBM’s 2005
gross revenue of $91 billion, an equivalent project would be more than a $140 billion project!

The z/OS operating system that we are discussing here traces itself back to System/360.
One of the operating systems that ran on System/360 was OS/360. One variant of OS/360 was
MVT (multitasking with a variable number of tasks). When IBM introduced virtual memory with
System/370™, the operating system was renamed to SVS (single virtual storage), recognizing
that a single virtual address space existed for the operating system and all users. This was quickly
replaced with a version of the operating system that provided a separate virtual address space for
each user. This version of the operating system was called MVS™ (multiple virtual storage).
Later, IBM packaged MVS and many of its key subsystems together (don’t worry about what a
subsystem is just now…we’ll get to that later) and called the result OS/390®, which is the imme-
diate predecessor to z/OS.

1.1.2 Why Are Mainframes Different?
Mainframes were designed initially for high-volume business transactions and, for more than 40
years, have been continually enhanced to meet the challenges of business data processing. No
computing platform can handle a diversity of workloads better than a mainframe.

2 Chapter 1 Introduction to the Mainframe

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 2

But aren’t “insert-your-favorite-alternative-platform” computers cheaper/faster/easier to
operate? The answer is: It all depends. A student who is composing his term paper does not have
the same information needs as a bank that needs to handle millions of transactions each day, espe-
cially because the bank also needs to be able to pass security and accounting audits to verify that
each account has the correct balance.

Mainframes aren’t for every computing task. Businesses opt for mainframes and main-
frame operating systems when they have large volumes of data, large transaction volumes, large
data transfer requirements, a need for an extremely reliable system, or many differing types of
workloads that would operate best if they were located on the same computer. Mainframes excel
in these types of environments.

1.1.3 Mainframe vs. Client/Server
In a client/server architecture, multiple computers typically cooperate to do the same task. For
example, in Figure 1.1 the application uses a Web server, a database server, and an LDAP server.

1.1 Why Use a Mainframe? 3

Internet

Firewall

Web Server

Database

LDAP Server

Figure 1.1 Client/server architecture

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 3

Figure 1.2 Mainframe architecture

That’s a little of the “why” of mainframes. Now let’s get started with the “how.”

1.2 Getting Started
Virtually every computer book starts with a simple example that enables you to get your feet wet.
We’ve got several “Hello, World” examples that will introduce you to:

1. Interactive computing using the z/OS Time Sharing Option (TSO)

2. Batch computing using Job Control Language (JCL)

3. UNIX System Services (USS)

1.2.1 What You Will Need
For the purposes of this chapter, you’ll need a TSO and OMVS user ID for a z/OS system and the
initial password. This user ID is created for you by a system administrator. Your user ID is a one- to
seven-character string that is your “handle” for all the work you do within z/OS. It’s the basis for
your computer identity within z/OS and the anchor point for all your access control permissions.

For the other chapters of this book, you will need your own z/OS image, a copy of the oper-
ating system running inside its own virtual machine. On this image, you will need a TSO account
with RACF special authority, which corresponds roughly to root under UNIX. Because you will
need to change audit settings, it is not enough to have privileges for a specific group within
RACF—you need to have global RACF special authority.

4 Chapter 1 Introduction to the Mainframe

Mainframe

Internet

TCP/IP

RACF z/OS

LDAP Identity
Store

UNIX System
Services (with
Web Server)

DB2 Database

On a mainframe, the same computer does everything. One security package (RACF, in
most cases) protects one operating system kernel. Mainframe subsystems do everything else, as
you can see in Figure 1.2.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 4

1.2.2 Logging in to the Mainframe
In the old days, access to the mainframe was handled mostly by dedicated terminals that were
hard-wired to the mainframe. Today, the terminal is a run-of-the-mill PC connected by TCP/IP.
The PC runs a program that imitates an old-fashioned terminal.

To connect to the mainframe, run the terminal emulator and point it to the IP address of the
mainframe and the TCP port number for TSO. After you do that, you might need to “dial” to the
correct virtual machine. Figure 1.3 shows a user “dialing” to NMP122, the z/OS 1.6 image used
for the screenshots in this book. Some terminal emulators require you to press the right Ctrl key,
instead of Enter, to enter a command to the mainframe; this is because the right Ctrl key is located
where the Enter key was located on the original 3270 terminal. After you connect to the image,
you might need to type TSO <your user ID> to reach the TSO logon panel.

1.2 Getting Started 5

Figure 1.3 The command to dial the correct system

Figure 1.4 shows the TSO logon panel. On this panel, enter the user ID that you’ve been
given in (1) in the figure, your password in (2), and a new password of your choosing in (3).
Because the person who created your user ID knows the password, you need to change it to
ensure that, from now on, only you can log on to TSO using your user ID. Press Enter to start the
logon process.

Figure 1.4 TSO logon panel

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 5

After a few moments, you’ll see lines displayed that look similar to Figure 1.5. The first
line tells you the last time your user ID was used. This is an elementary intrusion-detection mech-
anism: If the date and the time do not look correct, you should call your security department to
investigate who is using your user ID without your permission.

6 Chapter 1 Introduction to the Mainframe

Figure 1.5 TSO logon results

The second line tells you how long you have until you will need to change your password.
A good security policy requires that you change your password periodically. Your installation’s
policy is enforced whenever you enter the system.

The next line tells you that you have been authenticated (that is, your password is correct
and you have not been denied access to the system for any other reason), and now TSO starts to
build your logon environment.

This is followed by an installation-specific message, usually reminders of important
aspects of your installation’s information policy.

Some installations take users immediately into ISPF, the menu-driven system you will later
see in Figure 1.8. In that case, type =x to exit into TSO so you can run the next exercise.

1.2.3 “Hello, World” from TSO
When this is done, you’ll see READY. This is the TSO command prompt, similar to C:\> under
Windows. It’s time for our simplistic, trivial, yet traditional, “Hello, World” example. We’ll use
the SEND command to send a message with the text “Hello, World” to a user. Think of SEND as
TSO’s instant messenger (IM). Because the only user that you know right now is yourself, you
will be the originator of the message as well as the recipient. Ready (pun intended)? Type this:

send ‘Hello, World’ u(<your user name>)

As you can see in Figure 1.6, TSO echoes what you typed. The SEND command processor
sends the message to the intended recipient, the user ID ORIPOME. After the SEND command,
TSO prompts you with READY to let you know that you can enter more commands.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 6

Figure 1.6 “Hello, World” from TSO

Congratulations! You’ve logged on to TSO and said hello to the world. Note that the only
person who saw your exclamation was you, so feel free to experiment with other (business-
appropriate, of course!) phrases.

When you are done with the mainframe, you need to log off, using the logoff command.
If you just close the terminal emulator, the session remains open. If you already closed the termi-
nal emulator and you need to log on while you have a running session, type S before the
Reconnect option, as shown in Figure 1.7.

1.3 Job Control Language (JCL) 7

Figure 1.7 TSO logon panel with Reconnect

1.3 Job Control Language (JCL)
Entering commands from TSO is one way to accomplish tasks in z/OS, but many other ways
exist. One of the most popular and powerful ways is to create files that contain lists of things to
do. These lists are called batch jobs and are written in z/OS Job Control Language (JCL), which
fulfills roughly the same role as shell scripting languages in UNIX.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 7

1.3.1 Introduction to JCL
JCL is a language with its own unique vocabulary and syntax. Before you can write your first
JCL, you need to understand a few z/OS concepts and facilities.

We use JCL to create batch jobs. A batch job is a request that z/OS will execute later. z/OS
will choose when to execute the job and how much z/OS resources the job can have based upon
the policies that the system administrator has set up. This is a key feature of z/OS: z/OS can man-
age multiple diverse workloads (jobs) based upon the service level that the installation wants. For
example, online financial applications will be given higher priority and, therefore, more z/OS
resources, and noncritical work will be given a lower priority and, therefore, fewer z/OS
resources. z/OS constantly monitors the resources that are available and how they are consumed,
reallocating them to meet the installation goals. We could spend volumes describing just this one
feature of z/OS, but this book is supposed to be about security, so we won’t.

In your batch job, you will tell z/OS this information:

• You’ll give the name of your job, with a //JOB statement

• You’ll specify the program you want to execute, with a
//EXEC PGM=<program name> statement

• If your program uses or creates any data, you’ll point to the data using a //DD statement.

Listing 1.1 shows a trivial JCL job. Don’t worry about executing this job, or about the exact
meaning of each word—we explain them later in this chapter.

Listing 1.1 Trivial Batch Job

//MARKNJ JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H
// EXEC PGM=IEFBR14

This job executes an IBM-provided z/OS program called IEFBR14. This is a dummy pro-
gram that tells z/OS “I’m done and all is well.” It requires no input and produces no output other
than an indication to the operating system that it completed successfully.

You can also run TSO as a batch job by using JCL to tell z/OS this information:

• The name of the job

• The program to run, which is the TSO interpreter IKJEFT01

• Where to get the input for IKJEFT01 and the commands that you want to execute

• Where to put the output from IKJEFT01, the output from TSO, and the commands that
you execute

Listing 1.2 shows a batch job that runs TSO to send a message.

8 Chapter 1 Introduction to the Mainframe

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 8

Listing 1.2 Batch Job That Sends a Message Using TSO

//TSOJOB JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

// EXEC PGM=IKJEFT01

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

SEND ‘Hello, World’ U(ORIPOME)

/*

1.3.2 Data Sets
To submit a batch job, you need to understand data sets. As the name implies, a data set is a set or
collection of data. Data sets are made up of records. To improve performance, records can be
gathered together into blocks. Data sets fill the same function as files and directories in UNIX and
Windows.

When you create a data set, you assign it a name. The name can be up to 44 characters long
and consists of multiple parts, separated by dots (.). Each part can be up to eight characters. In a
RACF-protected system, the first qualifier is either a user ID or a group name. We discuss group
names in Chapter 2, “Users and Groups.”

Note
This means that in a z/OS system protected by RACF, each data set belongs to either a user
or a group. This is different from the situation in UNIX and Linux, where each file has a user
and a group. We explain the meaning of data set ownership in Chapter 3, “Protecting Data
Sets and Other Resources.”

Examples of valid data set names are

• MARKN.BOOK.CNTL

• ORI.LONG$$$$.DATASET.NAME.WITHLOTS.OFQUALS

• SYS1.PARMLIB

Examples of data set names that are invalid are

• MARKN.QUALIFIERTOOLONG.CNTL (the middle qualifier is longer than eight
characters)

• ORI.THIS.DATA.SET.NAME.IS.WAY.WAY.WAY.TOO.LONG (the total data set name
is longer than 44 characters)

1.3 Job Control Language (JCL) 9

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 9

The act of creating a data set is called data set allocation. To allocate a data set, you need to
tell z/OS a few things about the data set:

• The length of records within the data set expressed in bytes (often called the LRECL)

• The expected size of the data set

• If records are to be blocked, the number of bytes in the block (called the BLKSIZE)

• The organization of the data set (referred to as the DSORG)

Data set organization requires a little explanation. z/OS allows you to define a data set that
is partitioned into multiple “mini data sets” called members. This type of data set is called a parti-
tioned data set (PDS). PDSs contain a directory that tells z/OS the name of the member as well as
how to locate the member, similar to directories under UNIX, Windows, and Linux. Much of the
work that you do in z/OS involves the use of PDS data sets, or their more modern version, the
extended PDS called the PDSE or library.

In contrast to UNIX, Linux, and Windows, z/OS requires you to specify the maximum size
of each data set, for two reasons. The first is historical—z/OS is backward compatible and can
run applications that were developed 40 years ago when disk space was at a premium. The second
reason is that z/OS is designed for high-availability applications. When you specify the maxi-
mum size of each data set, you can ensure that the important data sets will always have the disk
space they need. For simple data sets, such as the ones that we are discussing here, the allocation
consists of two parts:

1. The initial size of the data set is called the primary extent. This is the amount of space
that z/OS reserves for the data set right now. If you think that your data set might grow in
size later, you can specify the size of the secondary extents.

2. If the data set is expected to grow beyond its initial size, additional allocations of disk
storage can be given to the data set by specifying the size of the secondary extent. If the
primary extent of your data set fills up, z/OS allocates the secondary extent up to 15
times. This allows your data set to grow gradually up to the maximum data set size.

When defining the size of the primary and secondary extents, you can do it in bytes or
based on the device geometry in units of space called tracks or cylinders. Understanding these
two terms requires understanding how a disk drive works. A disk drive consists of a set of rotating
metallic platters upon which data is stored magnetically. Data is written on the disk in sets of con-
centric circles. Each of these circles is called a track. If you project that track from the top of the
stack of platters to the bottom, you have created a cylinder. It is faster to read information that is
stored in the same cylinder than information that is spread across cylinders.

1.3.3 Using ISPF to Create and Run Batch Jobs
Before we can create and submit a batch job, we need to create a data set to hold it. The simplest
way to allocate a data set is to use the Interactive System Productivity Facility (ISPF).

10 Chapter 1 Introduction to the Mainframe

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 10

1.3.3.1 Data Set Creation

Getting into ISPF is very simple: just type ISPF on the TSO command line. ISPF enables you to
perform many common z/OS tasks from a full-screen interactive dialog. You move about the
ISPF dialogs by specifying the number of the dialog that you want to use. For example, Utilities
is option 3. You can then choose the suboption, which enables you to define and delete data sets.
That’s option 2. We often combine these two and type them as ISPF option 3.2.

As you can see in Figure 1.8, each ISPF panel presents the list of options that you can
select. When you get familiar with ISPF, you can use ISPF’s fast-path feature and specify =3.2
from any ISPF panel to have ISPF take you directly to the data set allocate and delete panel.

1.3 Job Control Language (JCL) 11

Figure 1.8 Main menu of ISPF

Select option 3.2 and press Enter (or the right Ctrl key). ISPF now takes you to a panel
where you can allocate and delete data sets. Type A as the option, your user ID as the project
(ORIPOME in the screenshot), RACFBK as the group, and CNTL as the type, as shown in Figure 1.9.
By convention, CNTL is used for data sets that store JCL jobs, which correspond roughly to shell
scripts or batch files.

Figure 1.9 Step 1 in data set creation

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 11

To allocate the data set, you need to tell z/OS this information:

• The expected size of your data set. We’ll be adding other members to this partitioned
data set, so let’s give it an initial size (primary allocation) of ten tracks and allow it to
grow five tracks at a time (secondary allocation). Remember that z/OS uses the second-
ary allocation 15 times before the data set reaches its maximum size.

• The length of each record in your data set. One of the most common record lengths in
z/OS is 80 bytes, which is what we will use for our first few data sets.

• The size of each block. For performance reasons, you might want to tell z/OS that when-
ever it reads a record, it should read a group of them. That way, when you read the next
record, it will already be in memory. Every time z/OS reads from the disk, it reads an
entire block. The block size that you select also affects the efficiency of the records
stored on the disk drive. If you specify 0, z/OS calculates the best block size for the
device upon which the data set is placed.

• The number of directory blocks. When a data set is a partitioned data set, you need to
tell z/OS how much space on the data set should be reserved for the directory. Each
directory block has enough space to hold the information for about five members. We’ll
specify 20 blocks, which will give us plenty of space for new members.

• The organization of the data set. Many different types of data sets exist. For our pur-
poses, we’ll be working with two types of data sets: normal data sets (called sequential
data sets) and partitioned data sets. For this data set, specify PDS for a partitioned data
set. Sequential data sets are similar to files under other operating systems. Partitioned
data sets contain multiple members, distinguished by name. Each member is similar to a
file, so the entire partitioned data set is similar to a directory.

After you have typed all this information, your panel should look similar to Figure 1.10.
Press Enter to create the data set. ISPF responds by representing the Data set utility panel with
Data Set Allocated highlighted in the upper-right corner.

1.3.3.2 Editing Data Set Members

When the data set is created , go to the ISPF editor. To do this, enter =2 on any command line.
This is the ISPF “fast path” to the ISPF edit panel, which is option 2 from the main ISPF menu.
On this panel, specify the name of the data set that you just allocated. Because you are editing a
PDS, you need to specify either the name of an existing member or the name of a member that
you want created, as shown in Figure 1.11. In this example, we’re creating a member named
HELLOW.

12 Chapter 1 Introduction to the Mainframe

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 12

1.3 Job Control Language (JCL) 13

Figure 1.10 Step 2 in data set creation

Figure 1.11 ISPF edit panel

The ISPF Editor
A full description of the ISPF editor with all its features is beyond the scope of this book. For a
detailed explanation of the commands, browse to http://publibz.boulder.ibm.com/bookmgr_
OS390/libraryserver/zosv1r6/ and open z/OS V1R6.0 Elements, Features, and Software
Products → z/OS Elements and Features, z/OS Collection Kit, March 2005 → z/OS V1R6.0
ISPF Edit and Edit Macros → 1.0 Part 1, The ISPF Editor.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 13

After you press Enter, ISPF creates the member and places you in the ISPF editor. At this
point, type the JCL shown in Listing 1.2. You need to type it on the lines that start with ‘‘‘‘‘‘,
under the blue asterisks (*), as shown in Figure 1.12. Remember to change ORIPOME to your own
user ID. Traditionally, JCL lines use the eight characters after the // for identifiers or leave them
empty when no identifier is required. That is the reason, for example, that the word EXEC on the
second line starts on the same column as the word JOB on the first line. The JCL would work with
just one space, but it is more readable this way.

14 Chapter 1 Introduction to the Mainframe

Figure 1.12 The editor after typing the batch job

After this is done, press Enter. ISPF saves your changes and replaces the quotes on the left
with line numbers.

At this point, you’re ready to submit your job. Type SUBMIT on the command line, and your
batch job is submitted to the job entry subsystem at your installation. You will get a confirmation
message with the job number, as shown in Figure 1.13.

Figure 1.13 Job submission confirmation message

Your installation has a policy for executing batch jobs, and that policy determines when
your batch job is executed. After it has executed, you can view the output of the job. When your
job executes, it sends a message to your TSO user ID. If you are logged on and are accepting mes-
sages, the message appears as your batch job executes. If you are not logged on or are not accept-
ing messages, it is saved and displayed when you next log on.

When you see the confirmation message, press Enter again. In all likelihood, your job will
have already executed and you will see the message, as well as a job confirmation message, as
shown in Figure 1.14.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 14

Figure 1.15 The log data panel when leaving ISPF

1.3.4 JCL Syntax
Now that you’ve run the JCL and seen that it works, let’s review Listing 1.2 line by line and
explain exactly what it does.

First, you’ll notice that most lines start with two slashes. The two slashes mark a line as part
of JCL. Lines that do not contain those slashes, such as the last two lines in this job, are usually
embedded input files.

//TSOJOB JOB CLASS=A,NOTIFY=&SYSUID,MSGCLASS=H

This line is the job header. It defines a job called TSOJOB. The CLASS parameter specifies
the job’s priority, the maximum amount of resources the job is allowed to consume, and so on. A
is a good default in most installations, at least for the short jobs we’ll use in this book.

The NOTIFY parameter specifies that a user should be notified when the job ends. It could
be the name of a user to notify, but here it is &SYSUID, which is a macro that expands to the user
who submits the job.

The MSGCLASS parameter specifies that the output of the job needs to be held. This makes it
accessible afterward, as you will see in Section 1.3.5, “Viewing the Job Output.”

// EXEC PGM=IKJEFT01

This line starts an execution step—a step in the batch job that runs a program. It is possible
for these steps to be named using an identifier immediately after the two slashes. However, this is
a very simple job, so there is no need to identify this stage.

1.3 Job Control Language (JCL) 15

Figure 1.14 The message the job sent

When you are done with ISPF, enter =X on the command line to tell it to exit. If you get a
log data panel, such as the one in Figure 1.15, select option 2 to delete the log. You can then use
LOGOFF to exit TSO.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 15

The program that this step executes is IKJEFT01, which is the TSO interpreter.

//SYSTSPRT DD SYSOUT=*

This line is a data definition. It defines the data stream called SYSTSPRT, which is the out-
put of TSO. SYSOUT=* means that this data stream will go to the standard output of the job. In the
next section, you will learn how to get to this output to read it.

//SYSTSIN DD *

This line is another data definition. It defines SYSTSIN, which is the input to the TSO
interpreter. The value * means that the text that follows is the data to be placed in SYSTSIN.

SEND ‘Hello, World’ U(ORIPOME)

/*

This is the input to the TSO interpreter. The first line is a command, the same “Hello,
World” command we executed in Section 1.2.3, “ ‘Hello, World’ from TSO.” The second line, /*,
is a delimiter that means the end of the file.

1.3.5 Viewing the Job Output
One of the outputs from your batch job was the “Hello, World” that was sent to your TSO ID.
Your batch job produced other output as well. What happened to that output? It waits in the sys-
tem until you or your system administrators tell the system what to do with it.

When you submitted the batch job, it was handed over to the job entry subsystem (JES).
JES is responsible for scheduling the job, allocating some of its resources, and managing the
job’s input and output.

IBM provides job entry subsystems: JES2 and JES3. Most of the z/OS environments use
JES2, so our examples are oriented toward it. For those of you who are using JES3, equivalent
services exist there.

JES2 and JES3
z/OS has two Job Entry Subsystems (JES): JES2 (part of the base z/OS) and JES3 (an
optional add-on). Both provide similar capabilities to manage batch jobs and SYSOUT, the
job’s output data stream. The primary differences are how systems in a SYSPLEX, a main-
frame cluster, are managed. In JES2, each system is a peer, selecting work it can process. In
JES3, a control system (the global) passes work to other systems (locals) for processing.
JES3 also has additional services to provide additional controls over the timing of job execu-
tion. Because each JES has its own set of commands and JCL extensions, it is difficult for an
installation to change from one JES to another. As a result, mainframe installations generally
run the same JES they have used historically.

One of the most popular ways to view the output of your job is to use the IBM System Dis-
play and Search Facility (SDSF) program product. You start up SDSF either as a TSO command
(SDSF) or as a dialog from within ISPF. In most installations, SDSF is option S from the ISPF
Primary Options menu.

16 Chapter 1 Introduction to the Mainframe

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 16

Figure 1.16 The SDSF Primary Option menu

The job’s output is in the output queue. Type O to enter the output queue, find your job, and
type S next to it to open the output, as shown in Figure 1.17. If necessary, you can scroll down
using F8 or up again using F7.

1.3 Job Control Language (JCL) 17

From the ISPF Primary Options menu, select the SDSF option, which brings you to the
SDSF Primary Option menu, shown in Figure 1.16. On this panel, the options that are presented
depend upon your level of authorization: The more things you are authorized to do, the more
options you’ll see presented by SDSF on the panel.

Figure 1.17 The job’s output in the output queue

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 17

18 Chapter 1 Introduction to the Mainframe

The top part of the output, shown in Figure 1.18, tells when the job started, when it ended,
which user ID was assigned to the job, and other job statistics. JES also displays the JCL. Scroll
down a page to see more system-generated messages telling you about the resources allocated for
your job. You can scroll up (F7), down (F8), left (F10), and right (F11).

Figure 1.18 The first part of the job’s output

The real output of the job is in the last four lines of the job, shown in Figure 1.19. These
lines show where we see the batch version of TSO displaying the READY prompt, the echoing of
the “Hello, World” command, TSO’s READY response, and the generated END statement.

Figure 1.19 The output of the job’s TSO interpreter

1.3.5.1 Filtering Jobs

A large z/OS installation can have many jobs running at the same time. It is possible to use filter-
ing to see only the jobs that are relevant to you.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 18

To see the current filters, run this command inside SDSF:

SET DISPLAY ON

To filter, enter the name of the field to filter (prefix in the job name, destination, owner, or
sysname) and the value. For example, this command filters for jobs that start with L.

PREFIX L*

After this command, SDSF will show only those jobs that start with L, as you can see in
Figure 1.20.

1.4 z/OS UNIX System Services 19

Figure 1.20 Filtered job list in SDSF

To remove the filter, run this command:

PREFIX

1.4 z/OS UNIX System Services
Many changes have occurred in the world of computing since the announcement of System/360
in 1964. Among the many significant changes is the development of the UNIX operating system
by employees at AT&T’s Bell Labs in the 1960s. Although UNIX has concepts such as processes
and threads, which are analogous to z/OS concepts such as address spaces and tasks, many sig-
nificant differences exist. For example, in UNIX, files are byte-oriented streams of data, but in
z/OS, files (data sets) are record oriented.

Within z/OS, you have a complete UNIX environment with z/OS UNIX System Services.
This UNIX environment is integrated with the “traditional” z/OS environment. For example, you
can access a z/OS UNIX file from a batch job and you can access a data set from a z/OS UNIX
application.

You can enter the world of UNIX from z/OS in several ways. From TSO, you can enter the
z/OS UNIX environment using the OMVS command from the TSO READY prompt. Within the
ISPF environment, you can type the command tso omvs to enter UNIX (in general, you can run
any TSO command from ISPF by prefacing it with tso).

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 19

Why OMVS?
When IBM first added the UNIX environment to MVS, it was called Open Edition, with the
“Open” designating this environment and set of interfaces as one that was not designed or
owned by IBM. The logical extension of this is Open MVS, which was shortened to the com-
mand OMVS. You can see vestiges of this naming convention in the OMVS command, the
OMVS segment in user profiles, and the z/OS UNIX “O” commands, such as OGET, OPUT,
and OEDIT.

Regardless of the way you enter it, OMVS provides a shell interface where you can type
UNIX commands, as shown in Figure 1.21. By default, you type commands close to the bottom,
at the ===> prompt (it is possible to configure OMVS to place the ===> prompt at the top
instead).

20 Chapter 1 Introduction to the Mainframe

Figure 1.21 OMVS shell

Can we do our “Hello, World” example as a z/OS UNIX program? Sure! Let’s do it in the C
programming language. Start by using OEDIT, which is the ISPF editor for z/OS UNIX:

oedit test.c

You are now in an editor that is very similar to the editor that you used to edit your JCL.
This time, enter the “Hello, World” program, as shown in Figure 1.22. When you are done, press
F3 to exit the editor. If it asks about log file disposition, as in Figure 1.15, enter 2 to delete it.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 20

Figure 1.22 “Hello, World” program in C for OMVS

Now compile and execute the program:

c89 –o test test.c

./test

It should write the message, as shown in Figure 1.23. If the compiler fails, type exit from
OMVS and LOGOFF from TSO. Then when you log back on, type 2096128 in the size field of the
TSO logon panel, the panel shown in Figure 1.7 earlier. Note that the C compiler is a separate
product from OMVS, and your site might not have it.

The TSO Size Field
The size field in the TSO logon screen specifies the region size, the maximum amount of
memory that will be allocated to you for that TSO logon.The C compiler requires a lot of mem-
ory, so you might need to increase this number from the default to about 2MB.

In JCL jobs, you can use REGION=<number> to specify the same information.

1.4 z/OS UNIX System Services 21

Figure 1.23 Execution of the “Hello, World” program in C for OMVS

When you are done with OMVS, use exit to leave it.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 21

1.5 Getting Help
At this point, we would like to write that you are completely comfortable with the mainframe’s
user interface and that you know how to do everything you might need to learn RACF. However,
that would be a bold-faced lie. We could have filled the entire book with directions on how to use
the mainframe and still not included everything you might need.

Instead, this section teaches you how to get help when you need it.

1.5.1 Context-Sensitive Help
The mainframe itself has a lot of documentation for your use.

1.5.1.1 TSO

To get help on a TSO command, type HELP <name of command>. For example, Figure 1.24
shows the help text for the ISPF command. The prompt at the bottom (***) shows that more
information is available if you press Enter.

22 Chapter 1 Introduction to the Mainframe

Figure 1.24 Output of the TSO HELP command

This help file shows that you can run ISPF with an option to immediately reach whatever
panel you need. Use this to get to the ISPF data set utility panel, which is option 3 from the main
menu followed by option 2 from the Utilities menu.

ISPF 3.2

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 22

1.5.1.2 ISPF

Inside ISPF, you can press F1 for context-sensitive help. For example, Figure 1.25 shows the con-
text-sensitive help for the data set utilities panel. Inside the help panel, you can press Enter to
advance to the next screen, or choose an option from the menu (if available). To get back to the
panel, press F3.

1.5 Getting Help 23

Figure 1.25 ISPF context-sensitive help for the data set utilities panel

1.5.1.3 OMVS

In OMVS, you can press F1 to get help about the shell itself. To get help for a specific command,
use man <name of command>, as you would in any other version of UNIX.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 23

24 Chapter 1 Introduction to the Mainframe

Figure 1.26 List of manuals for z/OS 1.6

1.5.2. The Manuals
IBM makes the manuals for z/OS available at http://publibz.boulder.ibm.com/bookmgr_OS390/
libraryserver. Select your z/OS version and you will see a list of manuals, as shown in Figure 1.26.

For example, Figure 1.27 shows part of z/OS 1R5.0-1R6.0 TSO/E User’s Guide, Topic
1.1.2.1, “Issuing the LOGON Command.” This manual, similar to most manuals we will use in this
book, is available under z/OS Elements and Features—z/OS Collection Kit (the top subdirectory
in the list of manuals).

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 24

1.5 Getting Help 25

Figure 1.27 Example of a topic in a z/OS manual

1.6 Additional Information
A plethora of additional information is available on mainframes. Some of our favorite references
are

• The IBM Redbooks® web site. Redbooks are books written by technical professionals
working with the IBM International Technical Support Organization (ITSO). These
books (and shorter works called Redpieces) are tactical “how to” books on a variety of
subjects. The books and Redpieces “Introduction to the New Mainframe: z/OS Basics”
and “Introduction to the New Mainframe: Networking” are available for free from the
IBM Redbooks web site at www.redbooks.ibm.com. We highly recommend the books
Introduction to the New Mainframe: z/OS Basics, Introduction to the New Mainframe:
Networking, Introduction to the New Mainframe: Security, and C/C++ Applications on
z/OS and OS/390 UNIX.

• The IBM publications web site for z/OS at www.ibm.com/servers/eserver/zseries/
zos/bkserv/. From this web site, you can find almost all the product publications for the
various z/OS products.

• z/OS ISPF Edit and Edit Macros, which explains the ISPF editor. It is available on the
IBM publication web site for z/OS.

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 25

• IBM’s 360 and Early 370 Systems, by Emerson W. Pugh, Lyle R. Johnson, and John H.
Palmer (MIT Press, 1991), the definitive history of the development of the System/360.

• The IBM Archives, which contain a wealth of history of the mainframe, at www.ibm.
com/ibm/history/exhibits/mainframe/mainframe_intro.html.

26 Chapter 1 Introduction to the Mainframe

01_0131738569_ch01i.qxd 12/3/07 10:53 AM Page 26

