
521

Chapter 23

Test Double Patterns

Patterns in This Chapter

Test Double. 522

Test Double Usage

Test Stub. 529

Test Spy . 538

Mock Object . 544

Fake Object . 551

Test Double Construction

Confi gurable Test Double . 558

Hard-Coded Test Double . 568

Test-Specifi c Subclass . 579

Test Double
Patterns

Meszaros_Chapter 23.indd 521Meszaros_Chapter 23.indd 521 4/27/2007 5:20:25 PM4/27/2007 5:20:25 PM

522 Chapter 23 Test Double Patterns

3

Test Double

How can we verify logic independently when code it depends
on is unusable?

How can we avoid Slow Tests?

We replace a component on which the SUT depends with a
“test-specifi c equivalent.”

Sometimes it is just plain hard to test the SUT because it depends on other
components that cannot be used in the test environment. Such a situation may
arise because those components aren’t available, because they will not return
the results needed for the test, or because executing them would have unde-
sirable side effects. In other cases, our test strategy requires us to have more
control over or visibility of the internal behavior of the SUT.

When we are writing a test in which we cannot (or choose not to) use a
real depended-on component (DOC), we can replace it with a Test Double.
The Test Double doesn’t have to behave exactly like the real DOC; it merely
has to provide the same API as the real DOC so that the SUT thinks it is the
real one!

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Also known as:
Imposter

Test
Double

Meszaros_Chapter 23.indd 522Meszaros_Chapter 23.indd 522 4/27/2007 5:20:25 PM4/27/2007 5:20:25 PM

523

How It Works

When the producers of a movie want to fi lm something that is potentially risky
or dangerous for the leading actor to carry out, they hire a “stunt double” to
take the place of the actor in the scene. The stunt double is a highly trained
individual who is capable of meeting the specifi c requirements of the scene. The
stunt double may not be able to act, but he or she knows how to fall from great
heights, crash a car, or do whatever the scene calls for. How closely the stunt
double needs to resemble the actor depends on the nature of the scene. Usually,
things can be arranged such that someone who vaguely resembles the actor in
stature can take the actor’s place.

For testing purposes, we can replace the real DOC (not the SUT!) with our
equivalent of the “stunt double”: the Test Double. During the fi xture setup phase
of our Four-Phase Test (page 358), we replace the real DOC with our Test Double.
Depending on the kind of test we are executing, we may hard-code the behavior
of the Test Double or we may confi gure it during the setup phase. When the SUT
interacts with the Test Double, it won’t be aware that it isn’t talking to the real
McCoy, but we will have achieved our goal of making impossible tests possible.

Regardless of which variation of Test Double we choose to use, we must keep
in mind that we don’t need to implement the entire interface of the DOC. Instead,
we provide only the functionality needed for our particular test. We can even
build different Test Doubles for different tests that involve the same DOC.

When to Use It

We might want to use some sort of Test Double during our tests in the following
circumstances:

• If we have an Untested Requirement (see Production Bugs on page 268)
because neither the SUT nor its DOCs provide an observation point for
the SUT’s indirect output that we need to verify using Behavior Verifi -
cation (page 468)

• If we have Untested Code (see Production Bugs) and a DOC does not
provide the control point to allow us to exercise the SUT with the nec-
essary indirect inputs

• If we have Slow Tests (page 253) and we want to be able to run our
tests more quickly and hence more often

Each of these scenarios can be addressed in some way by using a Test Double.
Of course, we have to be careful when using Test Doubles because we are testing

 Test Double

Test
Double

Meszaros_Chapter 23.indd 523Meszaros_Chapter 23.indd 523 4/27/2007 5:20:26 PM4/27/2007 5:20:26 PM

524 Chapter 23 Test Double Patterns

the SUT in a different confi guration from the one that will be used in production.
For this reason, we really should have at least one test that verifi es the SUT works
without a Test Double. We need to be careful that we don’t replace the parts of
the SUT that we are trying to verify because that practice can result in tests that
test the wrong software! Also, excessive use of Test Doubles can result in Fragile
Tests (page 239) as a result of Overspecifi ed Software.

Test Doubles come in several major fl avors, as summarized in Figure 23.1.
The implementation variations of these patterns are described in more detail in
the corresponding pattern write-ups.

Figure 23.1 Types of Test Doubles. Dummy Objects are really an alternative
to the value patterns. Test Stubs are used to verify indirect inputs; Test Spies
and Mock Objects are used to verify indirect outputs. Fake objects provide an
alternative implementation.

These variations are classifi ed based on how/why we use the Test Double. We
will deal with variations around how we build the Test Doubles in the “Imple-
mentation” section.

Variation: Test Stub

We use a Test Stub (page 529) to replace a real component on which the SUT
depends so that the test has a control point for the indirect inputs of the SUT. Its
inclusion allows the test to force the SUT down paths it might not otherwise
execute. We can further classify Test Stubs by the kind of indirect inputs they
are used to inject into the SUT. A Responder (see Test Stub) injects valid values,
while a Saboteur (see Test Stub) injects errors or exceptions.

Some people use the term “test stub” to mean a temporary implementation
that is used only until the real object or procedure becomes available. I prefer to
call this usage a Temporary Test Stub (see Test Stub) to avoid confusion.

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Test
Double

Meszaros_Chapter 23.indd 524Meszaros_Chapter 23.indd 524 4/27/2007 5:20:26 PM4/27/2007 5:20:26 PM

525

Variation: Test Spy

We can use a more capable version of a Test Stub, the Test Spy (page 538), as
an observation point for the indirect outputs of the SUT. Like a Test Stub, a
Test Spy may need to provide values to the SUT in response to method calls.
The Test Spy, however, also captures the indirect outputs of the SUT as it is
exercised and saves them for later verifi cation by the test. Thus, in many ways,
the Test Spy is “just a” Test Stub with some recording capability. While a Test
Spy is used for the same fundamental purpose as a Mock Object (page 544),
the style of test we write using a Test Spy looks much more like a test written
with a Test Stub.

Variation: Mock Object

We can use a Mock Object as an observation point to verify the indirect outputs
of the SUT as it is exercised. Typically, the Mock Object also includes the func-
tionality of a Test Stub in that it must return values to the SUT if it hasn’t already
failed the tests but the emphasis1 is on the verifi cation of the indirect outputs.
Therefore, a Mock Object is a lot more than just a Test Stub plus assertions: It
is used in a fundamentally different way.

Variation: Fake Object

We use a Fake Object (page 551) to replace the functionality of a real DOC
in a test for reasons other than verifi cation of indirect inputs and outputs of
the SUT. Typically, a Fake Object implements the same functionality as the
real DOC but in a much simpler way. While a Fake Object is typically built
specifi cally for testing, the test does not use it as either a control point or an
observation point.

The most common reason for using a Fake Object is that the real DOC
is not available yet, is too slow, or cannot be used in the test environment
because of deleterious side effects. The sidebar “Faster Tests Without Shared
Fixtures” (page 319) describes how we encapsulated all database access behind
a persistence layer interface and then replaced the database with in-memory
hash tables and made our tests run 50 times faster. Chapter 6, Test Automation
Strategy, and Chapter 11, Using Test Doubles, provide an overview of the vari-
ous techniques available for making our SUT easier to test.

1 My mother grew up in Hungary and has retained a part of her Hungarian accent—think
Zsa Zsa Gabor—all her life. She says, “It is important to put the emphasis on the right
syllable.”

Test
Double

 Test Double

Meszaros_Chapter 23.indd 525Meszaros_Chapter 23.indd 525 4/27/2007 5:20:26 PM4/27/2007 5:20:26 PM

526 Chapter 23 Test Double Patterns

Variation: Dummy Object

Some method signatures of the SUT may require objects as parameters. If
neither the test nor the SUT cares about these objects, we may choose to pass
in a Dummy Object (page 728), which may be as simple as a null object ref-
erence, an instance of the Object class, or an instance of a Pseudo-Object (see
Hard-Coded Test Double on page 568). In this sense, a Dummy Object isn’t
really a Test Double per se but rather an alternative to the value patterns Literal
Value (page 714), Derived Value (page 718), and Generated Value (page 723).

Variation: Procedural Test Stub

A Test Double implemented in a procedural programming language is often
called a “test stub,” but I prefer to call it a Procedural Test Stub (see Test Stub)
to distinguish this usage from the modern Test Stub variation of Test Doubles.
Typically, we use a Procedural Test Stub to allow testing/debugging to proceed
while waiting for other code to become available. It is rare for these objects to
be “swapped in” at runtime but sometimes we make the code conditional on a
“Debugging” fl ag—a form of Test Logic in Production (page 217).

Implementation Notes

Several considerations must be taken into account when we are building the Test
Double (Figure 23.2):

• Whether the Test Double should be specifi c to a single test or reusable
across many tests

• Whether the Test Double should exist in code or be generated on-the-fl y

• How we tell the SUT to use the Test Double (installation)

The fi rst and last points are addressed here. The discussion of Test Double gen-
eration is left to the section on Confi gurable Test Doubles.

Because the techniques for building Test Doubles are pretty much independent
of their behavior (e.g., they apply to both Test Stubs and Mock Objects), I’ve
chosen to split out the descriptions of the various ways we can build Hard-Coded
Test Doubles and Confi gurable Test Doubles (page 558) into separate patterns.

Test
Double

Meszaros_Chapter 23.indd 526Meszaros_Chapter 23.indd 526 4/27/2007 5:20:26 PM4/27/2007 5:20:26 PM

527

Figure 23.2 Types of Test Doubles with implementation choices. Only Test
Stubs, Test Spies, and Mock Objects need to be hard-coded or confi gured by the
test. Dummy Objects have no implementation; Fake Objects are installed but
not controlled by the test.

Variation: Unconfi gurable Test Doubles

Neither Dummy Objects nor Fake Objects need to be confi gured, each for their
own reason. Dummies should never be used by the receiver so they need no
“real” implementation. Fake Objects, by contrast, need a “real” implementa-
tion but one that is much simpler or “lighter” than the object that they replace.
Therefore, neither the test nor the test automater will need to confi gure “canned”
responses or expectations; we just install the Test Double and let the SUT use it
as if it were real.

Variation: Hard-Coded Test Double

When we plan to use a specifi c Test Double in only a single test, it is often sim-
plest to just hard-code the Test Double to return specifi c values (for Test Stubs)
or expect specifi c method calls (Mock Objects). Hard-Coded Test Doubles are
typically hand-built by the test automater. They come in several forms, including
the Self Shunt (see Hard-Coded Test Double), where the Testcase Class (page 373)
acts as the Test Double; the Anonymous Inner Test Double (see Hard-Coded Test
Double), where language features are used to create the Test Double inside the
Test Method (page 348); and the Test Double implemented as separate Test
Double Class (see Hard-Coded Test Double). Each of these options is discussed
in more detail in Hard-Coded Test Double.

Configurable
Test Double

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Hard-Coded
Test Double

Configurable
Test Double

Test
Double

Mock
Object

Test
Spy

Dummy
Object

Test
Stub

Fake
Object

Hard-Coded
Test Double

 Test Double

Test
Double

Meszaros_Chapter 23.indd 527Meszaros_Chapter 23.indd 527 4/27/2007 5:20:26 PM4/27/2007 5:20:26 PM

528 Chapter 23 Test Double Patterns

Variation: Confi gurable Test Double

When we want to use the same Test Double implementation in many tests, we
will typically prefer to use a Confi gurable Test Double. Although the test auto-
mater can manually build these objects, many members of the xUnit family have
reusable toolkits available for generating Confi gurable Test Doubles.

Installing the Test Double

Before we can exercise the SUT, we must tell it to use the Test Double instead
of the object that the Test Double replaces. We can use any of the substitutable
dependency patterns to install the Test Double during the fi xture setup phase of
our Four-Phase Test. Confi gurable Test Doubles need to be confi gured before
we exercise the SUT, and we typically perform this confi guration before we
install them.

Example: Test Double

Because there are a wide variety of reasons for using the variations of Test Dou-
bles, it is diffi cult to provide a single example that characterizes the motivation
behind each style. Please refer to the examples in each of the more detailed pat-
terns referenced earlier.

Test
Double

Meszaros_Chapter 23.indd 528Meszaros_Chapter 23.indd 528 4/27/2007 5:20:27 PM4/27/2007 5:20:27 PM

529

Test Stub

How can we verify logic independently when it depends on indirect inputs
from other software components?

We replace a real object with a test-specifi c object that feeds the desired
indirect inputs into the system under test.

In many circumstances, the environment or context in which the SUT operates
very much infl uences the behavior of the SUT. To get adequate control over the
indirect inputs of the SUT, we may have to replace some of the context with
something we can control—namely, a Test Stub.

How It Works

First, we defi ne a test-specifi c implementation of an interface on which the SUT
depends. This implementation is confi gured to respond to calls from the SUT with
the values (or exceptions) that will exercise the Untested Code (see Production
Bugs on page 268) within the SUT. Before exercising the SUT, we install the Test
Stub so that the SUT uses it instead of the real implementation. When called by

Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Creation
Test
Stub

Return
Values

Indirect
 Input

Installation

Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Creation
Test
Stub

Return
Values

Indirect
 Input

Installation

Test
Stub

Also known as:
Stub

 Test Stub

Meszaros_Chapter 23.indd 529Meszaros_Chapter 23.indd 529 4/27/2007 5:20:27 PM4/27/2007 5:20:27 PM

530 Chapter 23 Test Double Patterns

the SUT during test execution, the Test Stub returns the previously defi ned values.
The test can then verify the expected outcome in the normal way.

When to Use It

A key indication for using a Test Stub is having Untested Code caused by our
inability to control the indirect inputs of the SUT. We can use a Test Stub as
a control point that allows us to control the behavior of the SUT with vari-
ous indirect inputs and we have no need to verify the indirect outputs. We
can also use a Test Stub to inject values that allow us to get past a particular
point in the software where the SUT calls software that is unavailable in our
test environment.

If we do need an observation point that allows us to verify the indirect out-
puts of the SUT, we should consider using a Mock Object (page 544) or a Test
Spy (page 538). Of course, we must have a way of installing a Test Double (page 522)
into the SUT to be able to use any form of Test Double.

Variation: Responder

A Test Stub that is used to inject valid indirect inputs into the SUT so that it
can go about its business is called a Responder. Responders are commonly used
in “happy path” testing when the real component is uncontrollable, is not yet
available, or is unusable in the development environment. The tests will invari-
ably be Simple Success Tests (see Test Method on page 348).

Variation: Saboteur

A Test Stub that is used to inject invalid indirect inputs into the SUT is often
called a Saboteur because its purpose is to derail whatever the SUT is trying
to do so that we can see how the SUT copes under these circumstances. The
“derailment” might be caused by returning unexpected values or objects, or
it might result from raising an exception or causing a runtime error. Each test
may be either a Simple Success Test or an Expected Exception Test (see Test
Method), depending on how the SUT is expected to behave in response to the
indirect input.

Variation: Temporary Test Stub

A Temporary Test Stub stands in for a DOC that is not yet available. This kind
of Test Stub typically consists of an empty shell of a real class with hard-coded
return statements. As soon as the real DOC is available, it replaces the Tempo-
rary Test Stub. Test-driven development often requires us to create Temporary

Test
Stub

Meszaros_Chapter 23.indd 530Meszaros_Chapter 23.indd 530 4/27/2007 5:20:27 PM4/27/2007 5:20:27 PM

531

Test Stubs as we write code from the outside in; these shells evolve into the real
classes as we add code to them. In need-driven development, we tend to use
Mock Objects because we want to verify that the SUT calls the right methods
on the Temporary Test Stub; in addition, we typically continue using the Mock
Object even after the real DOC becomes available.

Variation: Procedural Test Stub

A Procedural Test Stub is a Test Stub written in a procedural programming lan-
guage. It is particularly challenging to create in procedural programming languages
that do not support procedure variables (also known as function pointers). In most
cases, we must put if testing then hooks into the production code (a form of Test
Logic in Production; see page 217).

Variation: Entity Chain Snipping

Entity Chain Snipping (see Test Stub on page 529) is a special case of a
Responder that is used to replace a complex network of objects with a single
Test Stub that pretends to be the network of objects. Its inclusion can make fi x-
ture setup go much more quickly (especially when the objects would normally
have to be persisted into a database) and can make the tests much easier to
understand.

Implementation Notes

We must be careful when using Test Stubs because we are testing the SUT in a
different confi guration from the one that will be used in production. We really
should have at least one test that verifi es the SUT works without a Test Stub. A
common mistake made by test automaters who are new to stubs is to replace a
part of the SUT that they are trying to test. For this reason, it is important to be
really clear about what is playing the role of SUT and what is playing the role of
test fi xture. Also, note that excessive use of Test Stubs can result in Overspeci-
fi ed Software (see Fragile Test on page 239).

Test Stubs may be built in several different ways depending on our specifi c
needs and the tools we have on hand.

Variation: Hard-Coded Test Stub

A Hard-Coded Test Stub has its responses hard-coded within its program logic.
These Test Stubs tend to be purpose-built for a single test or a very small number
of tests. See Hard-Coded Test Double (page 568) for more information.

 Test Stub

Test
Stub

Meszaros_Chapter 23.indd 531Meszaros_Chapter 23.indd 531 4/27/2007 5:20:27 PM4/27/2007 5:20:27 PM

532 Chapter 23 Test Double Patterns

Variation: Confi gurable Test Stub

When we want to avoid building a different Hard-Coded Test Stub for each test,
we can use a Confi gurable Test Stub (see Confi gurable Test Double on page 558).
A test confi gures the Confi gurable Test Stub as part of its fi xture setup phase. Many
members of the xUnit family offer tools with which to generate Confi gurable Test
Doubles (page 558), including Confi gurable Test Stubs.

Motivating Example

The following test verifi es the basic functionality of a component that formats
an HTML string containing the current time. Unfortunately, it depends on the
real system clock so it rarely ever passes!

 public void testDisplayCurrentTime_AtMidnight() {
 // fi xture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, result);
 }

We could try to address this problem by making the test calculate the expected
results based on the current system time as follows:

 public void testDisplayCurrentTime_whenever() {
 // fi xture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify outcome
 Calendar time = new DefaultTimeProvider().getTime();
 StringBuffer expectedTime = new StringBuffer();
 expectedTime.append("");

 if ((time.get(Calendar.HOUR_OF_DAY) == 0)
 && (time.get(Calendar.MINUTE) <= 1)) {
 expectedTime.append("Midnight");
 } else if ((time.get(Calendar.HOUR_OF_DAY) == 12)
 && (time.get(Calendar.MINUTE) == 0)) { // noon
 expectedTime.append("N3oon");
 } else {
 SimpleDateFormat fr = new SimpleDateFormat("h:mm a");
 expectedTime.append(fr.format(time.getTime()));
 }

Test
Stub

Meszaros_Chapter 23.indd 532Meszaros_Chapter 23.indd 532 4/27/2007 5:20:27 PM4/27/2007 5:20:27 PM

533

 expectedTime.append("");

 assertEquals(expectedTime, result);
 }

This Flexible Test (see Conditional Test Logic on page 200) introduces two prob-
lems. First, some test conditions are never exercised. (Do you want to come in
to work to run the tests at midnight to prove the software works at midnight?)
Second, the test needs to duplicate much of the logic in the SUT to calculate the
expected results. How do we prove the logic is actually correct?

Refactoring Notes

We can achieve proper verifi cation of the indirect inputs by getting control of
the time. To do so, we use the Replace Dependency with Test Double (page 522)
refactoring to replace the real system clock (represented here by TimeProvider)
with a Virtual Clock [VCTP]. We then implement it as a Test Stub that is confi g-
ured by the test with the time we want to use as the indirect input to the SUT.

Example: Responder (as Hand-Coded Test Stub)

The following test verifi es one of the happy path test conditions using a Responder
to get control over the indirect inputs of the SUT. Based on the time injected into
the SUT, the expected result can be hard-coded safely.

 public void testDisplayCurrentTime_AtMidnight()
 throws Exception {
 // Fixture setup
 // Test Double confi guration
 TimeProviderTestStub tpStub = new TimeProviderTestStub();
 tpStub.setHours(0);
 tpStub.setMinutes(0);
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Test Double installation
 sut.setTimeProvider(tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

 Test Stub

Test
Stub

Meszaros_Chapter 23.indd 533Meszaros_Chapter 23.indd 533 4/27/2007 5:20:28 PM4/27/2007 5:20:28 PM

534 Chapter 23 Test Double Patterns

This test makes use of the following hand-coded configurable Test Stub
implementation:

 private Calendar myTime = new GregorianCalendar();
 /**
 * The complete constructor for the TimeProviderTestStub
 * @param hours specifi es the hours using a 24-hour clock
 * (e.g., 10 = 10 AM, 12 = noon, 22 = 10 PM, 0 = midnight)
 * @param minutes specifi es the minutes after the hour
 * (e.g., 0 = exactly on the hour, 1 = 1 min after the hour)
 */
 public TimeProviderTestStub(int hours, int minutes) {
 setTime(hours, minutes);
 }

 public void setTime(int hours, int minutes) {
 setHours(hours);
 setMinutes(minutes);
 }

 // Confi guration interface
 public void setHours(int hours) {
 // 0 is midnight; 12 is noon
 myTime.set(Calendar.HOUR_OF_DAY, hours);
 }

 public void setMinutes(int minutes) {
 myTime.set(Calendar.MINUTE, minutes);
 }
 // Interface used by SUT
 public Calendar getTime() {
 // @return the last time that was set
 return myTime;
 }

Example: Responder (Dynamically Generated)

Here’s the same test coded using the JMock Confi gurable Test Double frame-
work:

 public void testDisplayCurrentTime_AtMidnight_JM()
 throws Exception {
 // Fixture setup
 TimeDisplay sut = new TimeDisplay();
 // Test Double confi guration
 Mock tpStub = mock(TimeProvider.class);
 Calendar midnight = makeTime(0,0);
 tpStub.stubs().method("getTime").
 withNoArguments().
 will(returnValue(midnight));

Test
Stub

Meszaros_Chapter 23.indd 534Meszaros_Chapter 23.indd 534 4/27/2007 5:20:28 PM4/27/2007 5:20:28 PM

535

 // Test Double installation
 sut.setTimeProvider((TimeProvider) tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

There is no Test Stub implementation to examine for this test because the
JMock framework implements the Test Stub using refl ection. Thus we had to
write a Test Utility Method (page 599) called makeTime that contains the logic to
construct the Calendar object to be returned. In the hand-coded Test Stub, this
logic appeared inside the getTime method.

Example: Saboteur (as Anonymous Inner Class)

The following test uses a Saboteur to inject invalid indirect inputs into the SUT
so we can see how the SUT copes under these circumstances.

 public void testDisplayCurrentTime_exception()
 throws Exception {
 // Fixture setup
 // Defi ne and instantiate Test Stub
 TimeProvider testStub = new TimeProvider()
 { // Anonymous inner Test Stub
 public Calendar getTime() throws TimeProviderEx {
 throw new TimeProviderEx("Sample");
 }
 };
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Invalid Time";
 assertEquals("Exception", expectedTimeString, result);
 }

In this case, we used an Inner Test Double (see Hard-Coded Test Double) to
throw an exception that we expect the SUT to handle gracefully. One interest-
ing thing about this test is that it uses the Simple Success Test method template
rather than the Expected Exception Test template, even though we are injecting
an exception as the indirect input. The rationale behind this choice is that we are
expecting the SUT to catch the exception and change the string formatting; we
are not expecting the SUT to throw an exception.

 Test Stub

Test
Stub

Meszaros_Chapter 23.indd 535Meszaros_Chapter 23.indd 535 4/27/2007 5:20:28 PM4/27/2007 5:20:28 PM

536 Chapter 23 Test Double Patterns

Example: Entity Chain Snipping

In this example, we are testing the Invoice but require a Customer to instantiate
the Invoice. The Customer requires an Address, which in turn requires a City. Thus
we fi nd ourselves creating numerous additional objects just to set up the fi xture.
Suppose the behavior of the invoice depends on some attribute of the Customer
that is calculated from the Address by calling the method get_zone on the Customer.

 public void testInvoice_addLineItem_noECS() {
 fi nal int QUANTITY = 1;
 Product product = new Product(getUniqueNumberAsString(),
 getUniqueNumber());
 State state = new State("West Dakota", "WD");
 City city = new City("Centreville", state);
 Address address = new Address("123 Blake St.", city, "12345");
 Customer customer= new Customer(getUniqueNumberAsString(),
 getUniqueNumberAsString(),
 address);
 Invoice inv = new Invoice(customer);
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify
 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 assertLineItemsEqual("",expItem, actual);
 }

In this test, we want to verify only the behavior of the invoice logic that depends
on this zone attribute—not the way this attribute is calculated from the Customer’s
address. (There are separate Customer unit tests to verify the zone is calculated
correctly.) All of the setup of the address, city, and other information merely
distracts the reader.

Here’s the same test using a Test Stub instead of the Customer. Note how much
simpler the fi xture setup has become as a result of Entity Chain Snipping!

 public void testInvoice_addLineItem_ECS() {
 fi nal int QUANTITY = 1;
 Product product = new Product(getUniqueNumberAsString(),
 getUniqueNumber());
 Mock customerStub = mock(ICustomer.class);
 customerStub.stubs().method("getZone").will(returnValue(ZONE_3));
 Invoice inv = new Invoice((ICustomer)customerStub.proxy());
 // Exercise
 inv.addItemQuantity(product, QUANTITY);
 // Verify

Test
Stub

Meszaros_Chapter 23.indd 536Meszaros_Chapter 23.indd 536 4/27/2007 5:20:28 PM4/27/2007 5:20:28 PM

537

 List lineItems = inv.getLineItems();
 assertEquals("number of items", lineItems.size(), 1);
 LineItem actual = (LineItem)lineItems.get(0);
 LineItem expItem = new LineItem(inv, product, QUANTITY);
 assertLineItemsEqual("", expItem, actual);
 }

We have used JMock to stub out the Customer with a customerStub that returns
ZONE_3 when getZone is called. This is all we need to verify the Invoice behavior, and
we have managed to get rid of all that distracting extra object construction. It
is also much clearer from reading this test that invoicing behavior depends only
on the value returned by get_zone and not any other attributes of the Customer or
Address.

Further Reading

Almost every book on automated testing using xUnit has something to say about
Test Stubs, so I won’t list those resources here. As you are reading other books,
however, keep in mind that the term Test Stub is often used to refer to a Mock
Object. Mocks, Fakes, Stubs, and Dummies (in Appendix B) contains a more
thorough comparison of the terminology used in various books and articles.

Sven Gorts describes a number of different ways we can use a Test Stub
[UTwHCM]. I have adopted many of his names and adapted a few to better
fi t into this pattern language. Paolo Perrotta wrote a pattern describing a com-
mon example of a Responder called Virtual Clock. He uses a Test Stub as a
Decorator [GOF] for the real system clock that allows the time to be “frozen”
or resumed. Of course, we could use a Hard-Coded Test Stub or a Confi gu-
rable Test Stub just as easily for most tests.

 Test Stub

Test
Stub

Meszaros_Chapter 23.indd 537Meszaros_Chapter 23.indd 537 4/27/2007 5:20:28 PM4/27/2007 5:20:28 PM

538 Chapter 23 Test Double Patterns

Test Spy

How do we implement Behavior Verifi cation?
How can we verify logic independently when it has indirect outputs

to other software components?

We use a Test Double to capture the indirect output calls made to another
component by the SUT for later verifi cation by the test.

In many circumstances, the environment or context in which the SUT operates
very much infl uences the behavior of the SUT. To get adequate visibility of the
indirect outputs of the SUT, we may have to replace some of the context with
something we can use to capture these outputs of the SUT.

Use of a Test Spy is a simple and intuitive way to implement Behavior Verifi -
cation (page 468) via an observation point that exposes the indirect outputs of
the SUT so they can be verifi ed.

How It Works

Before we exercise the SUT, we install a Test Spy as a stand-in for a DOC
used by the SUT. The Test Spy is designed to act as an observation point by
recording the method calls made to it by the SUT as it is exercised. During the

Fixture

Setup

Exercise

Verify

Teardown

SUTExercise

Test Spy

Installation

Creation

Indirect
 Outputs

Indirect
 Output

DOC
Fixture

Setup

Exercise

Verify

Teardown

SUTExercise

Test Spy

Installation

Creation

Indirect
 Outputs

Indirect
 Output

DOC

Also known as:
Spy, Recording

Test Stub

Test
Spy

Meszaros_Chapter 23.indd 538Meszaros_Chapter 23.indd 538 4/27/2007 5:20:28 PM4/27/2007 5:20:28 PM

539

result verifi cation phase, the test compares the actual values passed to the Test
Spy by the SUT with the values expected by the test.

When to Use It

A key indication for using a Test Spy is having an Untested Requirement (see
Production Bugs on page 268) caused by an inability to observe the side effects
of invoking methods on the SUT. Test Spies are a natural and intuitive way to
extend the existing tests to cover these indirect outputs because the calls to the
Assertion Methods (page 362) are invoked by the test after the SUT has been
exercised just like in “normal” tests. The Test Spy merely acts as the observation
point that gives the Test Method (page 348) access to the values recorded during
the SUT execution.

We should use a Test Spy in the following circumstances:

• We are verifying the indirect outputs of the SUT and we cannot predict
the values of all attributes of the interactions with the SUT ahead of
time.

• We want the assertions to be visible in the test and we don’t think the
way in which the Mock Object (page 544) expectations are established
is suffi ciently intent-revealing.

• Our test requires test-specifi c equality (so we cannot use the standard
defi nition of equality as implemented in the SUT) and we are using
tools that generate the Mock Object but do not give us control over the
Assertion Methods being called.

• A failed assertion cannot be reported effectively back to the Test Run-
ner (page 377). This might occur if the SUT is running inside a contain-
er that catches all exceptions and makes it diffi cult to report the results
or if the logic of the SUT runs in a different thread or process from
the test that invokes it. (Both of these cases really beg refactoring to
allow us to test the SUT logic directly, but that is the subject of another
chapter.)

• We would like to have access to all the outgoing calls of the SUT before
making any assertions on them.

If none of these criteria apply, we may want to consider using a Mock Object. If
we are trying to address Untested Code (see Production Bugs) by controlling the
indirect inputs of the SUT, a simple Test Stub (page 529) may be all we need.

 Test Spy

Test
Spy

Meszaros_Chapter 23.indd 539Meszaros_Chapter 23.indd 539 4/27/2007 5:20:28 PM4/27/2007 5:20:28 PM

540 Chapter 23 Test Double Patterns

Unlike a Mock Object, a Test Spy does not fail the test at the fi rst deviation
from the expected behavior. Thus our tests will be able to include more detailed
diagnostic information in the Assertion Message (page 370) based on informa-
tion gathered after a Mock Object would have failed the test. At the point of
test failure, however, only the information within the Test Method itself is avail-
able to be used in the calls to the Assertion Methods. If we need to include
information that is accessible only while the SUT is being exercised, either we
must explicitly capture it within our Test Spy or we must use a Mock Object.

Of course, we won’t be able to use any Test Doubles (page 522) unless the
SUT implements some form of substitutable dependency.

Implementation Notes

The Test Spy itself can be built as a Hard-Coded Test Double (page 568) or as a
Confi gurable Test Double (page 558). Because detailed examples appear in the
discussion of those patterns, only a quick summary is provided here. Likewise,
we can use any of the substitutable dependency patterns to install the Test Spy
before we exercise the SUT.

The key characteristic in how a test uses a Test Spy relates to the fact that as-
sertions are made from within the Test Method. Therefore, the test must recover
the indirect outputs captured by the Test Spy before it can make its assertions,
which can be done in several ways.

Variation: Retrieval Interface

We can defi ne the Test Spy as a separate class with a Retrieval Interface that
exposes the recorded information. The Test Method installs the Test Spy instead
of the normal DOC as part of the fi xture setup phase of the test. After the test
has exercised the SUT, it uses the Retrieval Interface to retrieve the actual indi-
rect outputs of the SUT from the Test Spy and then calls Assertion Methods with
those outputs as arguments.

Variation: Self Shunt

We can collapse the Test Spy and the Testcase Class (page 373) into a single object
called a Self Shunt. The Test Method installs itself, the Testcase Object (page 382),
as the DOC into the SUT. Whenever the SUT delegates to the DOC, it is actually
calling methods on the Testcase Object, which implements the methods by saving
the actual values into instance variables that can be accessed by the Test Method.
The methods could also make assertions in the Test Spy methods, in which case
the Self Shunt is a variation on a Mock Object rather than a Test Spy. In stati-
cally typed languages, the Testcase Class must implement the outgoing interface

Also known as:
Loopback

Test
Spy

Meszaros_Chapter 23.indd 540Meszaros_Chapter 23.indd 540 4/27/2007 5:20:29 PM4/27/2007 5:20:29 PM

541

(the observation point) on which the SUT depends so that the Testcase Class is
type-compatible with the variables that are used to hold the DOC.

Variation: Inner Test Double

A popular way to implement the Test Spy as a Hard-Coded Test Double is to
code it as an anonymous inner class or block closure within the Test Method and
to have this class or block save the actual values into instance or local variables
that are accessible by the Test Method. This variation is really another way to
implement a Self Shunt (see Hard-Coded Test Double).

Variation: Indirect Output Registry

Yet another possibility is to have the Test Spy store the actual parameters in a
well-known place where the Test Method can access them. For example, the Test
Spy could save those values in a fi le or in a Registry [PEAA] object.

Motivating Example

The following test verifi es the basic functionality of removing a fl ight but does
not verify the indirect outputs of the SUT—namely, the fact that the SUT is
expected to log each time a fl ight is removed along with the date/time and user-
name of the requester.

 public void testRemoveFlight() throws Exception {
 // setup
 FlightDto expectedFlightDto = createARegisteredFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("fl ight should not exist after being removed",
 facade.fl ightExists(expectedFlightDto.
 getFlightNumber()));
 }

Refactoring Notes

We can add verifi cation of indirect outputs to existing tests using a Replace
Dependency with Test Double (page 522) refactoring. It involves adding code
to the fi xture setup logic of the tests to create the Test Spy, confi guring the Test
Spy with any values it needs to return, and installing it. At the end of the test,
we add assertions comparing the expected method names and arguments of the

 Test Spy

Test
Spy

Meszaros_Chapter 23.indd 541Meszaros_Chapter 23.indd 541 4/27/2007 5:20:29 PM4/27/2007 5:20:29 PM

542 Chapter 23 Test Double Patterns

indirect outputs with the actual values retrieved from the Test Spy using the
Retrieval Interface.

Example: Test Spy

In this improved version of the test, logSpy is our Test Spy. The statement facade.
setAuditLog(logSpy) installs the Test Spy using the Setter Injection pattern (see
Dependency Injection on page 678). The methods getDate, getActionCode, and so
on are the Retrieval Interface used to access the actual arguments of the call to
the logger.

 public void testRemoveFlightLogging_recordingTestStub()
 throws Exception {
 // fi xture setup
 FlightDto expectedFlightDto = createAnUnregFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // Test Double setup
 AuditLogSpy logSpy = new AuditLogSpy();
 facade.setAuditLog(logSpy);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("fl ight still exists after being removed",
 facade.fl ightExists(expectedFlightDto.
 getFlightNumber()));
 assertEquals("number of calls", 1,
 logSpy.getNumberOfCalls());
 assertEquals("action code",
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 logSpy.getActionCode());
 assertEquals("date", helper.getTodaysDateWithoutTime(),
 logSpy.getDate());
 assertEquals("user", Helper.TEST_USER_NAME,
 logSpy.getUser());
 assertEquals("detail",
 expectedFlightDto.getFlightNumber(),
 logSpy.getDetail());
 }

This test depends on the following defi nition of the Test Spy:

public class AuditLogSpy implements AuditLog {
 // Fields into which we record actual usage information
 private Date date;
 private String user;
 private String actionCode;
 private Object detail;
 private int numberOfCalls = 0;

Test
Spy

Meszaros_Chapter 23.indd 542Meszaros_Chapter 23.indd 542 4/27/2007 5:20:29 PM4/27/2007 5:20:29 PM

543

 // Recording implementation of real AuditLog interface
 public void logMessage(Date date,
 String user,
 String actionCode,
 Object detail) {
 this.date = date;
 this.user = user;
 this.actionCode = actionCode;
 this.detail = detail;

 numberOfCalls++;
 }

 // Retrieval Interface
 public int getNumberOfCalls() {
 return numberOfCalls;
 }
 public Date getDate() {
 return date;
 }
 public String getUser() {
 return user;
 }
 public String getActionCode() {
 return actionCode;
 }
 public Object getDetail() {
 return detail;
 }
}

Of course, we could have implemented the Retrieval Interface by making the
various fi elds of our spy public and thereby avoided the need for accessor
methods. Please refer to the examples in Hard-Coded Test Double for other
implementation options.

 Test Spy

Test
Spy

Meszaros_Chapter 23.indd 543Meszaros_Chapter 23.indd 543 4/27/2007 5:20:29 PM4/27/2007 5:20:29 PM

544 Chapter 23 Test Double Patterns

Mock Object

How do we implement Behavior Verifi cation for indirect
outputs of the SUT?

How can we verify logic independently when it depends on indirect inputs
from other software components?

We replace an object on which the SUT depends on with a test-specifi c object
that verifi es it is being used correctly by the SUT.

In many circumstances, the environment or context in which the SUT operates
very much infl uences the behavior of the SUT. In other cases, we must peer
“inside”2 the SUT to determine whether the expected behavior has occurred.

A Mock Object is a powerful way to implement Behavior Verifi cation (page 468)
while avoiding Test Code Duplication (page 213) between similar tests. It works
by delegating the job of verifying the indirect outputs of the SUT entirely to a Test
Double (page 522).

2 Technically, the SUT is whatever software we are testing and doesn’t include anything
it depends on; thus “inside” is somewhat of a misnomer. It is better to think of the DOC
that is the destination of the indirect outputs as being “behind” the SUT and part of the
fi xture.

Fixture
DOC

SUT

Mock
Object

Final Verification

Exercise

Creation
Setup

Exercise

Verify

Teardown

ExpectationsInstallation
Indirect
Output

V
er

ify

Fixture
DOC

SUT

Mock
Object

Final Verification

Exercise

Creation
Setup

Exercise

Verify

Teardown

ExpectationsInstallation
Indirect
Output

V
er

ify

Mock
Object

Meszaros_Chapter 23.indd 544Meszaros_Chapter 23.indd 544 4/27/2007 5:20:29 PM4/27/2007 5:20:29 PM

545

How It Works

First, we defi ne a Mock Object that implements the same interface as an object
on which the SUT depends. Then, during the test, we confi gure the Mock Object
with the values with which it should respond to the SUT and the method calls
(complete with expected arguments) it should expect from the SUT. Before exer-
cising the SUT, we install the Mock Object so that the SUT uses it instead of the
real implementation. When called during SUT execution, the Mock Object com-
pares the actual arguments received with the expected arguments using Equality
Assertions (see Assertion Method on page 362) and fails the test if they don’t
match. The test need not make any assertions at all!

When to Use It

We can use a Mock Object as an observation point when we need to do Behavior
Verifi cation to avoid having an Untested Requirement (see Production Bugs on
page 268) caused by our inability to observe the side effects of invoking meth-
ods on the SUT. This pattern is commonly used during endoscopic testing [ET]
or need-driven development [MRNO]. Although we don’t need to use a Mock
Object when we are doing State Verifi cation (page 462), we might use a Test
Stub (page 529) or Fake Object (page 551). Note that test drivers have found
other uses for the Mock Object toolkits, but many of these are actually examples
of using a Test Stub rather than a Mock Object.

To use a Mock Object, we must be able to predict the values of most or
all arguments of the method calls before we exercise the SUT. We should not
use a Mock Object if a failed assertion cannot be reported back to the Test
Runner (page 377) effectively. This may be the case if the SUT runs inside a
container that catches and eats all exceptions. In these circumstances, we may
be better off using a Test Spy (page 538) instead.

Mock Objects (especially those created using dynamic mocking tools) often
use the equals methods of the various objects being compared. If our test-specifi c
equality differs from how the SUT would interpret equals, we may not be able to
use a Mock Object or we may be forced to add an equals method where we didn’t
need one. This smell is called Equality Pollution (see Test Logic in Production on
page 217). Some implementations of Mock Objects avoid this problem by allow-
ing us to specify the “comparator” to be used in the Equality Assertions.

Mock Objects can be either “strict” or “lenient” (sometimes called “nice”).
A “strict” Mock Object fails the test if the calls are received in a different order
than was specifi ed when the Mock Object was programmed. A “lenient” Mock
Object tolerates out-of-order calls.

 Mock Object

Mock
Object

Meszaros_Chapter 23.indd 545Meszaros_Chapter 23.indd 545 4/27/2007 5:20:30 PM4/27/2007 5:20:30 PM

546 Chapter 23 Test Double Patterns

Implementation Notes

Tests written using Mock Objects look different from more traditional tests be-
cause all the expected behavior must be specifi ed before the SUT is exercised. This
makes the tests harder to write and to understand for test automation neophytes.
This factor may be enough to cause us to prefer writing our tests using Test Spies.

The standard Four-Phase Test (page 358) is altered somewhat when we use
Mock Objects. In particular, the fi xture setup phase of the test is broken down
into three specifi c activities and the result verifi cation phase more or less dis-
appears, except for the possible presence of a call to the “fi nal verifi cation”
method at the end of the test.

Fixture setup:

• Test constructs Mock Object.

• Test confi gures Mock Object. This step is omitted for Hard-Coded Test
Doubles (page 568).

• Test installs Mock Object into SUT.

Exercise SUT:

• SUT calls Mock Object; Mock Object does assertions.

Result verifi cation:

• Test calls “fi nal verifi cation” method.

Fixture teardown:

• No impact.

Let’s examine these differences a bit more closely:

Construction

As part of the fi xture setup phase of our Four-Phase Test, we must construct the
Mock Object that we will use to replace the substitutable dependency. Depend-
ing on which tools are available in our programming language, we can either
build the Mock Object class manually, use a code generator to create a Mock
Object class, or use a dynamically generated Mock Object.

Confi guration with Expected Values

Because the Mock Object toolkits available in many members of the xUnit
family typically create Confi gurable Mock Objects (page 544), we need

Mock
Object

Meszaros_Chapter 23.indd 546Meszaros_Chapter 23.indd 546 4/27/2007 5:20:30 PM4/27/2007 5:20:30 PM

547

to confi gure the Mock Object with the expected method calls (and their
parameters) as well as the values to be returned by any functions. (Some
Mock Object frameworks allow us to disable verifi cation of the method calls
or just their parameters.) We typically perform this confi guration before we
install the Test Double.

This step is not needed when we are using a Hard-Coded Test Double such
as an Inner Test Double (see Hard-Coded Test Double).

Installation

Of course, we must have a way of installing a Test Double into the SUT to be
able to use a Mock Object. We can use whichever substitutable dependency
pattern the SUT supports. A common approach in the test-driven development
community is Dependency Injection (page 678); more traditional developers
may favor Dependency Lookup (page 686).

Usage

When the SUT calls the methods of the Mock Object, these methods compare the
method call (method name plus arguments) with the expectations. If the method
call is unexpected or the arguments are incorrect, the assertion fails the test im-
mediately. If the call is expected but came out of sequence, a strict Mock Object
fails the test immediately; by contrast, a lenient Mock Object notes that the call
was received and carries on. Missed calls are detected when the fi nal verifi cation
method is called.

If the method call has any outgoing parameters or return values, the Mock
Object needs to return or update something to allow the SUT to continue executing
the test scenario. This behavior may be either hard-coded or confi gured at the same
time as the expectations. This behavior is the same as for Test Stubs, except that we
typically return happy path values.

Final Verifi cation

Most of the result verifi cation occurs inside the Mock Object as it is called by
the SUT. The Mock Object will fail the test if the methods are called with the
wrong arguments or if methods are called unexpectedly. But what happens if
the expected method calls are never received by the Mock Object? The Mock
Object may have trouble detecting that the test is over and it is time to check for
unfulfi lled expectations. Therefore, we need to ensure that the fi nal verifi cation
method is called. Some Mock Object toolkits have found a way to invoke this

 Mock Object

Mock
Object

Meszaros_Chapter 23.indd 547Meszaros_Chapter 23.indd 547 4/27/2007 5:20:30 PM4/27/2007 5:20:30 PM

548 Chapter 23 Test Double Patterns

method automatically by including the call in the tearDown method.3 Many other
toolkits require us to remember to call the fi nal verifi cation method ourselves.

Motivating Example

The following test verifi es the basic functionality of creating a fl ight. But it does
not verify the indirect outputs of the SUT—namely, the SUT is expected to log each
time a fl ight is created along with the date/time and username of the requester.

 public void testRemoveFlight() throws Exception {
 // setup
 FlightDto expectedFlightDto = createARegisteredFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("fl ight should not exist after being removed",
 facade.fl ightExists(expectedFlightDto.
 getFlightNumber()));
 }

Refactoring Notes

Verifi cation of indirect outputs can be added to existing tests by using a Replace
Dependency with Test Double (page 522) refactoring. This involves adding code to
the fi xture setup logic of our test to create the Mock Object; confi guring the Mock
Object with the expected method calls, arguments, and values to be returned; and
installing it using whatever substitutable dependency mechanism is provided by
the SUT. At the end of the test, we add a call to the fi nal verifi cation method if our
Mock Object framework requires one.

Example: Mock Object (Hand-Coded)

In this improved version of the test, mockLog is our Mock Object. The method
setExpectedLogMessage is used to program it with the expected log message. The
statement facade.setAuditLog(mockLog) installs the Mock Object using the Setter
Injection (see Dependency Injection) test double-installation pattern. Finally,
the verify() method ensures that the call to logMessage() was actually made.

3 This usually requires that we subclass our testcase from a special MockObjectTestCase
class.

Mock
Object

Meszaros_Chapter 23.indd 548Meszaros_Chapter 23.indd 548 4/27/2007 5:20:30 PM4/27/2007 5:20:30 PM

549

 public void testRemoveFlight_Mock() throws Exception {
 // fi xture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 // mock confi guration
 Confi gurableMockAuditLog mockLog =
 new Confi gurableMockAuditLog();
 mockLog.setExpectedLogMessage(
 helper.getTodaysDateWithoutTime(),
 Helper.TEST_USER_NAME,
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 expectedFlightDto.getFlightNumber());
 mockLog.setExpectedNumberCalls(1);
 // mock installation
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 facade.setAuditLog(mockLog);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("fl ight still exists after being removed",
 facade.fl ightExists(expectedFlightDto.
 getFlightNumber()));
 mockLog.verify();
 }

This approach was made possible by use of the following Mock Object. Here we
have chosen to use a hand-built Mock Object. In the interest of space, just the
logMessage method is shown:

 public void logMessage(Date actualDate,
 String actualUser,
 String actualActionCode,
 Object actualDetail) {
 actualNumberCalls++;

 Assert.assertEquals("date", expectedDate, actualDate);
 Assert.assertEquals("user", expectedUser, actualUser);
 Assert.assertEquals("action code",
 expectedActionCode,
 actualActionCode);
 Assert.assertEquals("detail", expectedDetail,actualDetail);
 }

The Assertion Methods are called as static methods. In JUnit, this approach is
required because the Mock Object is not a subclass of TestCase; thus it does not
inherit the assertion methods from Assert. Other members of the xUnit family
may provide different mechanisms to access the Assertion Methods. For exam-
ple, NUnit provides them only as static methods on the Assert class, so even Test
Methods (page 348) need to access the Assertion Methods this way. Test::Unit,

 Mock Object

Mock
Object

Meszaros_Chapter 23.indd 549Meszaros_Chapter 23.indd 549 4/27/2007 5:20:30 PM4/27/2007 5:20:30 PM

550 Chapter 23 Test Double Patterns

the xUnit family member for the Ruby programming language, provides them as
mixins; as a consequence, they can be called in the normal fashion.

Example: Mock Object (Dynamically Generated)

The last example used a hand-coded Mock Object. Most members of the xUnit
family, however, have dynamic Mock Object frameworks available. Here’s the
same test rewritten using JMock:

 public void testRemoveFlight_JMock() throws Exception {
 // fi xture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // mock confi guration
 Mock mockLog = mock(AuditLog.class);
 mockLog.expects(once()).method("logMessage")
 .with(eq(helper.getTodaysDateWithoutTime()),
 eq(Helper.TEST_USER_NAME),
 eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
 eq(expectedFlightDto.getFlightNumber()));
 // mock installation
 facade.setAuditLog((AuditLog) mockLog.proxy());
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("fl ight still exists after being removed",
 facade.fl ightExists(expectedFlightDto.
 getFlightNumber()));
 // verify() method called automatically by JMock
 }

Note how JMock provides a “fl uent” Confi guration Interface (see Confi gurable
Test Double) that allows us to specify the expected method calls in a fairly readable
fashion. JMock also allows us to specify the comparator to be used by the asser-
tions; in this case, the calls to eq cause the default equals method to be called.

Further Reading

Almost every book on automated testing using xUnit has something to say about
Mock Objects, so I won’t list those resources here. As you are reading other
books, keep in mind that the term Mock Object is often used to refer to a Test
Stub and sometimes even to Fake Objects. Mocks, Fakes, Stubs, and Dummies
(in Appendix B) contains a more thorough comparison of the terminology used
in various books and articles.

Mock
Object

Meszaros_Chapter 23.indd 550Meszaros_Chapter 23.indd 550 4/27/2007 5:20:30 PM4/27/2007 5:20:30 PM

551

Fake Object

How can we verify logic independently when depended-on objects
cannot be used?

How can we avoid Slow Tests?

We replace a component that the SUT depends on with a much
lighter-weight implementation.

The SUT often depends on other components or systems. Although the inter-
actions with these other components may be necessary, the side effects of these
interactions as implemented by the real DOC may be unnecessary or even
detrimental.

A Fake Object is a much simpler and lighter-weight implementation of the
functionality provided by the DOC without the side effects we choose to do
without.

How It Works

We acquire or build a very lightweight implementation of the same functionality
as provided by a component on which the SUT depends and instruct the SUT
to use it instead of the real DOC. This implementation need not have any of the

Fixture
DOC

Fake
Object

Exercise

Creation
Setup

Exercise

Verify

Teardown

Installation

Setup

SUT
Data

Fixture
DOC

Fake
Object

Exercise

Creation
Setup

Exercise

Verify

Teardown

Installation

Setup

SUT
Data

 Fake Object

Fake
Object

Also known as:
Dummy

Meszaros_Chapter 23.indd 551Meszaros_Chapter 23.indd 551 4/27/2007 5:20:30 PM4/27/2007 5:20:30 PM

552 Chapter 23 Test Double Patterns

“-ilities” that the real DOC needs to have (such as scalability); it need provide
only the equivalent services to the SUT so that the SUT remains unaware it isn’t
using the real DOC.

A Fake Object is a kind of Test Double (page 522) that is similar to a Test
Stub (page 529) in many ways, including the need to install into the SUT a
substitutable dependency. Whereas a Test Stub acts as a control point to inject
indirect inputs into the SUT, however, the Fake Object does not: It merely
provides a way for the interactions to occur in a self-consistent manner. These
interactions (i.e., between the SUT and the Fake Object) will typically be
many, and the values passed in as arguments of earlier method calls will often
be returned as results of later method calls. Contrast this behavior with that
of Test Stubs and Mock Objects (page 544), where the responses are either
hard-coded or confi gured by the test.

While the test does not normally confi gure a Fake Object, complex fi xture
setup that would typically involve initializing the state of the DOC may also be
done with the Fake Object directly using Back Door Manipulation (page 327).
Techniques such as Data Loader (see Back Door Manipulation) and Back Door
Setup (see Back Door Manipulation) can be used quite successfully with less
fear of Overspecifi ed Software (see Fragile Test on page 239) because they sim-
ply bind us to the interface between the SUT and the Fake Object; the interface
used to confi gure the Fake Object is a test-only concern.

When to Use It

We should use a Fake Object whenever the SUT depends on other components that
are unavailable or that make testing diffi cult or slow (e.g., Slow Tests; see page 253)
and the tests need more complex sequences of behavior than are worth implement-
ing in a Test Stub or Mock Object. It must also be easier to create a lightweight
implementation than to build and program suitable Mock Objects, at least in the
long run, if building a Fake Object is to be worthwhile.

Using a Fake Object helps us avoid Overspecifi ed Software because we do
not encode the exact calling sequences expected of the DOC within the test.
The SUT can vary how many times the methods of the DOC are called without
causing tests to fail.

If we need to control the indirect inputs or verify the indirect outputs of the
SUT, we should probably use a Mock Object or Test Stub instead.

Some specifi c situations where we replace the real component with a Fake
Object are described next.

Fake
Object

Meszaros_Chapter 23.indd 552Meszaros_Chapter 23.indd 552 4/27/2007 5:20:31 PM4/27/2007 5:20:31 PM

553

Variation: Fake Database

With the Fake Database pattern, the real database or persistence layer is replaced
by a Fake Object that is functionally equivalent but that has much better perfor-
mance characteristics. An approach we have often used involves replacing the
database with a set of in-memory HashTables that act as a very lightweight way of
retrieving objects that have been “persisted” earlier in the test.

Variation: In-Memory Database

Another example of a Fake Object is the use of a small-footprint, diskless
database instead of a full-featured disk-based database. This kind of In-Memory
Database will improve the speed of tests by at least an order of magnitude while
giving up less functionality than a Fake Database.

Variation: Fake Web Service

When testing software that depends on other components that are accessed as
Web services, we can build a small hard-coded or data-driven implementation
that can be used instead of the real Web service to make our tests more robust
and to avoid having to create a test instance of the real Web service in our
development environment.

Variation: Fake Service Layer

When testing user interfaces, we can avoid Data Sensitivity (see Fragile Test) and
Behavior Sensitivity (see Fragile Test) of the tests by replacing the component
that implements the Service Layer [PEAA] (including the domain layer) of our
application with a Fake Object that returns remembered or data-driven results.
This approach allows us to focus on testing the user interface without having to
worry about the data being returned changing over time.

Implementation Notes

Introducing a Fake Object involves two basic concerns:

• Building the Fake Object implementation

• Installing the Fake Object

Building the Fake Object

Most Fake Objects are hand-built. Often, the Fake Object is used to replace a
real implementation that suffers from latency issues owing to real messaging

 Fake Object

Fake
Object

Meszaros_Chapter 23.indd 553Meszaros_Chapter 23.indd 553 4/27/2007 5:20:31 PM4/27/2007 5:20:31 PM

554 Chapter 23 Test Double Patterns

or disk I/O with a much lighter in-memory implementation. With the rich class
libraries available in most object-oriented programming languages, it is usually
possible to build a fake implementation that is suffi cient to satisfy the needs of
the SUT, at least for the purposes of specifi c tests, with relatively little effort.

A popular strategy is to start by building a Fake Object to support a specifi c
set of tests where the SUT requires only a subset of the DOC’s services. If this
proves successful, we may consider expanding the Fake Object to handle addi-
tional tests. Over time, we may fi nd that we can run all of our tests using the Fake
Object. (See the sidebar “Faster Tests Without Shared Fixtures” on page 319 for
a description of how we faked out the entire database with hash tables and made
our tests run 50 times faster.)

Installing the Fake Object

Of course, we must have a way of installing the Fake Object into the SUT to
be able to take advantage of it. We can use whichever substitutable dependency
pattern the SUT supports. A common approach in the test-driven development
community is Dependency Injection (page 678); more traditional developers
may favor Dependency Lookup (page 686). The latter technique is also more
appropriate when we introduce a Fake Database (see Fake Object on page 551)
in an effort to speed up execution of the customer tests; Dependency Injection
doesn’t work so well with these kinds of tests.

Motivating Example

In this example, the SUT needs to read and write records from a database. The test
must set up the fi xture in the database (several writes), the SUT interacts (reads
and writes) with the database several more times, and then the test removes the
records from the database (several deletes). All of this work takes time—several
seconds per test. This very quickly adds up to minutes, and soon we fi nd that our
developers aren’t running the tests quite so frequently. Here is an example of one
of these tests:

 public void testReadWrite() throws Exception{
 // Setup
 FlightMngtFacade facade = new FlightMgmtFacadeImpl();
 BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary");
 BigDecimal lax = facade.createAirport("LAX", "LAX Intl", "LA");
 facade.createFlight(yyc, lax);
 // Exercise
 List fl ights = facade.getFlightsByOriginAirport(yyc);

Fake
Object

Meszaros_Chapter 23.indd 554Meszaros_Chapter 23.indd 554 4/27/2007 5:20:31 PM4/27/2007 5:20:31 PM

555

 // Verify
 assertEquals("# of fl ights", 1, fl ights.size());
 Flight fl ight = (Flight) fl ights.get(0);
 assertEquals("origin",
 yyc, fl ight.getOrigin().getCode());
 }

The test calls createAirport on our Service Facade [CJ2EEP], which calls, among
other things, our data access layer. Here is the actual implementation of several
of the methods we are calling:

 public BigDecimal createAirport(String airportCode,
 String name,
 String nearbyCity)
 throws FlightBookingException{
 TransactionManager.beginTransaction();
 Airport airport = dataAccess.
 createAirport(airportCode, name, nearbyCity);
 logMessage("Wrong Action Code", airport.getCode());//bug
 TransactionManager.commitTransaction();
 return airport.getId();
 }

 public List getFlightsByOriginAirport(
 BigDecimal originAirportId)
 throws FlightBookingException {

 if (originAirportId == null)
 throw new InvalidArgumentException(
 "Origin Airport Id has not been provided",
 "originAirportId", null);
 Airport origin = dataAccess.getAirportByPrimaryKey(originAirportId);
 List fl ights = dataAccess.getFlightsByOriginAirport(origin);

 return fl ights;
 }

The calls to dataAccess.createAirport, dataAccess.createFlight, and TransactionManager.
commitTransaction cause our test to slow down the most. The calls to dataAccess.
getAirportByPrimaryKey and dataAccess.getFlightsByOriginAirport are a lesser factor but
still contribute to the slow test.

Refactoring Notes

The steps for introducing a Fake Object are very similar to those for adding a
Mock Object. If one doesn’t already exist, we use a Replace Dependency with Test
Double (page 522) refactoring to introduce a way to substitute the Fake Object for
the DOC—usually a fi eld (attribute) to hold the reference to it. In statically typed
languages, we may have to do an Extract Interface [Fowler] refactoring before we

 Fake Object

Fake
Object

Meszaros_Chapter 23.indd 555Meszaros_Chapter 23.indd 555 4/27/2007 5:20:31 PM4/27/2007 5:20:31 PM

556 Chapter 23 Test Double Patterns

can introduce the fake implementation. Then, we use this interface as the type of
variable that holds the reference to the substitutable dependency.

One notable difference is that we do not need to confi gure the Fake Object with
expectations or return values; we merely set up the fi xture in the normal way.

Example: Fake Database

In this example, we’ve created a Fake Object that replaces the database—that
is, a Fake Database implemented entirely in memory using hash tables. The test
doesn’t change a lot, but the test execution occurs much, much faster.

 public void testReadWrite_inMemory() throws Exception{
 // Setup
 FlightMgmtFacadeImpl facade = new FlightMgmtFacadeImpl();
 facade.setDao(new InMemoryDatabase());
 BigDecimal yyc = facade.createAirport("YYC", "Calgary", "Calgary");
 BigDecimal lax = facade.createAirport("LAX", "LAX Intl", "LA");
 facade.createFlight(yyc, lax);
 // Exercise
 List fl ights = facade.getFlightsByOriginAirport(yyc);
 // Verify
 assertEquals("# of fl ights", 1, fl ights.size());
 Flight fl ight = (Flight) fl ights.get(0);
 assertEquals("origin",
 yyc, fl ight.getOrigin().getCode());
 }

Here’s the implementation of the Fake Database:

public class InMemoryDatabase implements FlightDao{
 private List airports = new Vector();
 public Airport createAirport(String airportCode,
 String name, String nearbyCity)
 throws DataException, InvalidArgumentException {
 assertParamtersAreValid(airportCode, name, nearbyCity);
 assertAirportDoesntExist(airportCode);
 Airport result = new Airport(getNextAirportId(),
 airportCode, name, createCity(nearbyCity));
 airports.add(result);
 return result;
 }
 public Airport getAirportByPrimaryKey(BigDecimal airportId)
 throws DataException, InvalidArgumentException {
 assertAirportNotNull(airportId);

 Airport result = null;
 Iterator i = airports.iterator();
 while (i.hasNext()) {

Fake
Object

Meszaros_Chapter 23.indd 556Meszaros_Chapter 23.indd 556 4/27/2007 5:20:31 PM4/27/2007 5:20:31 PM

557

 Airport airport = (Airport) i.next();
 if (airport.getId().equals(airportId)) {
 return airport;
 }
 }
 throw new DataException("Airport not found:"+airportId);
 }

Now all we need is the implementation of the method that installs the Fake
Database into the facade to make our developers more than happy to run all the
tests after every code change.

 public void setDao(FlightDao) {
 dataAccess = dao;
 }

Further Reading

The sidebar “Faster Tests Without Shared Fixtures” on page 319 provides a
more in-depth description of how we faked out the entire database with hash
tables and made our tests run 50 times faster. Mocks, Fakes, Stubs, and Dum-
mies (in Appendix B) contains a more thorough comparison of the terminology
used in various books and articles.

 Fake Object

Fake
Object

Meszaros_Chapter 23.indd 557Meszaros_Chapter 23.indd 557 4/27/2007 5:20:31 PM4/27/2007 5:20:31 PM

558 Chapter 23 Test Double Patterns

Confi gurable Test Double

How do we tell a Test Double what to return or expect?

We confi gure a reusable Test Double with the values to be returned
or verifi ed during the fi xture setup phase of a test.

Some tests require unique values to be fed into the SUT as indirect inputs or to be
verifi ed as indirect outputs of the SUT. This approach typically requires the use of
Test Doubles (page 522) as the conduit between the test and the SUT; at the same
time, the Test Double somehow needs to be told which values to return or verify.

A Confi gurable Test Double is a way to reduce Test Code Duplication (page 213)
by reusing a Test Double in many tests. The key to its use is to confi gure the Test
Double’s values to be returned or expected at runtime.

How It Works

The Test Double is built with instance variables that hold the values to be returned
to the SUT or to serve as the expected values of arguments to method calls. The test
initializes these variables during the setup phase of the test by calling the appropri-
ate methods on the Test Double’s interface. When the SUT calls the methods on the
Test Double, the Test Double uses the contents of the appropriate variable as the
value to return or as the expected value in assertions.

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation Expectations

Configuration

Expectations,
Return Values

Return
Values

Fixture
Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation Expectations

Configuration

Expectations,
Return Values

Return
Values

Confi gurable
Test Double

Also known as:
Confi gurable
Mock Object,
Confi gurable

Test Spy,
Confi gurable

Test Stub

Meszaros_Chapter 23.indd 558Meszaros_Chapter 23.indd 558 4/27/2007 5:20:32 PM4/27/2007 5:20:32 PM

559

When to Use It

We can use a Confi gurable Test Double whenever we need similar but slightly
different behavior in several tests that depend on Test Doubles and we want to avoid
Test Code Duplication or Obscure Tests (page 186)—in the latter case, we need to
see what values the Test Double is using as we read the test. If we expect only
a single usage of a Test Double, we can consider using a Hard-Coded Test
Double (page 568) if the extra effort and complexity of building a Confi gurable
Test Double are not warranted.

Implementation Notes

A Test Double is a Confi gurable Test Double because it needs to provide a way
for the tests to confi gure it with values to return and/or method arguments to
expect. Confi gurable Test Stubs (page 529) and Test Spies (page 538) simply
require a way to confi gure the responses to calls on their methods; confi gurable
Mock Objects (page 544) also require a way to confi gure their expectations
(which methods should be called and with which arguments).

Confi gurable Test Doubles may be built in many ways. Deciding on a par-
ticular implementation involves making two relatively independent decisions:
(1) how the Confi gurable Test Double will be confi gured and (2) how the
Confi gurable Test Double will be coded.

There are two common ways to confi gure a Confi gurable Test Double. The
most popular approach is to provide a Confi guration Interface that is used
only by the test to confi gure the values to be returned as indirect inputs and
the expected values of the indirect outputs. Alternatively, we may build the
Confi gurable Test Double with two modes. The Confi guration Mode is used
during fi xture setup to install the indirect inputs and expected indirect out-
puts by calling the methods of the Confi gurable Test Double with the expected
arguments. Before the Confi gurable Test Double is installed, it is put into the
normal (“usage” or “playback”) mode.

The obvious way to build a Confi gurable Test Double is to create a Hand-
Built Test Double. If we are lucky, however, someone will have already built
a tool to generate a Confi gurable Test Double for us. Test Double genera-
tors come in two fl avors: code generators and tools that fabricate the object
at runtime. Developers have built several generations of “mocking” tools, and
several of these have been ported to other programming languages; check out
http://xprogramming.com to see what is available in your programming language
of choice. If the answer is “nothing,” you can hand-code the Test Double your-
self, although this does take somewhat more effort.

 Configurable Test Double

Confi gurable
Test Double

Meszaros_Chapter 23.indd 559Meszaros_Chapter 23.indd 559 4/27/2007 5:20:32 PM4/27/2007 5:20:32 PM

560 Chapter 23 Test Double Patterns

Variation: Confi guration Interface

A Confi guration Interface comprises a separate set of methods that the
Confi gurable Test Double provides specifi cally for use by the test to set each
value that the Confi gurable Test Double returns or expects to receive. The
test simply calls these methods during the fi xture setup phase of the Four-Phase
Test (page 358). The SUT uses the “other” methods on the Confi gurable Test
Double (the “normal” interface). It isn’t aware that the Confi guration Interface
exists on the object to which it is delegating.

Confi guration Interfaces come in two fl avors. Early toolkits, such as Mock-
Maker, generated a distinct method for each value we needed to confi gure. The
collection of these setter methods made up the Confi guration Interface. More
recently introduced toolkits, such as JMock, provide a generic interface that is used
to build an Expected Behavior Specifi cation (see Behavior Verifi cation on page
468) that the Confi gurable Test Double interprets at runtime. A well-designed
fl uent interface can make the test much easier to read and understand.

Variation: Confi guration Mode

We can avoid defi ning a separate set of methods to confi gure the Test Double by
providing a Confi guration Mode that the test uses to “teach” the Confi gurable
Test Double what to expect. At fi rst glance, this means of confi guring the Test
Double can be confusing: Why does the Test Method (page 348) call the methods
of this other object before it calls the methods it is exercising on the SUT? When
we come to grips with the fact that we are doing a form of “record and play-
back,” this technique makes a bit more sense.

The main advantage of using a Confi guration Mode is that it avoids creating
a separate set of methods for confi guring the Confi gurable Test Double because
we reuse the same methods that the SUT will be calling. (We do have to pro-
vide a way to set the values to be returned by the methods, so we have at least
one additional method to add.) On the fl ip side, each method that the SUT is
expected to call now has two code paths through it: one for the Confi guration
Mode and another for the “usage mode.”

Variation: Hand-Built Test Double

A Hand-Built Test Double is one that was defi ned by the test automater for one
or more specifi c tests. A Hard-Coded Test Double is inherently a Hand-Built Test
Double, while a Confi gurable Test Double can be either hand-built or gener-
ated. This book uses Hand-Built Test Doubles in a lot of the examples because
it is easier to see what is going on when we have actual, simple, concrete code to
look at. This is the main advantage of using a Hand-Built Test Double; indeed,

Confi gurable
Test Double

Meszaros_Chapter 23.indd 560Meszaros_Chapter 23.indd 560 4/27/2007 5:20:32 PM4/27/2007 5:20:32 PM

561

some people consider this benefi t to be so important that they use Hand-Built
Test Doubles exclusively. We may also use a Hand-Built Test Double when no
third-party toolkits are available or if we are prevented from using those tools by
project or corporate policy.

Variation: Statically Generated Test Double

The early third-party toolkits used code generators to create the code for Stati-
cally Generated Test Doubles. The code is then compiled and linked with our
handwritten test code. Typically, we will store the code in a source code repository
[SCM]. Whenever the interface of the target class changes, of course, we must
regenerate the code for our Statically Generated Test Doubles. It may be advan-
tageous to include this step as part of the automated build script to ensure that it
really does happen whenever the interface changes.

Instantiating a Statically Generated Test Double is the same as instantiating
a Hand-Built Test Double. That is, we use the name of the generated class to
construct the Confi gurable Test Double.

An interesting problem arises during refactoring. Suppose we change the
interface of the class we are replacing by adding an argument to one of the
methods. Should we then refactor the generated code? Or should we regener-
ate the Statically Generated Test Double after the code it replaces has been
refactored? With modern refactoring tools, it may seem easier to refactor the
generated code and the tests that use it in a single step; this strategy, however,
may leave the Statically Generated Test Double without argument verifi cation
logic or variables for the new parameter. Therefore, we should regenerate the
Statically Generated Test Double after the refactoring is fi nished to ensure that
the refactored Statically Generated Test Double works properly and can be
recreated by the code generator.

Variation: Dynamically Generated Test Double

Newer third-party toolkits generate Confi gurable Test Doubles at runtime by
using the refl ection capabilities of the programming language to examine a
class or interface and build an object that is capable of understanding all calls
to its methods. These Confi gurable Test Doubles may interpret the behavior
specifi cation at runtime or they may generate executable code; nevertheless,
there is no source code for us to generate and maintain or regenerate. The
down side is simply that there is no code to look at—but that really isn’t a
disadvantage unless we are particularly suspicious or paranoid.

Most of today’s tools generate Mock Objects because they are the most
fashionable and widely used options. We can still use these objects as Test Stubs,

 Configurable Test Double

Confi gurable
Test Double

Meszaros_Chapter 23.indd 561Meszaros_Chapter 23.indd 561 4/27/2007 5:20:32 PM4/27/2007 5:20:32 PM

562 Chapter 23 Test Double Patterns

however, because they do provide a way of setting the value to be returned when
a particular method is called. If we aren’t particularly interested in verifying the
methods being called or the arguments passed to them, most toolkits provide a
way to specify “don’t care” arguments. Given that most toolkits generate Mock
Objects, they typically don’t provide a Retrieval Interface (see Test Spy).

Motivating Example

Here’s a test that uses a Hard-Coded Test Double to give it control over the
time:

 public void testDisplayCurrentTime_AtMidnight_HCM()
 throws Exception {
 // Fixture Setup
 // Instantiate hard-code Test Stub:
 TimeProvider testStub = new MidnightTimeProvider();
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Inject Stub into SUT
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify Direct Output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

This test is hard to understand without seeing the defi nition of the Hard-Coded
Test Double. It is easy to see how this lack of clarity can lead to a Mystery Guest
(see Obscure Test) if the defi nition is not close at hand.

 class MidnightTimeProvider implements TimeProvider {
 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 myTime.set(Calendar.MINUTE, 0);
 return myTime;
 }
 }

We can solve the Obscure Test problem by using a Self Shunt (see Hard-Coded
Test Double) to make the Hard-Coded Test Double visible within the test:

public class SelfShuntExample extends TestCase
implements TimeProvider {
 public void testDisplayCurrentTime_AtMidnight() throws Exception {
 // Fixture Setup

Confi gurable
Test Double

Meszaros_Chapter 23.indd 562Meszaros_Chapter 23.indd 562 4/27/2007 5:20:32 PM4/27/2007 5:20:32 PM

563

 TimeDisplay sut = new TimeDisplay();
 // Mock Setup
 sut.setTimeProvider(this); // self shunt installation
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify Direct Output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.MINUTE, 0);
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 return myTime;
 }
}

Unfortunately, we will need to build the Test Double behavior into each Testcase
Class (page 373) that requires it, which results in Test Code Duplication.

Refactoring Notes

Refactoring a test that uses a Hard-Coded Test Double to become a test that uses
a third-party Confi gurable Test Double is relatively straightforward. We simply
follow the directions provided with the toolkit to instantiate the Confi gurable
Test Double and confi gure it with the same values as we used in the Hard-Coded
Test Double. We may also have to move some of the logic that was originally
hard-coded within the Test Double into the Test Method and pass it in to the Test
Double as part of the confi guration step.

Converting the actual Hard-Coded Test Double into a Confi gurable Test
Double is a bit more complicated, but not overly so if we need to capture
only simple behavior. (For more complex behavior, we’re probably better off
examining one of the existing toolkits and porting it to our environment if it
is not yet available.) First we need to introduce a way to set the values to be
returned or expected. The best choice is to start by modifying the test to see
how we want to interact with the Confi gurable Test Double. After instantiating
it during the fi xture setup part of the test, we then pass the test-specifi c values
to the Confi gurable Test Double using the emerging Confi guration Interface or
Confi guration Mode. Once we’ve seen how we want to use the Confi gurable
Test Double, we can use an Introduce Field [JetBrains] refactoring to create the
instance variables of the Confi gurable Test Double to hold each of the previ-
ously hard-coded values.

 Configurable Test Double

Confi gurable
Test Double

Meszaros_Chapter 23.indd 563Meszaros_Chapter 23.indd 563 4/27/2007 5:20:32 PM4/27/2007 5:20:32 PM

564 Chapter 23 Test Double Patterns

Example: Confi guration Interface Using Setters

The following example shows how a test would use a simple hand-built
Confi guration Interface using Setter Injection:

 public void testDisplayCurrentTime_AtMidnight()
 throws Exception {
 // Fixture setup
 // Test Double confi guration
 TimeProviderTestStub tpStub = new TimeProviderTestStub();
 tpStub.setHours(0);
 tpStub.setMinutes(0);
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Test Double installation
 sut.setTimeProvider(tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify Outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

The Confi gurable Test Double is implemented as follows:

class TimeProviderTestStub implements TimeProvider {
 // Confi guration Interface
 public void setHours(int hours) {
 // 0 is midnight; 12 is noon
 myTime.set(Calendar.HOUR_OF_DAY, hours);
 }

 public void setMinutes(int minutes) {
 myTime.set(Calendar.MINUTE, minutes);
 }
 // Interface Used by SUT
 public Calendar getTime() {
 // @return the last time that was set
 return myTime;
 }
}

Example: Confi guration Interface Using Expression Builder

Now let’s contrast the Confi guration Interface we defi ned in the previous example
with the one provided by the JMock framework. JMock generates Mock Objects
dynamically and provides a generic fl uent interface for confi guring the Mock
Object in an intent-revealing style. Here’s the same test converted to use JMock:

Confi gurable
Test Double

Meszaros_Chapter 23.indd 564Meszaros_Chapter 23.indd 564 4/27/2007 5:20:33 PM4/27/2007 5:20:33 PM

565

 public void testDisplayCurrentTime_AtMidnight_JM()
 throws Exception {
 // Fixture setup
 TimeDisplay sut = new TimeDisplay();
 // Test Double confi guration
 Mock tpStub = mock(TimeProvider.class);
 Calendar midnight = makeTime(0,0);
 tpStub.stubs().method("getTime").
 withNoArguments().
 will(returnValue(midnight));
 // Test Double installation
 sut.setTimeProvider((TimeProvider) tpStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify Outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

Here we have moved some of the logic to construct the time to be returned into
the Testcase Class because there is no way to do it in the generic mocking frame-
work; we’ve used a Test Utility Method (page 599) to construct the time to be
returned. This next example shows a confi gurable Mock Object complete with
multiple expected parameters:

 public void testRemoveFlight_JMock() throws Exception {
 // fi xture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 // mock confi guration
 Mock mockLog = mock(AuditLog.class);
 mockLog.expects(once()).method("logMessage")
 .with(eq(helper.getTodaysDateWithoutTime()),
 eq(Helper.TEST_USER_NAME),
 eq(Helper.REMOVE_FLIGHT_ACTION_CODE),
 eq(expectedFlightDto.getFlightNumber()));
 // mock installation
 facade.setAuditLog((AuditLog) mockLog.proxy());
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("fl ight still exists after being removed",
 facade.fl ightExists(expectedFlightDto.
 getFlightNumber()));
 // verify() method called automatically by JMock
 }

The Expected Behavior Specifi cation is built by calling expression-building
methods such as expects, once, and method to describe how the Confi gurable

 Configurable Test Double

Confi gurable
Test Double

Meszaros_Chapter 23.indd 565Meszaros_Chapter 23.indd 565 4/27/2007 5:20:33 PM4/27/2007 5:20:33 PM

566 Chapter 23 Test Double Patterns

Test Double should be used and what it should return. JMock supports the
specifi cation of much more sophisticated behavior (such as multiple calls to
the same method with different arguments and return values) than does our
hand-built Confi gurable Test Double.

Example: Confi guration Mode

In the next example, the test has been converted to use a Mock Object with a
Confi guration Mode:

 public void testRemoveFlight_ModalMock() throws Exception {
 // fi xture setup
 FlightDto expectedFlightDto = createAnonRegFlight();
 // mock confi guration (in Confi guration Mode)
 ModalMockAuditLog mockLog = new ModalMockAuditLog();
 mockLog.logMessage(Helper.getTodaysDateWithoutTime(),
 Helper.TEST_USER_NAME,
 Helper.REMOVE_FLIGHT_ACTION_CODE,
 expectedFlightDto.getFlightNumber());
 mockLog.enterPlaybackMode();
 // mock installation
 FlightManagementFacade facade = new FlightManagementFacadeImpl();
 facade.setAuditLog(mockLog);
 // exercise
 facade.removeFlight(expectedFlightDto.getFlightNumber());
 // verify
 assertFalse("fl ight still exists after being removed",
 facade.fl ightExists(expectedFlightDto.
 getFlightNumber()));
 mockLog.verify();
 }

Here the test calls the methods on the Confi gurable Test Double during the fi xture
setup phase. If we weren’t aware that this test uses a Confi gurable Test Double
mock, we might fi nd this structure confusing at fi rst glance. The most obvious clue
to its intent is the call to the method enterPlaybackMode, which tells the Confi gurable
Test Double to stop saving expected values and to start asserting on them.

The Confi gurable Test Double used by this test is implemented like this:

 private int mode = record;

 public void enterPlaybackMode() {
 mode = playback;
 }

 public void logMessage(Date date,
 String user,
 String action,
 Object detail) {

Confi gurable
Test Double

Meszaros_Chapter 23.indd 566Meszaros_Chapter 23.indd 566 4/27/2007 5:20:33 PM4/27/2007 5:20:33 PM

567

 if (mode == record) {
 Assert.assertEquals("Only supports 1 expected call",
 0, expectedNumberCalls);
 expectedNumberCalls = 1;
 expectedDate = date;
 expectedUser = user;
 expectedCode = action;
 expectedDetail = detail;
 } else {
 Assert.assertEquals("Date", expectedDate, date);
 Assert.assertEquals("User", expectedUser, user);
 Assert.assertEquals("Action", expectedCode, action);
 Assert.assertEquals("Detail", expectedDetail, detail);
 }
 }

The if statement checks whether we are in record or playback mode. Because
this simple hand-built Confi gurable Test Double allows only a single value to
be stored, a Guard Assertion (page 490) fails the test if it tries to record more
than one call to this method. The rest of the then clause saves the parameters
into variables that it uses as the expected values of the Equality Assertions (see
Assertion Method on page 362) in the else clause.

 Configurable Test Double

Confi gurable
Test Double

Meszaros_Chapter 23.indd 567Meszaros_Chapter 23.indd 567 4/27/2007 5:20:33 PM4/27/2007 5:20:33 PM

568 Chapter 23 Test Double Patterns

Hard-Coded Test Double

How do we tell a Test Double what to return or expect?

We build the Test Double by hard-coding the return values and/or
expected calls.

Test Doubles (page 522) are used for many reasons during the development of
Fully Automated Tests (see page 26). The behavior of the Test Double may vary
from test to test, and there are many ways to defi ne this behavior.

When the Test Double is very simple or very specifi c to a single test, the sim-
plest solution is often to hard-code the behavior into the Test Double.

How It Works

The test automater hard-codes all of the Test Double’s behavior into the Test
Double. For example, if the Test Double needs to return a value for a method
call, the value is hard-coded into the return statement. If it needs to verify that a
certain parameter had a specifi c value, the assertion is hard-coded with the value
that is expected.

Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation
Expectations

Return
Values

Creation
Fixture

Setup

Exercise

Verify

Teardown

SUT

DOC

Test
Double

Installation
Expectations

Return
Values

Creation

Hard-Coded
Test Double

Also known as:
Hard-Coded

Mock Object,
Hard-Coded

Test Stub,
Hard-Coded

Test Spy

Meszaros_Chapter 23.indd 568Meszaros_Chapter 23.indd 568 4/27/2007 5:20:33 PM4/27/2007 5:20:33 PM

569

When to Use It

We typically use a Hard-Coded Test Double when the behavior of the Test Double
is very simple or is very specifi c to a single test or Testcase Class (page 373). The
Hard-Coded Test Double can be either a Test Stub (page 529), a Test Spy (page 538),
or a Mock Object (page 544), depending on what we encode in the method(s)
called by the SUT.

Because each Hard-Coded Test Double is purpose-built by hand, its construction
may take more effort than using a third-party Confi gurable Test Double (page 558).
It can also result in more test code to maintain and refactor as the SUT changes. If
different tests require that the Test Double behave in different ways and the use of
Hard-Coded Test Doubles results in too much Test Code Duplication (page 213),
we should consider using a Confi gurable Test Double instead.

Implementation Notes

Hard-Coded Test Doubles are inherently Hand-Built Test Doubles (see
Confi gurable Test Double) because there tends to be no point in generating
Hard-Coded Test Doubles automatically. Hard-Coded Test Doubles can be
implemented with dedicated classes, but they are most commonly used when
the programming language supports blocks, closures, or inner classes. All of
these language features help to avoid the fi le/class overhead associated with
creating a Hard-Coded Test Double; they also keep the Hard-Coded Test
Double’s behavior visible within the test that uses it. In some languages, this
can make the tests a bit more diffi cult to read. This is especially true when
we use anonymous inner classes, which require a lot of syntactic overhead to
defi ne the class in-line. In languages that support blocks directly, and in which
developers are very familiar with their usage idioms, using Hard-Coded Test
Doubles can actually make the tests easier to read.

There are many different ways to implement a Hard-Coded Test Double,
each of which has its own advantages and disadvantages.

Variation: Test Double Class

We can implement the Hard-Coded Test Double as a class distinct from either
the Testcase Class or the SUT. This allows the Hard-Coded Test Double to be
reused by several Testcase Classes but may result in an Obscure Test (page 186;
caused by a Mystery Guest) because it moves important indirect inputs or indi-
rect outputs of the SUT out of the test to somewhere else, possibly out of sight of
the test reader. Depending on how we implement the Test Double Class, it may
also result in code proliferation and additional Test Double classes to maintain.

 Hard-Coded Test Double

Hard-Coded
Test Double

Meszaros_Chapter 23.indd 569Meszaros_Chapter 23.indd 569 4/27/2007 5:20:33 PM4/27/2007 5:20:33 PM

570 Chapter 23 Test Double Patterns

One way to ensure that the Test Double Class is type-compatible with the
component it will replace is to make the Test Double Class a subclass of that
component. We then override any methods whose behavior we want to change.

Variation: Test Double Subclass

We can also implement the Hard-Coded Test Double by subclassing the real
DOC and overriding the behavior of the methods we expect the SUT to call as
we exercise it. Unfortunately, this approach can have unpredictable consequences
if the SUT calls other DOC methods that we have not overridden. It also ties our
test code very closely to the implementation of the DOC and can result in Over-
specifi ed Software (see Fragile Test on page 239). Using a Test Double Subclass
may be a reasonable option in very specifi c circumstances (e.g., while doing a
spike or when it is the only option available to us), but this strategy isn’t recom-
mended on a routine basis.

Variation: Self Shunt

We can implement the methods that we want the SUT to call on the Testcase
Class and install the Testcase Object (page 382) into the SUT as the Test Double
to be used. This approach is called a Self Shunt.

The Self Shunt can be either a Test Stub, a Test Spy, or a Mock Object,
depending on what the method called by the SUT does. In each case, it will
need to access instance variables of the Testcase Class to know what to do or
expect. In statically typed languages, the Testcase Class must also implement
the interface on which the SUT depends.

We typically use a Self Shunt when we need a Hard-Coded Test Double that
is very specifi c to a single Testcase Class. If only a single Test Method (page 348)
requires the Hard-Coded Test Double, using an Inner Test Double may result in
greater clarity if our language supports it.

Variation: Inner Test Double

A popular way to implement a Hard-Coded Test Double is to code it as an
anonymous inner class or block closure within the Test Method. This strategy
gives the Test Double access to instance variables and constants of the Testcase
Class and even the local variables of the Test Method, which can eliminate the
need to confi gure the Test Double.

While the name of this variation is based on the name of the Java language
construct of which it takes advantage, many programming languages have an
equivalent mechanism for defi ning code to be run later using blocks or closures.

Hard-Coded
Test Double

Also known as:
Loopback,

Testcase Class
as Test Double

Meszaros_Chapter 23.indd 570Meszaros_Chapter 23.indd 570 4/27/2007 5:20:34 PM4/27/2007 5:20:34 PM

571

We typically use an Inner Test Double when we are building a Hard-Coded
Test Double that is relatively simple and is used only within a single Test Method.
Many people fi nd the use of a Hard-Coded Test Double more intuitive than using
a Self Shunt because they can see exactly what is going on within the Test Method.
Readers who are unfamiliar with the syntax of anonymous inner classes or blocks
may fi nd the test diffi cult to understand, however.

Variation: Pseudo-Object

One challenge facing writers of Hard-Coded Test Doubles is that we must
implement all the methods in the interface that the SUT might call. In statically
typed languages such as Java and C#, we must at least implement all methods
declared in the interface implied by the class or type associated with however
we access the DOC. This often “forces” us to subclass from the real DOC to
avoid providing dummy implementations for these methods.

One way of reducing the programming effort is to provide a default class
that implements all the interface methods and throws a unique error. We can
then implement a Hard-Coded Test Double by subclassing this concrete class
and overriding just the one method we expect the SUT to call while we are
exercising it. If the SUT calls any other methods, the Pseudo-Object throws an
error, thereby failing the test.

Motivating Example

The following test verifi es the basic functionality of the component that formats
an HTML string containing the current time. Unfortunately, it depends on the
real system clock, so it rarely passes!

 public void testDisplayCurrentTime_AtMidnight() {
 // fi xture setup
 TimeDisplay sut = new TimeDisplay();
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, result);
 }

 Hard-Coded Test Double

Hard-Coded
Test Double

Meszaros_Chapter 23.indd 571Meszaros_Chapter 23.indd 571 4/27/2007 5:20:34 PM4/27/2007 5:20:34 PM

572 Chapter 23 Test Double Patterns

Refactoring Notes

The most common transition is from using the real component to using a
Hard-Coded Test Double.4 To make this transition, we need to build the Test Double
itself and install it from within our Test Method. We may also need to introduce a way
to install the Test Double using one of the Dependency Injection patterns (page 678)
if the SUT does not already support this installation. The process for doing so is
described in the Replace Dependency with Test Double (page 522) refactoring.

Example: Test Double Class

Here’s the same test modifi ed to use a Hard-Coded Test Double class to allow
control over the time:

 public void testDisplayCurrentTime_AtMidnight_HCM()
 throws Exception {
 // Fixture setup
 // Instantiate hard-coded Test Stub
 TimeProvider testStub = new MidnightTimeProvider();
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Inject Test Stub into SUT
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

This test is hard to understand without seeing the defi nition of the Hard-Coded
Test Double. We can readily see how this approach might lead to an Obscure Test
caused by a Mystery Guest if the Hard-Coded Test Double is not close at hand.

 class MidnightTimeProvider implements TimeProvider {
 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 myTime.set(Calendar.MINUTE, 0);
 return myTime;
 }
 }

4 We rarely move from a Confi gurable Test Double to a Hard-Coded Test Double because
we generally seek to make the Test Double more—not less—reusable.

Hard-Coded
Test Double

Meszaros_Chapter 23.indd 572Meszaros_Chapter 23.indd 572 4/27/2007 5:20:34 PM4/27/2007 5:20:34 PM

573

Depending on the programming language, this Test Double Class can be defi ned
in a number of different places, including within the body of the Testcase Class
(an inner class) and as a separate free-standing class either in the same fi le as the
test or in its own fi le. Of course, the farther away the Test Double Class resides
from the Test Method, the more of a Mystery Guest it becomes.

Example: Self Shunt/Loopback

Here’s a test that uses a Self Shunt to allow control over the time:

public class SelfShuntExample extends TestCase
implements TimeProvider {
 public void testDisplayCurrentTime_AtMidnight() throws Exception {
 // fi xture setup
 TimeDisplay sut = new TimeDisplay();
 // mock setup
 sut.setTimeProvider(this); // self shunt installation
 // exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.MINUTE, 0);
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 return myTime;
 }
}

Note how both the Test Method that installs the Hard-Coded Test Double and
the implementation of the getTime method called by the SUT are members of the
same class. We used the Setter Injection pattern (see Dependency Injection) to
install the Hard-Coded Test Double. Because this example is written in a statically
typed language, we had to add the clause implements TimeProvider to the Testcase
Class declaration so that the sut.setTimeProvider(this) statement will compile. In a
dynamically typed language, this step is unnecessary.

Example: Subclassed Inner Test Double

Here’s a JUnit test that uses a Subclassed Inner Test Double using Java’s “Anon-
ymous Inner Class” syntax:

 Hard-Coded Test Double

Hard-Coded
Test Double

Meszaros_Chapter 23.indd 573Meszaros_Chapter 23.indd 573 4/27/2007 5:20:34 PM4/27/2007 5:20:34 PM

574 Chapter 23 Test Double Patterns

 public void testDisplayCurrentTime_AtMidnight_AIM() throws Exception {
 // Fixture setup
 // Defi ne and instantiate Test Stub
 TimeProvider testStub = new TimeProvider() {
 // Anonymous inner stub
 public Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.MINUTE, 0);
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 return myTime;
 }
 };
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Inject Test Stub into SUT
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

Here we used the name of the real depended-on class (TimeProvider) in the call to
new for the defi nition of the Hard-Coded Test Double. By including a defi nition
of the method getTime within curly braces after the classname, we are actually
creating an anonymous Subclassed Test Double inside the Test Method.

Example: Inner Test Double Subclassed from Pseudo-Class

Suppose we have replaced one implementation of a method with another imple-
mentation that we need to leave around for backward-compatibility purposes,
but we want to write tests to ensure that the old method is no longer called. This
is easy to do if we already have the following Pseudo-Object defi nition:

/**
 * Base class for hand-coded Test Stubs and Mock Objects
 */
public class PseudoTimeProvider implements ComplexTimeProvider {

 public Calendar getTime() throws TimeProviderEx {
 throw new PseudoClassException();
 }

 public Calendar getTimeDifference(Calendar baseTime,
 Calendar otherTime)
 throws TimeProviderEx {
 throw new PseudoClassException();

Hard-Coded
Test Double

Meszaros_Chapter 23.indd 574Meszaros_Chapter 23.indd 574 4/27/2007 5:20:34 PM4/27/2007 5:20:34 PM

575

 }

 public Calendar getTime(String timeZone) throws TimeProviderEx {
 throw new PseudoClassException();
 }
}

We can now write a test that ensures the old version of the getTime method is not
called by subclassing and overriding the newer version of the method (the one
we expect to be called by the SUT):

 public void testDisplayCurrentTime_AtMidnight_PS() throws Exception {
 // Fixture setup
 // Defi ne and instantiate Test Stub
 TimeProvider testStub = new PseudoTimeProvider()
 { // Anonymous inner stub
 public Calendar getTime(String timeZone) {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.MINUTE, 0);
 myTime.set(Calendar.HOUR_OF_DAY, 0);
 return myTime;
 }
 };
 // Instantiate SUT
 TimeDisplay sut = new TimeDisplay();
 // Inject Test Stub into SUT:
 sut.setTimeProvider(testStub);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();
 // Verify direct output
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight", expectedTimeString, result);
 }

If any of the other methods are called, the base class methods are invoked and
throw an exception. Therefore, if we run this test and one of the methods we
didn’t override is called, we will see the following output as the fi rst line of the
JUnit stack trace for this test error:

 com..PseudoClassEx: Unexpected call to unsupported method.
 at com..PseudoTimeProvider.getTime(PseudoTimeProvider.java:22)
 at com..TimeDisplay.getCurrentTimeAsHtmlFragment(TimeDisplay.java:64)
 at com..TimeDisplayTestSolution.
 testDisplayCurrentTime_AtMidnight_PS(
 TimeDisplayTestSolution.java:247)

 Hard-Coded Test Double

Hard-Coded
Test Double

Meszaros_Chapter 23.indd 575Meszaros_Chapter 23.indd 575 4/27/2007 5:20:34 PM4/27/2007 5:20:34 PM

576 Chapter 23 Test Double Patterns

What’s in a (Pattern) Name?

The Importance of Good Names
Names are important because they are a key part of how we communicate.
Names are labels we attach to concepts. Good names help us communi-
cate those concepts. This is true when we are communicating with people
who already know the names, but especially when we are communicating
with people who don’t. Consider the following example.

Early in my pattern-writing days, I attended the very fi rst Pattern
Languages of Programs (PLoP) conference (http://www.hillside.net/
conferences/plop). At the conference, the well-known author Jim Co-
plien (“Cope,” to his friends) had a pattern language of organizational
patterns being workshopped. One of the patterns was called “Buffalo
Mountain”; another was called “Architect Also Implements.” These
two pattern names are at opposite ends of the spectrum as far as pat-
tern names are concerned.

The gist of “Architect Also Implements” can be gleaned from the pattern
name even if a person has not read the actual pattern. The name is both a
placeholder for the pattern and meaningful in its own right.

The name “Buffalo Mountain,” by contrast, does not readily communi-
cate its underlying meaning. To this day I can still remember the story
behind the name—but I cannot remember the actual focus of the pattern.
The name was based on a graph that plotted some data related to the
pattern. An early reviewer thought it resembled the profi le of a nearby
mountain called Buffalo Mountain. Thus, while the pattern name is mem-
orable, it is not very evocative.

Closer to home, Self Shunt (see Hard-Coded Test Double on page 568)
is an example of a name that is less than evocative because the term
“shunt” is not widely used except in a few specialized fi elds. Michael
Feathers does a good job explaining the background of the name in his
description of the pattern. Unless you’ve read that description, however,
the name is “just a name.” A more evocative name might be something
like “Testcase Class as Test Double” or “Loopback” but even the latter
suffers from ambiguity because it isn’t clear what is being looped back.
So the name Self Shunt survives because it is in common use.

Hard-Coded
Test Double

Meszaros_Chapter 23.indd 576Meszaros_Chapter 23.indd 576 4/27/2007 5:20:34 PM4/27/2007 5:20:34 PM

577

Other Naming Considerations
People might ask why I sometimes propose alternative names for some
patterns. The preceding story highlights one of the reasons. Another
reason is that in a larger collection of patterns (such as this book), it is
important that there exists a “system of names.”

Let me illustrate this second reason with an example. Many people
advocate the use of a setUp method to create the test fi xture. This approach
moves the fi xture setup logic out of each individual Test Method (page 348)
and into a single place where it can be reused. Many people might refer to
this pattern as “Shared Setup Method.” But in this pattern language, I’ve
chosen to call it Implicit Setup (page 424). Why?

It comes down to the names of other patterns in the language. On the one
hand, “Shared Setup Method” could easily be confused with the existing
pattern Shared Fixture (page 317). (The former pattern deals with sharing
code, whereas the latter pattern focuses on sharing the runtime objects
in the fi xture.) On the other hand, the two major alternatives to Implicit
Setup are called In-line Setup (page 408) and Delegated Setup (page 411).
Wouldn’t you agree that “In-line Setup, Delegated Setup, Implicit Setup”
forms a better “system of names” than “In-line Setup, Delegated Setup,
Shared Setup Method”? The connection between the pattern names is
much more obvious when we consider all the major alternative patterns
when choosing the system of names.

Why Standardize Testing Patterns?
The last part of this soapbox highlights why I think it is important for us
to standardize the names of the test automation patterns, especially those
related to Test Stubs (page 529) and Mock Objects (page 544). The key
issue here relates to succinctness of communication.

When someone tells you, “Put a mock in it” (pun intended!), what advice
is that person giving you? Depending on what the person means by a
“mock,” he or she could be suggesting that you control the indirect inputs
of your SUT using a Test Stub or that you replace your database with a
Fake Database (see Fake Object on page 551) that will reduce test inter-
actions and speed up your tests by a factor of 50. (Yes, 50! See the sidebar
“Faster Tests Without Shared Fixtures” on page 319.) Or perhaps the
person is suggesting that you verify that your SUT calls the correct meth-
ods by installing an Eager Mock Object (see Mock Object) preconfi gured

Continued...

 Hard-Coded Test Double

Hard-Coded
Test Double

Meszaros_Chapter 23.indd 577Meszaros_Chapter 23.indd 577 4/27/2007 5:20:34 PM4/27/2007 5:20:34 PM

578 Chapter 23 Test Double Patterns

with the Expected Behavior (see Behavior Verifi cation on page 468). If
everyone used “mock” to mean a Mock Object—no more or less—then
the advice would be pretty clear. As I write this, the advice is very murky
because we have taken to calling just about any Test Double (page 522) a
“mock object” (despite the objections of the authors of the original paper
on Mock Objects [ET]).

Further Reading
If you want to fi nd out what “Buffalo Mountain” is really about, go to
http://www1.bell-labs.com/user/cope/Patterns/Process/section29.html.

You can fi nd “Architect Also Implements” at http://www1.bell-labs.com/
user/cope/Patterns/Process/section16.html.

Interestingly, Alistair Cockburn wrote a similar comparison of pattern
names in an article on his Web site (http://alistair.cockburn.us) and chose
exactly the same two pattern names in his comparison. Coincidence or
pattern?

In addition to failing the test, this scheme makes it very easy to see exactly which
method was called. The bonus is that it works for calls to all unexpected methods
with no additional effort.

Further Reading

Many of the “how to” books on test-driven development provide examples of Self
Shunt, including [TDD-APG], [TDD-BE], [UTwJ], [PUT], and [JuPG]. The original
write-up was by Michael Feathers and is accessible at http://www.objectmentor.
com/resources/articles/SelfShunPtrn.pdf

The original “Shunt” pattern is written up at http://http://c2.com/cgi/wiki?
ShuntPattern, along with a list of alternative names including “Loopback.” See
the sidebar “What’s in a (Pattern) Name?” on page 576 for a discussion of how
to select meaningful and evocative pattern names.

The Pseudo-Object pattern is described in the paper “Pseudo-Classes: Very
Simple and Lightweight Mock Object-like Classes for Unit-Testing” available at
http://www.devx.com/Java/Article/22599/1954?pf=true.

Hard-Coded
Test Double

Meszaros_Chapter 23.indd 578Meszaros_Chapter 23.indd 578 4/27/2007 5:20:34 PM4/27/2007 5:20:34 PM

579

Test-Specifi c Subclass

How can we make code testable when we need to access
private state of the SUT?

We add methods that expose the state or behavior needed by the test
to a subclass of the SUT.

If the SUT was not designed specifi cally to be testable, we may fi nd that the
test cannot gain access to a state that it must initialize or verify at some point
in the test.

A Test-Specifi c Subclass is a simple yet very powerful way to open up the
SUT for testing purposes without modifying the code of the SUT itself.

How It Works

We defi ne a subclass of the SUT and add methods that modify the behavior of
the SUT just enough to make it testable by implementing control points and
observation points. This effort typically involves exposing instance variables
using setters and getters or perhaps adding a method to put the SUT into a
specifi c state without moving through its entire life cycle.

Setup

Exercise

Verify

Teardown

SUT

Test-
Specific

Subclass
Get State

Method Under Test

Internal Method

Internal Method

Overridden
Self Call

Set State

Create

Exercise

Setup

Exercise

Verify

Teardown

SUT

Test-
Specific

Subclass
Get State

Method Under Test

Internal Method

Internal Method

Overridden
Self Call

Set State

Create

Exercise

 Test-Specific Subclass

Test-Specifi c
Subclass

Also known as:
Test-Specifi c
Extension

Meszaros_Chapter 23.indd 579Meszaros_Chapter 23.indd 579 4/27/2007 5:20:35 PM4/27/2007 5:20:35 PM

580 Chapter 23 Test Double Patterns

Because the Test-Specifi c Subclass would be packaged together with the tests
that use it, the use of a Test-Specifi c Subclass does not change how the SUT is
seen by the rest of the application.

When to Use It

We should use a Test-Specifi c Subclass whenever we need to modify the SUT to
improve its testability but doing so directly would result in Test Logic in Produc-
tion (page 217). Although we can use a Test-Specifi c Subclass for a number of
purposes, all of those scenarios share a common goal: They improve testability
by letting us get at the insides of the SUT more easily. A Test-Specifi c Subclass
can be a double-edged sword, however. By breaking encapsulation, it allows us
to tie our tests even more closely to the implementation, which can in turn result
in Fragile Tests (page 239).

Variation: State-Exposing Subclass

If we are doing State Verifi cation (page 462), we can subclass the SUT (or some
component of it) so that we can see the internal state of the SUT for use in Assertion
Methods (page 362). Usually, this effort involves adding accessor methods for pri-
vate instance variables. We may also allow the test to set the state as a way to avoid
Obscure Tests (page 186) caused by Obscure Setup (see Obscure Test) logic.

Variation: Behavior-Exposing Subclass

If we want to test the individual steps of a complex algorithm individually, we
can subclass the SUT to expose the private methods that implement the Self-
Calls [WWW]. Because most languages do not allow for relaxing the visibility
of a method, we often have to use a different name in the Test-Specifi c Subclass
and make a call to the superclass’s method.

Variation: Behavior-Modifying Subclass

If the SUT contains some behavior that we do not want to occur when testing,
we can override whatever method implements the behavior with an empty
method body. This technique works best when the SUT uses Self-Calls (or a
Template Method [GOF]) to delegate the steps of an algorithm to methods on
itself or subclasses.

Variation: Test Double Subclass

To ensure that a Test Double (page 522) is type-compatible with a DOC we wish
to replace, we can make the Test Double a subclass of that component. This may

Test-Specifi c
Subclass

Also known as:
Subclassed
Test Double

Meszaros_Chapter 23.indd 580Meszaros_Chapter 23.indd 580 4/27/2007 5:20:35 PM4/27/2007 5:20:35 PM

581

be the only way we can build a Test Double that the compiler will accept when
variables are statically typed using concrete classes.5 (We should not have to
take this step with dynamically typed languages such as Ruby, Python, Perl, and
JavaScript.) We then override any methods whose behavior we want to change
and add any methods we require to transform the Test Double into a Confi gu-
rable Test Double (page 558) if we so desire.

Unlike the Behavior-Modifying Subclass, the Test Double Subclass does not
just “tweak” the behavior of the SUT (or a part thereof) but replaces it entirely
with canned behavior.

Variation: Substituted Singleton

The Substituted Singleton is a special case of Test Double Subclass. We use it
when we want to replace a DOC with a Test Double and the SUT does not sup-
port Dependency Injection (page 678) or Dependency Lookup (page 686).

Implementation Notes

The use of a Test-Specifi c Subclass brings some challenges:

• Feature granularity: ensuring that any behavior we want to override or
expose is in its own single-purpose method. It is enabled through copi-
ous use of small methods and Self-Calls.

• Feature visibility: ensuring that subclasses can access attributes and be-
havior of the SUT class. It is primarily an issue in statically typed lan-
guages such as Java, C#, and C++; dynamically typed languages typically
do not enforce visibility.

As with Test Doubles, we must be careful to ensure that we do not replace any
of the behavior we are actually trying to test.

In languages that support class extensions without the need for subclassing
(e.g., Smalltalk, Ruby, JavaScript, and other dynamic languages), a Test-Specifi c
Subclass can be implemented as a class extension in the test package. We need to
be aware, however, whether the extensions will make it into production; doing
so would introduce Test Logic in Production.

5 That is, by using a concrete class as the type of the variable rather than an abstract
class or interface.

Also known as:
Subclassed
Singleton,
Substitutable
Singleton

 Test-Specific Subclass

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 581Meszaros_Chapter 23.indd 581 4/27/2007 5:20:35 PM4/27/2007 5:20:35 PM

582 Chapter 23 Test Double Patterns

Visibility of Features

In languages that enforce scope (visibility) of variables and methods, we may
need to change the visibility of the variables to allow subclasses to access them.
While such a change affects the actual SUT code, it would typically be con-
sidered much less intrusive or misleading than changing the visibility to public
(thereby allowing any code in the application to access the variables) or adding
the test-specifi c methods directly to the SUT.

For example, in Java, we might change the visibility of instance variables
from private to protected to allow the Test-Specifi c Subclass to access them.
Similarly, we might change the visibility of methods to allow the Test-Specifi c
Subclass to call them.

Granularity of Features

Long methods are diffi cult to test because they often bring too many dependen-
cies into play. By comparison, short methods tend to be much simpler to test
because they do only one thing. Self-Call offers an easy way to reduce the size
of methods. We delegate parts of an algorithm to other methods implemented
on the same class. This strategy allows us to test these methods independently.
We can also confi rm that the calling method calls these methods in the right
sequence by overriding them in a Test Double Subclass (see Test-Specifi c Subclass
on page 579).

Self-Call is a part of good object-oriented code design in that it keeps methods
small and focused on implementing a single responsibility of the SUT. We can use
this pattern whenever we are doing test-driven development and have control
over the design of the SUT. We may fi nd that we need to introduce Self-Call when
we encounter long methods where some parts of the algorithm depend on things
we do not want to exercise (e.g., database calls). This likelihood is especially
high, for example, when the SUT is built using a Transaction Script [PEAA]
architecture. Self-Call can be retrofi tted easily using the Extract Method [Fowler]
refactoring supported by most modern IDEs.

Motivating Example

The test in the following example is nondeterministic because it depends on the
time. Our SUT is an object that formats the time for display as part of a Web
page. It gets the time by asking a Singleton called TimeProvider to retrieve the time
from a calendar object that it gets from the container.

 public void testDisplayCurrentTime_AtMidnight() throws Exception {
 // Set up SUT

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 582Meszaros_Chapter 23.indd 582 4/27/2007 5:20:35 PM4/27/2007 5:20:35 PM

583

 TimeDisplay theTimeDisplay = new TimeDisplay();
 // Exercise SUT
 String actualTimeString =
 theTimeDisplay.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals("Midnight",
 expectedTimeString,
 actualTimeString);
 }

 public void testDisplayCurrentTime_AtOneMinuteAfterMidnight()
 throws Exception {
 // Set up SUT
 TimeDisplay actualTimeDisplay = new TimeDisplay();
 // Exercise SUT
 String actualTimeString =
 actualTimeDisplay.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "12:01 AM";
 assertEquals("12:01 AM",
 expectedTimeString,
 actualTimeString);
 }

These tests rarely pass, and they never pass in the same test run! The code within
the SUT looks like this:

 public String getCurrentTimeAsHtmlFragment() {
 Calendar timeProvider;
 try {
 timeProvider = getTime();
 } catch (Exception e) {
 return e.getMessage();
 }
 // etc.
 }

 protected Calendar getTime() {
 return TimeProvider.getInstance().getTime();
 }

The code for the Singleton follows:

public class TimeProvider {
 protected static TimeProvider soleInstance = null;

 protected TimeProvider() {};

 public static TimeProvider getInstance() {

 Test-Specific Subclass

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 583Meszaros_Chapter 23.indd 583 4/27/2007 5:20:35 PM4/27/2007 5:20:35 PM

584 Chapter 23 Test Double Patterns

 if (soleInstance==null) soleInstance = new TimeProvider();
 return soleInstance;
 }

 public Calendar getTime() {
 return Calendar.getInstance();
 }
}

Refactoring Notes

The precise nature of the refactoring employed to introduce a Test-Specifi c Subclass
depends on why we are using one. When we are using a Test-Specifi c Subclass to
expose “private parts” of the SUT or override undesirable parts of its behavior,
we merely defi ne the Test-Specifi c Subclass as a subclass of the SUT and create an
instance of the Test-Specifi c Subclass to exercise in the setup fi xture phase of our
Four-Phase Test (page 358).

When we are using the Test-Specifi c Subclass to replace a DOC of the SUT,
however, we need to use a Replace Dependency with Test Double (page 522)
refactoring to tell the SUT to use our Test-Specifi c Subclass instead of the real
DOC.

In either case, we either override existing methods or add new methods to
the Test-Specifi c Subclass using our language-specifi c capabilities (e.g., subclass-
ing or mixins) as required by our tests.

Example: Behavior-Modifying Subclass (Test Stub)

Because the SUT uses a Self-Call to the getTime method to ask the TimeProvider for
the time, we have an opportunity to use a Subclassed Test Double to control the
time.6 Based on this idea we can take a stab at writing our tests as follows (I have
shown only one test here):

 public void testDisplayCurrentTime_AtMidnight() {
 // Fixture setup
 TimeDisplayTestStubSubclass tss = new TimeDisplayTestStubSubclass();
 TimeDisplay sut = tss;
 // Test Double confi guration
 tss.setHours(0);
 tss.setMinutes(0);
 // Exercise SUT
 String result = sut.getCurrentTimeAsHtmlFragment();

6 This decision is enabled by the fact that getTime was defi ned to be protected; we would
not be able to do this if it was private.

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 584Meszaros_Chapter 23.indd 584 4/27/2007 5:20:35 PM4/27/2007 5:20:35 PM

585

 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, result);
 }

Note that we have used the Test-Specifi c Subclass class for the variable that receives
the instance of the SUT; this approach ensures that the methods of the Confi gura-
tion Interface (see Confi gurable Test Double) defi ned on the Test-Specifi c Subclass
are visible to the test.7 For documentation purposes, we have then assigned the
Test-Specifi c Subclass to the variable sut; this is a safe cast because the Test-Specifi c
Subclass class is a subclass of the SUT class. This technique also helps us avoid the
Mystery Guest (see Obscure Test) problem caused by hard-coding an important
indirect input of our SUT inside the Test Stub (page 529).

Now that we have seen how it will be used, it is a simple matter to imple-
ment the Test-Specifi c Subclass:

public class TimeDisplayTestStubSubclass extends TimeDisplay {

 private int hours;
 private int minutes;

 // Overridden method
 protected Calendar getTime() {
 Calendar myTime = new GregorianCalendar();
 myTime.set(Calendar.HOUR_OF_DAY, this.hours);
 myTime.set(Calendar.MINUTE, this.minutes);
 return myTime;
 }
 /*
 * Confi guration Interface
 */
 public void setHours(int hours) {
 this.hours = hours;
 }

 public void setMinutes(int minutes) {
 this.minutes = minutes;
 }
}

There’s no rocket science here—we just had to implement the methods used by
the test.

7 We could have used a Hard-Coded Test Double (page 568) subclass instead, but that
tactic would have required a different Test-Specifi c Subclass for each time we want to test
with. Each subclass would simply hard-code the return value of the getTime method.

 Test-Specific Subclass

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 585Meszaros_Chapter 23.indd 585 4/27/2007 5:20:35 PM4/27/2007 5:20:35 PM

586 Chapter 23 Test Double Patterns

Example: Behavior-Modifying Subclass (Substituted
Singleton)

Suppose our getTime method was declared to be private8 or static, fi nal or sealed, and so
on.9 Such a declaration would prevent us from overriding the method’s behavior
in our Test-Specifi c Subclass. What could we do to address our Nondeterministic
Tests (see Erratic Test on page 228)?

Because the design uses a Singleton [GOF] to provide the time, a simple
solution is to replace the Singleton during test execution with a Test Double
Subclass. We can do so as long as it is possible for a subclass to access its
soleInstance variable. We use the Introduce Local Extension [Fowler] refactoring
(specifi cally, the subclass variant of it) to create the Test-Specifi c Subclass. Writ-
ing the tests fi rst helps us understand the interface we want to implement.

 public void testDisplayCurrentTime_AtMidnight() {
 TimeDisplay sut = new TimeDisplay();
 // Install test Singleton
 TimeProviderTestSingleton timeProvideSingleton =
 TimeProviderTestSingleton.overrideSoleInstance();
 timeProvideSingleton.setTime(0,0);
 // Exercise SUT
 String actualTimeString = sut.getCurrentTimeAsHtmlFragment();
 // Verify outcome
 String expectedTimeString =
 "Midnight";
 assertEquals(expectedTimeString, actualTimeString);
 }

Now that we have a test that uses the Substituted Singleton, we can proceed
to implement it by subclassing the Singleton and defi ning the methods the
tests will use.

public class TimeProviderTestSingleton extends TimeProvider {
 private Calendar myTime = new GregorianCalendar();
 private TimeProviderTestSingleton() {};

 // Installation Interface
 static TimeProviderTestSingleton overrideSoleInstance() {
 // We could save the real instance fi rst, but we won't!
 soleInstance = new TimeProviderTestSingleton();
 return (TimeProviderTestSingleton) soleInstance;
 }

 // Confi guration Interface used by the test

8 A private method cannot be seen or overridden by a subclass.
9 This choice prevents a subclass from overriding the method’s behavior.

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 586Meszaros_Chapter 23.indd 586 4/27/2007 5:20:36 PM4/27/2007 5:20:36 PM

587

 public void setTime(int hours, int minutes) {
 myTime.set(Calendar.HOUR_OF_DAY, hours);
 myTime.set(Calendar.MINUTE, minutes);
 }

 // Usage Interface used by the client
 public Calendar getTime() {
 return myTime;
 }
}

Here the Test Double is a subclass of the real component and has overridden the
instance method called by the clients of the Singleton.

Example: Behavior-Exposing Subclass

Suppose we wanted to test the getTime method directly. Because getTime is protected
and our test is in a different package from the TimeDisplay class, our test cannot
call this method. We could try making our test a subclass of TimeDisplay or we
could put it into the same package as TimeDisplay. Unfortunately, both of these
solutions come with baggage and may not always be possible.

A more general solution is to expose the behavior using a Behavior-Exposing
Subclass. We can do so by defi ning a Test-Specifi c Subclass and adding a public
method that calls this method.

public class TimeDisplayBehaviorExposingTss extends TimeDisplay {

 public Calendar callGetTime() {
 return super.getTime();
 }
}

We can now write the test using the Behavior-Exposing Subclass as follows:

 public void testGetTime_default() {
 // create SUT
 TimeDisplayBehaviorExposingTss tsSut =
 new TimeDisplayBehaviorExposingTss();
 // exercise SUT
 // want to do
 // Calendar time = sut.getTime();
 // have to do
 Calendar time = tsSut.callGetTime();
 // verify outcome
 assertEquals(defaultTime, time);
 }

 Test-Specific Subclass

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 587Meszaros_Chapter 23.indd 587 4/27/2007 5:20:36 PM4/27/2007 5:20:36 PM

588 Chapter 23 Test Double Patterns

Example: Defi ning Test-Specifi c Equality (Behavior-Modifying
Subclass)

Here is an example of a very simple test that fails because the object we pass
to assertEquals does not implement test-specifi c equality. That is, the default
equals method returns false even though our test considers the two objects to be
equals.

 protected void setUp() throws Exception {
 oneOutboundFlight = fi ndOneOutboundFlightDto();
 }

 public void testGetFlights_OneFlight() throws Exception {
 // Exercise System
 List fl ights = facade.getFlightsByOriginAirport(
 oneOutboundFlight.getOriginAirportId());
 // Verify Outcome
 assertEquals("Flights at origin - number of fl ights: ",
 1,
 fl ights.size());
 FlightDto actualFlightDto = (FlightDto)fl ights.get(0);
 assertEquals("Flight DTOs at origin",
 oneOutboundFlight,
 actualFlightDto);
 }

One option is to write a Custom Assertion (page 474). Another option is to use
a Test-Specifi c Subclass to add a more appropriate defi nition of equality for our
test purposes alone. We can change our fi xture setup code slightly to create the
Test-Specifi c Subclass as our Expected Object (see State Verifi cation).

 private FlightDtoTss oneOutboundFlight;

 private FlightDtoTss fi ndOneOutboundFlightDto() {
 FlightDto realDto = helper.fi ndOneOutboundFlightDto();
 return new FlightDtoTss(realDto) ;
 }

Finally, we implement the Test-Specifi c Subclass by copying and comparing only
those fi elds that we want to use for our test-specifi c equality.

public class FlightDtoTss extends FlightDto {
 public FlightDtoTss(FlightDto realDto) {
 this.destAirportId = realDto.getDestinationAirportId();
 this.equipmentType = realDto.getEquipmentType();
 this.fl ightNumber = realDto.getFlightNumber();
 this.originAirportId = realDto.getOriginAirportId();
 }

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 588Meszaros_Chapter 23.indd 588 4/27/2007 5:20:36 PM4/27/2007 5:20:36 PM

589

 public boolean equals(Object obj) {
 FlightDto otherDto = (FlightDto) obj;
 if (otherDto == null) return false;
 if (otherDto.getDestAirportId()!= this.destAirportId)
 return false;
 if (otherDto.getOriginAirportId()!= this.originAirportId)
 return false;
 if (otherDto.getFlightNumber()!= this.fl ightNumber)
 return false;
 if (otherDto.getEquipmentType() != this.equipmentType)
 return false;
 return true;
 }
}

In this case we copied the fi elds from the real DTO into our Test-Specifi c Subclass,
but we could just as easily have used the Test-Specifi c Subclass as a wrapper for the
real DTO. There are other ways we could have created the Test-Specifi c Subclass;
the only real limit is our imagination.

This example also assumes that we have a reasonable toString implementa-
tion on our base class that prints out the values of the fi elds being compared.
It is needed because assertEquals will use that implementation when the equals
method returns false. Otherwise, we will have no idea of why the objects are
considered unequal.

Example: State-Exposing Subclass

Suppose we have the following test, which requires a Flight to be in a particular
state:

 protected void setUp() throws Exception {
 super.setUp();
 scheduledFlight = createScheduledFlight();
 }

 Flight createScheduledFlight() throws InvalidRequestException{
 Flight newFlight = new Flight();
 newFlight.schedule();
 return newFlight;
 }

 public void testDeschedule_shouldEndUpInUnscheduleState()
 throws Exception {
 scheduledFlight.deschedule();
 assertTrue("isUnsched", scheduledFlight.isUnscheduled());
 }

 Test-Specific Subclass

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 589Meszaros_Chapter 23.indd 589 4/27/2007 5:20:36 PM4/27/2007 5:20:36 PM

590 Chapter 23 Test Double Patterns

Setting up the fi xture for this test requires us to call the method schedule on the
fl ight:

public class Flight{
 protected FlightState currentState = new UnscheduledState();

 /**
 * Transitions the Flight from the <code>unscheduled</code>
 * state to the <code>scheduled</code> state.
 * @throws InvalidRequestException when an invalid state
 * transition is requested
 */
 public void schedule() throws InvalidRequestException{
 currentState.schedule();
 }
}

The Flight class uses the State [GOF] pattern and delegates handling of the schedule
method to whatever State object is currently referenced by currentState. This test
will fail during fi xture setup if schedule does not work yet on the default content of
currentState. We can avoid this problem by using a State-Exposing Subclass that
provides a method to move directly into the state, thereby making this an Inde-
pendent Test (see page 42).

public class FlightTss extends Flight {

 public void becomeScheduled() {
 currentState = new ScheduledState();
 }
}

By introducing a new method becomeScheduled on the Test-Specifi c Subclass, we
ensure that we will not accidentally override any existing behavior of the SUT.
Now all we have to do is instantiate the Test-Specifi c Subclass in our test instead
of the base class by modifying our Creation Method (page 415).

 Flight createScheduledFlight() throws InvalidRequestException{
 FlightTss newFlight = new FlightTss();
 newFlight.becomeScheduled();
 return newFlight;
 }

Note how we still declare that we are returning an instance of the Flight class
when we are, in fact, returning an instance of the Test-Specifi c Subclass that has
the additional method.

Test-Specifi c
Subclass

Meszaros_Chapter 23.indd 590Meszaros_Chapter 23.indd 590 4/27/2007 5:20:36 PM4/27/2007 5:20:36 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

