
Preface

The Value of Self-Testing Code 

In Chapter 4 of Refactoring [Ref], Martin Fowler writes: 

If you look at how most programmers spend their time, you’ll fi nd that 
writing code is actually a small fraction. Some time is spent fi guring out 
what ought to be going on, some time is spent designing, but most time 
is spent debugging. I’m sure every reader can remember long hours of 
debugging, often long into the night. Every programmer can tell a story 
of a bug that took a whole day (or more) to fi nd. Fixing the bug is usually 
pretty quick, but fi nding it is a nightmare. And then when you do fi x a bug, 
there’s always a chance that anther one will appear and that you might not 
even notice it until much later. Then you spend ages fi nding that bug.

Some software is very diffi cult to test manually. In these cases, we are often 
forced into writing test programs. 

I recall a project I was working on in 1996. My task was to build an event 
framework that would let client software register for an event and be notifi ed 
when some other software raised that event (the Observer [GOF] pattern). I 
could not think of a way to test this framework without writing some sample 
client software. I had about 20 different scenarios I needed to test, so I coded up 
each scenario with the requisite number of observers, events, and event raisers. 
At fi rst, I logged what was occurring in the console and scanned it manually. 
This scanning became very tedious very quickly. 

Being quite lazy, I naturally looked for an easier way to perform this test-
ing. For each test I populated a Dictionary indexed by the expected event and 
the expected receiver of it with the name of the receiver as the value. When a 
particular receiver was notifi ed of the event, it looked in the Dictionary for the 
entry indexed by itself and the event it had just received. If this entry existed, 
the receiver removed the entry. If it didn’t, the receiver added the entry with an 
error message saying it was an unexpected event notifi cation. 

After running all the tests, the test program merely looked in the Dictionary
and printed out its contents if it was not empty. As a result, running all of my 
tests had a nearly zero cost. The tests either passed quietly or spewed a list of test 
failures. I had unwittingly discovered the concept of a Mock Object (page 544) 
and a Test Automation Framework (page 298) out of necessity! 

xxi



My First XP Project 

In late 1999, I attended the OOPSLA conference, where I picked up a copy of 
Kent Beck’s new book, eXtreme Programming Explained [XPE]. I was used to 
doing iterative and incremental development and already believed in the value 
of automated unit testing, although I had not tried to apply it universally. I had 
a lot of respect for Kent, whom I had known since the fi rst PLoP1 conference in 
1994. For all these reasons, I decided that it was worth trying to apply eXtreme 
Programming on a ClearStream Consulting project. Shortly after OOPSLA, 
I was fortunate to come across a suitable project for trying out this develop-
ment approach—namely, an add-on application that interacted with an existing 
database but had no user interface. The client was open to developing software 
in a different way. 

We started doing eXtreme Programming “by the book” using pretty much all 
of the practices it recommended, including pair programming, collective owner-
ship, and test-driven development. Of course, we encountered a few challenges 
in fi guring out how to test some aspects of the behavior of the application, but 
we still managed to write tests for most of the code. Then, as the project pro-
gressed, I started to notice a disturbing trend: It was taking longer and longer to 
implement seemingly similar tasks. 

I explained the problem to the developers and asked them to record on each 
task card how much time had been spent writing new tests, modifying existing 
tests, and writing the production code. Very quickly, a trend emerged. While 
the time spent writing new tests and writing the production code seemed to be 
staying more or less constant, the amount of time spent modifying existing tests 
was increasing and the developers’ estimates were going up as a result. When 
a developer asked me to pair on a task and we spent 90% of the time modify-
ing existing tests to accommodate a relatively minor change, I knew we had to 
change something, and soon! 

When we analyzed the kinds of compile errors and test failures we were 
experiencing as we introduced the new functionality, we discovered that many 
of the tests were affected by changes to methods of the system under test (SUT). 
This came as no surprise, of course. What was surprising was that most of the 
impact was felt during the fi xture setup part of the test and that the changes 
were not affecting the core logic of the tests. 

This revelation was an important discovery because it showed us that we 
had the knowledge about how to create the objects of the SUT scattered across 
most of the tests. In other words, the tests knew too much about nonessential 

1 The Pattern Languages of Programs conference.

Prefacexxii



parts of the behavior of the SUT. I say “nonessential” because most of the af-
fected tests did not care about how the objects in the fi xture were created; they 
were interested in ensuring that those objects were in the correct state. Upon 
further examination, we found that many of the tests were creating identical or 
nearly identical objects in their test fi xtures. 

The obvious solution to this problem was to factor out this logic into a small 
set of Test Utility Methods (page 599). There were several variations: 

• When we had a bunch of tests that needed identical objects, we simply 
created a method that returned that kind of object ready to use. We 
now call these Creation Methods (page 415). 

• Some tests needed to specify different values for some attribute of the 
object. In these cases, we passed that attribute as a parameter to the 
Parameterized Creation Method (see Creation Method).

• Some tests wanted to create a malformed object to ensure that the SUT 
would reject it. Writing a separate Parameterized Creation Method for 
each attribute cluttered the signature of our Test Helper (page 643), so 
we created a valid object and then replaced the value of the One Bad 
Attribute (see Derived Value on page 718).

We had discovered what would become2 our fi rst test automation patterns. 
Later, when tests started failing because the database did not like the fact 

that we were trying to insert another object with the same key that had a unique 
constraint, we added code to generate the unique key programmatically. We 
called this variant an Anonymous Creation Method (see Creation Method) to 
indicate the presence of this added behavior. 

Identifying the problem that we now call a Fragile Test (page 239) was an im-
portant event on this project, and the subsequent defi nition of its solution pat-
terns saved this project from possible failure. Without this discovery we would, 
at best, have abandoned the automated unit tests that we had already built. At 
worst, the tests would have reduced our productivity so much that we would 
have been unable to deliver on our commitments to the client. As it turned out, 
we were able to deliver what we had promised and with very good quality. Yes, 
the testers3 still found bugs in our code because we were defi nitely missing some 
tests. Introducing the changes needed to fi x those bugs, once we had fi gured 

2 Technically, they are not truly patterns until they have been discovered by three inde-
pendent project teams.
3 The testing function is sometimes referred to as “Quality Assurance.” This usage is, 
strictly speaking, incorrect.

 Preface xxiii



out what the missing tests needed to look like, was a relatively straightforward 
process, however. 

We were hooked. Automated unit testing and test-driven development really 
did work, and we have been using them consistently ever since. 

As we applied the practices and patterns on subsequent projects, we have 
run into new problems and challenges. In each case, we have “peeled the on-
ion” to fi nd the root cause and come up with ways to address it. As these tech-
niques have matured, we have added them to our repertoire of techniques for 
automated unit testing. 

We fi rst described some of these patterns in a paper presented at XP2001. 
In discussions with other participants at that and subsequent conferences, we 
discovered that many of our peers were using the same or similar techniques. 
That elevated our methods from “practice” to “pattern” (a recurring solution 
to a recurring problem in a context). The fi rst paper on test smells [RTC] was 
presented at the same conference, building on the concept of code smells fi rst 
described in [Ref].

My Motivation 

I am a great believer in the value of automated unit testing. I practiced software 
development without it for the better part of two decades, and I know that my 
professional life is much better with it than without it. I believe that the xUnit 
framework and the automated tests it enables are among the truly great ad-
vances in software development. I fi nd it very frustrating when I see companies 
trying to adopt automated unit testing but being unsuccessful because of a lack 
of key information and skills. 

As a software development consultant with ClearStream Consulting, I see a 
lot of projects. Sometimes I am called in early on a project to help clients make 
sure they “do things right.” More often than not, however, I am called in when 
things are already off the rails. As a result, I see a lot of “worst practices” that 
result in test smells. If I am lucky and I am called early enough, I can help the 
client recover from the mistakes. If not, the client will likely muddle through 
less than satisfi ed with how TDD and automated unit testing worked—and the 
word goes out that automated unit testing is a waste of time. 

In hindsight, most of these mistakes and best practices are easily avoid-
able given the right knowledge at the right time. But how do you obtain that 
knowledge without making the mistakes for yourself? At the risk of sounding 
self-serving, hiring someone who has the knowledge is the most time-effi cient 
way of learning any new practice or technology. According to Gerry Weinberg’s 

Prefacexxiv



“Law of Raspberry Jam” [SoC],4 taking a course or reading a book is a much 
less effective (though less expensive) alternative. I hope that by writing down a 
lot of these mistakes and suggesting ways to avoid them, I can save you a lot of 
grief on your project, whether it is fully agile or just more agile than it has been 
in the past—the “Law of Raspberry Jam” not withstanding. 

Who This Book Is For 

I have written this book primarily for software developers (programmers, 
designers, and architects) who want to write better tests and for the managers 
and coaches who need to understand what the developers are doing and why 
the developers need to be cut enough slack so they can learn to do it even bet-
ter! The focus here is on developer tests and customer tests that are automated 
using xUnit. In addition, some of the higher-level patterns apply to tests that are 
automated using technologies other than xUnit. Rick Mugridge and Ward Cun-
ningham have written an excellent book on Fit [FitB], and they advocate many of 
the same practices. 

Developers will likely want to read the book from cover to cover, but they 
should focus on skimming the reference chapters rather than trying to read them 
word for word. The emphasis should be on getting an overall idea of which pat-
terns exist and how they work. Developers can then return to a particular pat-
tern when the need for it arises. The fi rst few elements (up to and include the 
“When to Use It” section) of each pattern should provide this overview. 

Managers and coaches might prefer to focus on reading Part I, The Nar-
ratives, and perhaps Part II, The Test Smells. They might also need to read 
Chapter 18, Test Strategy Patterns, as these are decisions they need to under-
stand and provide support to the developers as they work their way through 
these patterns. At a minimum, managers should read Chapter 3, Goals of Test 
Automation.

About the Cover Photo 

Every book in the Martin Fowler Signature Series features a picture of a bridge 
on the cover. One of the thoughts I had when Martin Fowler asked if he could 
“steal me for his series” was “Which bridge should I put on the cover?” I 
thought about the ability of testing to avoid catastrophic failures of software 

4 The Law of Raspberry Jam: “The wider you spread it, the thinner it gets.” 

 Preface xxv



and how that related to bridges. Several famous bridge failures immediately 
came to mind, including “Galloping Gertie” (the Tacoma Narrows bridge) and 
the Iron Workers Memorial Bridge in Vancouver (named for the iron workers 
who died when a part of it collapsed during construction). 

After further refl ection, it just did not seem right to claim that testing might 
have prevented these failures, so I chose a bridge with a more personal con-
nection. The picture on the cover shows the New River Gorge bridge in West 
Virginia. I fi rst passed over and subsequently paddled under this bridge on a 
whitewater kayaking trip in the late 1980s. The style of the bridge is also rel-
evant to this book’s content: The complex arch structure underneath the bridge 
is largely hidden from those who use it to get to the other side of the gorge. The 
road deck is completely level and four lanes wide, resulting in a very smooth 
passage. In fact, at night it is quite possible to remain completely oblivious to 
the fact that one is thousands of feet above the valley fl oor. A good test automa-
tion infrastructure has the same effect: Writing tests is easy because most of the 
complexity lies hidden beneath the road bed. 

Colophon

This book’s manuscript was written using XML, which I published to HTML 
for previewing on my Web site. I edited the XML using Eclipse and the XML 
Buddy plug-in. The HTML was generated using a Ruby program that I fi rst 
obtained from Martin Fowler and which I then evolved quite extensively as I 
evolved my custom markup language. Code samples were written, compiled, 
and executed in (mostly) Eclipse and were inserted into the HTML automati-
cally by XML tag handlers (one of the main reasons for using Ruby instead of 
XSLT). This gave me the ability to “publish early, publish often” to the Web 
site. I could also generate a single Word or PDF document for reviewers from 
the source, although this required some manual steps. 

Prefacexxvi




