THE PRENTICE HALL SERYICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL z‘j

be
¥
K
¥
¥
&
!
!

S. Somasegar |
; David Chappell |
David Chou, John de
Brian Loesgen, Christoph Shittko, Herbjdrn Wilhelmsen, Mickie Williams
$3 PRENTICE With contributions from Scott ;. Daryl Hogan, Jeft King, Scott Seely
HALL With addtional contributions by mombers of the Microsot Windows Azure and AppFabric teams

/ \ Invoice

service accessed
via a uniform interface
(chorded circle notation)

service service service service service
inventory composition (labeled) layer (chorded circle notation)
— A o
L
component decoupled decoupled service service firewall Web service with
or program service contract accessed agent service contract
contract via a uniform
interface
é V. g v, @i
WSDL XML Schema WS-Policy general machine human business process
definition definition definition processable readable
document document

(éx
2

message repository actively state data
queue or registry processing in memory

service with state data
(stateful service)

|

repository with
state data

zone or conflict transition

human client user
region symbol arrow

workstation interface

symbols used in conceptual general physical

service inventory
relationship diagrams boundary

boundary

| | S

N |—
component with
service contract

’7 message

i
security element
or locked resource

& =6

grid service

g L

mobile product
device or system

service
boundary

Standardized Service Contract (693)
"Services within the same service inventory are in compliance with the same contract design standards."

Service Loose Coupling (695)
"Service contracts impose low consumer coupling requirements and are themselves decoupled from
their surrounding environment.”

Service Abstraction (696)
"Service contracts only contain essential information and information about services is limited to what
is published in service contracts."

Service Reusability (697)
"Services contain and express agnostic logic and can be positioned as reusable enterprise resources."

Service Autonomy (699)
"Services exercise a high level of control over their underlying runtime execution environment."

Service Statelessness (700)
"Services minimize resource consumption by deferring the management of state information when
necessary."

Service Discoverability (702)
"Services are supplemented with communicative meta data by which they can be effectively
discovered and interpreted.”

Service Composability (704)
"Services are effective composition participants, regardless of the size and complexity of the composition."

implement a
standardized contract

minimize dependencies

implement generic and
reusable logic and contract

minimize the availability
of meta information

implement independent
functional boundary and
runtime environment

maximize composablability

implement adaptive and
state management-free logic

implement communicative
meta information

Service

Agnostic Capability [709] How can multi-
purpose service logic be made effectively
consumable and composable?

Agnostic Context [710] How can multi-
purpose service logic be positioned as an
effective enterprise resource?

Agnostic Sub-Controller [711] How can
agnostic, cross-entity composition logic be
separated, reused, and governed independently?

Asynchronous Queuing [712] How cana
service and its consumers accommodate
isolated failures and avoid unnecessarily locking
resources?

Atomic Service Transaction [713] How can
a transaction with rollback capability be
propagated across messaging-based services?

Brokered Authentication [714] How cana
service efficiently verify consumer credentials if
the consumer and service do not trust each
other or if the consumer requires access to
multiple services?

Canonical Expression [715] How can
service contracts be consistently understood
and interpreted?

Canonical Protocol [716] How can services
be designed to avoid protcol bridging?

Canonical Resources [717] How can
unnecessary infrastructure resource disparity
be avoided?

Canonical Schema [718] How can
services be designed to avoid data model
transformation?

Canonical Schema Bus [719]

Canonical Versioning [720] How can service
contracts within the same service inventory be
versioned with minimal impact?

Capability Composition [721] How cana
service capability solve a problem that requires
logic outside of the service boundary?

Capability Recomposition [722]
How can the same capability be used to help
solve multiple problems?

<O
P

4 A
Egt

Haid

Compatible Change [723]
How can a service contract be modified
without impacting consumers?

Compensating Service Transaction [724]
How can composition runtime exceptions be
consistently accommodated without requiring
services to lock resources?

Composition Autonomy [725] How can
compositions be implemented to minimize loss
of autonomy?

Concurrent Contracts [726] How cana
service facilitate multi-consumer coupling
requirements and abstraction concerns at the
same time?

Contract Centralization [727] How can

direct consumer-to-implementation coupling
be avoided?

Contract Denormalization [728] How cana
service contract facilitate consumer programs
with differing data exchange requirements?

Cross-Domain Utility Layer [729] How can

55 redundant utility logic be avoided across

domain service inventories?

Data Confidentiality [730] How can data
within a message be protected so that it is not
disclosed to unintended recipients while in
transit?

Data Format Transformation [731]
How can services interact with programs that
communicate with different data formats?

Data Model Transformation [732] How can
services interoperate when using different data
models for the same type of data?

Data Origin Authentication [733] How can
a service verify that a message originates from a
known sender and that the message has not
been tampered with in transit?

Decomposed Capability [734] How cana
service be designed to minimize the chances of
capability logic deconstruction?

Decoupled Contract [735] How can a service
express its capabilities independently of its
implementation?

(pattern list continued on inside back cover)

This page intentionally left blank

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph
The Library of Congress Cataloging-in-Publication Data is on file.
Copyright © 2010 SOA Systems Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671 3447

ISBN-13: 978-0-13-158231-6
ISBN-10: 0-13-158231-3

Editor-in-Chief
Mark L. Taub

Development Editor
Christina Erl-Daniels

Managing Editor
Kristy Hart

Project Editor
Betsy Harris

Senior Indexer
Cheryl Lenser

Proofreaders
Williams Woods Publishing
Amy Chou

Publishing Coordinator
Kim Boedigheimer

Cover Designers
Thomas Erl
Ivana Lee

Compositor
Bumpy Design

Photos
Thomas Erl

Diagram Designer
Christina Erl-Daniels

Text printed in the United States on recycled paper at Edward Brothers in Ann Arbor, Michigan.

First printing May 2010

Contents

Foreword by S. Somasegar::ccssassssssssss XXXI
Foreword by David Chappell Xxxiii

Acknowledgmentscccesssnnssssssssss XXXV

CHAPTER 1:Introduction s s s s s vt s s v n s nnnnnnnnnd

1.1 AboutthisBook. 2
1.2 Objectives of thisBook 3
1.3WhothisBookisFor................ 4
1.4 What this Book Does Not Cover 4
1.5 Prerequisite Reading. 4
1.6 How this Book is Organized 6
PartI: Fundamentals. 7
Chapter 3: SOA Fundamentals 7
Chapter 4: A Brief History of Legacy .NET Distributed Technologies .. 7
Chapter 5: WCF Services i 7
Chapter 6: WCF EXtensions 7
Chapter 7: .NET Enterprise Services Technologies 7
Chapter 8: Cloud Services with Windows Azure 8
Part Il: Services and Service Composition 8
Chapter 9: Service-Orientation with .NET Part I
Service Contracts and Interoperability 8
Chapter 10: Service-Orientation with .NET Part II:
Coupling, Abstraction, and Discoverability 8
Chapter 11: Service-Orientation with .NET Part Ill:
Reusability and Agnostic Service Models 8
Chapter 12: Service-Orientation with .NET Part IV:
Service Composition and Orchestration Basics. 9
Chapter 13: Orchestration Patterns with WF. 9

Chapter 14: Orchestration Patterns with BizTalk Server 9

Contents

Part Ill: Infrastructure and Architecture. 9
Chapter 15: Enterprise Service Bus with BizTalk Server and
Windows Azure. 9
Chapter 16: Windows Azure Platform AppFabric Service Bus. 10
Chapter 17: SOA Security with .NET and Windows Azure 10
Chapter 18: Service-Oriented Presentation Layers with .NET 10
Chapter 19: Service Performance Optimization 10
Chapter 20: SOA Metrics with BAM 10
Part IV: Appendices 10
Appendix A: Case Study Conclusion 10
Appendix B: Industry Standards Reference. 11
Appendix C: Service-Orientation Principles Reference 11
Appendix D: SOA Design Patterns Reference 11
Appendix E: The Annotated SOA Manifesto. 11
Appendix F: Additional Resources. 11
1.7 How Principles and Patterns are Used in this Book 11
SOUICES . . o o 11
Reference Notation 12
1.8 Symbols, Figures, and Style Conventions. 13
SymbolLegend. 13
How ColorisUsed 13
Additional Information. 13
Updates, Errata, and Resources (www.soabooks.com). 13
Master Glossary (www.soaglossary.com). 13
Referenced Specifications (www.soaspecs.com). 13
SOASchool.com™ SOA Certified Professional (SOACP) 14
The SOA Magazine (Www.s0amag.Com) 14
Notification Service 14

CHAPTER 2: Case Study Background s st s 22 15

2.1 How Case Studies Are Used. 16
2.2 Case Study Background #1: Standard Mold 16
History . .o 16
Technical Infrastructure. 16

Business Goalsand Obstacles. 17

www.soabooks.com
www.soaglossary.com
www.soaspecs.com
www.soamag.com

Contents

2.3 Case Study Background #2: Superior Stamping 18
History . .o 18
Technical Infrastructure. 18
Business Goals and Obstacles. 19

PART I: FUNDAMENTALS

CHAPTER 3: SOAFundamentals. cccnsnn===23

3.1 Basic SOATerminology.o 24
Service-Oriented Computing 25
Service-Orientation 25
Service-Oriented Architecture (SOA) 27
SEeIVICES. . o 28

Services as Components 29
Services as Web Services 30
Services as REST Services. i 31
Service Models 31
Agnostic Logic and Non-Agnostic Logic 32
Service Composition. 33
Service Inventory. 34
Service-Oriented Analysis. 34
Service Candidate. 35
Service-Oriented Design. o i 35
Service Contract 36
Service-Related Granularity 37
SOADesignPatterns 38

3.2 Service-Oriented Computing Goals 40
Increased Intrinsic Interoperability 40
Increased Federation 40
Increased Vendor Diversification Options. 40
Increased Business and Technology Domain Alignment 41

3.3FurtherReading 41

Xii

Contents

CHAPTER 4: A Brief History of Legacy .NET
Distributed Technologies . . s s s st s s s st sssssnnsss 43

4.1 Distributed Computing 101. 44
Client-Server 44
Distributed Architecture 45
Service-Oriented Architecture., 47

4.2 NET Enterprise Services 48
It All Began with COM (and DCOM) 48
COM+ SEIVICES. . o oo e 49
NET Assemblies. 51
Distributed Transaction Coordinator 51
.NET Enterprise Services and Service-Orientation 53

43 .NETRemoting 54
.NET Remoting Architecture 54

Serializable Classes 56
Remotable Classes. i 56
Ordinary Classes 56
Hosting .NET Remoting Components. 56
Windows Service. 56
IIS Hosting Under ASPNET 57
Hosting a .NET Remoting Component in a Console Application 57
INET COM+ SEIvICES . . .o\ o 57
.NET Remoting Configurations 57
AcCtivation TYDES 58
Message Formats. 60
Communication Protocols. 60
Object Lifetime Management 61
.NET Remoting and Service-Orientation. 61

4.4 Microsoft Messaging Queue (MSMQ). 63
The QUEUES. 64
Sending and ReceivingMessages 65
MSMQ and Service-Orientation 66

4.5 System.Transactions, 67
Distributed Resource Transactions 67
Explicit and Implicit Programming Models 68

Ambient Transactions 69

Contents Xiii

4.6 Web Services (ASMXand WSE) 70
XML Web Services (ASMX). 71

The WebService Attribute. 71

The WebMethod Attribute. 72

Web Service Enhancements (WSE) 73

4.7 REST Service Processing with IHttpHandler. 74

CHAPTER 5: WCF Services . . . c c c s s s s s nnunsnssnsss= 5

510verview 76
5.2 Service Contracts with WCF 78
WCF Terminologyo 78
WCF Service Contract 78
Interface Contract 78
Operation Contract. i 78

Data Contract 78
Message CONtracCt. 79
Service Endpoint. 79

The ServiceContract and OperationContract Attributes 79
Data Models and the DataContract Attribute 82
Messaging and the MessageContract Attribute 83
Service Endpoints and the endpoint Element. 86
AdAress. 88
Bindings 89
Contract 92

REST Service Classes and Attributes 92

The WebGet Attribute 93

The Weblinvoke Attribute. 95

WCF UriTemplate Attribute 96

Faults and the FaultContract Attribute 98
MEX Endpoints 100
Versioning Considerations 102

5.3 Service Implementation with WCF 104
Behaviors 104
Instancing 105

A Sample Implementation.o oo 106

Xiv Contents

5.4 Service Hostingwith WCF. 108
Self-Hosted Services. 110
Managed Windows Services. 112
[ISProcessBoundary 113
Windows Activation Services (WAS) 114
Hosting REST Services 115

5.5 Service Consumers with WCF. 116
Using the Service Metadata Tool 117
Writing the Proxy Class fora Service 118
Using the ChannelFactory Class. 119

CHAPTER 6: WCF EXtensions ccccensnssn==s==a= 121

6.1 WCF Security. 122
Security Modes 123
Authorization 125
Federated Identity. 126

6.2 WCF Transactions 127
Operation Attributes for Transactions 127

TransactionScopeRequired 128
TransactionAutoComplete 128
TransactionFlow 128
Service Attributes for Transactions 129
TransactionlsolationLevel 129
TransactionAutoCompleteOnSessionClose 130
TransactionTimeout i 130
Durable Services. 131

6.3WCFRouter. o 132
The RoutingService Class. i 133
Routing Contracts 134
Routing Configuration 135

Step 1: Define Endpoints 135
Step 2: Configure Service Behavior 136
Step 3: Enumerate Target Endpoints 136
Step 4: Define Message Filters 137
Step 5: Create a Filter Table 138

Fault Tolerance 139

Contents XV

6.4 WCF DiSCOVEryo 140
Discovery Modes 141
Locatinga Service AdHoc, 143
Sending and Receiving Service Announcements. 144
Discovery Proxies for Managed Discovery. 146

Discovering from a Discovery ProxXy. 146
Implicit Service Discovery. 147

6.5 WCF Extensibility. 148
WCF Layers 149
Layered Extensibility 149
Channel Layer Extensibility 150

6.6 WCF ManagementTools. 151
Administration 151
Troubleshooting 151
Logging Messages 153

CHAPTER 7: .NET Enterprise Services
TechnologieslIIIIIIIIIIIIIIIIIIIIIIIIIIIIII155

7.1SQLServer ... 156
Native XML Web Services Support. 157
Service Broker (SSB). 160
Query Notification 165
XML Supportin SQL Server 165

7.2 Windows Workflow Foundation (WF). 166
WF Architecture. 167
Workflows 168

Sequential Workflows 169

State Machine Workflows 169
Workflow Designer 169
Workflow Persistence (with WF) 170
Communicating with the Host Container. 171
Activities ... 172
Workflow Runtime Environment. 175
WF Programming Model 176

Passing Parameters into a Workflow Instance 178

XVi Contents

Returning Parameters from a Workflow Instance 178
Workflow-Enabled Services. 179
Versioning Orchestrations 180

WF Extensibility 180
BusinessRules 180

7.3 Application Blocks and Software Factories 181
Application Blocks 182
Software Factories. 184
Guidance ToolKits 184

Web Services Software Factory 184

7.4 Windows Server AppFabric 187
Configurable Hosting Environment 188
Workflow Persistence (with AppFabric) 189
In-Memory Application Cache Platform 190
Manageability Extensionso 192
Application Server Event Collector 192
75 BizTalk Server 193
BizTalk Server Architecture L 194
Messaging 196
Pipelines 197
Pipeline Components 198

Ports and Locations 199
Adapters 199
Context Properties. 200
ltineraries 201
Unified Exception Management 202

CHAPTER 8: Cloud Services with Windows Azure 205

8.1 Cloud Computing 101 206
Cloud Deployment Models 208
Public Cloud 208

Private Cloud 208
Community Cloud 209

Other Deployment Models 209

The Intercloud (Cloud of Clouds) 209

Deployment Models and Windows Azure. 210

Contents Xvii

Service Delivery Models 210
Infrastructure-as-a-Service (laaS) 210
Platform-as-a-Service (PaaS) 211
Software-as-a-Service (SaaS) 211
Other Delivery Models 211
laaS vs. PaaS 211

8.2 Windows Azure Platform Overview. 213

Windows Azure (Application Container) 216

SQLAZUrE 217

Windows Azure Platform AppFabric...................... 218

8.3Windows Azure Roles 219
Web Roles and Worker Roles 220
Virtual Machines 220
INPUt ENAPOINES.o 221
Inter-Role Communication. 222
8.4 Hello World in Windows Azure 223

1. Create a Cloud Service Project. 224

2. Choose an ASPNETWebRole........................ 224

3.Createthe Solution 225

4. Instantiate the Service. 226

8.5 A Web Service in Windows Azure. 227

1. Create a Host Service and Storage Service 233

2. Create and Deploy a Service Package. 233

3. Promote the Service to Production 234

8.6 A REST Service in Windows Azure 235
REST Service Addressing. 235
Creating a Windows Azure REST Service 236

8.7 Windows Azure Storage 239

Tables 240
Entities and Properties 240
Data ACCESS o 241

QUBUBS . . oo 241

Blobs 242
Block BIODS. 242
Page BIobs 243

Windows Azure Drive 243

XViii Contents

PART I1: SERVICES AND SERVICE COMPOSITION

CHAPTER 9: Service-Orientation
with .NET Part I: Service Contracts
and Interoperabilityttt s s s s s s 247

9.1 Standardized Service Contract. 250
Contract-First. 250

1. Create or Reuse Data Contract. 251

2. Create Message Contract.c.covieii.... 251

3. Create Interface Contract. 252
Standardized Service Contract and Patterns 252
9.2Canonical Schema 253
Creating Schemas with Visual Studio 254
Generating NET Types. 258
Using the DataContract Library 264

9.3 Data Model Transformation 267
Object-to-Object 269
LINQ-to-XML 271
XSLT Transformation 272

9.4 Canonical Protocol 274
Web Service 275
REST Service. 277
Component 278
Another WCF Option: Named Pipes 279
Dual Protocols with WCF. 279

9.5 Canonical Expression 280
Service Naming Conventions 280
Service Capability Naming Conventions. 281

CHAPTER 10: Service-Orientation
with .NET Part II: Coupling, Abstraction,
and Discoverability. s st s s i i i i s s 283

10.1 Service Loose Coupling L 285
Service Loose Coupling and Patterns. 286

Contents

10.2 Decoupled Contract 288
WSDL-First 289
Generating Service Code Using Sveutil 294
Generating WCF Service Code Using WSCFEblue 297
Generating ASMX Service Code Using WSCF.classic 302

10.3ServiceFagade 304

10.4 ConcurrentContracts, 307

10.5 Service Loose Coupling and Service Capability

Granularity. 308

10.6 Service Abstraction. L 313

10.7 Validation Abstraction 315

10.8 Exception Shielding 319

10.9 Service Discoverability 321
In-line Documentation. 322
REST and Hypermedia 323
Service Profiles 323

10.10 Metadata Centralization 325

CHAPTER 11: Service-Orientation
with .NET Part 1ll: Reusability and Agnostic
serviceModelsllIIIIllllIIIIIIIIIIIIIIIIIIII327

11.1 Service Reusability and the Separation of Concerns . . . 329

Functional Decomposition. 330
Service Encapsulation. 332
Agnostic Context. 332
Agnostic Capability. 334
Utility Abstraction 335
Entity Abstraction 336
The Inventory Analysis Cycle 337
Additional Design Considerations. 339

11.2 Case Study Example: Utility Abstraction
with a .NET Web Service. 339

11.3 Case Study Example: Entity Abstraction
witha NETREST Service 351

XX Contents

CHAPTER 12: Service-Orientation
with .NET Part 1V: Service Composition
and Orchestration BasicS. . . c c vttt s s nnnsnnsss 369

12.1 Service Composition 101 371
Service-Orientation and Service Composition 371
Service Composability (PSD) 373
Capability Composition and Capability Recomposition 374

Capability Composition. 375
Capability Recomposition 375
Composition Roles 377
Service Layers. 377
Non-Agnostic Context. i 379
Process Abstraction and Task Services 380

12.2 Orchestration. 382
Process Abstraction, Process Centralization,
and Orchestrated Task Services. 382

Process Centralizationand Tools. 384
Process Abstraction and WS-BPEL 385
State Repository and Compensating Service
Transaction 385
State Repository with NET 386
Compensating Service Transaction 387
OtherPatterns. 388
Microsoft Orchestration Platforms: WF and BizTalk Server 388

CHAPTER 13: Orchestration Patterns with WF....... 393

13.1 Process Abstraction and Orchestrated Task Services . . 397

A Brief History of WF Service Contract Support 397
Publishing WF Workflows as Web Services and Activities 399
Workflows Published as ASMX Services 399
Workflows Published via WCF 3.5 Activities. 408
Workflows Published via WCF 4.0 Activities. 410
Workflows Published via ExternalDataExchange Services. 413

WS-I BasicProfile Support. 417

Contents XXi

Publishing WF Workflows as REST Services 419
JSON Encoding 421

Send and Receive Activity Configuration. 422
Orchestrated Task Services with RESTand WF4.0.............. 423

13.2 Process Centralization 425
Centralized Process Maintenance 425
WS-BPEL Support. 426
13.3 State Repository 426
SQL Persistence Service and Scaling Outin WF3.0......... 429
SQL Persistence Service and Scaling OutinWF 4. 431
13.4 Compensating Service Transaction 434
Creating Compensations. 434
Triggering Compensations 435
13.5Case Study Example. 436

CHAPTER 14: Orchestration Patterns with
BizTalk Server:cccensnsnnsnsnnnnss=nsss=s3d41

14.1 Process Abstraction and Orchestrated Task Services . . 443

Orchestrated Task Service Contracts 445
WS-* Support. . .. 447
Case Study Example. 448
14.2 Process Centralization 450
Centralized Process Maintenance 450
WS-BPEL SUpport. . ..o 451
Exporting BizTalk Orchestrations to WS-BPEL 451
Importing WS-BPEL Processes into Bizlalk 454

14.3 State Repository 455
14.4 Compensating Service Transaction 456

Case Study Example. 459

XXii

Contents

PART I11: INFRASTRUCTURE AND ARCHITECTURE

CHAPTER 15: Enterprise Service Bus
with BizTalk Server and Windows Azure.....:...... 465

15.1 Microsoftandthe ESB. 466
15.2 Integration with BizTalk 467
Application Integration 101. 467
The BizTalk Hub-Bus Model 469
156.3The ESBToolkit 470
ltineraries 472
Itineraries TYDES o 474

The ltinerary Lifecycle. 475
Resolvers. 476
Adapter Providers 478
WCF-Custom and REST Services. 479

15.4 Distributed and Scalable ESB Architecture 480
Configuring for High-Availability 480
Techniques forScaling 481
Distributed ESBs 482
15.5 Cloud-Enabling the ESB with Windows Azure 483
Receiving Messages from Azure’s AppFabric Service Bus 484
Sending Messages to Azure’s AppFabric Service Bus. 485
15.6 Governance Considerations 487
SLAEnforcement. 488
Monitoring oo 488
Preparing Project Teams 489

15.7 Mapping the Microsoft Platform to the Enterprise
Service Bus Pattern. 490

Contents xXiii

CHAPTER 16: Windows Azure Platform
AppFabric Service BusSt s s s s s nsssnnnssaa 493

16.1 Introducing the Service Bus 494
Connectivity Fabric 494
Message Buffers. 496
Service Registry 497

16.2 Service Busand REST 498
REST-Based Service Design., 498
REST-Based Service Consumer Design 499
Message Buffersand REST, 499

16.3 Service Bus Connectivity Models 499
Eventing 500
Service Remoting 501
Tunneling. ..o 501

16.4 Working with Windows Azure Platform AppFabric

Service Bus. 503
Setting up the AppFabric ServiceBus 504
Defining a REST-Based Service Bus Contract 513
Creating the Service Bus Message Buffer 514

CHAPTER 17: SOA Security with .NET
and Windows Azure:::ccccssssssssssssssss5d17

17.1 Authentication and Authorization with WCF 518
Direct and Brokered Authentication 518
Direct Authentication. 518
Brokered Authentication 519
Authentication Patterns in WCF 520
Role-Based Authorization 520
Authorization Roles in WCF 521
Authorizing Operations with Roles 523
Claims-Based Authorization 524
Claims Processing in WCF 526
Implementing Claims-Based Authorization. 527
Access Control in Windows Azure 528

Designing Custom Claims 529

XXiv Contents

Case Study Example. o 530
17.2 Windows ldentity Foundation (WIF) 533
Digital Identity 534

The Identity Metasystem. 534
Windows Cardspace, 536
Active Directory Federation Services (ADFS) 539
WIF Programming Model., 540
WCF Integration 540
Programming Windows Cardspace 540
Developinga Relying Party., 541
Developing an Identity Provider, 542
17.3 Windows Azure Security 543
Cloud Computing Security 101.......................... 543
Cross-Domain Access Control 544

Hybrid Cloud Security. 545
Inter-Organization Service Composition Security 545
External Identity Providers, 546
Claims-Based Access Control, As-A-Service. 546
Windows Azure Platform AppFabric Access Control Overview . 548
Access Control Step-by-Step 550
Access Controland REST. 552
Access Control Service Authorization Scenarios 553
Hybrid Cloud Authorization Model 553

Public Cloud Authorization Model. 554
Cloud-to-Cloud Authorization Model. 554

Case Study Example. 555

CHAPTER 18: Service-Oriented Presentation
Layers with .NET::cccssusunssssssssn=s=s557

18.1 Windows Presentation Foundation

and the Prism Library 559
Shell. . . 561
VieWS . 562

View Discovery versus View Injection. 563

Regions. 563

Contents XXV

Modules. 565
Shared Services 566
18.2 Design Patterns for Presentation Logic. 567
User Interface Patterns L 567
Composite View [CIP] 568
Command [DP]. 568

Ul Mediator. 568
Separated Presentation 568
Modularity Patterns 569
Separated Interface [PEA] 570
PIUG-IN [PEA]. . . o o 570

Event Aggregator [PEA] 570
Inversion of Control [DP]. 570
Dependency Injection [PEA]. 570
Service Locator [CJP]. 571

18.3 A Simple Service-Oriented User Interface 571
Creating the Project. 571
Dynamically Loading Modules 579

CHAPTER 19: Service Performance Optimization..... 583

191 0VerVIEW . ..o 584
Optimization Areas 585
Service Implementation Processing 585
Service Framework Processing. 586
Wire Transmission Processing. 586

19.2 Service Performance Optimization Techniques 586
Caching to Avoid Costly Processing. 587

Intermediary 589
Service Container. 589
Service Proxy 590
Caching Utility Service 590
Comparing Caching Techniques 591
Cache Implementation Technologies 592

Computing CacheKeys 593

XXVi Contents

Case Study Example. o 594
Method 1. 597
Method 2. 598
Caching RESTResponses 599
Monitoring Cache Efficiency 601
Reducing Resource Contention 603
Request Throttling. 604

Throttling With WCF 605

Case Study Example. 606

Request Throttling with BizTalk Server 607

Coarse-Grained Service Contracts. 608
Case Study Example. 609
Selecting Application Containers 610
Performance Policies 612
Case Study Example. 620
REST Service Message SizeS.o v, 621
Hardware Encryption. 622
Transport EnCryption. 622
Message Encryption. 623
Custom Encryption Solution 623
High Performance Transport., 625
Case Study Example. 626
MTOMEncoding o 627
Case Study Example. 628
Performance Considerations for Service Contract Design. 630
Case Study Example. 631
Impact on Service-Orientation Principles 633
19.3 Service Composition Performance
Optimization Techniques. 637
Transformation Avoidance and Caching. 637
Asynchronous Interactions o 639
Parallelize Where Possible 641
Parallel Activity in WE 641
Parallel Execution in BizTalk Server 643

Replicator Activity in WF. 644

Contents XXVii

Consider Co-Hosting When Necessary 645
Compose High Performance Services 648
Impact on Service-Orientation Principles 648

CHAPTER 20: SOA Metrics with BAM..............653

20.1 SOAMetriC TYPES .« o v v oo 654
20.2 Introducing BizTalk BAM L. 655
BizTalk and BAM 655
BAM Solution Architecture 656
The BAM Management Utility 659
The Tracking Profile Editor (TPE). 659
Real-Time vs Scheduled Aggregations. 660
20.3 Activitiesand Views o 661
Roles-based Views for Service Governance. 662
Creating Views 663
204 BAM APIs ... 665
EventStreams 665
DirectEventStream (DES) 665
BufferedEventStream (BES) 665
OrchestrationEventStream (OES) 666
IPipelineContext Interface. 666
Abstracted APIs for Service Metrics 666
Metrics for Service Compositions 669
WCF and WF Interceptors. 670
Notifications. 670
Rapid Prototyping 671
20.5Managing BAM 672
Database Outages i 672
SECUNtY . .o 672
Scripting Deployment 673
Reporting. 676

Case Study Example. 677

xxviii

PART IV: APPENDICES

Contents

ArPENDIX A: Case Study Conclusion 685
AprPENDIX B: Industry Standards Reference. .. . 687
ArPENDIX C: Service-Orientation
Principles Referencecccuu . 691
AprPENDIX D: SOA Design Patterns Reference . . 707
ArPENDIX E: The Annotated SOA Manifesto .. . 795
The Annotated SOA Manifesto 796
AprPeEnDIX F: Additional Resources 809
Consuming Services with WCF 811
Introduction 811
CleaningUp Resources 812
The Proper Disposal and Closing of an
[CommunicationObject 812
The ICommunicationObject.Close() Method 812
The ICommunicationObject.Abort() Method 814
Abort() versus Close() 814
IDisposable for Cleaning Up Resources 814
IDisposable and Its Relation to ClientBase and
ChannelFactory 815
Cleaning Up Resources with the Using Block 816
Cleaning Up Resources with the Try-Catch-Finally-Abort
Pattern 817
Handling Exceptions and Cleaning Up Resources with the
Try-Close-Catch-Abort Pattern 818

Cleaning Up Resources in a ConvenientWay 819

Contents XXix
How to Handle Connections when Consuming Services

Using WCF ... 822

Conclusion 823
Aboutthe Authorscc ittt nnnnnnnns 825
David Chou 825
JohndeVadoss 825

Thomas Erl 826

Nitin Gandhi 826

Hanu Kommalapati 827
BrianLoesgen. 827

Christoph Schittko. 828

Herbjorn Wilhelmsen. 828

Mickey Williams. 828

About the Contributors.t st t e e s nns 829
ScottGolightly 829
DarrylHogan. o 829

Kris Horrocks. 829

JeffKing .. 830

ScottSeely ..o 830

About the Foreword Contributors. s s s v v n s 831
David Chappell 831
S.Somasegar ... 831

] e = 833

This page intentionally left blank

Foreword by
S. Somasegar

Within the last decade, service-oriented architecture has moved from infancy to ubig-
uity, precipitating and, in many ways, enabling the next paradigm of information
technology—cloud computing. As the Software + Services model becomes the norm,
businesses that embrace SOA will smoothly transition to the cloud, enabling better scal-
ing, availability, and cost efficacy of their services.

Service-oriented architecture is the magic behind many of the Internet-based applica-
tions and services that seamlessly integrate information and data from multiple sources
into a single experience. The loosely-coupled design of SOA allows developers to take
advantage of existing services to build their applications, dynamically adapt to changes
in those services, and offer their own services to other application developers. From a
developer perspective, it is best to have tools and frameworks that enable you to write
ONLY the code that you need to write. SOA allows developers to do just that—focus on
building the unique parts of their applications by enabling them to reuse existing serv-
ices others have already written to solve common problems.

Microsoft has long promoted a real-world approach to SOA that focuses on helping
organizations create business value by translating business challenges into opportuni-
ties. A real-world approach is typically based on rapid, agile iterations of design, imple-
mentation, and assessment, resulting in solutions that are able to better track and align
to the changing needs of the organization and its business environment.

xXxXii Foreword

To developers, service-orientation offers a technology model with the potential for effec-
tively creating and maintaining ‘evolvable’ applications: applications that are better
able to change and grow with the business. To the CIO, service-orientation offers strate-
gies and tools for nurturing existing IT assets while simultaneously fostering the devel-
opment of new capabilities. The ‘rip and replace’ tactic of the past to deal with changing
technology and business needs is facing extinction, thanks primarily to the increasing
adoption of service-orientation and the pervasive nature of service-oriented architec-
tures. The encapsulation of existing assets behind service-based interfaces provides
structured access to legacy systems and applications while facilitating the opportunity
for continuous improvement of the underlying business capabilities behind the
interface.

However, keep in mind that architecture is a means to an end. The end goal is to create
continuing value for your business, and a real-world approach based on proven prac-
tices offers a viable map to help get you there. With the emergence of the cloud as an
attractive platform for both consumer and business computing, the principles underly-
ing loose-coupling and service-orientation are increasingly relevant beyond the four
walls of the data center. Services are more and more being developed and deployed
beyond the confines of the firewall.

Microsoft’s innovative new platforms and tools, including Windows Azure and SQL
Azure, as well as Windows Azure platform AppFabric, Visual Studio 2010, and .NET
Framework 4, enable organizations to extend their service-oriented architectures into
the cloud, creating a hybrid Software + Services model. The Microsoft platforms and
tools provide businesses with the choice to leverage the ‘right’ technologies, whether
on-premises or in the cloud, truly putting the customer in control, and organizations
that build on a proven set of service-oriented patterns and practices set themselves up
for greater success in a Software + Services world.

This book is the result of mining and collating proven practices from the field. The
authors have done an excellent job of explaining the architectural designs and goals
behind SOA as well as real-world examples of SOA usage to build elegant IT solutions.
It is my hope that this work plays a role in helping you realize loosely coupled, service-
oriented solutions, on-premises and in the cloud, using Microsoft platforms and tools.

—S. Somasegar
Senior Vice President, Developer Division, Microsoft

Foreword by
David Chappell

What is SOA? In the dozen or so years that the term has been around, service-oriented
architecture has meant lots of different things. Some vendors saw it as a way to sell
whatever it was they were offering, and so they jumped on the SOA bandwagon with
both feet. Other people interpreted SOA in business terms, viewing it as a way to struc-
ture how different parts of an organization interact.

Yet from all of this confusion, one clear fact has emerged: The technology of service-
orientation has real value. Whether or not it helps vendors sell products or managers
organize their business, taking a service-oriented approach to development can make
life better for the people who build and maintain applications.

The core reason for this is simple. Since applications rarely live out their lives in isola-
tion, why not design those apps from the start with future connections in mind? Creat-
ing software that can expose and consume services marks the end of application silos,
and it’s fundamental to the value of service-orientation.

Doing this well requires two things. The first is a grasp of how to apply services effec-
tively. Over time, our industry has evolved a set of patterns to help us create and con-
nect applications in a service-oriented style. As with patterns in any other area, those for
service-orientation attempt to codify best practices, helping all of us learn from what’s
gone before rather than reinvent these wheels on our own.

XXXIV Foreword

The second thing that’s needed is a solid understanding of the technologies used to cre-
ate service-oriented software. If you’re working in the .NET world, there are quite a few
things to get your mind around. Windows Communication Foundation provides a uni-
fied approach to creating and consuming services, for example, while Windows Work-
flow Foundation offers a generalized approach to orchestrating them. BizTalk Server
takes an explicitly integration-oriented approach to the problem, while the Windows
Azure platform brings services to the cloud. And even though the .NET Framework is
common to all of these technologies, using them effectively isn’t so easy. Each brings its
own complexity to the party, and each can be combined with the others in various ways.

Explaining the intersection of these two worlds—service-orientation and .NET tech-
nologies—is exactly what this book does. Its team of specialist authors provides a con-
crete, usable guide to this combination, ranging from the fundamentals of
service-orientation to the more rarified air of .NET services in the cloud and beyond. If
you’re creating service-oriented software on the Microsoft platform—that is, if you’re a
serious .NET developer—mastering these ideas is a must.

—David Chappell
Chappell & Associates (San Francisco, CA, USA)

Chapter 8

Cloud Services with Windows Azure

8.1 Cloud Computing 101

8.2 Windows Azure Platform Overview
8.3 Windows Azure Roles

8.4 Hello World in Windows Azure

8.5 A Web Service in Windows Azure
8.6 A REST Service in Windows Azure
8.7 Windows Azure Storage

icrosoft’s Software-plus-Services strategy represents a view of the world where
Mthe growing feature-set of devices and the increasing ubiquity of the Web are
combined to deliver more compelling solutions. Software-plus-Services represents an
evolutionary step that is based on existing best practices in IT and extends the applica-
tion potential of core service-orientation design principles.

Microsoft’s efforts to embrace the Software-plus-Services vision are framed by three
core goals:

* user experiences should span beyond a single device

® solution architectures should be able to intelligently leverage and integrate
on-premise IT assets with cloud assets

e tightly coupled systems should give way to federations of cooperating systems
and loosely coupled compositions

The Windows Azure platform represents one of the major components of the Software-
plus-Services strategy, as Microsoft’s cloud computing operating environment,
designed from the outset to holistically manage pools of computation, storage and net-
working; all encapsulated by one or more services.

8.1 Cloud Computing 101

Just like service-oriented computing, cloud computing is a term that represents many
diverse perspectives and technologies. In this book, our focus is on cloud computing in
relation to SOA and Windows Azure.

Cloud computing enables the delivery of scalable and available capabilities by leverag-
ing dynamic and on-demand infrastructure. By leveraging these modern service tech-
nology advances and various pervasive Internet technologies, the “cloud” represents an
abstraction of services and resources, such that the underlying complexities of the tech-
nical implementations are encapsulated and transparent from users and consumer pro-
grams interacting with the cloud.

8.1 Cloud Computing 101 207

At the most fundamental level, cloud computing impacts two aspects of how people
interact with technologies today:

e how services are consumed
e how services are delivered

Although cloud computing was originally, and still often is, associated with Web-based
applications that can be accessed by end-users via various devices, it is also very much
about applications and services themselves being consumers of cloud-based services.
This fundamental change is a result of the transformation brought about by the adop-
tion of SOA and Web-based industry standards, allowing for service-oriented and Web-
based resources to become universally accessible on the Internet as on-demand services.

One example has been an approach whereby programmatic access to popular functions
on Web properties is provided by simplifying efforts at integrating public-facing serv-
ices and resource-based interactions, often via RESTful interfaces. This was also termed
“Web-oriented architecture” or “WOA.,” and was considered a subset of SOA. Architec-
tural views such as this assisted in establishing the Web-as-a-platform concept, and
helped shed light on the increasing inter-connected potential of the Web as a massive
collection (or cloud) of ready-to-use and always-available capabilities.

This view can fundamentally change the way services are designed and constructed, as
we reuse not only someone else’s code and data, but also their infrastructure resources,
and leverage them as part of our own service implementations. We do not need to
understand the inner workings and technical details of these services; Service Abstrac-
tion (696), as a principle, is applied to its fullest extent by hiding implementation details
behind clouds.

With regards to service delivery, we are focused
. . SOA PRINCIPLES & PATTERNS
on the actual design, development, and imple-
mentation of cloud-based services. Let’s begin | There are several SOA design
by establishing high-level characteristics that a | patterns that are closely related to

cloud computing environment can include: common cloud computing imple-
) mentations, such as Decoupled
* generally accessible Contract [735], Redundant Imple-

mentation [766], State Repository
[785], and Stateful Services [786]. In
* elastic and scalable this and subsequent chapters, these
and other patterns will be explored
as they apply specifically to the Win-
dows Azure cloud platform.

e always available and highly reliable

e abstract and modular resources

208 Chapter 8: Cloud Services with Windows Azure

* service-oriented
¢ self-service management and simplified provisioning

Fundamental topics regarding service delivery pertain to the cloud deployment model
used to provide the hosting environment and the service delivery model that represents
the functional nature of a given cloud-based service. The next two sections explore these
two types of models.

Cloud Deployment Models

There are three primary cloud deployment models. Each can exhibit the previously
listed characteristics; their differences lie primarily in the scope and access of published
cloud services, as they are made available to service consumers.

Let’s briefly discuss these deployment models individually.

Public Cloud

Also known as external cloud or multi-tenant cloud, this model essentially represents a
cloud environment that is openly accessible. It generally provides an IT infrastructure in
a third-party physical data center that can be utilized to deliver services without having
to be concerned with the underlying technical complexities.

Essential characteristics of a public cloud typically include:
* homogeneous infrastructure
e common policies
¢ shared resources and multi-tenant
* leased or rented infrastructure; operational expenditure cost model
e economies of scale and elastic scalability
Note that public clouds can host individual services or collections of services, allow for

the deployment of service compositions, and even entire service inventories.

Private Cloud

Also referred to as internal cloud or on-premise cloud, a private cloud intentionally lim-
its access to its resources to service consumers that belong to the same organization that
owns the cloud. In other words, the infrastructure that is managed and operated for one

8.1 Cloud Computing 101 209

organization only, primarily to maintain a consistent level of control over security, pri-
vacy, and governance.

Essential characteristics of a private cloud typically include:
* heterogeneous infrastructure

* customized and tailored policies

dedicated resources

¢ in-house infrastructure (capital expenditure cost model)

end-to-end control

Community Cloud

This deployment model typically refers to special-purpose cloud computing environ-
ments shared and managed by a number of related organizations participating in a com-
mon domain or vertical market.

Other Deployment Models

There are variations of the previously discussed deployment models that are also worth
noting. The hybrid cloud, for example, refers to a model comprised of both private and
public cloud environments. The dedicated cloud (also known as the hosted cloud or vir-
tual private cloud) represents cloud computing environments hosted and managed off-
premise or in public cloud environments, but dedicated resources are provisioned solely
for an organization’s private use.

The Intercloud (Cloud of Clouds)

The intercloud is not as much a deployment model as it is a concept based on the aggre-
gation of deployed clouds (Figure 8.1). Just like the Internet, which is a network of net-
works; intercloud refers to an inter-connected global cloud of clouds. Also like the World
Wide Web, intercloud represents a massive collection of services that organizations can
explore and consume.

From a services consumption perspective, we can look at the intercloud as an on-
demand SOA environment where useful services managed by other organizations can
be leveraged and composed. In other words, services that are outside of an organiza-
tion’s own boundaries and operated and managed by others can become a part of the
aggregate portfolio of services of those same organizations.

210 Chapter 8: Cloud Services with Windows Azure

Google
Salesforce

Microsoft

Yahoo Amazon

Oracle IBM

Figure 8.1
Examples of how vendors establish a commercial intercloud.

Deployment Models and Windows Azure

Windows Azure exists in a public cloud. Windows Azure itself is not made available as
a packaged software product for organizations to deploy into their own IT enterprises.
However, Windows Azure-related features and extensions exist in Microsoft’s on-prem-
ise software products, and are collectively part of Microsoft’s private cloud strategy. It
is important to understand that even though the software infrastructure that runs
Microsoft’s public cloud and private clouds are different, layers that matter to end-user
organizations, such as management, security, integration, data, and application are
increasingly consistent across private and public cloud environments.

Service Delivery Models

Many different types of services can be delivered in the various cloud deployment envi-
ronments. Essentially, any IT resource or function can eventually be made available as a
service. Although cloud-based ecosystems allow for a wide range of service delivery
models, three have become most prominent:

Infrastructure-as-a-Service (laaS)

This service delivery model represents a modern form of utility computing and out-
sourced managed hosting. IaaS environments manage and provision fundamental com-
puting resources (networking, storage, virtualized servers, etc.). This allows consumers
to deploy and manage assets on leased or rented server instances, while the service
providers own and govern the underlying infrastructure.

8.1 Cloud Computing 101 211

Platform-as-a-Service (PaaS)

The PaaS model refers to an environment that provisions application platform resources
to enable direct deployment of application-level assets (code, data, configurations, poli-
cies, etc.). This type of service generally operates at a higher abstraction level so that
users manage and control the assets they deploy into these environments. With this
arrangement, service providers maintain and govern the application environments,
server instances, as well as the underlying infrastructure.

Software-as-a-Service (SaaS)

Hosted software applications or multi-tenant application services that end-users con-
sume directly correspond to the SaaS delivery model. Consumers typically only have
control over how they use the cloud-based service, while service providers maintain and
govern the software, data, and underlying infrastructure.

Other Delivery Models

Cloud computing is not limited to the aforementioned delivery models. Security, gov-
ernance, business process management, integration, complex event processing, infor-
mation and data repository processing, collaborative processes—all can be exposed as
services and consumed and utilized to create other services.

Cloud deployment models and service delivery models are covered in
more detail in the upcoming book SOA & Cloud Computing as part of the
Prentice Hall Service-Oriented Computing Series from Thomas Erl. This
book will also introduce several new design patterns related to cloud-
based service, composition, and platform design.

laaS vs. PaaS

In the context of SOA and developing cloud-based services with Windows Azure, we
will focus primarily on laaS and PaaS delivery models in this chapter. Figure 8.2 illus-
trates a helpful comparison that contrasts some primary differences. Basically, IaaS rep-
resents a separate environment to host the same assets that were traditionally hosted
on-premise, whereas PaaS represents environments that can be leveraged to build and
host next-generation service-oriented solutions.

212

Chapter 8: Cloud Services with Windows Azure

private infrastructure platform
(on-premise) (as a service) o (as a service)
g
applications applications g —] applications
3
o
o >
runtimes = runtimes runtimes
g _|
€
security & integration § security & integration security & integration
databases databases databases
(]
(o)) 3
5 B
g— servers servers — servers a
= 2
=N g
virtualization virtualization g virtualization s
> 3
& g
2 5]
server HW server HW - o server HW
<
<
[}
>
storage storage 15 storage
2
networking networking — networking
Figure 8.2

Common differentiations between delivery models.

We interact with PaaS at a higher abstraction level than with IaaS. This means we man-
age less of the infrastructure and assume simplified administration responsibilities. But
at the same time, we have less control over this type of environment.

IaaS provides a similar infrastructure to traditional on-premise environments, but we
may need to assume the responsibility to re-architect an application in order to effec-
tively leverage platform service clouds. In the end, PaaS will generally achieve a higher
level of scalability and reliability for hosted services.

IN PLAIN ENGLISH

An on-premise infrastructure is like having your own car. You have complete con-
trol over when and where you want to drive it, but you are also responsible for its
operation and maintenance. laaS is like using a car rental service. You still have
control over when and where you want to go, but you don’t need to be concerned
with the vehicle’s maintenance. Paa$S is more comparable to public transportation.
It is easier to use as you don’t need to know how to operate it and it costs less.
However, you don’t have control over its operation, schedule, or routes.

8.2 Windows Azure Platform Overview 213

SUMMARY OF KEY POINTS

e Cloud computing enables the delivery of scalable and available capabilities
by leveraging dynamic and on-demand infrastructure.

e There are three common types of cloud deployment models: public cloud,
private cloud, and community cloud.

e There are three common types of service delivery models: laaS, Paa$S, and
SaaS.

8.2 Windows Azure Platform Overview

The Windows Azure platform is an Internet-scale cloud computing services platform
hosted in Microsoft data centers. Windows tools provide functionality to build solutions
that include a cloud services operating system and a set of developer services. The key
parts of the Windows Azure platform are:

e Windows Azure (application container)
e Microsoft SQL Azure

¢ Windows Azure platform AppFabric

The Windows Azure platform is part of the _
Microsoft cloud, which consists of multiple cate- SOA PRINCIPLES & PATTERNS
gories of services: The infrastructure and service
architectures that underlie many of
these native services (as well as

cloud-based services in general)

are based on direct combined
sumers can directly utilize. Examples include | gppiication of Stateful Services

e cloud-based applications — These are services
that are always available and highly scalable.
They run in the Microsoft cloud that con-

Bing, Windows Live Hotmail, Office Live, [786] and Redundant Implementa-
etc. tion [766]. This is made possible
by leveraging several of the built-in

. o . . .
software services — These services are hosted extensions and mechanisms pro-

instances of Microsoft’s enterprise server vided by the Windows Azure plat-
products that consumers can use directly. form (as explained in this chapter
Examples include Exchange Online, Share- and Chapter 16).

Point Online, Office Communications
Online, etc.

214 Chapter 8: Cloud Services with Windows Azure

* platform services — This is where the Windows Azure platform itself is positioned. It
serves as an application platform public cloud that developers can use to deploy
next-generation, Internet-scale, and always available solutions.

e infrastructure services — There is a limited set of elements of the Windows Azure
platform that can support cloud-based infrastructure resources.

Figure 8.3 illustrates the service categories related to the Windows Azure platform.
Given that Windows Azure is itself a platform, let’s explore it as an implementation of
the PaaS delivery model.

Application Services

bing Windows Live Office Live HealthVault Advertising XBOX
Live

Software Services

Exchange Online SharePoint Online OfficeCommunications Dynamics CRM
Online Online

Platform Services

SQL Azure AppFabric Live Services SharePoint Services Dynamics CRM
Services

Windows Azure

Infrastructure Services

Figure 8.3
A high-level representation of categories of services available in the Windows Azure cloud.

The Windows Azure platform was built from the ground up using Microsoft technolo-
gies, such as the Windows Server Hyper-V-based system virtualization layer. However,
the Windows Azure platform is not intended to be just another off-premise Windows
Server hosting environment. It has a cloud fabric layer, called the Windows Azure Fabric
Controller, built on top of its underlying infrastructure.

The Windows Azure Fabric Controller pools an array of virtualized Windows Server
instances into a logical entity and automatically manages the following:

® resources
* load balancing

e fault-tolerance

8.2 Windows Azure Platform Overview 215

¢ geo-replication
e application lifecycle

These are managed without requiring the hosted applications to explicitly deal with the
details. The fabric layer provides a parallel management system that abstracts the com-
plexities in the infrastructure and presents a cloud environment that is inherently elas-
tic. As a form of PaaS, it also supports the access points for user and application
interactions with the Windows Azure platform.

application services persona_ll data | application | information
repository marketplace marketplace
services workflow
frameworks N .
hosting hosting
: | secure token declarative | claims-based | federated
security . iy X R . o
service policies identity identities
.) ’ on-premise
connectivit
y | Service Bus | registry | M
datal relational ADO.NET |Tr nsact-SQL | data
\M ODBC, PHP ansactSQ synchronization
compute NET Java PHP Ruby Python MySQL C/C++ VHD
dynamic message distributed content
slomge tabular data | blobs | queues | file system | distribution
Figure 8.4

An overview of common Windows Azure platform capabilities.

The Windows Azure platform essentially provides a set of cloud-based services that are
symmetric with existing mainstream on-site enterprise application platforms (Figure 8.4).

For example:

e storage services — a scalable distributed data storage system that supports many
types of storage models, including hash map or table-like structured data, large
binary files, asynchronous messaging queues, traditional file systems, and content
distribution networks

e compute services — application containers that support existing mainstream devel-
opment technologies and frameworks, including .NET, Java, PHP, Python, Ruby
on Rails, and native code.

216 Chapter 8: Cloud Services with Windows Azure

* data services — highly reliable and scalable relational database services that also
support integration and data synchronization capabilities with existing on-
premise relational databases

 connectivity services — these are provided via a cloud-based service bus that can be
used as a message intermediary to broker connections with other cloud-based
services and services behind firewalls within on-premise enterprise environments

 security services — policy-driven access control services that are federation-aware
and can seamlessly integrate with existing on-premise identity management
systems

* framework services — components and tools that support specific aspects and
requirements of solution frameworks

e application services — higher-level services that can be used to support application
development, such as application and data marketplaces

All of these capabilities can be utilized individually or in combination.

Windows Azure (Application Container)

Windows Azure serves as the development, service hosting, and service management
environment. It provides the application container into which code and logic, such as
Visual Studio projects, can be deployed. The application environment is similar to exist-
ing Windows Server environments. In fact, most .NET projects can be deployed directly
without significant changes.

A Windows Azure instance represents a unit of deployment, and is mapped to specific
virtual machines with a range of variable sizes. Physical provisioning of the Windows
Azure instances is handled by the cloud fabric. We are required only to specify, by pol-
icy, how many instances we want the cloud fabric to deploy for a given service.

We have the ability to manually start and shut down instances, and grow or shrink the
deployment pool; however, the cloud fabric also provides automated management of
the health and lifecycles of instances. For example, in the event of an instance failure, the
cloud fabric would automatically shut down the instance and attempt to bring it back
up on another node.

Windows Azure also provides a set of storage services that consumers can use to store
and manage persistent and transient data. Storage services support geo-location and
offer high durability of data by triple-replicating everything within a cluster and across

8.2 Windows Azure Platform Overview

data centers. Furthermore, they can manage
scalability requirements by automatically par-
titioning and load balancing services across
servers.

Also supported by Windows Azure is a VHD-
based deployment model as an option to
enable some [aaS requirements. This is prima-
rily geared for services that require closer inte-
gration with the Windows Server OS. This
option provides more control over the service
hosting environment and can better support
legacy applications.

SQL Azure

SQL Azure is a cloud-based relational data-
base service built on SQL Server technologies
that exposes a fault-tolerant, scalable, and
multi-tenant database service. SQL Azure
does not exist as hosted instances of SQL
Server. It also uses a cloud fabric layer to
abstract and encapsulate the underlying tech-
nologies required for provisioning, server
administration, patching, health monitoring,
and lifecycle management. We are only
required to deal with logical administration
tasks, such as schema creation and mainte-
nance, query optimization, and security
management.

A SQL Azure database instance is actually
implemented as three replicas on top of a
shared SQL Server infrastructure managed by
the cloud fabric. This cloud fabric delivers
high availability, reliability, and scalability
with automated and transparent replication

217

SOA PRINCIPLES & PATTERNS

Services deployed within Windows
Azure containers and made available
via Windows Azure instances establish
service architectures that, on the sur-
face, resemble typical Web service or
REST service implementations. How-
ever, the nature of the back-end pro-
cessing is highly extensible and
scalable and can be further subject to
various forms of Service Refactoring
[783] over time to accommodate
changing usage requirements. This
highlights the need for Windows Azure
hosted services to maintain the free-
dom to be independently governed
and evolved. This, in turn, places a
greater emphasis on the balanced
design of the service contract and its
proper separation as part of the overall
service architecture.

Specifically, it elevates the importance
of the Standardized Service Contract
(693), Service Loose Coupling (695),
and Service Abstraction (696)
principles that, through collective
application, shape and position service
contracts to maximize abstraction and
cross-service standardization, while
minimizing negative forms of consumer
and implementation coupling. Decou-
pled Contract [735] forms an expected
foundation for Windows Azure-hosted
service contracts, and there will gener-
ally be the need for more specialized
contract-centric patterns, such as
Validation Abstraction [792], Canonical
Schema [718], and Schema Central-
ization [769].

218 Chapter 8: Cloud Services with Windows Azure

d failover. It furth ts load-balancing of
and failover. It further supports load-balancing o S EETE LR o BT oS
consumer requests and the synchronization of
concurrent, incremental changes across the repli- | In addition to reliability and scala-

cas. The cloud fabric also handles concurrency | bility improvements, SQL Azure’s

conflict resolutions when performing bi-direc- | replication mechanism can be
used to apply Service Data Repli-

cation [773] in support of the Ser-
vice Autonomy (699) principle.
This is significant, as individual
Because SQL Azure is built on SQL Server, it pro- | Service autonomy within cloud
environments can often fluctuate
due to the heavy emphasis on
shared resources across pools of
cloud-based services.

tional data synchronization between replicas by
using built-in policies (such as last-writer-wins) or
custom policies.

vides a familiar relational data model and is
highly symmetric to on-premise SQL Server
implementations. It supports most features avail-
able in the regular SQL Server database engine
and can also be used with tools like SQL Server
2008 Management Studio, SQLCMD, and BCP, and SQL Server Integration Services for
data migration.

Windows Azure Platform AppFabric

In Chapter 7, as part of our coverage of .NET Enterprise Services, we introduced Win-
dows Server AppFabric. This represents the version of AppFabric that is local to the
Windows Server environment. Windows Azure platform AppFabric (with the word “plat-
form” intentionally not capitalized), is the cloud-based version of AppFabric that runs
on Windows Azure.

Windows Azure platform AppFabric helps connect services within or across clouds and
enterprises. It provides a Service Bus for connectivity across networks and organiza-
tional boundaries, and an Access Control service for federated authorization as a service.

The Service Bus acts as a centralized message broker in the cloud to relay messages
between services and service consumers. It has the ability to connect to on-premise serv-
ices through firewalls, NATs, and over any network topology.

Its features include:
e connectivity using standard protocols and standard WCF bindings

* multiple communication models (such as publish-and-subscribe, one-way
messaging, unicast and multicast datagram distribution, full-duplex bi-directional
connection-oriented sessions, peer-to-peer sessions, and end-to-end NAT
traversal)

8.3 Windows Azure Roles 219

* service en.dpomts that are Pubhshed and dis-
covered via Internet-accessible URLs

The Windows Azure Service Bus

complies to the familiar Enterprise

Service Bus [741] compound pat-

built-in intrusion detection and protection tern, and focuses on realizing this

pattern across network, security,
and organizational domains.

global hierarchical namespaces that are DNS
and transport-independent

against denial-of-service attacks

Access Control acts as a centralized cloud-based | ggvice Bus also orovides a serv-

security gateway that regulates access to cloud- | ice registry to provide registration
based services and Service Bus communications, | and discovery of service metadata,
while integrating with standards-based identity | which allows for the application of
providers (including enterprise directories such | Metadata Centralization [754] and
emphasizes the need to apply the
Service Discoverability (702)
principle.

as Active Directory and online identity systems
like Windows Live ID). Access Control and
other Windows Azure-related security topics are

covered in Chapter 17.

Unlike Windows Azure and SQL Azure, which are based on Windows Server and SQL
Server, Access Control Service is not based on an existing server product. It uses tech-
nology included in Windows Identity Foundation and is considered a purely cloud-
based service built specifically for the Windows Azure platform environment.

SUMMARY OF KEY POINTS

e The Windows Azure platform is primarily a PaaS deployed in a public cloud
managed by Microsoft.

e Windows Azure platform provides a distinct set of capabilities suitable for
building scalable and reliable cloud-based services.

e The overall Windows Azure platform further encompasses SQL Azure and
Windows Azure platform AppFabric.

8.3 Windows Azure Roles

A cloud service in Windows Azure will typically have multiple concurrent instances.
Each instance may be running all or a part of the service’s codebase. As a developer, you
control the number and type of roles that you want running your service.

220 Chapter 8: Cloud Services with Windows Azure

Web Roles and Worker Roles

Windows Azure roles are comparable to standard Visual Studio projects, where each
instance represents a separate project. These roles represent different types of applica-
tions that are natively supported by Windows Azure. There are two types of roles that
you can use to host services with Windows Azure:

e Web roles
e worker roles

Web roles provide support for HTTP and HTTPS through public endpoints and are
hosted in IIS. They are most comparable to regular ASPNET projects, except for differ-
ences in their configuration files and the assemblies they reference.

Worker roles can also expose external, publicly facing TCP/IP endpoints on ports other
than 80 (HTTP) and 443 (HTTPS); however, worker roles do not run in IIS. Worker roles
are applications comparable to Windows services and are suitable for background
processing.

Virtual Machines

Underneath the Windows Azure platform, in an area that you and your service logic
have no control over, each role is given its own virtual machine or VM. Each VM is cre-
ated when you deploy your service or service-oriented solution to the cloud. All of these
VMs are managed by a modified hypervisor and hosted in one of Microsoft’s global data
centers.

Each VM can vary in size, which pertains to the number of CPU cores and memory. This
is something that you control. So far, four pre-defined VM sizes are provided:

e small - 1.7ghz single core, 2GB memory

¢ medium — 2x 1.7ghz cores, 4GB memory

e large —4x 1.7ghz cores, 8GB memory

* extra large — 8x 1.7ghz cores, 16GB memory

Notice how each subsequent VM on this list is twice as big as the previous one. This sim-
plifies VM allocation, creation, and management by the hypervisor.

Windows Azure abstracts away the management and maintenance tasks that come
along with traditional on-premise service implementations. When you deploy your
service into Windows Azure and the service’s roles are spun up, copies of those roles are

8.3 Windows Azure Roles 221

replicated automatically to handle failover (for example, if a VM were to crash because
of hard drive failure). When a failure occurs, Windows Azure automatically replaces
that “unreliable” role with one of the “shadow” roles that it originally created for your
service.

This type of failover is nothing new. On-premise service implementations have been
leveraging it for some time using clustering and disaster recovery solutions. However,
a common problem with these failover mechanisms is that they are often server-focused.
This means that the entire server is failed over, not just a given service or service
composition.

When you have multiple services hosted on a Web server that crashes, each hosted serv-
ice experiences downtime between the current server crashing and the time it takes to
bring up the backup server. Although this may not affect larger organizations with
sophisticated infrastructure too much, it can impact smaller IT enterprises that may not
have the capital to invest in setting up the proper type of failover infrastructure.

Also, suppose you discover in hindsight after performing the failover that it was some
background worker process that caused the crash. This probably means that unless you
can address it quick enough, your failover server is under the same threat of crashing.

Windows Azure addresses this issue by focusing on application and hosting roles. Each
service or solution can have a Web frontend that runs in a Web role. Even though each
role has its own “active” virtual machine (assuming we are working with single
instances), Windows Azure creates copies of each role that are physically located on one
or more servers. These servers may or may not be running in the same data center. These
shadow VMs remain idle until they are needed.

Should the background process code crash the worker role and subsequently put the
underlying virtual machine out of commission, Windows Azure detects this and auto-
matically brings in one of the shadow worker roles. The faulty role is essentially dis-
carded. If the worker role breaks again, then Windows Azure replaces it once more. All
of this is happening without any downtime to the solution’s Web role front end, or to
any other services that may be running in the cloud.

Input Endpoints

Web roles used to be the only roles that could receive Internet traffic, but now worker
roles can listen to any port specified in the service definition file. Internet traffic is
received through the use of input endpoints. Input endpoints and their listening ports are
declared in the service definition (*.csdef) file.

222 Chapter 8: Cloud Services with Windows Azure

Keep in mind that when you specify the port for your worker role to listen on, Windows
Azure isn’t actually going to assign that port to the worker. In reality, the load balancer
will open two ports—one for the Internet and the other for your worker role. Suppose
you wanted to create an FTP worker role and in your service definition file you specify
port 21. This tells the fabric load balancer to open port 21 on the Internet side, open
pseudo-random port 33476 on the LAN side, and begin routing FTP traffic to the FTP
worker role.

In order to find out which port to initialize for the randomly assigned internal port,
use the RoleEnvironment.CurrentRoleInstance.InstanceEndpoints["FtpIn"].

IPEndpoint object.

Inter-Role Communication

Inter-Role Communication (IRC) allows multiple roles to talk to each other by exposing
internal endpoints. With an internal endpoint, you specify a name instead of a port num-
ber. The Windows Azure application fabric will assign a port for you automatically and
will also manage the name-to-port mapping.

Here is an example of how you would specify an internal endpoint for IRC:

<ServiceDefinition xmlns=
"http://schemas.microsoft.com/ServiceHosting/2008/10/
ServiceDefinition" name="HelloWorld">
<WorkerRole name="WorkerRolel">
<Endpoints>
<InternalEndpoint name="NotifyWorker" protocol="tcp" />
</Endpoints>
</WorkerRole>
</ServiceDefinition>

Example 8.1

In this example, NotifyWorker is the name of the internal endpoint of a worker role
named WorkerRolel. Next, you need to define the internal endpoint, as follows:

RoleInstanceEndpoint internalEndPoint =
RoleEnvironment.CurrentRoleInstance.

InstanceEndpoints ["NotificationService"];
this.serviceHost.AddServiceEndpoint (

typeof (INameOfYourContract) ,

binding,

8.4 Hello World in Windows Azure 223

String.Format ("net.tcp://{0} /NotifyWorker",
internalEndPoint.IPEndpoint)) ;
WorkerRole.factory = new ChannelFactory<IClientNotification> (binding) ;

Example 8.2

You only need to specify the IP endpoint of the other worker role instances in order to
communicate with them. For example, you could get a list of these endpoints with the
following routine:

var current = RoleEnvironment.CurrentRoleInstance;
var endPoints = current.Role.Instances
.Where (instance => instance != current)
.Select (instance => instance.InstanceEndpoints["NotifyWorker"]) ;

Example 8.3

IRC only works for roles in a single application deployment. Therefore, if you have mul-
tiple applications deployed and would like to enable some type of cross-application role
communication, IRC won’t work. You will need to use queues instead.

SUMMARY OF KEY POINTS

e Windows Azure roles represent different types of supported applications or
services.

e There are two types of roles: Web roles and worker roles.

e Each role is assigned its own VM.

8.4 Hello World in Windows Azure

The following section demonstrates the creation of a simple “Hello World” service in a
Windows Azure hosted application.

NOTE

If you are carrying out the upcoming steps with Visual Studio 2008, you
will need to be in an elevated mode (such as Administrator). A convenient
way of determining whether the mode setting is correct is to press the F5
key in order to enter debug mode. If you receive an error stating “the
development fabric must be run elevated,” then you will need to restart
Visual Studio as an administrator.

224 Chapter 8: Cloud Services with Windows Azure

Also, ensure the following on your SQL Express setup:

e SQL Server Express Edition 2008 must be running under the <\SQL-
EXPRESS’ instance

e your Windows account must have a login in \SQLEXPRESS
e your login account is a member of the sysadmin role

If SQL Express isn’t configured properly, you will get a permissions error.

1. Create a Cloud Service Project

First you need to open the New Project window to create a new cloud service project
using VB.NET or C# (Figure 8.5).

e . =

Project types: Templates:

Database ~ || Visual Studio installed templates
Cloud Senvice
?:: ring My Templates
WCF HSearch Online Templates..
Workflow

Visual C&
Windows =
Web
Office
Database
Reporting
Test
WCF
Waorkflow -

A project for creating a scalable application or service that runs on Windows Azure. (NET Framework 3.5)

Name: HelloWorld
Location: c\projects\HelloWorld - Browse.. |
——
Solution: Create new Solution * | [¥]Create directory for solution
Solution Name: HelloWorld "] Add to Source Control
(o]
Figure 8.5

The New Project window.

2. Choose an ASP.NET Web Role

After you click OK on the New Project window, the New Cloud Service Project wizard
will start. You will then see a window (Figure 8.6) that will allow you to choose the type
of role that you would like as part of your service deployment.

For the Hello World project, you will only need the ASPNET Web Role type. Once you
select this role, you can choose the role name.

8.4 Hello World in Windows Azure 225

New Cloud Service Project @éJ

¥ Roles: Cloud Service Solution:
~ | Visual Basic |C§ MyWebRole
~ | Visual C# ASP.NET Web Role
oF ASP.NET Web Role
| Application with a Web user interface
Eﬂ 'WCF Service Web Role

Web Role for WCF Services [E|]

C#H Warker Role —
Lﬁ Background processing application u|

) CGI Web Role
| Web Role that hosts a FastCGI Application

OK | ‘ Cancel

Figure 8.6
The New Cloud Service Project window.

3. Create the Solution

After clicking OK, the wizard will generate the solution, which you can then view using
the Solution Explorer window (Figure 8.7).

Solution Explorer - Solution 'HelloWorld' (.=
G epEIEEP

J Solution "HelloWorld® (2 projects)
=- @ HelloWorld
- & Roles
(@ MyWebRole
_Q ServiceConfiguration.cscfg
@ ServiceDefinition.csdef
- E3 MyWebRole
=d| Properties
[+ [+ References
3 App_Data
| Default.aspx
i3 Web.config
4] WebRole.cs

Figure 8.7
The HelloWorld solution structure displayed in the Solution Explorer window.

226

4. Instantiate the Service

Now you can open the Default.aspx

file using the Solution Explorer win-
dow, put “Hello, Cloud!” in the Body
element and press F5 to run. You

should see something like what is

shown in Figure 8.8.

This example was executed locally on

IIS. If we were to deploy this service

into the Windows Azure cloud, it

would still be running in IIS because

it is hosted in a Web role.

@ hitp//127.0.01:81/Defaultaspx - Win.. = | & | 2

N

@uv [g] htpra210... ~| R[4 | x|[b 8ing

i Favorites | @ http://127.0.0.1:81/Default.aspx

Hello, Cloud!

0 Internet | Protected Mode: OFf ¥5 = H125% ~

Figure 8.8
The HelloWorld service in action.

Chapter 8: Cloud Services with Windows Azure

SOA PRINCIPLES & PATTERNS

Mainstream SOA design patterns and service-
orientation principles can be applied to Win-
dows Azure-hosted services very similarly to
how they are applied to internal enterprise-
hosted services. Furthermore, Windows Azure-
hosted services support different service
implementation mediums (such as Web services
and REST services) and allow for the same serv-
ice to be accessed via multiple protocols. This
supports the creative application of specialized
patterns, such as Concurrent Contracts [726]
and Dual Protocols [739].

SUMMARY OF KEY POINTS

e The development environment for Windows Azure is fully integrated into
Visual Studio, which provides a simulated runtime for Windows Azure for
local desktop-based development and unit testing.

e Creating and deploying cloud-based services with Windows Azure is simpli-
fied using available wizards and development Uls.

8.5 A Web Service in Windows Azure 227

8.5 A Web Service in Windows Azure

In this section example, we take a closer look at a Web service that is deployed to Win-
dows Azure in order to better understand the code-level impacts of moving a service to
a cloud.

Let’s assume we moved a service contact interface definition and a data contract into a
custom C# project. We choose ServiceClient to test our service and ServiceDemo con-
tains the Windows Azure application configuration and definition files.

We further opt to host this project in a Web role, which means that there is a little bit of
bootstrapping that needs to be done. The webrole class inherits from the RoleEntry-
point class, which contains methods that are used by Windows Azure to start or stop
the role. You can optionally override those methods to manage the initialization or shut-
down process of your role. Worker roles must extend RoleEntryPoint, butitis optional
for Web roles. The Visual Studio tools will automatically extend this class for you, as you
can see from the WebRole.cs code:

using System.Ling;
using Microsoft.WindowsAzure.Diagnostics;
using Microsoft.WindowsAzure.ServiceRuntime;
using System.Diagnostics;
namespace ServiceDemo_WebRole
{
public class WebRole : RoleEntryPoint
{
public override bool OnStart ()
{
DiagnosticMonitor.Start ("DiagnosticsConnectionString") ;
RoleEnvironment.Changing += RoleEnvironmentChanging;
Trace.TraceInformation ("WebRole starting...");
return base.OnStart () ;
}
private void RoleEnvironmentChanging (object sender,
RoleEnvironmentChangingEventArgs e)

if (e.Changes.Any (change => change is
RoleEnvironmentConfigurationSettingChange))

e.Cancel = true;

Example 8.4

228 Chapter 8: Cloud Services with Windows Azure

Our cloud service project includes two configuration files: ServiceDefinition.csdef and
ServiceConfiguration.cscfg. These files are packaged together with the cloud service
when it is deployed to Windows Azure.

The ServiceDefinition.csdef file contains the metadata needed by the Windows Azure
environment to understand the requirements of the service, including the roles it
contains. It also establishes configuration settings that will be applied to all specified
service roles:

<ServiceDefinition name="ServiceDemo" xmlns=
"http://schemas.microsoft.com/ServiceHosting/2008/10/
ServiceDefinition">
<WebRole name="ServiceDemo_WebRole">
<InputEndpoints>
<InputEndpoint name=
"HttpIn" protocol="http" port="80" />
</InputEndpoints>
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString" />
</ConfigurationSettings>
</WebRole>
</ServiceDefinition>

Example 8.5

The ServiceConfiguration.cscfg file sets values for the configuration settings defined in
the service definition file and specifies the number of instances to run for each role. Here
is the ServiceConfiguration.cscfg for the ServiceDemo service project:

<ServiceConfiguration serviceName="ServiceDemo"
xmlns="http://schemas.microsoft.com/
ServiceHosting/2008/10/ServiceConfiguration">
<Role name="ServiceDemo_WebRole'">
<Instances count="2" />
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString"
value="UseDevelopmentStorage=true" />
</ConfigurationSettings>
</Role>
</ServiceConfiguration>

Example 8.6

8.5 A Web Service in Windows Azure 229

The Instances element tells the Windows Azure runtime fabric how many instances to
spin up for the ServiceDemo_WebRole role. By default, Visual Studio tools set this to 17,
but this is generally not a good idea. If you only have one role running and it crashes, it
could take a while before Windows Azure spins up another one. However, if you had
multiple roles and one goes down, the application wouldn’t experience a work stop
while a new instance is being generated. This is why it is a good practice to have at least
two role instances per role.

In the configurationSettings section, there is a statement worth singling out:

<Setting name="DiagnosticsConnectionString"
value="UseDevelopmentStorage=true" />

Example 8.7

There is a set of logging and diagnostic APIs that you can use to instrument your code
and provide better traceability. With these APIs, you can not only detect and trou-
bleshoot problems, but you can also gain insight into the overall performance of an
application.

This line of code passes in the configuration setting name that is equal to the connection
string for the storage account that the Diagnostic Monitor needs to use to store the diag-
nostic data. By default, the setting name is DiagnosticsConnectionString, but you
can name it whatever you like as long as the name matches up with the service defini-
tion and service configuration files.

In the WebRole.cs, you will see the following statement:

DiagnosticMonitor.Start ("DiagnosticsConnectionString") ;

Example 8.8

This line of code starts up the Diagnostic Monitor when the role starts. By default, the
connection string is set to use development storage, such as the SQL table that was cre-
ated when the SDK was installed. Before you deploy the service to the Windows Azure
cloud, you will need to update this setting with the storage account name and account
key information.

For example:

230 Chapter 8: Cloud Services with Windows Azure

<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString"
value="DefaultEndpointsProtocol=https;AccountName=
[ACCOUNT NAME} ; AccountKey=[ACCOUNT KEY]" />
</ConfigurationSettings>

Example 8.9

If we take a look at the Web role’s Web.Contfig file, we’ll also see that the project wizard
automatically created the following:

<gystem.diagnostics>
<trace>
<listeners>
<addtype="Microsoft.WindowsAzure.Diagnostics.
DiagnosticMonitorTraceListener,
Microsoft.WindowsAzure.Diagnostics, Version=1.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35"
name="AzureDiagnostics">
<filter type=""/>
</add>
</listeners>
</trace>
</system.diagnostics>

Example 8.10

This creates a tracing listener for the diagnostic monitor, which means that we continue
to use the System.Diagnostics.Trace class for instrumentation. The diagnostic mon-
itor will just hook into those calls and push them into storage.

The following examples show the T0rderservice interface contract and the Order data
contract, followed by the final output:

namespace Contract
{
[ServiceContract]
public interface IOrderService
{
[OperationContract]
int CreateOrder (Order o) ;
[OperationContract]
void UpdateOrder (string id, Order o) ;
[OperationContract]

8.5 A Web Service in Windows Azure 231

Order GetOrderByOrderId(string id) ;
[OperationContract]

List<Order> GetOrdersByCustomer (string custName) ;
[OperationContract]

List<Order> GetOrders () ;

[OperationContract]

void DeleteOrder (string id) ;

Example 8.11

namespace Contract

{

[DataContract (Namespace=
"http://example.cloudapp.net/servicedemo/1.0")]
public class Order

{

[DataMember]

public int OrderId { get; set; }
[DataMember]

public string OrderItem { get; set; }
[DataMember]

public string CustomerName { get; set; }

Example 8.12

namespace ServiceDemo_WebRole
{

[ServiceBehavior (InstanceContextMode =
InstanceContextMode.Single,
AddressFilterMode =
AddressFilterMode.Any)]

public class OrderService : Contract.IOrderService

{
int id = 0;

List<Order> Orders = new List<Order> () ;
#region IOrderService Members
int IOrderService.CreateOrder (Order o)
{

0.0rderId = ++id;

Orders.Add (o) ;

return o.OrderId;

232

Chapter 8: Cloud Services with Windows Azure

}
void IOrderService.UpdateOrder (string id, Order o)
{
var first = Orders.First (order =>
order.OrderId ==
Convert.ToInt64 (id)) ;
first = o;
}
List<Order> IOrderService.GetOrders ()
{
return Orders;
}
voilid IOrderService.DeleteOrder (string orderId)
{
Orders.RemoveAll (order =>
order.OrderId.Equals
(Convert.ToInt64 (orderId))) ;
}
Order IOrderService.GetOrderByOrderId(string orderId)
{
return Orders.First (o =>
0.0rderId.Equals (Convert.ToInt64 (orderId))) ;
}
public List<Order> GetOrdersByCustomer (string custName)
{
return (string.IsNullOrEmpty (custName)) ?
Orders : Orders.FindAll (o =>
0.CustomerName.Equals (custName)) ;
}

#endregion

Example 8.13

Note that the InstanceContextMode setting is set to to single because we want to use

the same service object instance across the communication session established between

the service and its consumer. In a real world scenario, you would choose a more robust

solution like SQL Azure or Windows Azure table storage (covered later in this chapter).

Let’s briefly walk through the steps required to actually deploy the service to Windows

Azure.

8.5 A Web Service in Windows Azure 233

1. Create a Host Service and Storage Service

When you create a storage service, you have to create a globally unique storage account
name, not to be confused with the overarching Windows Azure account that is mapped
to your Windows LivelD. For our example, we chose juggercloud as the account name
and received three storage endpoints. Two access keys are also generated.

Before we deploy our Web service, however, we will update the Web role service con-
figuration *.cscfg file with the account name and account key information, as follows:

<ServiceConfiguration serviceName="StandardMoldHost"
xmlns="http://schemas.microsoft.com/
ServiceHosting/2008/10/ServiceConfiguration">
<Role name="ServiceDemo_WebRole">
<Instances count="2" />
<ConfigurationSettings>
<Setting name="DiagnosticsConnectionString"
value="DefaultEndpointsProtocol=https;
AccountName=standardmold;AccountKey=01g820j...==" />
</ConfigurationSettings>
</Role>
</ServiceConfiguration>

Example 8.14

2. Create and Deploy a Service Package

We deploy the service by uploading a package through the Windows Azure portal.
When using the Windows Azure Ul we can navigate to the host service to determine
whether we are deploying to staging or production.

There’s really no difference in hardware resource configuration between these two set-
tings. In fact, the separation between the two environments is managed through the net-
work load balancer’s routing tables.

Once we click “Deploy,” the package and configuration file will be uploaded.

NOTE

We could have also pulled these bits from a Windows Azure storage
account. For example, we could create a custom MSBuild task leveraged
within a Team Foundation Server Team Build definition file. Instead of
dropping the package to a normal file drop, this would upload it into blob
storage using the REST API, or perhaps even leverage Windows Azure
Drive.

234 Chapter 8: Cloud Services with Windows Azure

3. Promote the Service to Production

Let’s imagine the previous step initially deployed the service to staging so that we could
test it before moving it into the production enviroment. The Windows Azure UI allows
you to invoke the service by clicking “Run,” resulting in a page similar to Figure 8.9.

OrderService Service

You have created a service.

To test this service, you will need to create a dient and use it to call the service. You can do this using the svcutil.exe tool from the cq

sveutil.exe http://rd00155d317ed4:20000/0zrderService.svedwsdl

This will generate a configuration file and a code file that contains the client class. Add the two files to your client application and use
ce

class Test
{
stacic void Main()

OrderServiceClient client = new OrderServiceClienc():
/f Use the 'client' variable to call operations on The service.

/I Always close the clientc.
client.Close();

Visual Basic

Class Test
Shared Sub Main()
Dim client As OrderServiceClient = Mew OrderServiceClient ()
' Use the ‘client' variable to call operations on the service.

' Always close the cliens.
client.Close()
End Sub
End Class

Figure 8.9

After verifying that the Web service is performing as desired, it can be deployed to pro-
duction (Figure 8.10).

e

Production Staging
13 v1.0
——— —

<

Wyg

el e Are you sure you want to swap with the production deployment?

De

‘ Upgrade...] Run ‘ Configure... | | Upgrade... } Suspend [_Configure...
Delete
Se Mmgeﬁnmw \bRole:

I1}44 £ca949051659524ddc.cloudapp.net,

la6dd2f846fbdc301

Affinity Group

Unaffinitized

Affinity Group Name:

Figure 8.10

8.6 A REST Service in Windows Azure 235

8.6 A REST Service in Windows Azure

In order to explore how REST services are created and exist within Windows Azure, this
section takes the Web service from the previous section and makes it RESTful. But,
before we dive into the implementation details of this change, let’s first take a step back
and think about REST-specific design considerations.

REST Service Addressing

A common design practice with REST services is to make the addressing (the manner in
which target resources are addressed) as intuitive as possible. The social bookmarking
site Delicious is a great example of this.

With Delicious, every bookmark has one or more tags (think of tags as categories). Tags
essentially replace folders within Web browsers with categories. In relation to our dis-
cussion, you can also group tags into a bundle, which basically creates “tag clouds.”
Access to tagged bookmarks is provided via REST services. Table 8.1 shows a set of sam-
ple URLs that can be used to get back a list of bookmarks for Azure, SOA, and
Azure+SOA, respectively.

URL Description
http:/ /delicious.com/tag/azure returns a list of bookmarks that have been
tagged with Azure
http://delicious.com/tag/soa returns a list of bookmarks that have been
tagged with SOA
http://delicious.com/tag/soa+azure returns a list of bookmarks that have been
tagged with SOA and Azure

Table 8.1
Sample URLs used to retrieve different values from REST services at delicious.com.

What’s important about this example is that we are able to search, create and update a
large network of data via REST without writing code. The HTTP GET method and the
appropriate URLs are all we need.

Returning to our Order service, we first need to define an appropriate resource address-
ing structure for the order data, as shown in Table 8.2.

http://delicious.com/tag/azure
http://delicious.com/tag/soa
http://delicious.com/tag/soa+azure

236 Chapter 8: Cloud Services with Windows Azure

. IOrderService URI Address HTTP
Action Operation Name Template Method
get a list of all orders | Getorders . /orders GET
get an order given GetOrderByOrderId . /order/{id} GET
the order ID
get a list of orders GetOrdersByCustomer . /orders/{custName} GET

for a given customer

create an order CreateOrder ./orders POST

update an order UpdateOrder ./order/{id} PUT

delete an order DeleteOrder ./order/{id} DELETE
Table 8.2

The resource addressing structure for the Order service.

Creating a Windows Azure REST Service

We now need to carry out a series of steps to make this a REST service:
1. Add a reference to System.ServiceModel.Web in the Contract project.
2. Add HTTP attributes to the methods defined in the Torderservice interface.
3. Update the WCF behavior.
4. Update the OrderService.svc file by adding a Web factory reference.

The system.ServiceModel.Web namespace contains classes that make up the Web
HTTP programming model.

For our purposes, we need to focus on the following:
® WebGetAttribute (maps to an HTTP GET)
® WebInvokeAttribute (maps to HITP POST, PUT, and DELETE)
* WebMessageFormat (defines the format of the response message)

For the GET method, we use the webGet attribute. We then use the UriTemplate attrib-
ute to define the addressing structure from Table 8.2. This is a manual process, which
means that it’s easy to make mistakes. It is therefore important to lay out the URI struc-
ture prior to working with the code.

8.6 A REST Service in Windows Azure 237

We also need to specify the {token} parameters. For example, if we were calling the
GetOrderByOrderId operation of the Web service via SOAP, we would just pass in the
order ID argument by calling the Web method. But with REST, everything is through
HTTP methods and URIs. The service consumer doesn’t call GetOrderByOrderId
directly, but rather does the HTTP GET method on http://server/OrderService.svc/
order/2, where “2” is the order ID value.

Next, we need to determine the response message format by setting ResponseFormat to
return XML messages.

Here’s what T0orderservice looks like now:

[ServiceContract]
public interface IOrderService
{

[WebInvoke (Method="POST",
UriTemplate="orders",
ResponseFormat=WebMessageFormat .Xml)]

[OperationContract]

int CreateOrder (Order o) ;

[WebInvoke (Method="PUT",
UriTemplate="order/{id}",
ResponseFormat=WebMessageFormat .Xml)]

[OperationContract]

void UpdateOrder (string id, Order o) ;

[WebGet (UriTemplate="order/{id}",
ResponseFormat=WebMessageFormat.Xml)]

[OperationContract]

Order GetOrderByOrderId(string id) ;

[WebGet (UriTemplate="orders/{custName} ",
ResponseFormat=WebMessageFormat .Xml)]

[OperationContract]

List<Order> GetOrdersByCustomer (string custName) ;

[WebGet (UriTemplate="orders",
ResponseFormat=WebMessageFormat.Xml)]

[OperationContract]

List<Order> GetOrders () ;

[WebInvoke (Method="DELETE",
UriTemplate="order/{id}",
ResponseFormat=WebMessageFormat .Xml)]

[OperationContract]

void DeleteOrder (string id) ;

Example 8.15

http://server/OrderService.svc/order/2
http://server/OrderService.svc/order/2

238 Chapter 8: Cloud Services with Windows Azure

We now need to update the WCF behavior in the Web.Config file by changing the end-
point binding to webHttpBinding and the endpoint behavior to a Web behavior, as
shown here:

<gervices>
<gervicebehaviorConfiguration=
"ServiceDemo WebRole.ServiceDemoBehavior"
name="ServiceDemo_WebRole.OrderService">
<endpoint address="" binding="WebHttpBinding"
contract="Contract.IOrderService"
behaviorConfiguration="web">
</endpoint>
</service>
</services>
<behaviors>
<endpointBehaviors>
<behavior name="Web" />
</endpointBehaviors>
<gerviceBehaviors>
<behavior name=
"ServiceDemo_WebRole.ServiceDemoBehavior">
</serviceBehaviors>
</behaviors>

Example 8.16

Finally, we have to update the OrderService.svc file to include webserviceHostFac-
tory, as shown here:

<%@
ServiceHost Language="C#" Debug="true"
Service="ServiceDemo_WebRole.OrderService"
CodeBehind="OrderService.svc.cs"
Factory="System.ServiceModel.
Activation.WebServiceHostFactory"

%>

Example 8.17

8.7 Windows Azure Storage 239

WebServiceHostFact rovides in-

ebservicetiostiactory provides 1 SOA PRINCIPLES & PATTERNS
stances of webServiceHost in managed
hosting environments, where the host | Cloud-based REST service architecture

instance is created dynamically in relates to several SOA design patterns rele-

response to incoming messages. This is | Vantto REST service design. These are cov-
ered separately in the book SOA with REST

as part of the Prentice Hall Service-Oriented
Computing Series with Thomas Erl.

necessary because the service is being
hosted using a Web role in IIS.

Finally, to deploy the REST version of
the Order service to Windows Azure, we can follow the same steps described in the pre-
vious A Web Service in Windows Azure section.

SUMMARY OF KEY POINTS

e Programming models and deployment processes for Web services are very
similar and consistent between cloud-based services in Windows Azure
and on-premise services in Windows Server.

e Most significant differences with cloud-based services in Windows Azure
are managed via service configurations.

e Development and deployment of REST-based services in Windows Azure
are also consistent with the on-premise platform.

8.7 Windows Azure Storage

Windows Azure provides the following set of storage services (collectively referred to as
Windows Azure Storage), each of which is suitable for different types of data access
requirements:

* Tables provide structured storage, as they do in regular databases. Essentially, each
table consists of a set of data entities that each contain a set of properties.

® Queues provide reliable storage and delivery of messages. They are often used
between roles to communicate with each other.

® Blobs are used to store large binary objects (files). They provide a simple interface
for storing named files along with metadata and include support for CDN
(Content Delivery Network).

* Windows Azure Drives provide durable NTFS volumes for Windows Azure
applications.

240 Chapter 8: Cloud Services with Windows Azure

Windows Azure Storage supplies a managed API and a REST API, both of which essen-
tially provide the same level of functionality. The managed API is provided through the
Microsoft.windowsazure. StorageClient namespace. To interact with the storage serv-
ices, you can also use familiar programming interfaces, such as ADO.NET Data Services
(available in the .NET framework version 3.5 SP1).

Note that access to storage is regulated via Windows Azure Storage accounts that use
256-bit secret keys. Also, there are some storage size limitations. For example, each stor-
age account will have a maximum 100 terabytes of total storage capacity.

Tables

Windows Azure Tables (WATs) are similar to relational tables insofar as they both are
used to store structured data. However, it’s important to understand that WAT storage
is not a relational database management system for the cloud (that’s what SQL Azure is
for). In other words, there is no support for common database features, such as joins,
aggregates, stored procedures, or indexes.

WATs were built primarily to realize scalability, availability, and durability of data. Indi-
vidual tables can be scaled to billions of entities (rows) with data totaling into the order
of terabytes. Part of the scaling algorithm is that as application traffic and usage grows,
WATs will automatically scale out to potentially tens, to hundreds, to thousands of
servers. With regards to availability, each WAT is replicated at least three times.

Entities and Properties

Windows Azure Storage introduces some specific terminology and relationships for
WATS:

® You create a storage account, each of which can have multiple fables.

® Data stored within a table is organized into entities. A database row is comparable
to an entity.

¢ FEach entity contains a set of properties. A database column is comparable to a
property.

e A table is comprised of a set of entities, each of which is comprised of a set of
properties.

Each entity contains two key properties that together form the unique ID of the entity in
that table. The first key is the PartitionKey, which allows you to group entities together.

8.7 Windows Azure Storage 241

This tells the Windows Azure Storage system to not split this group up when scaling out
the table.

In other words, partition keys are used to group table entities into partitions that pro-
vide a unit of scale that Windows Azure Storage uses to properly load balance data. Par-
tition keys also allow you to control the physical locality of the entity data. Everything
within a partition will live on a single server.

The second key is the RowKey, which provides uniqueness within a partition in that the
PartitionKey together with the RowKey uniquely identify a given entity (as well as the
sort order). You can think of these two keys as a clustered index for a table.

The third required attribute is the Timestamp, which is a read-only attribute used to con-
trol optimistic concurrency. That is, if you try to update a row that another program has
already updated, your update attempt will fail because of the timestamp mismatch.

Data Access

When interacting with entities and properties, you are provided the full range of regu-
lar data access functions (get, insert, update, delete), in addition to special features, such
as the partial update (merge), the entire update (replace), and the entity group transaction.

Entity group transactions allow you to atomically perform multiple insert, update,
and delete commands over a set of entities in the same partition as part of a single
transaction.

Queues

As with traditional messaging queues, the Windows Azure queues provide a reliable
intermediary mechanism for delivering messages. For example, a common scenario is
to set up a queue as the communication proxy between an application’s Web role (of
which there may be one or two instances) and its worker roles (of which there can be
many instances). For this scenario you would likely set up at least two queues. The first
would allow the Web role to submit messages for the worker roles to process. The
worker roles would poll the queue for new messages until one is received. The second
queue would then be for the worker roles to communicate back to the Web role. This
architecture allows the Web role to delegate and spread out resource-intensive work to
the worker roles.

Just like with tables, queues are scoped by the storage account that you create. An
account can have many queues, each of which can contain an unlimited amount of

242 Chapter 8: Cloud Services with Windows Azure

messages. Also, dequeued counts are tracked, allowing you to determine how often a
given message has been dequeued by a worker process.

Queues offer a range of data access functions, including the ability to create, delete, list,
and get/set queued metadata. Additionally, you can add (enqueue) and retrieve
(dequeue) sets of messages, and delete and “peek” at messages individually.

Blobs

Each storage account can have containers that can be used to store blobs. There is no
limit to the number of containers that you can have as long as they will fit into your stor-
age account limit.

Containers have the ability to set public or private access policies. The private access
level will only allow access to consumers that have been given permission. Public access
allows any consumer to interact with the container’s blobs using a URL. You can also
have container metadata, which, like blob metadata, is stored in name-value pairs.

You have two choices for the type of blob that you can use: block and page. Both types
have characteristics that make them applicable to specific requirements.

Block Blobs

Ablock blob is primarily geared towards streaming media files. Each blob is organized
into a sequential list of “blocks” that can be created and uploaded out of order and in
parallel for increased performance. Once uploaded, each block is in an uncommitted
state, meaning that you cannot access the blob until its blocks are committed. To commit
the blocks as well as define the correct block order, you use the PutBlobList command.

Each block is immutable and is further defined by a block ID. After you have success-
fully uploaded a block, that block (identified by its block ID) cannot be changed. That
also means that if you have updated a block on-premise, then you will need to re-upload
or copy the entire block with the same block ID.

Blobs can be accessed via an available REST API that provides standard data access
operations, as well as special functions, such as CopyBlob that allows you to copy an
existing blob to a new blob name.

8.7 Windows Azure Storage 243

Page Blobs

Page blobs are suitable for random I/O operations. With this kind of blob, you must first
pre-allocate space (up to 1TB), wherein the blob is divided into 512-byte “pages.” To
access or update a page, you must address it using a byte offset. Another key difference
is that changes to page blobs are immediate.

You can expand the blob size at any point by increasing its maximum size setting. You
are also allowed to shrink the blob by truncating pages. You can update a page in one of
two ways: PutPage or ClearPage. With PutPage, you specify the payload and the range of
pages, whereas ClearPage basically zeroes out a page range up to the entire blob. There
are several other commands that can be used to work with page blobs.

Windows Azure Drive

Windows Azure Drive is a storage service that provides a durable NTFS volume for
Windows Azure applications. An application needs to mount the volume prior to using
it and, when done, the application then unmounts the same volume. Throughout this
period, the volume data is kept intact, even if the application should crash.

A Windows Azure Drive volume is actually a page blob. Specifically, it exists as a page
blob that has been formatted as an NTES single volume virtual hard drive (VHD). As
such, these drives can be up to 1TB in size.

SUMMARY OF KEY POINTS

e Windows Azure Storage provides a set of services for distributed cloud-
based data storage.

e The four types of storage services provided are tables, queues, blobs, and
Windows Azure Drive.

e Windows Azure Storage services are available via both .NET managed
APls and REST-based APIs.

A

Abort() method
(ICommunicationObject), 814
abstracted APIs (BizTalk BAM),
666-669
Access Control, 548-553
cross-domain access control in
cloud computing, 544
service authorization scenarios,
553-554
Standard Mold case study, 555-556
in Windows Azure, 528
access tokens, requesting, 551
activation types in .NET Remoting,
58,60
Active Directory Federation Services
(ADES), 539
activities (in WF), 172-175, 662
ad hoc discovery, 141, 143-144
adapter providers (ESB Toolkit),
478-479
adapters (BizTalk Server), 199-200
address attribute (service endpoints),
88-89
ADFS (Active Directory Federation
Services), 539
administration management tools
(WCEF), 151

Index

Agnostic Capability design pattern,
169, 334,709
Agnostic Context design pattern, 169,
182, 332-333,377,710
agnostic logic, 32
Agnostic Sub-Controller design
pattern, 711
alerts, 165, 670-671
ambient transactions, 69
analysis, inventory analysis cycle,
337-338
Annotated SOA Manifesto, 796-808
AppFabric. See Windows Azure
platform AppFabric, Windows
Server AppFabric
Application Blocks, 182-183
application container (Windows
Azure), 216-217. See also hosting
models
application domains, 109
application integration models,
467-470
ASMX (XML Web services), 71,73
code generation, 302-304
industry standards supported by, 70
programming model for WF
orchestrations, 397
publishing workflows as, 399-407

834

ASP.NET, caching REST responses,
599-601
assemblies, history of, 51
asynchronous interactions, 639-641
Asynchronous Queuing design
pattern, 712
Atomic Service Transaction design
pattern, 127, 388, 435, 458, 713
attachments (SOAP), 701
authentication. See also Brokered
Authentication design pattern;
Direct Authentication design pattern
brokered authentication, 519
defined, 122
direct authentication, 518-519
mutual authentication, 520
Service Bus security, 508-509
authorization
claims-based authorization,
524-529, 546-547
defined, 122
role-based authorization, 520-524
service authorization scenarios
(Access Control), 553-554
WCEF security, 125-126
AuthorizationContext class, 527
Azure. See Windows Azure

B

backup lists, 139
BAM (Business Activity
Monitoring), 194
abstracted APIs, 666-669
capturing data, 655-656
EventStream APIs, 665-666
interceptors, 670
management
database outages, 672
reporting, 676

Index

scripting deployment, 673-676
security, 672-673
notifications, 670-671
rapid prototyping, 671
real-time versus scheduled
aggregations, 660-661
service composition metrics, 669
solution architecture, 656-659
Standard Mold case study, 677-680
Tracking Profile Editor (TPE),
659-660
BAM Management utility
(BM.EXE), 659
base activity library (WF), 174
behaviors
defining for routing services, 136
WCEF, 104-10S
binding attribute (service endpoints),
89-92
bindings, cleaning up resources, 822
BizTalk BAM. See BAM (Business
Activity Monitoring)
BizTalk Operations service (ESB
Toolkit), 471
BizTalk Server, 193
adapters, 199-200
architecture, 193-195
context properties, 200-201
ESB Toolkit. See ESB Toolkit
hosts, 481
hub-bus integration model, 469-470
messaging, 193, 196
pipelines, 197-198
ports and locations, 199
orchestration and, 193, 388-391,
443-44S
Compensating Service
Transaction design pattern,
456-461

Index

exception management,
202-203
itineraries, 201
orchestrated task service
contracts, 445-447
Process Centralization design
pattern, 450-451, 454
State Repository design pattern,
455-456
Superior Stamping case study,
448-449
WS-* support, 447-448
parallelism in, 643-644
productivity tools in, 194
request throttling, 607-608
selecting hosting models, 611-612
blobs in Windows Azure Storage, 239,
242-243
block blobs in Windows Azure
Storage, 242
BM.EXE (BAM Management utility),
659
books, related to this book, 4-6, 41-42
bootstrapper, 574
brokered authentication
mechanism, 519
Brokered Authentication design
pattern, 126, 714
BufferedEventStream API (BizTalk
BAM), 665
Business Activity Monitoring. See BAM
(Business Activity Monitoring)
business activity services (BizTalk
Server), 194
business metrics, 655
business processes, human intervention
in, 450-451

835

business rules in Windows Workflow
Foundation (WF), 180-181

business rules engine (BizTalk
Server), 194

C

cache hit ratio, 601
cache keys, computing, 593-594
caching, 587-591
cache keys, computing, 593-594
implementation technologies,
592-593
in-memory application cache
(Windows Server AppFabric),
190-191
intercepting messages, 589
at caching utility service, 590
comparison of techniques, S91
at intermediary, 589
at service proxy, S90
in service container, 589
monitoring cache efficiency, 601
REST responses, 599-601
Standard Mold case study, 594-596
Superior Stamping case study,
597-599
caching utility service, intercepting
messages, 590
Canonical Expression design pattern,
78,147,280
profile, 715
service capability naming
conventions, 281-282
service naming conventions, 280
Canonical Protocol design pattern, 274
component implementation,
278-279
dual protocols, 279-280

836

named pipes, 279
profile, 716
REST services implementation,
277-278
Web services implementation,
275-277
Canonical Resources design pattern,
249,717
Canonical Schema Bus compound
pattern, 719
Canonical Schema design pattern,
78, 82, 84, 217, 251, 253, 404,
445-446, 638
creating schemas, 254, 256-258
DataContract library, 264-267
generating .NET types, 258-264
profile, 718
Canonical Versioning design
pattern, 720
CAO (client-activated objects), 58
Capability Composition design pattern,
374-375,721
capability granularity, 38, 308-313
Capability Recomposition design
pattern, 374-376, 722
capturing data, 655-656
case studies background, 16-19. See also
code examples
case studies conclusion, 686. See also
code examples
channel bindings, 148
channel layer, 149
channel layer extensibility (WCF), 150
channel stack, 149
ChannelFactory class, 119-120, 815
chapters, described, 6, 8-11
chatty interface, 311

Index

claim sets, 526
claims, 534, 546
accessing, 527
designing custom, 529
generating, 525
passport example, 525
processing, 526
claims-based authorization, 524-529,
546-547
ClaimSet class, 527
classes in NET Remoting, 56
cleaning up resources, 811-812
Abort() method
(ICommunicationObject), 814
based on bindings, 822
ClientBase and ChannelFactory
classes, 815
Close() method
(ICommunicationObject),
812-814
Dispose() method (IDisposable),
814-815
try-catch-finally-abort block, 817
try-close-catch-abort block,
818-819
using block, 816
utility methods, 819, 821
client connections, closing, 822
client-activated objects (CAO), 58
client-server architecture, 44-45
client-side hybrid itineraries, 474
client-side itineraries, 474
ClientBase class, cleaning up
resources, 815
clients, 537
Close() method
(ICommunicationObject), 812-814

Index

closing
client connections, 822
database connections, 812
ICommunicationObject. See
cleaning up resources
cloud computing. See also
Windows Azure
cloud deployment models, 208
community cloud, 209
dedicated cloud, 209
hybrid cloud, 209
intercloud, 209
private cloud, 208
public cloud, 208
Windows Azure and, 210
ESB with Windows Azure, 483

receiving messages from Service

Bus, 484-485

sending messages to Service Bus,

485-486
explained, 206-208
security, 543-547

service delivery models, 210-212

Cloud Computing & SOA, 6

cloud service projects, creating (Hello

World example), 224
cloud-to-cloud authorization model
(Access Control), 554
co-hosting, 645-648
coarse-grained service contracts,
608-610
code examples
accessing claims, 527

activities calling REST services, 424

adding discovery endpoints, 142

adding services to runtime, 414

address attribute (service
endpoints), 88

837

ambient transactions, 69

ASP.NET role provider
authentication, 523

AspNetCacheProfile attribute, 599

aspNetCompatibilityEnabled
attribute, 600

AspNetCompatibilityRequirements
attribute, 600

asynchronous interactions, 640-641

asynchronous interfaces for
workflows, 402

authorization, 126

backup lists, 139

behaviors (WCEF), 105

binding configuration, 418

binding workflows to
WCFcontracts, 409

bootstrapper setup, 574-575

bootstrapping workflow
instances, 424

cache creation in Windows Server
AppFabric, 191

caching (Standard Mold case
study), $95-596

caching (Superior Stamping case
study), 597-599

caching profile, 601

channel layer extensibility, 150

ChannelFactory class, 119-120

claim processing, 526

client-activated objects, 60

CLR type serialization, 83

co-hosting, 647

coarse-grained service interface, 312

communication protocols in NET
Remoting, 61

component implementation, 279

configuration file contents (ASMX
services), 407

838

configuring REST endpoints, 421

configuring Send/Receive activities
for REST services, 423

configuring service behaviors, 432

consuming RESTful services
directly, 96

contract-first development, 411

converting service operations, 94

creating filter tables for routing
services, 138

creating message queues, 64

custom discovery metadata, 143

data model transformations, 269

DataContract library, 266

declarative authorization, 524

defining behaviors for routing
services, 136

defining endpoints for routing
services, 136

defining message filters for routing
services, 137

defining target endpoints for
routing services, 137

defining workflow contract, 416

deleting message queues, 65

development-time deployment
script, 674

development-time undeployment
script, 675

Diagnostic Monitor, 229

Discovery Proxies, 146

documentation (Standard Mold
case study), 351

durable services, 131

dynamically loading modules,
580-581

elements in SOAP messages, 413

endpoint element, 87

Index

exception shielding, 319-321

exceptions for MSMQ message
processing, 66

exporting BizTalk orchestrations to
WS-BPEL, 452

facade creation, 306-307

fault contracts, 99-100

filter rules referencing backup
lists, 140

fine-grained component
interface, 310

Flexible Strategy (versioning), 103

GUID extraction (Standard Mold
case study), 345

high performance transports
(Standard Mold case study), 627

IIdentity interface, 522

IIS hosting, 113-114

imperative authorization, 524

implicit programming model
(System.Transactions
library), 69

implicit service discovery, 147-148

importing types into XML
schemas, 289

in-line documentation, 322

interface for request-response
operation, 400

internal endpoint definition for
IRC, 223

internal endpoint listings for
IRC, 223

internal endpoint specification for
IRC, 222

IOrderService in REST
services, 237

IOrderService interface
contract, 231

IPrincipal interface, 521

JSON encoding, configuring
contracts for, 422

launching svcutil, 294

LINQ-to-XML mapping, 272

listener configuration for service
announcements, 145

logging and diagnostic APIs, 229

managed Windows services, 112

meeting notes (Standard Mold case
study), 363

message contracts, 85

message contracts, changing
parameters, 85

message logging, 153

message schema, 291

messaging queues (Standard Mold
case study), 348-350

module creation, 565, 575-577

MTOM encoding, 628

MTOM encoding (Standard Mold
case study), 629

multiple service endpoints, 87

namespaces in generated
services, 404

NET type generation, 264

NET API interaction (Standard
Mold case study), 341

notification properties (Standard
Mold case study), 347

object-to-object mapping, 271

operation attributes for
transactions, 128

orchestration and BizTalk Server
(Superior Stamping case
study), 449

Order data contract, 231

839

output of IOrderService interface
contract and Order data
contract, 232

passing data to workflows, 416

passing parameters to workflow
instances, 178

performance policies (Standard
Mold case study), 621

persistence service parameter
list, 430

persistence services, attaching to
workflow runtime, 428

probe queries, 144

probe request management, 142

production deployment script, 674

production undeployment script,
675-676

Query Notification
(SQL Server), 165

raw messages in SOAP, 412

receiving MSMQ messages, 66

region/view association, 578

regions in shells, 564

relying parties, developing, 542

request throttling (Superior
Stamping case study), 607

request throttling with WCF, 60S

REST-based Service Bus
contracts, 514

REST contracts in WCF, 420

REST service creation (Standard
Mold case study), 355-356

REST service hosting, 116

REST service implementation, 278

REST service XML output
(Standard Mold case study), 358

retrieving XML (Standard Mold
case study), 364

returning data from services, 82

returning parameters from
workflow instances, 178-179

RoutingService class, 133-134

saving messages (Standard Mold
case study), 346

self-hosted services, 111-112

sending MSMQ messages, 65

sending service announcements, 144

service attributes for
transactions, 129

Service Broker (SSB)
implementation, 163-164

Service Bus configuration file, 510

Service Bus contract definition, 506

Service Bus contract
implementation, 507

Service Bus message buffer
creation, 516

Service Bus service
configuration, 508

Service Bus service host
configuration, 512

Service Bus service publication, 512

service consumer code creation
(Standard Mold case study),
359-360, 362

service consumer code XML output
(Standard Mold case study),
361,363

service contract behavior
attributes, 80

service contract creation, 80

service contract definition, 79

service contract design (Standard
Mold case study), 631-632

service contract implementation,
107-108

Index

service contracts (Standard Mold
case study), 628

service contracts, changing default
name and namespace, 80

service definition (ASMX
services), 403

service endpoint attributes, 81

Service Metadata Tool usage, 117

ServiceConfiguration.cscfg, 228

ServiceDefinition.csdef, 228

ServiceFault data contract, 99

ServiceHost class, 109

shell control setup, 573-574

shell implementation, 561-562

signing messages (Standard Mold
case study), 620

SingleCall objects, 59

Singleton objects, 59

SOAP messages, 85-86

SQL Server endpoint creation, 158

SQL Server stored procedure
creation, 158

Standard Mold case study metrics,
678-679

stateful interactions, 131

.svc file for compiled workflow, 418

.svc file for REST contracts, 421

svcutil-generated code, 296

throttling controls, 105

timestamps (Standard Mold case
study), 365

tracing, 152

tracing listener creation, 230

TrackServiceEnd method, 668

TrackServiceException method, 668

TrackServiceStart method
overload, 667

transactions, 53

Index

TransactionTimeout attribute, 130

try-catch block for fault contracts, 100

try-catch blocks, 98

updating configuration settings, 230

updating database information
(Standard Mold case study),
366-367

updating OrderService.svc file for
REST services, 238

updating WCF behavior in REST
services, 238

updating Web role service
configuration file, 233

UriTemplate attribute (REST
services), 96-98

validation abstraction, 316-318

verifying metadata compatibility, 146

view creation, 577

view definition, 562

WCEF interface (Standard Mold
case study), 344

WCE security (Standard Mold case
study), $32-533

Web service implementation,
276-277

WebGet attribute (REST
services), 93

Weblnvoke attribute (REST
services), 95

WebRole.cs, 227

WebService attribute, 72

@WebService directive, 71

WE programming model, 177

Windows Authentication binding
for a service, 522

workflow host associations, 432

workflow persistence (with
AppFabric), 190

841

workflow persistence (with WF), 171
workflows as ASMX services, 404
writing proxy class, 118-119
WSCE.blue-generated code, 301
WSCE.classic-generated code, 304
WSDL definition, 293
XML schema creation with Visual
Studio, 255-257
XSLT transformation, 273
COM, history of, 48-49
COM+ services
history of, 49, 51
hosting .NET Remoting
components, 57
Command design pattern, 568
Common Object Request Broker
Architecture (CORBA), 47
communication protocols
in NET Remoting, 60
communication with host container,
171-172
community cloud deployment
model, 209
Compatible Change design pattern,
102,316, 723
Compensating Service Transaction
design pattern, 132, 387, 434
BizTalk Server, 456-461
creating compensations, 434-435
profile, 724
triggering compensations, 435
components
as service implementation option,
278-279
services as, 29
Composite Application Library for WPF
and Silverlight. See Prism Library
Composite design pattern, 568

842

Composite View design pattern, 568
composite views (Prism Library), 562
composition. See service composition
Composition Autonomy design
pattern, 645, 725
composition controller, 377
composition controller capabilities,
design characteristics, 704-705
composition initiator, 377
composition member, 377
composition member capabilities,
design characteristics, 704
composition sub-controller, 377
compound patterns. See also design
patterns
Canonical Schema Bus, 719
Enterprise Service Bus, 136, 194,
219. See also ESB (enterprise
service bus)
mapping ESB to, 490, 492
profile, 741
Federated Endpoint Layer, 249, 745
Official Endpoint, 757
Orchestration, 169, 194, 382, 395,
443,758
Service Broker, 136, 160-164, 771
Three-Layer Inventory, 378, 788
Concurrent Contracts design pattern,
102, 226, 307-308, 726
confidentiality, defined, 122
configuration
router services, 135-139
Service Bus, 504-512
authentication, 508-509
contract definition, S05-506
contract implementation,
506-507
end-to-end security, 509

Index

service configuration, 508
service host configuration,
S11-512
service publication, 512
SQL Express, 224
connections, closing
client connections, 822
database connections, 812
connectivity fabric, Service Bus as,
494-496
connectivity models (Service Bus), 499
Eventing, 500
Service Remoting, 501
Tunneling, 501-502
console applications, hosting NET
Remoting components, 57
constraint granularity, defined, 38
consumer-to-contract coupling, 286
consumer-to-implementation
coupling, 286
consumer-to-logic coupling, 310
consumers. See service consumers (WCF)
contention, 603-604
context properties (BizTalk Server),
200-201
context property, 660
contract attribute (service
endpoints), 92
Contract Centralization design pattern,
286,288,727
Contract Denormalization design
pattern, 313, 630, 728
contract-first development,
250-252, 694
contract-to-functional coupling, 286
contract-to-implementation
coupling, 286
contract-to-logic coupling, 285

Index

contract-to-technology coupling, 286

conversation group identifier, 161

conversation groups, 161

CORBA (Common Object Request
Broker Architecture), 47

coupling. See Service Loose Coupling
design principle

CREATEENDPOINT statement (SQL
Server), 158-159

credentials, 123-125

cross-domain access control in cloud
computing, 544

Cross-Domain Utility Layer design
pattern, 182,729

custom encryption, 623-625

D

data access in Windows Azure
Storage, 241
Data Confidentiality design pattern,
125,730
data contracts
creating, 251
DataContract attribute, 82-83
defined, 78
fault contracts, 98-100
versioning, 102
data dimension, 664
Data Format Transformation design
pattern, 200, 731
data granularity, 38
Data Model Transformation design
pattern, 200, 267-269, 388, 446,
453,637
LINQ-to-XML mapping, 271-272
object-to-object mapping, 269-271
profile, 732
XSLT transformations, 272-273

843

Data Origin Authentication design
pattern, 125,733
data serialization, 82-83
database connections, closing, 812
database outages, BizTalk BAM
management, 672
databases. See SQL Azure; SQL Server
DataContract attribute (WCF), 82-83
DataContract library, 264-267
DCOM (Distributed Component
Object Model), 47-49
declarative authorization, 524
Decomposed Capability design
pattern, 734
Decoupled Contract design pattern, 81,
207,217,277,288,397,399
profile, 735
svcutil utility program, code
generation with, 294-297
WSCEF.blue, code generation with,
297-301
WSCE.classic, code generation
with, 302-304
WSDL-first approach, 289-290,
292-294
dedicated cloud deployment model, 209
dependency injection container,
566,571
Dependency Injection design pattern,
570-571
deployment models in cloud
computing, 208
community cloud, 209
dedicated cloud, 209
hybrid cloud, 209
intercloud, 209
private cloud, 208
public cloud, 208
Windows Azure and, 210

844 Index

deployment scripting, BizTalk BAM
management, 673-676 374-376,722

design patterns. See also compound Command, 568
patterns Compatible Change, 102, 316, 723

Capability Recomposition,

Agnostic Capability, 169, 334, 709
Agnostic Context, 169, 182,
332-333,377,710
Agnostic Sub-Controller, 711
Asynchronous Queuing, 712
Atomic Service Transaction, 127,
388, 435,458,713
Brokered Authentication, 126, 714
Canonical Expression, 78, 147, 280
profile, 715
service capability naming
conventions, 281-282
service naming conventions, 280
Canonical Protocol, 274
component implementation,
278-279
dual protocols, 279-280
named pipes, 279
profile, 716
REST services implementation,
277-278
Web services implementation,
275-277
Canonical Resources, 249, 717
Canonical Schema, 78, 82, 84,217,
251,253,404, 445-446, 638
creating schemas, 254, 256-258
DataContract library, 264-267
generating NET types, 258-264
profile, 718
Canonical Versioning, 720
Capability Composition,
374-375,721

Compensating Service Transaction,
132,387,434
BizTalk Server, 456-461
creating compensations,
434-435
profile, 724
triggering compensations, 435
Composite, 568
Composite View, 568
Composition Autonomy, 645, 725
Concurrent Contracts, 102, 226,
307-308, 726
Contract Centralization, 286,
288,727
Contract Denormalization, 313,
630,728
Cross-Domain Utility Layer,
182,729
Data Confidentiality, 125, 730
Data Format Transformation,
200,731
Data Model Transformation, 200,
267-269, 388, 446,453, 637
LINQ-to-XML mapping,
271-272
object-to-object mapping,
269-271
profile, 732
XSLT transformations,
272-273
Data Origin Authentication,
125,733
Decomposed Capability, 734

Decoupled Contract, 81,207,217,
277,288, 397,399
profile, 735
svcutil utility program, code
generation with, 294-297
WSCEF.blue, code generation
with, 297-301
WSCF.classic, code generation
with, 302-304
WSDL-first approach, 289-290,
292-294
defined, 38-39
Dependency Injection, $70-571
Direct Authentication, 736
Distributed Capability, 737
Domain Inventory, 182, 337,
371,738
Dual Protocols, 226, 279-280, 399,
625, 648,739
Enterprise Inventory, 740
Entity Abstraction, 169, 336,
377-378
with NET REST service
(Standard Mold case study),
351-367
profile, 742
Event Aggregator, 570
Event-Driven Messaging, 165,
445,743
Exception Shielding, 319-321,
529,744
File Gateway, 746
Functional Decomposition, 169,
330-331, 445, 560, 747
Intermediate Routing, 133,
136,748

845

inventory boundary patterns. See
Domain Inventory design
pattern
Inventory Endpoint, 749
inventory standardization patterns.
See Canonical Protocol design
pattern; Canonical Schema
design pattern
inventory structure patterns
Logic Centralization design
pattern, 751
Service Layers design pattern,
169, 377-378, 779
Service Normalization design
pattern, 781
Inversion of Control, 570
Legacy Wrapper, 750
Logic Centralization, 751
Message Screening, 529, 752
Messaging Metadata, 84, 201,
251,753
Metadata Centralization, 147, 219,
325-326,417,754
Model-View-Controller, 568
Model-View-Presenter, 568
Model-View-View-Model, 568
modularity design patterns,
569-571
Multi-Channel Endpoint, 633, 755
Non-Agnostic Context, 169,
379-380, 756
Partial State Deferral, 456, 759
Partial Validation, 760
Passive View, 568
Plug-In, 570
Policy Centralization, 761

846

for presentation layer, 567
modularity patterns, $69-571
user interface patterns, S67-569

Presentation Model, 568-569

Process Abstraction, 169, 378, 380,

382-38S,762

Process Centralization, 169,

382-385, 425, 450
human intervention in business
processes, 450-451
profile, 763
workflow design in WF,
425-426
WS-BPEL support, 426,
451,454
Protocol Bridging, 136, 200,
274,764
Proxy Capability, 765
Redundant Implementation, 207,
213,766

reference notation, 12

Reliable Messaging, 160, 767

Rules Centralization, 181, 388, 768

Schema Centralization, 217, 251,

253,445,769

Separated Interface, 570

Separated Presentation, 568-569

Service Agent, 133, 589, 770

Service Callback, 772

Service Data Replication, 190,

218,773
Service Decomposition, 774
Service Encapsulation, 169,
332,775

Service Fagade, 304, 306-307, 776

Service Grid, 777

Service Instance Routing, 778

Service Layers, 169, 377-378, 779

Index

Service Locator, 571
Service Messaging, 84, 780
Service Normalization, 781
Service Perimeter Guard, 529, 782
Service Refactoring, 217, 783
sources for information, 11-12
State Messaging, 456, 784
State Repository, 171,207, 386,
426-428
BizTalk Server, 455-456
persistence service and scaling
out in WF 3.0, 429-431
persistence service and scaling
out in WF 4.0, 431-433
profile, 785
Stateful Services, 190, 207,213,
456, 590, 786
Supervising, 568
Supervising Presenter, 569
Termination Notification, 102, 787
Trusted Subsystem, 789
UI Mediator, 568, 790
Uniform Contract, 282
user interface design patterns,
567-569
Utility Abstraction, 169, 182, 335,
377-378
profile, 791
with NET Web service
(Standard Mold case study),
339-351
Validation Abstraction, 82,217,
315-318,792
Version Identification, 102, 793

design principles

list of, 26-27

reference notation, 12

Service Abstraction, 26, 82, 84, 102,
104,207,217,313-314, 696

Index

Service Autonomy, 27, 110, 190,
218,699
Service Composability, 27, 125,
373, 560, 704-705
Service Discoverability, 27, 147,
219,321,417, 535
implementation
requirements, 703
in-line documentation, 322
profile, 702-703
REST services, 323
service profiles, 323-324
Service Loose Coupling, 26, 81-82,
84,217,285-286, 559
design patterns and, 286
profile, 695
service capability granularity
and, 308-313
Service Reusability, 26, 125, 329-
330, 337,339, 697-698, 704
Service Statelessness, 27, 171, 190,
700-701
sources for information, 11-12
Standardized Service Contract, 26,
78, 81-82, 84, 217, 250, 274,
340, 399
contract-first development,
250-252
design patterns and, 252
profile, 693-694
dialogs, 161
digital identity, 534-536, 546
dimensions
in real-time aggregations, 662
types of, 664
direct authentication, 518-519
Direct Authentication design
pattern, 736

847

direct connectivity model (Service
Bus), 494-496
DirectEventStream API (BizTalk
BAM), 665
discovering services, WCF Discovery,
140-141. See also Service
Discoverability design principle
discovery modes, 141-143
Discovery Proxies, 146
implicit service discovery, 147-148
probe queries, 143-144
sending/receiving service
announcements, 144-146
discovery modes, 141-143
Discovery Proxies, 146
Dispose() method (IDisposable),
814-815
distributed architecture, explained,
45-47
Distributed Capability design
pattern, 737
Distributed Component Object Model
(DCOM), 47
distributed computing
client-server architecture, 44-45
distributed architecture, 45-47
service-oriented architecture, 47
distributed ESBs, 482-483
distributed garbage collection, 49
distributed resource transactions,
67-68
Distributed Transaction Coordinator
(DTC), history of, 52-53
distributed transactions, explained, 51
documentation, in-line, 322
Domain Inventory design pattern, 182,
337,371,738
domain service inventory, 34

848

DTC (Distributed Transaction
Coordinator), history of, 52-53

Dual Protocols design pattern, 226,
279-280, 399, 625, 648, 739

durable services, WCF transactions,
131-132

dynamically loading user-interface
modules, 579-581

E

elevated mode (Visual Studio), 223
encoding, MTOM, 627-629
encryption, 622-625
end-to-end security (Service Bus), 509
endpoint element, 86-87
address attribute, 88-89
binding attribute, 89-92
contract attribute, 92
endpoints
defining for routing services,
135-136
SQL Server, creating, 158-160
Enterprise Service Bus compound
pattern, 136, 194, 219. See also ESB
(enterprise service bus)
mapping ESB to, 490, 492
profile, 741
enterprise single sign-on (BizTalk
Server), 194
Enterprise Inventory design
pattern, 740
entities in Windows Azure Storage,
240-241
Entity Abstraction design pattern, 169,
336,377-378
with .NET REST service (Standard
Mold case study), 351-367
profile, 742

Index

entity group transactions in Windows
Azure Storage, 241
entity service model, defined, 32
errors, fault contracts, 98-100
ESB (enterprise service bus), 466
cloud-enabling with Windows
Azure, 483
receiving messages from Service
Bus, 484-485
sending messages to Service Bus,
485-486
governance, 487
monitoring, 488-489
SLA enforcement, 488
transition plans, 489
high-availability architecture, 480
distributed ESBs, 482-483
scaling, 481-482
mapping to Enterprise Service Bus
compound pattern, 490, 492
Microsoft and, 466-467
ESB Guidance, 467
ESB Toolkit, 470-471
adapter providers, 478-479
itineraries, 472-474
lifecycle of, 475-476
types of, 474
resolvers, 476-478
services provided by, 471
Event Aggregator design pattern, 570
Event Collector Service (Windows
Server AppFabric), 192
event notifications, 165, 670-671
event sources, types of, 660
Event-Driven Messaging design
pattern, 165, 445,743
Eventing connectivity model (Service
Bus), 500

Index

EventStream APIs (BizTalk BAM),
665-666
exception management (BizTalk
Server), 202-203
Exception Management service (ESB
Toolkit), 471
Exception Shielding design pattern,
319-321, 529,744
explicit programming model
(System.Transactions library), 68-69
extensibility
WCF
channel bindings, 148
channel layer extensibility, 150
layers, 149-150
Windows Workflow Foundation
(WF), 180
Extensible Application Markup
Language (XAML), 560
external cloud, 208
external identity providers, 546
ExternalDataExchange services,
publishing workflows via, 413-416

F

failover (in Windows Azure), 221

fault contracts, 98-100

fault tolerance, router services, 139-140

FaultContract attribute (WCF), 98-100

faults, Exception Shielding design
pattern, 319-321

Federated Endpoint Layer compound
pattern, 249, 745

federated ESBs, 482-483

federated identity, WCEF security, 126

federation, 40

File Gateway design pattern, 746

849

filter tables, creating for routing
services, 138-139

Flexible strategy (versioning), 102

Functional Decomposition design
pattern, 169, 330-331, 445, 560, 747

G

GAT (Guidance Automation
Toolkit), 184
GAX (Guidance Automation
Extensions), 184
glossary Web site, 13, 810
governance, ESB, 487-489
granularity
capability granularity, 308-313
levels, list of, 37-38
performance tuning, 608-610
Guidance Automation Extensions
(GAX), 184
Guidance Automation Toolkit
(GAT), 184

H

hardware accelerators, 701
hardware encryption for performance
tuning, 622
custom encryption, 623-625
message encryption, 623-624
transport encryption, 622-623
HATEOAS (Hypermedia as the Engine
of Application State), 323
health and activity tracking tool
(BizTalk Server), 194
Hello World example. See Windows
Azure, Hello World example
high-availability ESB architecture, 480
distributed ESBs, 482-483
scaling, 481-482

850

host container, communication with,
171-172
host service, creating (Web service
example), 233
hosted cloud, 209
hosting
co-hosting, 645-648
.NET Remoting components
in COM+ services, S7
in console applications, 57
inI1S, 57
in Windows services, 56
WCE services
IIS hosting, 113-114
managed Windows services,
112-113
REST service hosting, 115-116
selecting hosting environment,
108-110
self-hosted services, 110-112
Windows Activation Service
(WAS), 114
hosting environment in Windows
Server AppFabric, 188-189
hosting models, selecting, 610-612
hosts in BizTalk Server, 481
hub-and-spoke integration model, 468
hub-bus integration model, 469-470
human intervention in business
processes, 450-451
hybrid cloud authorization model
(Access Control), 553-554
hybrid cloud deployment model, 209
hybrid clouds, 545
Hypermedia as the Engine of
Application State (HATEOAS), 323

Index

Iaa$ (Infrastructure-as-a-Service),
210-212
ICommunicationObject, closing. See
cleaning up resources
ICommunicationObject.Abort()
method, 814
ICommunicationObject.Close()
method, 812-814
Identity Metasystem, 533, 535
identity providers, 537
developing, 542-543
IDisposable interface, ClientBase and
ChannelFactory classes, 815
IDisposable.Dispose() method,
814-815
IHttpHandler, REST service
processing, 74
IIdentity interface, 522
IIS (Internet Information Service)
hosting NET Remoting
components, 57
selecting hosting models, 612
IIS hosting, 113-114
imperative authorization, 524
implementation requirements, service
contracts, 693
implicit programming model
(System.Transactions library), 68-69
implicit service discovery, 147-148
in-line documentation, 322
in-memory application cache in
Windows Server AppFabric, 190-191
Increased Federation goal, 249-250
Increased Intrinsic Interoperability
goal, 250, 285
Increased Organizational Agility
goal, 285

Index

Increased ROI goal, 285
Increased Vendor Diversification
Options goal, 249-250
industry standards, list of, 70, 688-689
InfoCard, 536-540
infrastructure metrics, 654
Infrastructure-as-a-Service (Iaa$),
210-212
input endpoints, Windows Azure roles,
221-222
instancing (WCF), 105-106
instantiating services (Hello World
example), 226
integration models, 467-470
integrity, defined, 122
inter-organization service composition
security, 545-546
Inter-Role Communication (IRC),
222-223
intercepting messages, 589
at caching utility service, 590
comparison of techniques, 591
at intermediary, 589
in service container, 589
at service proxy, 590
interceptors, 670
intercloud deployment model, 209
interface contracts
creating, 252
defined, 78
intermediary, intercepting
messages, 589
Intermediate Routing design pattern,
133,136,748
internal cloud, 208
Internet Information Service (IIS),
hosting .NET Remoting
components, 57

851

interoperability, 40
interoperable bindings, 91
inventory analysis cycle, 337-338
inventory boundary design patterns. See
Domain Inventory design pattern;
Enterprise Inventory design pattern
Inventory Endpoint design pattern, 749
inventory standardization design
patterns. See Canonical Protocol
design pattern; Canonical Schema
design pattern
inventory structure design patterns
Logic Centralization design
pattern, 751
Service Layers design pattern, 169,
377-378,779
Service Normalization design
pattern, 781
Inversion of Control design
pattern, 570
IPipelineContext interface (BizTalk
BAM), 666
IPrincipal interface, 521
IRC (Inter-Role Communication),
222-223
itineraries
BizTalk Server, 201
ESB Toolkit, 472-474
lifecycle of, 475-476
types of, 474

J

Java RMI (Java Remote Invocation
Call), 47

JIT resolution, 477

JSON encoding, configuring contracts
for, 421-422

just-in-time activation (JITA), 50

852

K—L

large binary objects, transferring, 629

Laws of Identity, 536

layers (WCF), 149-150

Legacy Wrapper design pattern, 750

LINQ-to-XML mapping, 271-272

listener adapters, 114

locations in BizTalk Server
messaging, 199

logging messages (WCF), 153

Logic Centralization design pattern, 751

logic-to-contract coupling, 285

logical models for metrics, defining,
661-662

loose coupling. See Service Loose
Coupling design principle

Loose strategy (versioning) , 102

loosely couple events, 50

M

manageability extensions (Windows
Server AppFabric), 192
managed discovery, 141
managed Windows services, 112-113
management of BizTalk BAM
database outages, 672
reporting, 676
scripting deployment, 673-676
security, 672-673
management tools (WCF)
administration tools, 151
message logging tools, 153
troubleshooting tools, 151-152
mappings
LINQ-to-XML, 271-272
Microsoft ESB to Enterprise Service
Bus compound pattern, 490-492
object-to-object, 269-271

Index

memory resources, cleaning up, 812
message buffers, Service Bus, 496-497
creating, 514-516
REST and, 499
message contracts
creating, 251
defined, 79
MessageContract attribute, 83-86
message encryption, 623-624
message filters, defining for routing
services, 137
message formats in .NET Remoting, 60
message logging tools (WCF), 153
message payload, 660
message queues (MSMQ), 63-65
Message Screening design pattern,
529,752
message security mode, 123
message sizes (REST services), 621-622
MessageContract attribute (WCF),
83-86
messages
intercepting, 589
at caching utility service, 590
comparison of techniques, 591
at intermediary, 589
in service container, 589
at service proxy, S90
itineraries. See itineraries
receiving from Service Bus, 484-485
sending to Service Bus, 485-486
MSMQ, sending/receiving, 65-66
messaging
BizTalk Server, 193, 196
pipelines, 197-198
ports and locations, 199
Service Broker (SSB), 160-164

Index

Messaging Metadata design pattern, 84,
201,251,753
messaging property, 660
messaging-based middleware, 468
metadata
BizTalk Server context properties,
200-201
MEX endpoints, 100-101
Metadata Centralization design
pattern, 147,219, 325-326, 417, 754
metadata exchange (MEX), 101
metrics
BAM. See BAM
capturing data, 655-656
logical model definition, 661-662
service composition metrics, 669
Standard Mold case study, 677-680
types of, 654-655
views
creating, 663-664
role-based views, 662
MEX (metadata exchange), 101
MEX endpoints, 100-101
microflow, 472
Microsoft, ESB and, 466-467
Microsoft Messaging Queue. See
MSMQ
Microsoft Operations Manager
(MOM), 654
mixed mode security, 124
Model-View-Controller design
pattern, 568
Model-View-Presenter design
pattern, 568
Model-View-View-Model design
pattern, 568

853

Modern SOA Infrastructure, 6
modularity design patterns, 569-571
modules (Prism Library), 565-566
in application lifecycle, 576
dynamically loading, 579-581
MOM (Microsoft Operations
Manager), 654
monitoring ESB, 488-489
MSMQ (Microsoft Messaging
Queue), 63
components of, 63
message queues, 64-65
messages, sending/receiving, 65-66
service-orientation and, 66
MTOM encoding, 627-629
Multi-Channel Endpoint design
pattern, 633, 755
multi-tenant cloud, 208
mutual authentication, 520, 536

N

n-tier architecture, 45-47
named pipes, 279
naming conventions
service capabilities, 281-282
services, 280
Native XML Web Services (SQL
Server), 157-160
.NET assemblies, history of, 51
.NET Enterprise Services, 156
history of
COM+ services, 49, 51
COM/DCOM, 48-49
Distributed Transaction
Coordinator (DTC), §2-53
NET assemblies, 51
service-orientation and, 53

854

.NET Remoting, 47, 54
architecture of, 54, 56
configurations, 57
activation types, 58, 60
communication protocols, 60
message formats, 60
hosting components
in COM+ services, S7
in console applications, 57
inIIS, 57
in Windows services, 56
object lifetime management, 61
service-orientation and, 61-62
.NET System.Transactions library, 67
ambient transactions, 69
distributed resource transactions,
67-68
explicit/implicit programming
models, 68-69
.NET types, generating, 258-264
Non-Agnostic Context design pattern,
169, 379-380, 756
non-agnostic logic, defined, 32
non-repudiation, 552
notification service for this book series,
14,810
notifications, 165, 670-671
numeric range dimension, 664

O

OAuth WRAP, 550

object lifetime management in .NET
Remoting, 61

object-to-object mapping, 269-271

Official Endpoint compound
pattern, 757

Index

on-premise cloud, 208
On-ramp service (ESB Toolkit), 471
Open Authentication Web Resource
Access Protocol, 5§50
operation attributes (WCF
transactions), 127-128
operation contracts, defined, 78
OperationContract attribute (WCF),
79-81
optimization. See performance tuning
orchestrated task service contracts in
BizTalk Server, 445-447
orchestrated task services, 382-384,
423-425
orchestration
BizTalk Server and, 193, 388-391,
443-445
Compensating Service
Transaction design pattern,
456-461
exception management,
202-203
itineraries, 201
orchestrated task service
contracts, 445-447
Process Centralization design
pattern, 450-451, 454
State Repository design pattern,
455-456
Superior Stamping case study,
448-449
WS-* support, 447-448
execution time, 385
optional design patterns, 388
versioning, 180

Index

WEF (Windows Workflow
Foundation) and, 388-391,
395-397

ASMX services, publishing
workflows as, 399-407
Compensating Service
Transaction design pattern,
387,434-43S
ExternalDataExchange services,
publishing workflows via,
413-416
history of, 397-398
Process Abstraction design
pattern, 382-385
Process Centralization design
pattern, 382-385, 425-426
REST services, publishing
workflows as, 419-425
Standard Mold case study,
436-439
State Repository design pattern,
386, 426-433
WCEF 3.5 activities, publishing
workflows via, 408-410
WCEF 4.0 activities, publishing
workflows via, 410-413
WS-I BasicProfile support,
417-419
Orchestration compound pattern, 169,
194, 382, 395,443,758
orchestration schedule, 660
OrchestrationEventStream API
(BizTalk BAM), 666
outbound-rendezvous relayed
connectivity model (Service Bus),
494, 496

855

P

Paa$ (Platform-as-a-Service), 211-212
page blobs in Windows Azure
Storage, 243
parallelism, 641
in BizTalk Server, 643-644
iReplicatorActivity in WF, 644-645
in WE, 641, 643
parameters
passing to workflow instances, 178
returning from workflow instances,
178-179
Partial State Deferral design pattern,
456,759
Partial Validation design pattern, 760
partition keys in Windows Azure
Storage, 240
Passive View design pattern, 568
patterns. See design patterns
performance policies, 612,
615-616, 621
performance tuning, 584
optimization areas, 585-586
service capabilities, 586
caching, 587-591
caching implementation
technologies, $92-593
caching REST responses,
599-601
coarse-grained service contracts,
608-610
computing cache keys, $93-594
hardware encryption, 622-625
monitoring cache efficiency, 601
MTOM encoding, 627-629
performance policies, 612,
615-616,619-621

856

reducing resource contention,
603-604
request throttling, 604-608
REST service message sizes,
621-622
selecting hosting models,
610-612
service contract design, 630-632
service-orientation principles,
impact on, 633
Standard Mold case study,
594-596
Superior Stamping case study,
597-599
transports, 625-627
service compositions, 637, 648
asynchronous interactions,
639-641
co-hosting, 645-648
parallelism, 641, 643-645
service-orientation principles,
impact on, 648
transformation avoidance,
637-638
state management and, 700-701
persistence, workflow
with AppFabric, 189-190
in WF, 170-171
persistence service, 131
in WF 3.0, 429-431
in WF 4.0, 431-433
pipelines in BizTalk Server messaging,
197-198
Platform-as-a-Service (Paa$), 211-212
Plug-In design pattern, 570

point-to-point integration channels, 467

policies, effect on performance, 612,
615-616,619-621

Index

Policy Centralization design pattern, 761
PolicyActivity, 181
ports in BizTalk Server messaging, 199
Prentice Hall Service-Oriented
Computing Series from Thomas Erl,
13-14, 810
presentation layer
design patterns, 567
modularity patterns, 569-S71
user interface patterns, 567-569
Prism Library, 559
modules, 565-566
regions, 563-564
shared services, 566
shell, 561-562
views, 562-563
service-oriented user interface
example, 571
dynamically loading modules,
§79-581
project creation, S71-579
weaknesses in traditional models,
558-559
Presentation Model design pattern,
568-569
Prism Library, 559
modules, 565-566
regions, 563-564
service-oriented user interface
example, 571
dynamically loading modules,
§79-581
project creation, S71-579
shared services, 566
shell, 561-562
views, 562-563
private assemblies, 51
private cloud deployment model, 208

Index

private components in COM+, S0
probe queries, 143-144
Process Abstraction design pattern,
169, 378, 380, 382-38S5, 762
process boundary (IIS), 113
Process Centralization design pattern,
169, 382-385, 425,450
human intervention in business
processes, 450-451
profile, 763
workflow design in WF, 425-426
WS-BPEL support, 426, 451, 454
production environment, tracking
profiles in, 660
productivity tools in BizTalk Server, 194
programming model (WF), 176-177
progress dimension, 664
properties in Windows Azure Storage,
240-241
Protocol Bridging design pattern, 136,
200,274,764
protocol channels, 149
protocols
Canonical Protocol design
pattern, 274
component implementation,
278-279
dual protocols, 279-280
named pipes, 279
REST services implementation,
277-278
Web services implementation,
275277
cleaning up resources, 822
Proxy Capability design pattern, 765
proxy classes, writing, 118-119
public cloud authorization model
(Access Control), 554

857

public cloud deployment model, 208
publish-and-subscribe integration
model, 468
publishing WF workflows
as ASMX services, 399-407
via ExternalDataExchange services,
413-416
as REST services, 419-425
via WCEF 3.5 activities, 408-410
via WCEF 4.0 activities, 410-413
WS-I BasicProfile support, 417-419

Q—R
Query Notification (SQL Server), 165
queued components, 50
queues
message queues (MSMQ), 63-65
in Windows Azure Storage, 239,
241-242

rapid prototyping, 671
real-time aggregations
dimensions in, 662
scheduled aggregations versus,
660-661
Receive activity, configuring for REST
services, 422-423
receiving application (MSMQ), 63
receiving messages
Service Bus, 484-485
MSMQ, 65-66
recommended reading, 4-6, 41-42
Redundant Implementation design
pattern, 207,213, 766
regions (Prism Library), 563-564
Reliable Messaging design pattern,
160,767
relying parties, 537, 541-542
remotable classes in .NET Remoting, 56

858

Remote Method Invocation (RMI), 47
Remote Procedure Calls (RPC), 47
remoting. See . NET Remoting
ReplicatorActivity in WF, 644-645
reporting (BizTalk BAM
management), 676
request throttling, 604-605
with BizTalk Server, 607-608
Superior Stamping case study,
606-607
with WCF, 605-606
Resolver service (ESB Toolkit), 471
resolver strings for itineraries (ESB
Toolkit), 475
resolvers (ESB Toolkit), 476-478
resource contention, reducing, 603-604
REST responses, caching, 599-601
REST services, 92-93
Access Control (AppFabric) and,
552-553
cleaning up resources, 822
discoverability, 323
dispatcher system in WCEF, 77
entity abstraction with (Standard
Mold case study), 351-367
hosting, 115-116
message sizes, 621-622
processing, 74
publishing workflows as, 419-425
resource naming conventions, 282
Service Bus contracts, defining,
513-514
Service Bus message buffers
and, 499
as service implementation option,
277-278
services as, 31
UriTemplate attribute, 96-98

Index

WCEF-Custom adapter provider
and, 479
WebGet attribute, 93-95
Weblnvoke attribute, 95-96
in Windows Azure, 235
addressing, 235
creating, 236-239
REST-based service consumers in
Service Bus, 499
REST-based service design in Service
Bus, 498
reusability. See Service Reusability
design principle
RMI (Remote Method Invocation), 47
role-based authorization, 520-524
role-based security in COM+, 50
role-based views, 662
roles, 520
Azure roles, 219
input endpoints, 221-222
Inter-Role Communication
(IRC), 222-223
virtual machines, 220-221
Web roles, 220
worker roles, 220
composition roles, 377
selecting (Hello World
example), 224
router services (WCF Router), 132-133
fault tolerance, 139-140
routing configuration, 135-139
routing contracts, 134-135
RoutingService class, 133-134
routing contracts, 134-135
RoutingService class, 133-134
row keys in Windows Azure Storage, 241
RPC (Remote Procedure Calls), 47
Rules Centralization design pattern,
181, 388, 768

Index

S

Saa$ (Software-as-a-Service), 211
SAML, 126
SAO (server-activated objects), 58
scalability, 700
scaling ESB architecture, 481-482
scaling out, 608
in WF 3.0, 429-431
in WF 4.0, 431-433
scheduled aggregations, real-time
aggregations versus, 660-661
Schema Centralization design pattern,
217,251,253, 445,769
schemas. See XML schemas
scripting deployment (BizTalk BAM
management), 673-676
security
BizTalk BAM management,
672-673
in COM+, 50
Exception Shielding design pattern,
319-321
performance tuning, 612-621
Service Bus authentication, 508-509
terminology, 122
WCEF security, 122-123
authorization, 125-126
brokered authentication, S19
claims-based authorization,
524, 526-529
direct authentication, 518-519
federated identity, 126
mutual authentication, 520
role-based authorization,
520-524
security modes, 123-125
Standard Mold case study, 530,
532-533

859

Windows Azure security, 543
Access Control (AppFabric),
548-554
cloud computing, 543-547
Standard Mold case study,
555-556
Windows Identity Foundation
(WIF), 533
Active Directory Federation
Services (ADFS), 539
digital identity, $34-536
identity providers, developing,
542-543
programming model, 540-541
relying parties, developing,
S541-542
Windows Cardspace, 536-539
security modes, 123-125
security principal, 521-522
Security Token Service (STS), 535, 546
security tokens, 525, 534
self-hosted services, 110-112
Send activity, configuring for REST
services, 422-423
sending application (MSMQ), 63
sending messages
MSMQ, 65-66
to Service Bus, 485-486
Separated Interface design pattern, 570
Separated Presentation design pattern,
568-569
sequential workflows, 169
serializable classes in .NET
Remoting, 56
serialization, 82-83
server-activated objects (SAO), 58
server-side itineraries, 474

860

Service Abstraction design principle,
26, 82, 84, 102, 104, 207, 217,
313-314, 696

Service Agent design pattern, 133,
589,770

service announcements, sending/
receiving, 144-146

service attributes (WCF transactions),
129-130

service authorization scenarios (Access
Control), 553-554

service autonomy, 98

Service Autonomy design principle, 27,
110, 190, 218, 699

Service Broker compound pattern, 136,
160-164, 771

Service Bus, 494

configuration, 504-512
authentication, 508-509
contract definition, S05-506
contract implementation,

506-507
end-to-end security, 509
service configuration, S08
service host configuration,
S11-512
service publication, S12

as connectivity fabric, 494-496

connectivity models, 499
Eventing, S00
Service Remoting, S01
Tunneling, S01-502

creating, 503

message buffers, 496-497
creating, S14-516
REST and, 499

receiving messages from, 484-485

REST-based contracts, defining,

513-514

Index

REST-based service
consumers, 499
REST-based service design, 498
sending messages to, 485-486
service registry, 497-498
Service Callback design pattern, 772
service candidates, 35, 251
service capabilities
naming conventions, 281-282
performance tuning, 586
caching, 587-591
caching implementation
technologies, $92-593
caching REST responses,
§99-601
coarse-grained service contracts,
608-610
computing cache keys, $93-594
hardware encryption, 622-625
monitoring cache efficiency, 601
MTOM encoding, 627-629
performance policies, 612,
615-616, 619-621
reducing resource contention,
603-604
request throttling, 604-608
REST service message sizes,
621-622
selecting hosting models,
610-612
service contract design, 630-632
service-orientation principles,
impact on, 633
Standard Mold case study,
594-596
Superior Stamping case study,
597-599
transports, 625-627

Index

Service Composability design principle,
27,125,373, 560, 704-70S
service composition
Capability Composition design
pattern, 374-375
Capability Recomposition design
pattern, 374-376
defined, 33-34
inter-organization service
composition security, 545-546
Non-Agnostic Context design
pattern, 379-380
performance tuning, 637, 648
asynchronous interactions,
639-641
co-hosting, 645-648
parallelism, 641, 643-645
service-orientation principles,
impact on, 648
transformation avoidance,
637-638
Process Abstraction design
pattern, 380
roles, 377
Service Composability design
principle, 373
Service Layers design pattern,
377-378
service-orientation and, 371-373
task services, 380
service composition metrics, 669
service consumers (WCF), 116-117
ChannelFactory class, 119-120
Service Metadata Tool, 117-118
writing proxy class, 118-119
service container, intercepting
messages, 589

861

service contracts, 704
defined, 36-37, 78
implementation example, 106-108
performance tuning, 630-632
ServiceContract and
OperationContract attributes,
79-81
versioning, 102-103
WE support, history of, 397-398
Service Data Replication design
pattern, 190, 218, 773
Service Decomposition design
pattern, 774
service delivery models in cloud
computing, 210-212
Service Discoverability design
principle, 27,147,219, 321,417, 535
implementation requirements, 703
in-line documentation, 322
profile, 702-703
REST services, 323
service profiles, 323-324
Service Encapsulation design pattern,
169,332,775
service endpoints
attributes, 81
defined, 79
endpoint element, 86-87
address attribute, 88-89
binding attribute, 89-92
contract attribute, 92
Service Facade design pattern, 304,
306-307,776
service framework processing, 586
Service Grid design pattern, 777
service granularity, defined, 37

862

service hosting (WCF)
IIS hosting, 113-114
managed Windows services,
112-113
REST service hosting, 115-116
selecting hosting environment,
108-110
self-hosted services, 110-112
Windows Activation Service
(WAS), 114
service implementation options, 274
components, 278-279
REST services, 277-278
Web services, 275-277
service implementation processing, 585
Service Instance Routing design
pattern, 778
service inventory, defined, 34
service inventory blueprints, 34
Service Layers design pattern, 169,
377-378,779
service level agreement (SLA)
enforcement, 488
Service Locator design pattern, 571
Service Loose Coupling design
principle, 26, 81-82, 84,217,
285-286, 559
design patterns and, 286
profile, 695
service capability granularity and,
308-313
Service Messaging design pattern,
84,780
Service Metadata Tool, 117-118
service metrics, 654
service model layer, 149
service modeling, 251
service models, defined, 31-32

Index

service namespace, 503, 551
Service Normalization design
pattern, 781
service package (Web service example)
creating and deploying, 233
promoting to production, 234
Service Perimeter Guard design
pattern, 529, 782
service profiles, discoverability,
323-324
service proxy, intercepting
messages, 590
Service Refactoring design pattern,
217,783
service registry (Service Bus), 497-498
Service Remoting connectivity model
(Service Bus), 501
Service Reusability design principle, 26,
125, 329-330, 337, 339, 697-698, 704
Service Statelessness design principle,
27,171,190, 700-701
service-orientation
defined, 25-27
history of NET Enterprise Services
and, 53
MSMQ and, 66
.NET Remoting and, 61-62
service composition and, 371-373
service-orientation principles, impact
of performance tuning, 633, 648
service-oriented analysis, defined,
34-35
Service-Oriented Architecture: Concepts,
Technology, and Design, 5
service-oriented architecture. See SOA
service-oriented computing
defined, 25
goals of, 40-41

Index

service-oriented design, defined, 35-36
service-oriented user interface
example, 571
dynamically loading modules,
579-581
project creation, 571-579
service-related granularity, defined,
37-38
service-types, 81
ServiceContract attribute (WCF),
79-81
services
as components, 29
defined, 28-29
instantiating (Hello World
example), 226
naming conventions, 280
protection patterns, 529
as REST services, 31
scalability, 700
WCE. See WCF
as Web services, 30
shared assemblies, 51
shared services (Prism Library), 566
shell (Prism Library), 561-562
silo-based applications, 467
Silverlight, 560. See also service-
oriented user interface example
SingleCall objects, 58
Singleton objects, 59
SLA enforcement, 488
SOA (service-oriented architecture)
defined, 27
explained, 47
SOA Certified Professional (SOACP),
14. See also www.soaschool.com
SOA Design Patterns, S
SOA Governance, 6

863

SOA Magazine, The Web site, 14, 810
SOA Manifesto, 27
annotated version, 796-808
original version, 796
SOA Principles of Service Design, S, 11
SOA with Java, 6
SOA with REST, 6
SOACP (SOA Certified Professional),
14. See also www.soaschool.com
SOAP
attachments, 701
message contracts, 83-86
processors, 701
SOAP Faults, 99
SOAP service in COM+, 50
Software Factories, 184
Guidance Automation Extensions
(GAX), 184
Guidance Automation Toolkit
(GAT), 184
Web Services Software Factory,
184-186
Software-as-a-Service (Saa$S), 211
Software-plus-Services, 206
specifications, 70, 688-689
SQL Azure, 217-218
SQL Express configuration, 224
SQL persistence services
in WF 3.0, 429-431
in WF 4.0, 431-433
SQL Server, 156-157
Query Notification, 165
Service Broker, 160-164
Web services support, 157-160
XML support, 165-166
SQL Server Service Broker Adapter, 200
Standard Mold case study. See case
studies; code examples

www.soaschool.com
www.soaschool.com

864

Standardized Service Contract design
principle, 26, 78, 81-82, 84, 217, 250,
274, 340,399

contract-first development, 250-252
design patterns and, 252
profile, 693-694

standards, 70, 688-689

state machine workflows, 169

state management, 700-701

State Messaging design pattern,
456,784

State Repository design pattern, 171,
207,386, 426-428

BizTalk Server, 455-456

persistence service and scaling out
in WF 3.0, 429-431

persistence service and scaling out
in WF 4.0, 431-433

profile, 785

Stateful Services design pattern, 190,
207,213, 456, 590, 786

storage services

creating (Web service example), 233
in Windows Azure, 239-240

blobs, 242-243

queues, 241-242

tables, 240-241

Windows Azure Drive, 243

Strict strategy (versioning), 102

STS (Security Token Service), 535, 546

subjects. See clients

Superior Stamping case study. See case
studies; code examples

Supervising design pattern, 568

Supervising Presenter design
pattern, 569

svcutil utility program, 258

code generation with, 294-297

Index

symbols
colorin, 13
legend, 13
synchronization, 50
system-provided bindings, 90
System.Transactions library, 67
ambient transactions, 69
distributed resource transactions,
67-68
programming models,
explicit/implicit, 68-69
Systems Center Operations Manager
Management Pack for BizTalk
Server, 481

-

tables in Windows Azure Storage,
239-241

target endpoints, defining for routing
services, 136-137

task service model, defined, 31

task services, 380. See also orchestrated
task services

Termination Notification design
pattern, 102, 787

Three-Layer Inventory compound
pattern, 378, 788

throttling. See request throttling

throttling controls, 105

time dimension, 664

timestamps in Windows Azure
Storage, 241

tokens, 546, 551

TPE (Tracking Profile Editor),
659-660

tracing (WCF), 151-152

tracking host, 672

Tracking Profile Editor (TPE),
659-660

Index

tracking profiles, 659-660
TransactionAutoComplete
attribute, 128
TransactionAutoCompleteOnSession-
Close attribute, 130
TransactionFlow attribute, 128
TransactionIsolationLevel
attribute, 129
transactions, 50. See also
System.Transactions library
ambient transactions, 69
distributed resource transactions,
67-68
explained, S1
in Windows Azure Storage, 241
WCEF, 127
durable services, 131-132
operation attributes, 127-128
service attributes, 129-130
TransactionScopeRequired
attribute, 128
TransactionTimeout attribute, 130
Transformation service
(ESB Toolkit), 471
transformations. See also Data Model
Transformation design pattern
avoiding, 637-638
XSLT transformations, 272-273
transition plans for ESB, 489
transport channels, 149
transport encryption, 622-623
transport security mode, 123
transports, performance tuning,
625-627
troubleshooting management tools
(WCF), 151-152
trust, 546
trust boundaries, 122

865

Trusted Subsystem design pattern, 789

try-catch-finally-abort block, cleaning
up resources, 817

try-close-catch-abort block, cleaning up
resources, 818-819

tuning. See performance tuning

Tunneling connectivity model (Service
Bus), 501-502

U

UDDI, 325-326
UI Mediator design pattern, 568, 790
Uniform Contract design pattern, 282
Uniform Resource Identifiers (URIs),
explained, 88
UriTemplate attribute (REST services),
96-98
user interface design patterns, 567-569
user interface example. See service-
oriented user interface example
using block, cleaning up resources, 816
Utility Abstraction design pattern, 169,
182,335,377-378
profile, 791
with .NET Web service (Standard
Mold case study), 339-351
utility logic (Application Blocks),
182-183
utility methods, cleaning up resources,
819, 821
utility service model, defined, 32

\4

Validation Abstraction design pattern,
82,217,315-318,792

vendor diversification, 40

version control systems, 698

Version Identification design pattern,
102,793

866

versioning
orchestrations, 180
service contracts, 102-103
view discovery, view injection
versus, 563
view injection, view discovery
versus, 563
views
creating, 663-664
Prism Library, 562-563
role-based views, 662
virtual machines, Windows Azure roles,
220-221
virtual private cloud, 209
Visual Studio
creating schemas, 254, 256-258
elevated mode, 223

w

WAS (Windows Activation Service),
114,612
WATSs (Windows Azure Tables),
240-241
WCF (Windows Communication
Foundation)
administration management
tools, 151
behaviors, 104-105
cleaning up resources, 811-812
Abort() method
(ICommunicationObject),
814
based on bindings, 822
ClientBase and ChannelFactory
classes, 815
Close() method
(ICommunicationObject),
812-814

Index

Dispose() method
(IDisposable), 814-815
try-catch-finally-abort block,
817
try-close-catch-abort block,
818-819
using block, 816
utility methods, 819, 821
data contracts
DataContract attribute, 82-83
defined, 78
fault contracts, 98-100
extensibility
channel bindings, 148
channel layer extensibility, 150
layers, 149-150
instancing, 105-106
interceptors, 670
interface contracts, defined, 78
message contracts
defined, 79
MessageContract attribute,
83-86
message logging tools, 153
MEX endpoints, 100-101
operation contracts, defined, 78
overview, 76-77
programming model for WF
orchestrations, 397
request throttling, 605-606
REST services, 92-93
UriTemplate attribute, 96-98
WebGet attribute, 93-95
WebInvoke attribute, 95-96
security, 122-123
authorization, 125-126
brokered authentication, S19
claims-based authorization,
524, 526-529

Index

direct authentication, 518-519
federated identity, 126
mutual authentication, 520
role-based authorization,
$20-524
security modes, 123-125
Standard Mold case study, 530,
§32-533
service consumers, 116-117
ChannelFactory class, 119-120
Service Metadata Tool,
117-118
writing proxy class, 118-119
service contracts
defined, 78
implementation example,
106-108
ServiceContract and
OperationContract
attributes, 79-81
versioning, 102-103
service endpoints
address attribute, 88-89
binding attribute, 89-92
contract attribute, 92
defined, 79
endpoint element, 86-87
service hosting
IIS hosting, 113-114
managed Windows services,
112-113
REST service hosting, 115-116
selecting hosting environment,
108-110
self-hosted services, 110-112
Windows Activation Service
(WAS), 114
terminology, 78-79

867

transactions, 127
durable services, 131-132
operation attributes, 127-128
service attributes, 129-130
troubleshooting management tools,
151-152
WCEF 3.5 activities, publishing
workflows via, 408-410
WCEF 4.0 activities, publishing
workflows via, 410-413
WCEF Adapter, 200
WCEF Discovery, 140-141
discovery modes, 141-143
Discovery Proxies, 146
implicit service discovery, 147-148
probe queries, 143-144
sending/ receiving service
announcements, 144-146
WCEF Router, 132-133
fault tolerance, 139-140
routing configuration, 135-139
routing contracts, 134-135
RoutingService class, 133-134
WCE-Custom adapter provider, REST
services and, 479
WCEF-to-WCEF bindings, 91
Web roles (Windows Azure), 220
Web Service Contract Design and
Versioning for SOA, S, 294
Web Service Enhancements (WSE), 73
Web service example. See Windows
Azure, Web service example
Web services. See also services
ASMX (XML Web services), 71, 73
as service implementation option,
275-277
services as, 30

868

SQL Server support for, 157-160
WSE (Web Service
Enhancements), 73
Web Services Adapter, 199
Web Services Software Factory,
184-186
Web sites
www.serviceorientation.com, 810
www.sliverlight.net, 560
www.soa-manifesto.com, S, 796
www.soa-manifesto.org, 27, 796
www.soabooks.com, 6, 13-14, 42,
810
www.soaglossary.com, S, 13,24, 42,
810
www.soamag.com, 14, 810
www.soapatterns.org, S, 810
www.soaprinciples.com, S, 42, 810
www.soaschool.com, 14
www.soaspecs.com, S, 13, 70, 141,
560, 688, 810
www.whatissoa.com, S, 41, 810
Web-oriented architecture (WOA), 207
WebGet attribute (REST services),
93-95
Weblnvoke attribute (REST services),
95-96
WebMethod attribute, 72
WebService attribute, 71-72
WF (Windows Workflow Foundation),
76,166
activities, 172-175
architecture, 167-168
business rules, 180-181
extensibility, 180
host container communication,
171-172
interceptors, 670

Index

orchestration and, 388-391,
395-397
ASMX services, publishing
workflows as, 399-407
Compensating Service
Transaction design pattern,
434-43S
ExternalDataExchange services,
publishing workflows via,
413-416
history of, 397-398
Process Abstraction design
pattern, 382-385
Process Centralization design
pattern, 382-385, 425-426
REST services, publishing
workflows as, 419-42S
Standard Mold case study,
436-439
State Repository design pattern,
386, 426-433
WCEF 3.5 activities, publishing
workflows via, 408-410
WCEF 4.0 activities, publishing
workflows via, 410-413
WS-I BasicProfile support,
417-419
parallelism in, 641, 643-645
passing parameters to workflow
instances, 178
programming model, 176-177
returning parameters from
workflow instances, 178-179
versioning orchestrations, 180
workflow designer, 169-170
workflow persistence, 170-171
workflow runtime environment, 175
workflow types, 168-169

workflow-enabled services, 179

www.serviceorientation.com
www.sliverlight.net
www.soa-manifesto.com
www.soa-manifesto.org
www.soabooks.com
www.soaglossary.com
www.soamag.com
www.soapatterns.org
www.soaprinciples.com
www.soaschool.com
www.soaspecs.com
www.whatissoa.com

Index

WEF 3.0, persistence service and scaling
out, 429-431
WEF 4.0, persistence service and scaling
out, 431-433
WIF (Windows Identity
Foundation), 533
Active Directory Federation
Services (ADFES), 539
digital identity, 534-536
identity providers, developing,
542-543
programming model, 540-541
relying parties, developing, 541-542
Windows Cardspace, 536-539
WIF (Windows Identity
Framework), 76
Windows Activation Service (WAS),
114,612
Windows Azure. See also cloud
computing
access control in, 528
application container, 216-217
cloud deployment models and, 210
cloud-based services, categories of,
215-216
ESB and, 483
receiving messages from Service
Bus, 484-485
sending messages to Service Bus,
485-486
Hello World example, 223
cloud service project,
creating, 224
roles, selecting, 224
service, instantiating, 226
solution, creating, 225
platform overview, 213-216

869

REST services, 235
addressing, 235
creating, 236-239
roles, 219
input endpoints, 221-222
Inter-Role Communication
(IRC), 222-223
virtual machines, 220-221
Web roles, 220
worker roles, 220
SQL Azure, 217-218
storage services, 239-240
blobs, 242-243
queues, 241-242
tables, 240-241
Windows Azure Drive, 243
Web service example, 227-232
Diagnostic Monitor, 229
host service and storage service,
creating, 233
IOrderService interface
contract, 231
logging and diagnostic
APIs, 229
Order data contract, 231
output of IOrderService
interface contract and Order
data contract, 232
service package, creating and
deploying, 233
service package, promoting to
production, 234
ServiceConfiguration.cscfg, 228
ServiceDefinition.csdef, 228
tracing listener creation, 230
WebRole.cs, 227
Windows Azure Drive in Windows
Azure Storage, 239, 243

870

Windows Azure Fabric Controller, 214
Windows Azure platform AppFabric,
218. See also Access Control;
Service Bus
Windows Azure security, 543
Access Control (AppFabric),
548-553
service authorization scenarios,
§553-554
Standard Mold case study,
555-556
cloud computing, 543-547
Windows Azure Tables (WATs),
240-241
Windows Cardspace, 76, 536-541
Windows Communication Foundation.
See WCF
Windows Identity Foundation
(WIF), 533
Active Directory Federation
Services (ADFS), 539
digital identity, 534-536
identity providers, developing,
542-543
programming model, 540-541
relying parties, developing, 541-542
Windows Cardspace, 536-539
Windows Identity Framework
(WIF), 76
Windows Management
Instrumentation (WMI), 151
Windows Presentation Foundation.
See WPF
Windows Server AppFabric, 187
configurable hosting environment,
188-189
Event Collector Service, 192

Index

in-memory application cache,
190-191
manageability extensions, 192
service namespaces, creating, 503
workflow persistence, 189-190
Windows services, hosting NET
Remoting components, 56
Windows Workflow Foundation. See WF
wire transmission processing, 586
WMI (Windows Management
Instrumentation), 151
WOA (Web-oriented architecture), 207
worker roles (Windows Azure), 220
workflow design, 425-426
workflow designer (in WF), 169-170
workflow instances
passing parameters to, 178
returning parameters from, 178-179
workflow persistence
AppFabric, 189-190
WE, 170-171
workflow runtime environment
(in WF), 175
workflow-enabled services, 179
workflows. See also WF (Windows
Workflow Foundation)
history of, 397-398
publishing
as ASMX services, 399-407
via ExternalDataExchange
services, 413-416
as REST services, 419-425
via WCF 3.5 activities, 408-410
via WCF 4.0 activities, 410-413
WS-I BasicProfile support,
417-419
types of, 168-169

Index

WPF (Windows Presentation
Foundation), 76
Prism Library, 559
modules, 565-566
regions, 563-564
shared services, 566
shell, 561-562
views, 562-563
WS-AtomicTransaction, 127,458
WS-BPEL, 385, 426, 451, 454
WS-Coordination, 127
WS-Discovery, 140
WS-I Basic Security Profile, 125
WS-I Basic Profile, 417-419
WS-MetadataExchange, 101,417, 536
WS-Policy, 694
WS-SecureConversation, 125
WS-Security, 125, 536
WS-SecurityPolicy, 125, 536
WS-Trust, 125
WSCE.blue, code generation with,
297-301
WSCE.classic, code generation with,
302-304
WSDL, 77, 694
WSDL-first design approach, 289-294
svcutil utility program, code
generation with, 294-297
WSCE.blue, code generation with,
297-301
WSCE.classic, code generation
with, 302-304
WSE (Web Service Enhancements),
70,73

871

X—-Z
XAML (Extensible Application Markup
Language), 560
XML parsers, 701
XML support in SQL Server, 165-166
XML Schema Definition Language, 82,
253,694
XML schemas
creating, 254, 256-258
WSDL-first design approach,
289-294
sveutil utility program, code
generation with, 294-297
WSCEF.blue, code generation
with, 297-301
WSCF.classic, code generation
with, 302-304
XML serializers, 82-83
XML Web services (ASMX), 71,73
XML-Encryption, 125
XML-Signature, 125
xsd.exe utility program, 264
XSLT, 638,272-273

	Contents
	Foreword
	Foreword
	CHAPTER 8: Cloud Services with Windows Azure
	8.1 Cloud Computing 101
	8.2 Windows Azure Platform Overview
	8.3 Windows Azure Roles
	8.4 Hello World in Windows Azure
	8.5 A Web Service in Windows Azure
	8.6 A REST Service in Windows Azure
	8.7 Windows Azure Storage

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K–L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

