
835

A

ABAP Object Unit, 747
ABAP Unit, 747
Abstract Setup Decorator

defi ned, 449
example, 453

acceptance tests. See also
customer tests

defi ned, 785
why test?, 19

accessor methods, 785
ACID, 785
acknowledgements, xxvii–xxviii
action components, 280
agile method

defi ned, 785–786
property tests, 52

AllTests Suite
example, 594–595
introduction, 13
when to use, 593

annotation
defi ned, 786
Test Methods, 351

Anonymous Creation Method
defi ned, 417
example, 420

Hard-Coded Test Data 
solution, 196

preface, xxi
anonymous inner class

defi ned, 786
Test Stub examples, 535–536

Ant, 753
AntHill, 753
anti-pattern (AP)

defi ned, 786
test smells, xxxv

AOP (aspect-oriented programming)
defi ned, 786
Dependency Injection, 681
retrofi tting testability, 148

API (application programming inter-
face)

Creation Methods, 416
database as SUT, 336
defi ned, 786
Test Utility Method, 600

architecture, design for testability. 
See design-for-testability

arguments
messages describing, 371–372
as parameters (Dummy 

Arguments), 729
role-describing, 725

Index



836 Index

Arguments, Dummy, 729
Ariane 5 rocket, 218
aspect-oriented programming (AOP)

defi ned, 786
Dependency Injection, 681
retrofi tting testability, 148

Assertion Message
of Assertion Method, 364
pattern description, 370–372

Assertion Method
Assertion Messages, 364
calling built-in, 363–364
choosing right, 364–365
Equality Assertions, 365
examples, 368–369
Expected Exception 

Assertions, 366
Fuzzy Equality Assertions, 

365–366
implementation, 363
as macros, 364
motivating example, 367–368
overview, 362–363
refactoring, 368
Single-Outcome Assertions, 

366–367
Stated Outcome Assertions, 366

Assertion Roulette
Eager Tests, 224–226
impact, 224
introduction, 14
Missing Assertion Message, 

226–227
symptoms, 224

assertions
Built-in, 110–111
custom. See Custom Assertion
defi ned, 786
diagramming notation, xlii
Domain Assertions, 476, 

481–482

improperly coded in Neverfail 
Tests, 274

introduction, 77
Missing Assertion Messages, 

226–227
reducing Test Code Duplication, 

114–119
refactoring, xlvi–xlix
Self-Checking Tests, 107–108
unit testing, 6
Verify One Condition per Test, 

46–47
assumptions, xxxix–xl
Astels, Dave, 110
asynchronous tests

defi ned, 787
Hard-To-Test Code, 210–211
Humble Object, 696–697
Slow Tests, 255–256
testability, 70–71

Attachment Method
defi ned, 418
example, 421

attributes
defi ned, 787
dummy, 729
hiding unnecessary, 303–304
One Bad Attribute. See One 

Bad Attribute
parameters as, 608
Suite Fixture Setup, 442–443
Test Discovery using, 397
Test Selection, 403–405

Automated Exercise Teardown
defi ned, 505
example, 508

Automated Fixture Teardown, 
504–505

Automated Teardown
ensuring Repeatable Tests, 27
examples, 507–508



837 Index

implementation, 504–505
Interacting Test Suites, 232
Interacting Tests solution, 231
motivating example, 505–506
overview, 503–504
of persistent fi xtures, 99–100
refactoring, 506–507
resource leakage solution, 233
when to use, 504

automated unit testing
author’s motivation, xxiv–xxv
fragile test problem, xxxi–xxxii
introduction, xxx–xxxii

B

back door, defi ned, 787
Back Door Manipulation

control/observation points, 66–67
database as SUT API, 336
Expected State Specifi cation, 464
fi xture setup, 333–335
implementation, 330–332
motivating example, 332
overview, 327–328
refactoring, 333
setup, 329
teardown, 330
verifi cation, 329–330
verifi cation using Test Spy, 333
when to use, 328

Back Door Setup
controlling indirect inputs, 128
fi xture design, 59
Prebuilt Fixtures, 430–431
transient fi xtures, 86

Back Door Verifi cation, 130–133
BDUF (big design upfront)

defi ned, 787
design for testability, 65
test automation strategy, 49

Beck, Kent, xxii
sniff test, xxxviii
Test Automation Frameworks, 

301
test smells, 9
Testcase Class per Class, 618
xUnit, 57

Behavior Sensitivity
cause of Fragile Tests, 242–243
caused by Overspecifi ed 

Software, 246
defi ned, xxxi
smells, 14

behavior smells, 223–247
Assertion Roulette. See

Assertion Roulette
defi ned, 10–11, 788
Erratic Tests. See Erratic Test
Fragile Tests. See Fragile Test
Frequent Debugging. See

Frequent Debugging
Manual Intervention. See

Manual Intervention
overview, 13–15
Slow Tests. See Slow Tests

Behavior Verifi cation
approach to Self-Checking 

Tests, 108
examples, 472–473
implementation, 469–471
indirect outputs, 179–180
motivating example, 471–472
overview, 468–469
refactoring, 472
vs. state, 36
test results, 112–114
using Mock Objects. See

Mock Object
using Test Spies. See Test Spy
using Use the Front Door 

First, 40



838 Index

verifying indirect outputs, 
130–133

when to use, 469
behavior-driven development

defi ned, 787–788
Testcase Class per Fixture 

usage, 632
Behavior-Exposing Subclass

Test-Specifi c Subclass 
example, 587

when to use, 580
Behavior-Modifying Subclass

Defi ning Test-Specifi c Equality, 
588–589

Substituted Singleton, 
586–587

Test Stub, 584–585
when to use, 580

Bespoke Assertion. See Custom 
Assertion

bimodal tests, 687
binding, static

defi ned, 809
Dependency Injection, 678–679

black box
defi ned, 788
Remoted Stored Procedure 

Tests, 656
block closures

defi ned, 788
Expected Exception Tests, 

354–355
blocks

cleaning up fi xture teardown 
logic, l–liv

defi ned, 788
try/fi nally. See try/fi nally block

boundary values
defi ned, 788
erratic tests, 238
Minimal Fixtures, 303
result verifi cation patterns, 478

BPT (Business Process Testing)
defi ned, 753
Recorded Tests, 280
Test Automation 

Frameworks, 301
Bug Repellent, 22
Buggy Test

introduction, 12–13
reducing risk, 181
symptoms, 260–262

Built-in Assertion
calling, 363–364
introduction, 110–111

built-in self-tests
defi ned, 788
test fi le organization, 164

built-in test recording
defi ned, 281
example, 281–282

business logic
defi ned, 789
developer testing, xxx
development process, 4–5
Layer Tests example, 344–345
testing without databases, 

169–171
Business Process Testing (BPT). 

See BPT (Business Process Testing)

C

Calculated Value. See also Derived 
Value

Loop-Driven Tests, 615
Production Logic in Test 

solution, 205
Canoo WebTest

defi ned, 753
Scripted Tests, 286
Test Automation 

Frameworks, 301
test automation tools, 53



839 Index

capacity tests, 52
Capture/Playback Test. 

See Recorded Test
Chained Test

customer testing, 6
examples, 459–460
implementation, 456–457
motivating example, 457–458
overview, 454–455
refactoring, 458
Shared Fixture strategies, 64–65
Shared Fixtures, 104–105, 322
when to use, 455–456
xUnit introduction, 57

class attributes
defi ned, 789
Test Discovery using, 397
Testcase Class Selection using, 

404–405
class methods

defi ned, 789
with Test Helper, 645, 646

class variables
defi ned, 789
Suite Fixture Setup, 442

classes
diagramming notation, xlii
as fi xtures, 59
Test Double, 569–570, 572–573
Testcase. See Testcase Class

class-instance duality, 374
Cleanup Method, 602
closure, block

defi ned, 788
Expected Exception Tests, 

354–355
Cockburn, Alistair

pattern naming, 578
service layer tests, 339

code
inside-out development, 34–36
organization. See test 

organization

samples, xli–xlii
writing tests, 27–29

code smells
Conditional Test Logic. See

Conditional Test Logic
defi ned, 10–11, 789
Hard-To-Test Code. See

Hard-To-Test Code
obscure tests. See Obscure Test
Test Code Duplication. See Test 

Code Duplication
Test Logic in Production. See

Test Logic in Production
types of, 16–17

coding idioms
defi ned, xxxv
design patterns, 792

collisions
Interacting Tests, 229–231
Shared Fixtures, 318

Command object
introduction, 82
Testcase Object as, 382

Command-Line Test Runner
Assertion Message, 371
defi ned, 379–380
introduction, 79
Missing Assertion Message, 

226–227
commercial recorded tests

refactored, 283–284
tools, 282–283

common location, Test Discovery, 
397–398

Communicate Intent
defi ned, 41
refactoring Recorded Tests to, 

283–284
compiler macro, Test Method 

Discovery, 395–396
Complex Teardown, 206–207
Complex Test. See Dependency 

Lookup



840 Index

Component Broker. See Dependency 
Lookup

Component Registry, 688
component tests

defi ned, 790
layer-crossing tests, 69
per-functionality, 52
test automation philosophies, 

34–36
test strategy patterns, 340

components
defi ned, 790
depended-on component. See

DOC (depended-on 
component)

Composite object, defi ned, 82
Concerns, Separation of, 28–29
concrete classes, 581
Condition Verifi cation Logic, 203–204
Conditional Test Logic

vs. Assertion Method, 363
avoidance, 119–121
avoiding via Custom 

Assertion, 475
avoiding via Guard Assertion, 

490–493
causes, 201–202
Complex Teardown, 206–207
Condition Verifi cation Logic, 

203–204
Flexible Tests, 202–203
impact, 201
introduction, 16
Multiple Test Conditions, 

207–208
Production Logic in Test, 

204–205
symptoms, 200
Test Methods, 155

Confi gurable Mock Object, 546–547. 
See also Confi gurable Test Double

Confi gurable Registry, 691–692

Confi gurable Test Double
examples, 564–567
implementation, 559–562
installing, 141–142
as kind of Test Double, 528
motivating example, 562–563
overview, 558
refactoring, 563
when to use, 559

Confi gurable Test Stub. See also
Confi gurable Test Double

implementation, 532
indirect input control, 179

Confi guration Interface
examples, 564–566
implementation, 560

Confi guration Mode
example, 566–567
implementation, 560

Constant Value. See Literal Value
constants in Derived Value, 

718–722
constructing Mock Object, 546
Constructor Injection

example, 683–684
implementation, 680–681
installing Test Doubles, 144

Constructor Test
defi ned, 351
example, 355–357
introduction, 77

constructors
defi ned, 790
problems with, 419

containers, Humble Container 
Adapter, 698

Context Sensitivity
avoiding via Isolate the SUT, 

43–44
defi ned, 245–246
introduction, xxxii, 14

continuous design, xxxiii



841 Index

continuous integration
avoiding Lost Tests, 270
defi ned, 791
impact of Data-Driven Tests, 290
steps, 14

control points
defi ned, 791
testability, 66–67

Coplien, Jim, 576
CORBA standards, 744
cost effectiveness, Self-Checking 

Tests, 107–108
costs, test automation, 20–21
Covey, Stephen, 121
CppUnit

defi ned, 748
Test Automation Frameworks, 

300
Test Method enumeration, 401

Creation Method
Delegated Setup, 89–91, 

411–414
eliminating unnecessary 

objects/attributes, 303–304
examples, 420–423
as Hard-Coded Test Data 

solution, 196
hybrid setup, 93
implementation, 418–419
motivating example, 419
overview, 415–416
persistent fi xtures 

teardown, 100
preface, xxiii
refactoring, 420
as Test Utility Method, 600
when to use, 416–418
writing simple tests, 28

cross-functional tests, 52–53
cross-thread failure assertion, 274
Cruise Control, 754
CsUnit, 748

CSV fi les, xUnit Data-Driven 
Test, 296

CUnit, 748
Cunningham, Ward, xxv, 290
Custom Assertion

as Conditional Verifi cation 
Logic solution, 204

examples, 480–484
implementation, 477–478
Indirect Testing solution, 

198–199
Irrelevant Information 

solution, 193
motivating example, 478–480
overview, 474–475
reducing Test Code Duplication, 

116–117
refactoring, 480
Test Utility Methods, 602
when to use, 475–477
writing simple tests, 28

Custom Assertion test
example, 483–484
implementation, 477–478

Custom Equality Assertion, 476
customer tests

defi ned, 791
Eager Tests cause, 225
Missing Unit Test, 271
overview, 5–6
per-functionality, 51
as Scripted Test, 285–287

Cut and Paste code reuse, 
214–215

D

data access layer
database testing, 172–173
defi ned, 791
Slow Tests with Shared 

Fixtures, 319



842 Index

data leaks
avoiding with Delta Assertions, 

486–487
Complex Teardown, 206

Data Loader, Back Door 
Manipulation, 330–331

data minimization, 738–739
data population script, 434
Data Retriever, 331
Data Sensitivity

defi ned, 243–245
introduction, xxxii, 14

Data Transfer Object (DTO)
defi ned, 793
result verifi cation, 116

Database Extraction Script, 331
Database Partitioning Scheme

Data Sensitivity solution, 
244–245

developer independence, 173
example, 653
Global Fixtures, 430
implementation, 652

database patterns, 649–675
Database Sandbox, 

650–653
Stored Procedure Test, 

654–660
Table Truncation Teardown, 

661–667
Transaction Rollback 

Teardown, 668–675
Database Population Script, 330
Database Sandbox

database testing, 168
design for testability, 7
pattern description, 650–653
as Test Run Wars solution, 

236–237
Unrepeatable Tests cause, 235
when to use, 650

database testing, 167–174
overview, 167–169
persistent fi xtures, 313
testing without databases, 

169–171
types of, 171–174

Database Transaction Rollback Tear-
down, 674–675

databases
fake. See Fake Database
as SUT API, 336
teardown, 100

Data-Driven Test
customer testing, 5
Fit framework example, 

296–297
frameworks, 300
implementation, 290
implemented as Recorded 

Test, 281
introduction, 83
motivating example, 293–294
overview, 288–289
principles, 48
reducing Test Code Duplication, 

118–119
refactoring notes, 294
Test Suite Object Simulator, 293
using Fit framework, 

290–292
via Naive xUnit Test Interpreter, 

292–293
via Test Suite Object 

Generator, 293
when to use, 289–290
xUnit with CSV input fi le, 296
xUnit with XML data fi le, 

294–295
DB Schema per Test Runner

developer independence, 173
implementation, 651–652



843 Index

DbUnit
Back Door Manipulation, 335
defi ned, 748
Expected State Specifi cation, 464

DDSteps, 754
Decorated Lazy Setup, 449–450
Decorator

Abstract Setup Decorator, 
449, 453

Parameterized Setup Decorator, 
452–453

Pushdown Decorator, 450
Setup. See Setup Decorator
Test Hook as, 710

Dedicated Database Sandbox, 651
Defect Localization

customer testing, 5
defi ned, 22–23
Frequent Debugging, 248
Keep Tests Independent Tests, 43
right-sizing Test Methods, 154
test automation philosophies, 34
unit testing, 6
Verify One Condition per Test, 45

defi ning tests
introduction, 76–78
suites of, 78–79

delays. See Slow Tests
Delegated Setup

example, 413–414
introduction, 77
matching with teardown code, 

98–99
overview, 411–414
of transient fi xtures, 89–91
when to use, 412

Delegated Teardown
example, 514–515
overview, 511
of persistent fi xtures, 98–99
Table Truncation Teardown, 665

Delta Assertion
avoiding fi xture collisions, 101
as Data Sensitivity solution, 245
detecting data leakage with, 487
examples, 488–489
introduction, 111
pattern description, 485–486

depended-on component (DOC). See
DOC (depended-on component)

dependencies
Interacting Tests, 230–231
replacement with Test 

Doubles, 739
replacing using Test Hooks, 

709–712
retrofi tting testability, 148
test automation philosophies, 34
Test Dependency in Production, 

220–221
test fi le organization, 165

Dependency Initialization Test, 352
Dependency Injection

design for testability, 7
examples, 683–685
implementation, 679–681
installing Test Doubles via, 

143–144
Isolate the SUT, 44
motivating example, 682
overview, 678
Persistent Fresh Fixtures 

avoidance, 62–63
refactoring, 682
testability improvement, 70
when database testing, 171
when to use, 678–679

Dependency Lookup
design for testability, 7
examples, 691–693
implementation, 688–689
installing Test Doubles, 144–145



844 Index

Isolate the SUT, 44
motivating example, 690
names, 693–694
overview, 686
Persistent Fresh Fixtures, 

62–63
refactoring, 690–691
when database testing, 171
when to use, 687–688

Derived Expectation
example, 720
when to use, 719

Derived Input, 719
Derived Value

examples, 719–722
overview, 718
when to use, 718–719

design patterns, xxxv, 792
design-for-testability

control points and observation 
points, 66–67

defi ned, 792
divide and test, 71–72
ensuring testability, 65
interaction styles and testability 

patterns, 67–71
overview, 7
Separation of Concerns, 28–29
test automation philosophies. 

See test automation 
philosophies

test automation principles, 40
test-driven testability, 66

design-for-testability patterns, 
677–712

Dependency Injection. See
Dependency Injection

Dependency Lookup. See
Dependency Lookup

Humble Object. See Humble 
Object

Test Hooks, 709–712

deterministic values, 238
developer independence, 173
developer testing

defi ned, 792
introduction, xxx

Developers Not Writing Tests, 13
development

agile, 239
behavior driven, 632, 787–788
document-driven, 793
EDD. See EDD (example-driven 

development)
incremental, 33–34, 799–800
inside-out, 463
inside-out vs. outside in, 34–36
need-driven. See need-driven 

development
outside-in, 469
process, 4–5
TDD. See TDD (test-driven 

development)
test-fi rst. See test-fi rst 

development
test-last. See test-last development

Diagnostic Assertion, 476–477
diagramming notation, xlii
Dialog, Humble. See Humble Dialog
direct output

defi ned, 792–793
verifi cation, 178

Direct Test Method Invocation, 401
disambiguation, test fi xtures, 814
Discovery, Test. See Test Discovery
Distinct Generated Values

Anonymous Creation 
Methods, 417

Delegated Setup, 90
example, 725–726
Hard-Coded Test Data 

solution, 196
implementation, 724
Unrepeatable Tests solution, 235



845 Index

Distinct Values, 717
Do No Harm, 24–25
DOC (depended-on component)

Behavior Verifi cation, 469
control points and observation 

points, 66–67
defi ned, 791–792
outside-in development, 35
replacing with Test Double. 

See Test Double
retrieving. See Dependency 

Lookup
terminology, xl–xli
Test Hook in, 712

Documentation, Tests as. 
See Tests as Documentation

document-driven development, 
793

Domain Assertion
defi ned, 476
example, 481–482

domain layer
defi ned, 793
test strategy patterns, 337

domain model, 793
Don’t Modify the SUT, 41–42
drivers, test

defi ned, 813
lack of Assertion Messages, 

370
DRY (don’t repeat yourself), 28
DTO (Data Transfer Object)

defi ned, 793
result verifi cation, 116

Dummy Argument, 729
Dummy Attribute, 729
Dummy Object

confi guring, 141–142
defi ned, 133
as Test Double, 134–135, 526
as value pattern, 728–732
xUnit terminology, 741–744

dynamic binding
defi ned, 793
use in Dependency Injection, 679

Dynamically Generated Mock 
Object, 550

Dynamically Generated Test Double
implementation, 561–562
providing, 140–141

Dynamically Generated Test Stub, 
534–535

E

Eager Test
Assertion Roulette, 224–226
Fragile Tests, 240
Obscure Tests, 187–188
right-sizing Test Methods, 154

EasyMock
defi ned, 754
Test Doubles, 140

eCATT
defi ned, 754
Test Automation Frameworks, 

301
Eclipse

Debugger, 110
defi ned, 754

economics of test automation, 20–21
EDD (example-driven development)

defi ned, 794
tests as examples, 33

effi ciency, 11
emergent design

vs. BDUF, 65
defi ned, xxxiii, 794

encapsulation
Creation Method. See Creation 

Method
Dependency Lookup 

implementation, 688–689
indirect outputs and, 126



846 Index

Indirect Testing solution, 198
SUT API. See SUT API 

Encapsulation
using Test Utility Methods. 

See Test Utility Method
endoscopic testing (ET)

defi ned, 794
Mock Objects, 545
Test Doubles, 149

Ensure Commensurate Effort and 
Responsibility, 47–48

Entity Chain Snipping
example, 536–537
testing with doubles, 149
when to use, 531

entity object, 794
enumeration

customer testing, 5
Suite of Suites built using, 389–391
test conditions in Loop-Driven 

Tests, 614–615
Test Enumeration, 399–402
Test Suite Object built using, 388
xUnit organization 

mechanisms, 153
Equality, Sensitivity

Fragile Tests, 246
test-fi rst development, 32

Equality Assertion
Assertion Methods, 365
Custom, 476
example, 368
Guard Assertion as, 491
introduction, 110
reducing Test Code 

Duplication, 115
unit testing, 6

Equality Pollution, 221–222
equals method

Equality Pollution, 221–222
Expected State Specifi cation, 464
reducing Test Code Duplication, 

115–116

equivalence class
Behavior Smells, 238
defi ned, 794
Untested Code, 272

Erratic Test
Automated Teardown and, 27
customer testing, 5
database testing, 168–169
impact, 228
Interacting Test Suites, 231–232
Interacting Tests, 229–231
introduction, 14–16
Lonely Tests, 232
Nondeterministic Tests, 

237–238
Resource Leakage, 233
Resource Optimism, 233–234
symptoms, 228
Test Run Wars, 235–237
troubleshooting, 228–229
Unrepeatable Tests, 234–235

essential but irrelevant fi xture 
setup, 425

ET (endoscopic testing)
defi ned, 794
Mock Object use for, 149, 545

example-driven development (EDD)
defi ned, 794
tests as examples, 33

examples, tests as, 33
exclamation marks, xlii
Executable, Humble. See Humble 

Executable
Executable Specifi cation, 51
execution optimization, 180–181
exercise SUT

defi ned, 794
test phases, 359

expectations
defi ned, 795
Derived Expectations, 719, 720
messages describing, 371–372
naming conventions, 159



847 Index

Expected Behavior Specifi cation
defi ned, 470–471
example, 473

Expected Behavior Verifi cation
defi ned, 112
indirect outputs, 131–132

Expected Exception Assertion
defi ned as Assertion Method, 

365–366
example, 369

Expected Exception Test
Conditional Verifi cation Logic 

solution, 204
introduction, 77
as Test Method, 350–351
using block closure, 354–355
using method attributes, 354
using try/catch, 353–354

Expected Object
reducing Test Code Duplication, 

115–116
refactoring tests, xlv–xlviii
State Verifi cations, 109, 466–467
unit testing, 6

expected outcome, 795
Expected State Specifi cation, 

464–465
expected values, 546–547
exploratory testing

cross-functionality, 53
defi ned, 795
Scripted Tests, 287

Expression Builders, 564–566
expressiveness gaps, 27–28
external resource setup, 740
external result verifi cation, 111–112
external test recording, 280
Extract Method

Creation Methods, 418
Custom Assertions, 117
Delegated Setup, 89
as Eager Tests solution, 225
example, xlvii

in persistent fi xture teardown, 98
refactoring Recorded Tests, 283

Extract Testable Component, 197, 
735–736

eXtreme Programming
defi ned, 795
projects affected by Slow Tests, 

319–321
eXtreme Programming Explained

(Beck), xxii

F

factories
defi ned, 795
Factory Method, 592–593
Object Factories, 145, 688

failed tests
due to Unfi nished Test 

Assertions, 494–497
implementation, 80

“Fail-Pass-Pass”, 234–235
failure messages

Assertion Messages, 370–372
Built-in Assertions, 110–111
removing “if” statements, 120
Single-Outcome Assertions, 

366–367
Fake Database

avoiding persistence, 101
database testing, 170
example, 556–557
Slow Component Usage 

solution, 254
Slow Tests with Shared 

Fixtures, 319
when to use, 553

Fake Object
confi guring, 141–142
customer testing, 6
defi ned, 134
examples, 556–557
implementation, 553–554



848 Index

motivating example, 554–555
optimizing test execution, 180
overview, 551–552
refactoring, 555–556
as Test Double, 139, 525
when to use, 552–553
xUnit terminology, 741–744

Fake Service Layer, 553
Fake Web Services, 553
false negative, 795
false positive, 795–796
fault insertion tests

defi ned, 796
per-functionality, 52

Feathers, Michael, 40
Highly Coupled Code 

solution, 210
Humble Object, 708
pattern naming, 576
retrofi tting testability, 148
Self Shunt, 578
test automation roadmap, 176
Unit Test Rulz, 307

features
defi ned, 796
right-sizing Test Methods, 

156–157
Testcase Class per. See Testcase 

Class per Feature
visibility/granularity in 

Test-Specifi c Subclass, 
581–582

feedback in test automation, xxix
fi le contention. See Test Run War
File System Test Runner, 380
Finder Method

accessing Shared Fixtures, 
103–104

Mystery Guests solution, 190
when to use, 600–601

fi ne-grained testing, 33–34

Fit
Data-Driven Test example, 

296–297
Data-Driven Test 

implementation, 290–292
defi ned, 754–755, 796
Expected State Specifi cation, 464
fi xture defi nition, 59, 86
fi xture vs. Testcase Class, 376
Scripted Tests 

implementation, 286
Test Automation 

Framework, 301
test automation tools, 54
tests as examples, 33
vs. xUnit, 57

Fitnesse
Data-Driven Test 

implementation, 290
defi ned, 755
Scripted Test 

implementation, 286
“Five Whys”, 11
fi xture design

upfront or test-by-test, 36
Verify One Condition per 

Test, 46
xUnit sweet spot, 58

fi xture holding class variables, 797
fi xture holding instance 

variables, 797
fi xture setup

Back Door Manipulation, 329, 
333–335

cleaning up, liv–lvii
defi ned, 797
Delegated Setup, 89–91
external resources, 740
Four-Phase Test, 358–361
Fresh Fixtures, 313–314
hybrid setup, 93



849 Index

Implicit Setup, 91–93
In-Line Setup, 88–89
introduction, 77
matching with teardown code, 

98–99
Shared Fixtures, 104–105
speeding up with doubles, 

149–150
strategies, 60

fi xture setup patterns, 407–459
Chained Test. See Chained Test
Creation Method. See Creation 

Method
Delegated Setup, 411–414
Implicit Setup, 424–428. See also

Implicit Setup
In-line Setup, 408–410. See also

In-line Setup
Lazy Setup. See Lazy Setup
Prebuilt Fixture. See Prebuilt 

Fixture
Setup Decorator. See Setup 

Decorator
Suite Fixture Setup. See Suite 

Fixture Setup
Fixture Setup Testcase, 456
fi xture strategies

overview, 58–61
persistent fresh fi xtures, 62–63
shared fi xture strategies, 63–65

fi xture teardown
avoiding in persistent fi xtures, 

100–101
Back Door Manipulation, 330
cleaning up, l–liv
Complex Teardown, 206–207
data access layer testing, 173
defi ned, 797
fi xture strategies, 60
Four-Phase Test, 358–361
Implicit Setup, 426

introduction, 77
Lazy Setup problems, 439
persistent fi xtures, 97–100
Persistent Fresh Fixtures, 314
refactoring, l–liv
Shared Fixtures, 105
transient fi xtures, 93–94
Verify One Condition per 

Test, 46
fi xture teardown patterns, 499–519

Automated Teardown, 
503–508

Garbage-Collected Teardown, 
500–502

Implicit Teardown, 516–519. 
See also Implicit Teardown

In-line Teardown, 509–515. 
See also In-line Teardown

Table Truncation Teardown, 
661–667

Transaction Rollback 
Teardown. See Transaction 
Rollback Teardown

fi xtures
collisions, 100–101
database testing, 168–169
defi ned, 796, 814
Four-Phase Test, 358–361
fresh. See Fresh Fixture
introduction, 78
Minimal. See Minimal Fixture
right-sizing Test Methods, 

156–157
Shared. See Shared Fixture
speeding up setup with doubles, 

149–150
Standard. See Standard Fixture
Testcase Class as, 376
Testcase Class per Fixture. 

See Testcase Class per Fixture
transient. See transient fi xtures



850 Index

Flexible Test, 202–203
fl uent interface, 797
For Tests Only, 219–220
foreign-key constraints, 663
forms, pattern, xxxiv–xxxv
Four-Phase Test

Custom Assertions, 478
fi xture design, 59
introduction, 76–78
Mock Object patterns, 546
pattern description, 358–361
unit testing, 6
Verify One Condition per Test, 46

Fowler, Martin, xxvi
code smells, 16
Creation Methods, 418
Custom Assertions, 117
Cut and Paste code reuse, 215
Delegated Setup, 89, 413
Eager Tests solution, 225
Multiple Test Conditions 

solution, 208
pattern forms, xxxvi
refactoring, xxxix
refactoring Recorded Tests, 283
reusable test logic, 123
self-testing code, xxi
Standard Fixtures, 306
state vs. behavior 

verifi cation, 36
test smells, 9
Testcase Object exception, 385

Fragile Fixture
defi ned, 246–247
introduction, 14, 16
setUp method misuse, 93

Fragile Test
Behavior Sensitivity, 242–243
Buggy Tests, 260
causes, 240–241
Context Sensitivity, 245–246

Data Sensitivity, 243–245
Fragile Fixture, 246–247
High Test Maintenance 

Cost, 266
impact, 239
Interface Sensitivity, 241–242
introduction, xxiii, xxxi–xxxii, 

13–14
Overspecifi ed Software, 246
Sensitivity Equality, 246
symptoms, 239
troubleshooting, 239–240

frameworks
Fit. See Fit
Test Automation Framework, 75, 

298–301
Frequent Debugging

avoidance with Custom 
Assertion, 475

causes, 248–249
impact, 249
introduction, 15
solution patterns, 249
symptoms, 248

Fresh Fixture
Creation Method. See Creation 

Method
Data Sensitivity solution, 

244–245
Delegated Setup, 411–414
example, 316
fi xture strategies, 60–61
implementation, 312
Implicit Setup, 424–428
Interacting Tests solution, 231
motivating example, 315
Mystery Guests solution, 190
overview, 311
persistent, 62–63, 313–314. 

See also persistent fi xtures
refactoring, 315



851 Index

setup, 313–314
test automation philosophies, 36
Test Run Wars solution, 236–237
transient, 61–62. See also

transient fi xtures
Transient Fresh Fixture, 314
when to use, 312

front door, 797
Front Door First

defi ned, 40–41
Overspecifi ed Software 

avoidance, 246
Fully Automated Test

behavior smells and, 15
Communicate Intent and, 41
Manual Fixture Setup 

solution, 251
minimizing untested code, 44–45
running, 25–26
unit testing, 6

functional tests
defi ned, 798
per-functionality, 50–52

Fuzzy Equality Assertion
defi ned, 365–366
example, 368–369
external result verifi cation, 

111–112
introduction, 110

G

Gamma, Erich, 57
garbage collection, 798
Garbage-Collected Teardown

design-for-testability, 7
pattern description, 500–502
persistent fi xtures, 97
transient fi xtures, 87–88

General Fixture
database testing, 169
defi ned, 187

misuse of setUp method, 
92–93

Obscure Tests, 190–192
Slow Tests, 255

Generated Value, 723–727
Geras, Adam, 280
Global Fixture, 430
global variables

defi ned, 798
instance variables as, 92

goals, test automation. 
See test automation goals

Gorts, Sven, 537
granularity

test automation tools and, 
53–54

Test-Specifi c Subclass, 
581–582

Graphical Test Runner
clicking through to test code, 

226–227
defi ned, 378–379
green bar, 26
introduction, 79, 300

graphical user interface (GUI). 
See GUI (graphical user interface)

green bar, defi ned, 798
Guaranteed In-Line Teardown, 

233
Guard Assertion

Conditional Verifi cation Logic 
solution, 203–204

introduction, 80
pattern description, 490–493
removing “if” statements in 

Test Method, 120
GUI (graphical user interface)

defi ned, 799
design for testability, 7
Interface Sensitivity, xxxii
testing with Humble 

Dialogs, 696



852 Index

H

Hand-Built Test Double. See also
Hard-Coded Test Double

Confi gurable Test Double, 
560–561

providing, 140–141
Hand-Coded Mock Object, 548–550
hand-coded teardown, 97–98
Hand-Coded Test Stub, 533–534
Hand-Scripted Test. See also

Scripted Test
introduction, 75
tools for automating, 53–54

Hand-Written Test. See Scripted Test
happy path

defi ned, 799
Responder use, 530
Simple Success Tests, 349–350
test automation roadmap, 

177–178
Hard-Coded Mock Object. See Hard-

Coded Test Double
Hard-Coded Setup Decorator

defi ned, 449
example, 451–452

Hard-Coded Test Data
causing Obscure Tests, 194–196
defi ned, 187
introduction, lv–lvii, 16

Hard-Coded Test Double
confi guring, 141–142
implementation, 527, 569–571
motivating example, 571
naming patterns, 576–578
overview, 568
refactoring, 572
Self Shunt/Loopback, 573
Subclassed Inner Test Double, 

573–575, 578
Test Double Class, 572–573

testing with, 140–142
when to use, 569

Hard-Coded Test Spy. See
Hard-Coded Test Double

Hard-Coded Test Stub. See also
Hard-Coded Test Double

implementation, 531–532
indirect input control, 179

Hard-Coded Value, 103
Hard-To-Test Code

Asynchronous Code, 210–211
Buggy Tests, 261
code smells, 16
Developers Not Writing 

Tests, 264
divide and test, 71–72
High Test Maintenance Cost, 

266–267
Highly Coupled Code, 210
impact, 209
solution patterns, 209
symptoms, 209
Untestable Test Code, 211–212

hierarchy of test automation needs, 
176–177

High Test Maintenance Cost
Conditional Test Logic, 200
In-Line Setup, 89
introduction, 12–13
smell description, 265–267

Higher Level Language
Custom Assertion, 117
Interface Sensitivity solution, 241
xUnit sweet spot, 58

Highly Coupled Code, 210
historical patterns and smells, xxxviii
Hollywood principle

defi ned, 56, 799
test results, 79

Hook, Test. See Test Hook
HTML user interface sensitivity, xxxii



853 Index

HttpUnit, 755
Humble Container Adapter, 698
Humble Dialog

design-for-testability, 7
example, 706–708
Hard-To-Test Code, 72
minimizing untested code, 45
when to use, 696–697

Humble Executable
asynchronous tests, 70–71
minimizing untested code, 44
motivating example, 700–702
Neverfail Test solution, 274
when to use, 697

Humble Object
Asynchronous Code solution, 211
Humble Dialog, 706–708
Humble Transaction 

Controller, 708
implementation, 698–700
motivating example, 700–702
overview, 695–696
Poor Manís Humble 

Executable, 703
refactoring, 702
True Humble Executable, 

703–706
when to use, 696–698

Humble Transaction Controller
data access layer testing, 173
example, 708
when to use, 697–698

Hurst, John, 670–671
hybrid setup, 93

I

IDE (integrated development 
environment)

defi ned, 799
introduction, 78
refactoring, xxxix

Idea, 755
IeUnit

defi ned, 748
Graphical Test Runner, 378

“if” statements
Conditional Test Logic, 201
Guard Assertions, 490–491
removing, 120

IFixtureFrame, 442
ignoring tests, 270
Immutable Shared Fixture

defi ned, 323
example, 326
Interacting Tests solution, 231
introduction, 61, 65
vs. Irrelevant Information, 192
Test Run Wars solution, 237

impact
Assertion Roulette, 224
Asynchronous Code, 211
Buggy Tests, 260
Conditional Test Logic, 201
Developers Not Writing 

Tests, 263
Equality Pollution, 221
Erratic Tests, 228
Flexible Tests, 203
Fragile Tests, 239
Frequent Debugging, 249
General Fixtures, 191–192
Hard-Coded Test Data, 195
Hard-To-Test Code, 209
High Test Maintenance 

Cost, 265
Highly Coupled Code, 210
Indirect Testing, 197
Irrelevant Information, 193
Manual Intervention, 250
Mystery Guests, 189
Neverfail Tests, 274
Nondeterministic Tests, 237



854 Index

Obscure Tests, 186
Production Bugs, 268
Slow Tests, 253
Test Code Duplication, 214
Test Dependency in 

Production, 221
Test Hooks, 218–219
Test Logic in Production, 217
Test Run Wars, 236
For Tests Only, 220
Untestable Test Code, 211
Untested Requirements, 273

Implicit Setup
vs. Four-Phase Test, 360–361
introduction, 7, 77
matching with teardown code, 

98–99
pattern description, 424–428
pattern naming, 577
reusing test code with, 162
transient fi xtures, 91–93

Implicit Teardown
Complex Teardown solution, 

206–207
database, 100
vs. Four-Phase Test, 360–361
pattern description, 516–519
persistent fi xtures, 98–99
Self-Checking Tests with, 108

Imposter. See Test Double
incremental delivery

agile development, 239
defi ned, 799

incremental development
defi ned, 799–800
test automation philosophies, 

33–34
Incremental Tabular Test

implementation, 609–610
Parameterized Test patterns, 

613–614

incremental tests, 322
In-Database Stored Procedure Test

database testing, 172
example, 658–659
implementation, 655–656

Independent Tabular Test, 612–613
independent testing. See Keep Tests 

Independent
indirect input

alternative path verifi cation, 179
controlling, 128–129
controlling in Layer Tests, 341
defi ned, 800
importance of, 126
Test Doubles, 125–126

indirect output
Behavior Verifi cation. 

See Behavior Verifi cation
defi ned, 800
importance of, 126–127
registries, 541
Test Doubles, 125–126
verifi cation, 130–133, 178–180
verifying in Layer Tests, 341

Indirect Testing
defi ned, 187
Fragile Tests cause, 240
Obscure Tests cause, 196–199
testability, 70–71

Infrequently Run Test
Frequent Debugging cause, 

248–249
Production Bugs cause, 268–269

inheritance
reusing test code, 164
reusing test fi xtures, 62

injected values, Test Stub. 
See Test Stub

Injection, Parameter. See Parameter 
Injection

in-line Four Phase Test, 360



855 Index

in-line resources, 736–737
In-line Setup

introduction, 77
matching with teardown code, 

98–99
Mystery Guest solution, 190
pattern description, 408–410
transient fi xtures, 88–89

In-line Teardown
examples, 512–515
implementation, 510–511
motivating example, 511
Naive In-Line Teardown, 512
overview, 509
of persistent fi xtures, 98–99
refactoring, 512
when to use, 510

In-Memory Database, 553
inner class

anonymous, 535–536, 786
defi ned, 800

Inner Test Double
example, 573–574
Hard-Coded Test Double 

implementation, 570–571
Subclassed from Pseudo-Class, 

574–575, 578
Test Spy implementation, 541

input
derived, 719
indirect. See indirect input
naming conventions, 158–159

inside-out development
vs. outside-in development, 34–36
State Verifi cation, 463

installing Test Doubles, 528
Dependency Injection, 143–144, 

679–680
Dependency Lookup, 144–145
Fake Object, 554
introduction, 143

Mock Object, 547
retrofi tting testability, 

146–148
instance methods

defi ned, 800–801
with Test Helper, 645, 647

instance variables
converting for Implicit Setup, 427
Data-Driven Tests using Fit 

Framework, 297
defi ned, 801
Fresh Fixtures, 313
as global variables, 92
Reuse Tests for Fixture Setup, 

418–419
with Test Specifi c Subclass, 558
Testcase Class per Fixture, 632

instances
reusing, 63
Testcase Object exception, 

384–385
integrated development environment 

(IDE). See IDE (integrated 
development environment)

Integration Build, 4
Intent-Revealing Name

Custom Assertion, 474–475
Implicit Setup, 92
Parameterized Test, 608
Test Utility Method, 602–603

Interacting Test Suites, 
231–232

Interacting Tests
avoiding with Database 

Sandbox, 650–653
avoiding with Delta Assertion, 

111, 486
caused by Shared Fixture, 63
Chained Tests, 455
customer testing, 5–6
database testing, 169



856 Index

Erratic Test cause, 229–231
introduction, 15
Keep Tests Independent, 43

interaction point, 801
interaction styles, 67–71
Interaction Testing. See Behavior 

Verifi cation
Interface Sensitivity

defi ned, 241–242
introduction, xxxii, 13

interfaces
Confi guration Interface, 560
defi ned, 801
GUI. See GUI (graphical user 

interface)
outgoing interface, 804–805
standard test, 378
Test Runner. See Test Runner
Use the Front Door First, 40–41

internal recording tools, 56
interpreters in Data-Driven Tests. 

See Data-Driven Test
Intervention, Manual. See Manual 

Intervention
Introduce Explaining Variable 

refactoring, lvii–lviii
IoC (inversion of control) framework

defi ned, 801
for Dependency Injection, 680

irrelevant information
defi ned, 187
Obscure Test, 192–194

Isolate the SUT, 43–44
iterative development, 802

J

Java
language-specifi c xUnit 

terminology, xl
test code packaging, 165

JBehave
defi ned, 748
tests as examples, 33

JFCUnit, 755
JMock

Confi guration Interface, 560
defi ned, 755
Test Double implementation, 

140
Johnson, Rod, 670
JUnit

defi ned, 748
Expected Exception Test 

expression, 351
fi xture design, 59
language-specifi c terminology, xl
Suite Fixture Setup support, 

442–443
Test Automation 

Framework, 300
test automation tools, 55
Testcase Object exception, 

384–385
testing stored procedures, 657

K

Keep Test Logic Out of Production 
Code

minimizing risk, 24
principle, 45
test code organization, 164–165

Keep Tests Independent
running, 26
test automation principles, 

42–43
using Fake Object. See Fake 

Object
Kerievsky, Joshua, xxxix
keys, Literal Values as, 714
King, Joseph, 319–321



857 Index

L

languages
terminology, xl–xli
variations in Built-in Assertions, 

110–111
xUnit implementations, 76

language-specifi c xUnit terminology, 
xl–xli

“Law of Raspberry Jam”, xxv
Layer Test

Business Layer Tests, 344–345
database testing, 169–171
implementation, 340–341
motivating example, 341–342
overview, 337–338
Presentation Layer Tests, 343
refactoring, 342
Subcutaneous Tests, 343–344
when to use, 338–340

layer-crossing tests
defi ned, 802
testability, 67–69

Layered Architecture
design-for-testability, 7
layer-crossing tests, 67–69

Lazy Initialization, 435
Lazy Setup

Decorated, 449–450
examples, 439–440
implementation, 436–437
Interacting Tests solution, 231
motivating example, 437–438
overview, 435
vs. Prebuilt Fixtures, 431–432
refactoring, 439
Shared Fixture, 64, 105
when to use, 436

Lazy Teardown
example, 665–666
implementation, 663–664

leakage, resource
Erratic Tests, 233
persistent fi xtures, 99

learning styles, xxxix–xl
legacy software

Buggy Tests, 261–262
defi ned, 802
tests as safety net, 24

lenient Mock Object
defi ned, 138
when to use, 545

lightweight implementation using 
Fake Object. See Fake Object

Literal Value
Hard-Coded Test Data, 195
pattern description, 714–717

local variables
converting in Implicit 

Setup, 427
defi ned, 802
Fresh Fixtures, 313

Lonely Test
caused by Chained Test. See

Chained Test
Erratic Tests, 232
Interacting Tests. 

See Interacting Tests
Long Tests. See Obscure Test
Loopback. See Self Shunt
Loop-Driven Test

implementation, 610
Parameterized Test, 614–615

loops
as Conditional Test Logic, 201
eliminating, 121
Production Logic in Test cause, 

204–205
Lost Tests

avoiding, 597
Production Bugs cause, 

269–271



858 Index

M

Mackinnon, Tim, 149
macros, Assertion Methods as, 364
maintenance

High Test Maintenance Cost. See
High Test Maintenance Cost

optimizing, 180–181
test automation goals, 27–29

Manual Event Injection, 251–252
Manual Fixture Setup, 250–251
Manual Intervention

impact, 250
introduction, 15
Manual Event Injection, 

251–252
Manual Fixture Setup, 250–251
Manual Result Verifi cation, 251
symptoms, 250

Manual Result Verifi cation, 251
manual testing

defi ned, 802
right-sizing Test Methods, 154

Marrick, Brian
purpose of tests, 51
right-sizing Test Methods, 155
tests as examples, 33

Maslow, 176
MbUnit

defi ned, 749
Parameterized Test 

implementation, 608–609
Tabular Test with framework 

support, 614
Message, Assertion. See Assertion 

Message
messages, failure. See failure 

messages
meta objects

Data-Driven Tests, 290
defi ned, 803

metatests, 803
method attributes

defi ned, 803
Expected Exception Tests, 354
Test Discovery using, 397
Test Method Selection 

using, 405
method names

language-specifi c xUnit 
terminology, xl–xli

Test Method Discovery, 395–396
methods

diagramming notation, xlii
instance. See instance methods
setUp. See setUp method
static, 809
suite, 399
tearDown. See tearDown method
Template Method, 164
test commands, 82
verifi cation. See result 

verifi cation
Miller, Jeremy, 687
Minimal Fixture

external result verifi cation, 112
General Fixtures solution, 192
minimizing data, 738–739
misuse of setUp method, 93
pattern description, 302–304
strategy, 62–63
test automation philosophies, 36

Minimize Test Overlap, 44
Minimize Untestable Code, 44–45
Missing Assertion Message, 226–227
Missing Unit Test

Defect Localization, 23
Production Bugs, 271

mixins
defi ned, 803
Test Helper Mixins, 639, 

641–642



859 Index

Mock Object
Confi gurable. See Confi gurable 

Test Double
confi guring, 141–142
defi ned, 133
examples, 548–550
Expected Behavior Specifi cation, 

470–471
implementation, 546–548
motivating example, 548
Overspecifi ed Software 

cause, 246
overview, 544–545
refactoring, 548
Test Double patterns, 525
Test Doubles, 137–139
unit testing, 6
vs. Use the Front Door First, 40
verifying indirect output, 

131–133
when to use, 545
xUnit terminology, 741–744

MockMaker, 560
modules, 803–804
Move Method, 413
MSTest, 749
Mugridge, Rick, xxiv
multimodal tests, 687
multiple-condition tests

Conditional Test Logic, 
207–208

defi ned, 45–47
Multiresource In-line Teardown, 

513–514
MySql, 651
Mystery Guest

defi ned, 187
Obscure Test cause, 188–190

N

Naive In-line Teardown
defi ned, 511
example, 512
of persistent fi xtures, 97

Naive xUnit Test Interpreter, 
292–293

Named State Reaching Method, 
417–418

Named Test Suite
examples, 594–598
implementation, 594
introduction, 160–161
overview, 592–593
refactoring, 594
Test Enumeration, 400
when to use, 593–594

names
Dependency Lookup, 693–694
intent-revealing. See

Intent-Revealing Name
referring to patterns and smells, 

xxxviii
Scripted Test, 287
Suite Fixture Setup, 446

naming conventions
assertion-identifying

messages, 371
making resources unique, 

737–738
patterns, 576–578
vs. test code organization, 

158–159
Test Method Discovery, 

395–396
Testcase Class per Class, 618
Testcase Class per Feature, 626
Testcase Class per Fixture, 632
For Tests Only solution, 220



860 Index

need-driven development
Behavior Verifi cation, 469
defi ned, 804
testing with doubles, 149
using Mock Objects, 545

Neverfail Test, 274
New River Gorge bridge, xxvi
Newkirk, James, 384–385
NMock, 756
No Test Risk, 24–25
Nondeterministic Test

dangers of, 26–27
Erratic Test, 237–238
Generated Values cause, 723–724

notation, diagramming, xlii
Null Object vs. Dummy Object, 730
null values in Dummy Objects, 

729–732
NUnit

defi ned, 749
Expected Exception Test 

expression, 351
fi xture design, 59
Interacting Test Suites, 232
Suite Fixture Setup support, 

442–443
Test Automation Frameworks, 

300
test automation ways and 

means, 55
test fi xtures, 814
Testcase Classes, 376
Testcase Object exception, 

384–385

O

Object Attribute Equality Assertion, 
476

Object Factory
Dependency Lookup, 688
installing Test Double, 145

Object Mother
in Delegated Setup, 90–91
when to use, 644–645

object technology, xxxix–xl
Object Transaction Rollback 

Teardown, 673–674
object-oriented programming 

language (OOPL), 76
object-relational mapping (ORM). 

See ORM (object-relational 
mapping)

objects
Creation Method. See Creation 

Method
determining necessary, 

303–304
diagramming notation, xlii
fake. See Fake Object
Test Suite Objects. See Test Suite 

Object
Testcase. See Testcase Object

Obscure Test
avoiding with Custom Assertion, 

475
avoiding with Separation of Con-

cerns, 28–29
Buggy Test, 261
causes, 186–187
vs. Communicate Intent, 41
customer testing, 5
database testing, 169
Eager Test, 187–188
General Fixture, 190–192
Hard-Coded Test Data, 

194–196
High Test Maintenance Cost, 

266
impact, 186
Indirect Testing, 196–199
introduction, xlvi, 12–13, 16
Irrelevant Information, 192–194
Mystery Guests, 188–190



861 Index

optimizing test execution/
maintenance, 180

smells, 10
solution patterns, 199
symptoms, 186

observation points
defi ned, 804
test automation strategy, 66–67

O’Grady, Ted, 319–321
One Bad Attribute

example, 721–722
introduction, xxiii, 90
Minimal Fixtures, 304
when to use, 719

OOPL (object-oriented 
programming language), 76

optimism, resource, 189, 233–234
order of tests, 456
organization, test. See test 

organization; test organization 
patterns

ORM (object-relational mapping)
defi ned, 804
Table Truncation Teardown, 663
Table Truncation Teardown 

using, 667
Transaction Rollback 

Teardown, 671
Outcome Assertions, Stated. See

Stated Outcome Assertion
outcome verifi cation patterns. See

result verifi cation patterns
outcome-describing Verifi cation 

Method, 117
outgoing interface, 804–805
out-of-order calls, 138
output, indirect. See indirect output
outside-in development

Behavior Verifi cation, 469
vs. inside-out development, 

34–36
Overcoupled Software, 40

overlapping tests
minimizing, 44
Too Many Tests, 256–257

Overspecifi ed Software
avoiding with Fake Objects, 

552
Fragile Tests, 246
testing with doubles, 150
Use the Front Door First, 40

P

Parameter Injection
example, 683
implementation, 680
installing Test Doubles, 144

Parameterized Anonymous Creation 
Method, 417

Parameterized Creation Method
defi ned, 417
Delegated Setup, 90
example, xxiii, 420–421
Irrelevant Information 

solution, 193
Parameterized Setup Decorator

defi ned, 449
example, 452–453

Parameterized Test
example, 611–612
extracting. See Data-Driven Test
further reading, 615–616
implementation, 608–610
Incremental Tabular Test, 

613–614
Independent Tabular Test, 

612–613
Loop-Driven Tests, 614–615
motivating example, 610–611
overview, 607–608
reducing Test Code Duplication, 

118–119
refactoring, 611



862 Index

Tabular Test with framework 
support, 614

Test Utility Method, 602
when to use, 608

parameters, arguments as, 729
“Pass-Fail-Fail”, 234–235
pattern language

defi ned, xxxv–xxxvi, 805
pattern naming, 577

Pattern Languages of Programming 
(PLoP), 576

patterns
aliases and variations, 767–784
database. See database patterns
defi ned, 805
design-for-testability. See

design-for-testability patterns
fi xture setup. See fi xture setup 

patterns
result verifi cation. See result 

verifi cation patterns
test automation introduction, 

xxxiv–xxxviii
Test Double. See Test Double
test organization. See test 

organization patterns
test strategy. See test strategy 

patterns
testability, 67–71
value. See value patterns
xUnit basics. See xUnit basics 

patterns
peeling the onion, 11
per-functionality test, 50–52
Perrotta, Paolo, 537
Per-Run Fixtures, 323
persistence layer, 339–340
persistence resources, 504
persistent fi xtures, 95–106

database testing, 168–169
issues caused by, 96

managing, 103–105
overview, 95–96
Slow Tests cause, 102
Table Truncation Teardown. See

Table Truncation Teardown
teardown avoidance, 100–101
tearing down, 97–100
test strategy patterns, 313–314
what’s next, 106

Persistent Fresh Fixture
building, 88
defi ned, 60–61
strategies, 62–63

Personal Oracle, 651
philosophy, test automation. See test 

automation philosophies
PHPUnit, 749
PLoP (Pattern Languages of 

Programming), 576
Pluggable Behavior

in Named Test Suites, 597
Testcase Object 

implementation, 383
pollution

Equality Pollution, 221–222
Shared Fixture, 326

polymorphism, 805
Poor Manís Humble 

Executable, 703
Poor Man’s Humble Object

implementation, 699
Transaction Rollback 

Teardown, 671
Poppendieck, Mary, 51
Pragmatic Unit Testing, 743
Prebuilt Fixture

examples, 432–434
implementation, 430–431
motivating example, 

431–432
overview, 429–430



863 Index

refactoring, 432
Shared Fixture strategies, 64
Shared Fixtures, 104–105
Unrepeatable Tests cause, 235

presentation layer
defi ned, 805
Layer Tests example, 343
testing, 338–339

presentation logic, 805
Preserve Whole Object refactoring, 

xlviii–xlix
principles

list of, 757–759
patterns vs., xxxv–xxxvi
test automation. See test 

automation principles
Private Fixture. See Fresh Fixture
private methods, 586
problem statements, xxxvi–xxxvii
Procedural Behavior Verifi cation

defi ned, 470
example, 472–473
indirect outputs, 131
introduction, 112–113
Test Spy usage, 137

Procedural State Verifi cation
defi ned, 463–464
example, 466
introduction, 109

Procedural Test Stub
defi ned, 526
introduction, 135–136
when to use, 531

Procedure Test, Stored. See Stored 
Procedure Test

procedure variables, 805–806
production, 806
Production Bugs

Infrequently Run Tests, 268–269
introduction, 12–13
Lost Tests, 269–271

Missing Unit Tests, 271
Neverfail Tests, 274
overview, 268
reducing risk, 181
Untested Code, 271–272
Untested Requirements, 272–274

production code
defi ned, 806
keeping test logic out of, 45

Production Logic in Test, 204–205
profi ling tools, 254
Programmatic Test. See Scripted Test
programmer tests, 806
project smells, 259–274

Buggy Tests, 260–262
defi ned, 806
Developers Not Writing Tests, 

263–264
High Test Maintenance Cost, 

265–267
overview, 12–13
Production Bugs. See Production 

Bugs
property tests, 52
Pseudo-Object

Hard-Coded Test Double 
implementation, 570–571

Inner Test Double Subclassed 
from Pseudo-Class, 574–575, 
578

testing with doubles, 140–141
pull system, 806–807
Pull-Up Method refactoring

Delegated Setup, 413
moving reusable test logic, 123
Testcase Superclass, 640

Pushdown Decorator, 450
PyUnit

defi ned, 749
Test Automation Framework, 

300



864 Index

Q

QA (quality assurance), 22–23
QaRun, 244
QTP (QuickTest Professional)

Data-Driven Tests, 290
defi ned, 756
record and playback tools, 282
Test Automation 

Framework, 301
quality assurance (QA), 22–23
QuickTest Professional (QTP). 

See QTP (QuickTest Professional)

R

random values
Nondeterministic Tests, 238
Random Generated Values, 724

Record and Playback Test, 13
record and playback tools

introduction, xxxi
Recorded Tests, 282–283
xUnit sweet spot, 58

Recorded Test
built-in test recording, 

281–282
commercial record and 

playback tool, 282–283
customer testing, 5
Data-Driven Tests and, 289
implementation, 280–281
Interface Sensitivity, 241
overview, 278–279
refactored commercial recorded 

tests, 283–284
vs. Scripted Tests, 286
smells, 10
tools, 56
tools for automating, 53–54
when to use, 279–280

Recording Test Stub. See Test Spy

red bar, 807
Refactored Recorded Tests

commercial, 283–284
overview, 280

refactoring. See also test refactorings
Assertion Message, 372
Assertion Method, 368
Automated Teardown, 

506–507
Back Door Manipulation, 333
Chained Test, 458
Confi gurable Test Double, 463
Creation Method, 420
Custom Assertion, 480
Database Sandbox, 653
Data-Driven Test, 294
defi ned, 807
Delegated Setup, 413
Delta Assertion, 488
Dependency Injection, 682
Dependency Lookup, 690–691
Derived Value, 720
Dummy Object, 731
Fake Object, 555–556
Fresh Fixture, 315–316
Garbage-Collected

Teardown, 502
Generated Value, 725
Guard Assertion, 492
Hard-Coded Test Double, 572
Humble Object, 702
Implicit Setup, 427
Implicit Teardown, 518–519
In-line Setup, 410
In-line Teardown, 512
Layer Test, 342
Lazy Setup, 439
Literal Value, 716
Mock Object, 548
Named Test Suite, 594
Parameterized Test, 611



865 Index

Prebuilt Fixture, 432
Setup Decorator, 451
Shared Fixture, 324
Standard Fixture, 309–310
State Verifi cation, 465–466
Stored Procedure Test, 658
Suite Fixture Setup, 444
Table Truncation Teardown, 

664–665
Test Discovery, 395
Test Helper, 646
Test Spy, 541–542
Test Stub, 533
Test Utility Method, 605
Testcase Class per Feature, 

627–628
Testcase Class per Fixture, 

634–635
Testcase Superclass, 640
Test-Specifi c Subclass, 584
Transaction Rollback 

Teardown, 672
Unfi nished Test Assertion, 496

Refactoring: Improving the 
Design of Existing Code (Fowler),
9, 16

references, 819–832
refl ection

defi ned, 807
Test Discovery, 393
Testcase Object 

implementation, 383
Registry

confi gurable, 691–692
in Dependency Lookup, 688–689
Interacting Tests, 230
Test Fixture, 644

regression tests
defi ned, 807
Recorded Tests. See Recorded 

Test
Scripted Tests, 285–287

Related Generated Values
example, 726–727
implementation, 725

Remoted Stored Procedure Test
example, 659–660
implementation, 656–658
introduction, 172

Repeatable Test
defi ned, 26–27
indirect inputs control, 179

Replace Dependency with Test 
Double refactoring

Behavior Verifi cation, 472
defi ned, 739

Repository
Data-Driven Test fi les, 290
persistent objects, 90
source code, 24, 79, 234, 

561, 656
test code, 164, 561

Requirement, Untested. 
See Untested Requirement

ReSharper, 756
Resource Leakage

Erratic Tests, 233
persistent fi xtures, 99

Resource Optimism, 189, 233–234
resources

external, 740
in-line, 736–737
unique, 737–738

Responder
defi ned, 524
examples, 533–535
indirect input control, 179
introduction, 135
when to use, 530

response time tests, 52
result verifi cation, 107–123

Behavior Verifi cation, 112–114
Conditional Test Logic 

avoidance, 119–121



866 Index

Data Sensitivity, 243–245
defi ned, 807
Four-Phase Test, 358–361
Mock Object, 547–548
other techniques, 121–122
reducing Test Code Duplication, 

114–119
reusable test logic, 123
Self-Checking Tests, 107–108
State Verifi cation, 109–112

result verifi cation patterns, 461–497
Behavior Verifi cation. See

Behavior Verifi cation
Custom Assertion. See Custom 

Assertion
Delta Assertion, 485–489
Guard Assertion, 490–493
State Verifi cation. See State Veri-

fi cation
Unfi nished Test Assertion, 

494–497
results, test

defi ned, 815
introduction, 79–80

Retrieval Interface, 137, 540
retrospective, 807–808
reusable test logic

Creation Method, 418–419
fi xture setup patterns, 422–423
organization, 162–164
result verifi cation, 123
Test Code Duplication, 214–215
Test Utility Method. See Test 

Utility Method
Reuse Tests for Fixture Setup, 90
Robot User Test. See Recorded Test
robot user tools

defi ned, 55–56
introduction, xxxi
Test Automation Framework, 

299

Robust Tests
defi ned, 29
indirect inputs control, 179

role-describing arguments, 725
root cause analysis

defi ned, 808
smells, 11

round-trip tests
defi ned, 808
introduction, 67–69
Layer Tests, 340–341

row tests. See Tabular Test
RSpec

defi ned, 750
fi xture design, 59
tests as examples, 33

runit
defi ned, 750
Test Automation 

Frameworks, 300
running tests

introduction, 79
structure, 81
test automation goals, 25–27

runtime refl ection, 393

S

Saboteur
defi ned, 135
example, 535–536
inside-out development, 35
Test Double patterns, 524
when to use, 530

Safety Net
Buggy Tests, 260
tests as, 24

sample code, xli–xlii
screen scraping, 241
Scripted Test

Communicate Intent, 41
customer testing, 5



867 Index

Data-Driven Tests and, 289
introduction, 75
pattern description, 285–287
vs. Recorded Tests, 279
smells, 10
UI, 55
Verify One Condition per 

Test, 46
Self Shunt

Behavior Verifi cations, 113
example, 573
Hard-Coded Test Double 

implementation, 570
pattern naming, 576
Test Spy implementation, 

540–541
Self-Call, 582
Self-Checking Test

Assertion Method usage, 362
Conditional Test Logic 

solution, 201
defi ned, 80
happy path code, 178
introduction, 107–108
running, 26

Self-Describing Value
example, 717
Literal Value patterns, 715

self-testing code, xxi
self-tests, built-in

defi ned, 788
test fi le organization, 164

Sensitive Equality
Fragile Tests, 246
test-fi rst development, 32

sensitivities
automated unit testing, 

xxxi–xxxii
behavior. See Behavior Sensitivity
Buggy Tests cause, 260
context. See Context Sensitivity

data. See Data Sensitivity
interface. See Interface 

Sensitivity
Separation of Concerns, 28–29
Service Facade, 71–72
service layers

fake, 553
tests, 7, 339

Service Locator
in Dependency Lookup. 

See Dependency Lookup
installing Test Doubles, 145

service objects, 808
Setter Injection

Confi guration Interface 
using, 564

example, 684–685
implementation, 681
installing Test Doubles, 143

setters, 808
setup, fi xtures. See fi xture setup
Setup Decorator

examples, 451–453
implementation, 448–450
Implicit Setup, 426
motivating example, 450–451
overview, 447–448
refactoring, 451
Shared Fixture strategies, 64, 

104–105
when to use, 448

setUp method
Implicit Setup, 91–92, 424–428
misuse of, 92–93
pattern naming, 577
Setup Decorator. See Setup 

Decorator
Suite Fixture Setup. See Suite 

Fixture Setup
shadows, diagramming notation, xlii
Shank, Clint, 457–458, 613, 616



868 Index

Shared Fixture. See also Standard 
Fixture

Behavior Verifi cation, 108
Chained Test. See Chained Test
customer testing, 5
Data Sensitivity cause, 243
database testing, 169
defi ned, 60–61
Delta Assertions, 111
example, 324–325
Immutable. See Immutable 

Shared Fixture
Immutable Shared Fixtures, 326
implementation, 322–323
incremental tests, 322
Interacting Tests cause, 229–231
introduction, 15, 63–65
Lazy Setup. See Lazy Setup
managing, 103–105
motivating example, 323–324
in Nondeterministic Tests, 27
overview, 317
Prebuilt Fixture. See Prebuilt 

Fixture
refactoring, 324
Setup Decorator. See Setup 

Decorator
Slow Tests cause, 318–321
Suite Fixture Setup. See Suite 

Fixture Setup
Table Truncation Teardown. 

See Table Truncation Teardown
Test Run Wars cause, 236
Unrepeatable Tests cause, 235
using Finder Methods, 600–601
when to use, 318

Shared Fixture Guard Assertion, 
492–493

Shared Fixture State Assertion, 491
Simple Success Test

example, 352–353
happy path code, 177

introduction, 77
pattern description, 349–350

The simplest thing that could 
possibly work (STTCPW), 810

Single Glance Readable. 
See Communicate Intent

Single Layer Test. See Layer Test
Single Test Suite

example, 596–597
Lost Tests solution, 270
when to use, 593–594

single tests, 161–162
Single-Condition Test

Eager Tests solution, 225–226
Obscure Tests solution, 188
principles. See Verify One 

Condition per Test
unit testing, 6

Single-Outcome Assertion
Assertion Method, 366–367
defi ned, 365
example, 369

Singleton
in Dependency Lookup, 

688–689
Interacting Tests, 230
retrofi tting testability, 146–147

Singleton, Substituted
example, 586–587
when to use, 581

skeletons, 744
Slow Component Usage, 254
Slow Tests

Asynchronous Tests, 255–256
avoiding with Shared Fixture, 

318–321
database testing, 168
design for testability, 7
due to Transaction Rollback 

Teardown, 669
General Fixtures, 255
impact, 253



869 Index

introduction, 15
optimizing execution, 180
persistent fi xtures, 102
preventing with Fake Object. 

See Fake Object
preventing with Test 

Double, 523
Slow Component Usage, 254
symptoms, 253
Too Many Tests, 256–257
troubleshooting, 253–254

smells, test. See test smells
Smith, Shaun, 39
Smoke Test

development process, 4
suites, 597–598
Test Discovery, 394

sniff test
defi ned, xxxviii
test smells, 10

solution patterns, behavior smells
Asynchronous Tests, 256
Behavior Sensitivity, 242–243
Context Sensitivity, 246
Data Sensitivity, 243–245
Eager Tests, 225–226
Frequent Debugging, 249
General Fixture, 255
Interacting Test Suites, 232
Interacting Tests, 231
Interface Sensitivity, 241–242
Manual Intervention, 

250–252
Missing Assertion Messages, 

226–227
Resource Leakage, 233
Resource Optimism, 234
Slow Component Usage, 254
Test Run War, 236–237
Too Many Tests, 257
Unrepeatable Tests, 235

solution patterns, code smells
Asynchronous Code, 211
Conditional Verifi cation Logic, 

203–204
Cut and Paste code reuse, 215
Eager Test, 188
Equality Pollution, 222
Flexible Test, 203
General Fixture, 192
Hard-Coded Test Data, 196
Hard-To-Test Code, 209
Highly Coupled Code, 210
Indirect Testing, 197–199
Irrelevant Information, 193
Multiple Test Conditions, 

207–208
Mystery Guests, 190
Obscure Tests, 199
Production Logic in Test, 205
Test Code Duplication, 115–216
Test Dependency in 

Production, 221
Test Hook, 219
For Tests Only, 220
Untestable Test Code, 212

solution patterns, project smells
Buggy Test, 261–262
Infrequently Run Test, 269
Lost Test, 270–271
Missing Unit Test, 271
Neverfail Test, 274
Untested Code, 272
Untested Requirements, 274

Special-Purpose Suite, 595–596
specifi cation

Expected Behavior, 470–471
Expected Behavior 

example, 473
Expected Object example, 466
Expected State, 464–465
tests as, xxxiii, 22



870 Index

spikes, 809
Spy, Test. See Test Spy
SQL, Table Truncation Teardown 

using, 666–667
Standard Fixture

implementation, 307–308
motivating example, 308
overview, 305–306
refactoring, 309–310
when to use, 306–307

standard test interface, 378
starbursts, diagramming 

notation, xlii
state, initializing via

Back Door Manipulation. 
See Back Door Manipulation

Named State Reaching Method, 
417–418

State Verifi cation
vs. behavior, 36
examples, 466–467
implementation, 463–465
indirect outputs, 179–180
introduction, 109–112
motivating example, 465
overview, 462–463
refactoring, 465–466
Self-Checking Tests, 108
Use the Front Door First, 41
when to use, 463

Stated Outcome Assertion
Assertion Methods, 366
defi ned, 365
example, 369
Guard Assertions as, 491
introduction, 110–111

State-Exposing Subclass
Test-Specifi c Subclass, 289–590
when to use, 580

stateless, 809
statements, “if”. See “if” statements

static binding
defi ned, 809
Dependency Injection, 

678–679
static methods, 809
static variables, 809
Statically Generated Test 

Doubles, 561
STDD (storytest-driven 

development), 4, 810
stop on fi rst failure

Naive xUnit Test Interpreter, 
292–293

xUnit introduction, 57
Stored Procedure Test

database testing, 172
examples, 658–660
implementation, 655–658
motivating example, 658
overview, 654
refactoring, 658
when to use, 654–655

storytest, 810
storytest-driven development 

(STDD), 4, 810
strategies, test automation. See test 

automation strategies
stress tests, cross-functionality, 52
strict Mock Object

defi ned, 138
when to use, 545

STTCPW (The simplest thing that 
could possibly work), 810

Stub, Test. See Test Stub
Subclass, Test-Specifi c. See

Test-Specifi c Subclass
Subclassed Humble Object, 700
Subclassed Inner Test Double, 

573–574
Subclassed Singleton, 7
Subclassed Test Double, 146–147



871 Index

Subcutaneous Test
customer testing, 5
database testing, 174
design for testability, 7
Layer Tests, 343–344

Subset Suite
example, 594–598
implementation, 594
introduction, 160–161
overview, 592
Too Many Tests solution, 257
when to use, 593

substitutable dependencies
defi ned, 810
Dependency Initialization 

Test, 352
using Test Spy, 540

Substitutable Singleton
in Dependency Lookup, 689
example, 586–587, 692–693
retrofi tting testability, 146–147
when to use, 581

substitution mechanisms, 
688–689

Suite Fixture Setup
example, 444–446
implementation, 442–443
implicit, 426
motivating example, 443–444
overview, 441–442
refactoring, 444
Shared Fixture strategies, 64
Shared Fixtures, 104–105
when to use, 442

suite method, 399
suites

Named Test Suite. See Named 
Test Suite

test organization, 160–162
Test Suite Object. See Test Suite 

Object

Suites of Suites
building with Test enumeration, 

400
defi ned, 388
example, 389–391
Interacting Test Suites, 231–232
introduction, 7, 15, 78

SUnit
defi ned, 750
Test Automation 

Frameworks, 300
Superclass, Testcase. See Testcase 

Superclass
SUT (system under test)

control points and observation 
points, 66–67

dangers of modifying, 41–42
defi ned, 810–811
Four-Phase Test, 358–361
interface sensitivity, xxxii
isolation principle, 43–44
minimizing risk, 24–25
preface, xxii–xxiii
replacing in Parameterized 

Test, 609
result verifi cation. See result 

verifi cation
state vs. behavior 

verifi cation, 36
terminology, xl–xli
test automation tools, 53–54
Test Hook in, 711–712
understanding with test 

automation, 23
SUT API Encapsulation

Chained Tests as, 455
Indirect Testing solution, 198
Interface Sensitivity 

solution, 241
SUT Encapsulation Method, 

601–602



872 Index

Symbolic Constants
example, 716
Literal Value, 715

symptoms, behavior smells
Assertion Roulette, 224
Asynchronous Tests, 255
Behavior Sensitivity, 242
Context Sensitivity, 245
Data Sensitivity, 243
Eager Tests, 224–225
Erratic Tests, 228
Fragile Tests, 239
Frequent Debugging, 248
General Fixtures, 255
Interacting Test Suites, 231
Interacting Tests, 229
Interface Sensitivity, 241
Manual Intervention, 250–252
Missing Assertion Messages, 226
Nondeterministic Tests, 237
Resource Leakage, 233
Resource Optimism, 233
Slow Tests, 253
Test Run Wars, 236
Too Many Tests, 256
Unrepeatable Tests, 234–235

symptoms, code smells
Asynchronous Code, 210
Complex Teardown, 206
Conditional Test Logic, 200
Eager Tests, 187–188
Equality Pollution, 221
Flexible Tests, 202
General Fixtures, 190–191
Hard-Coded Test Data, 

194–195
Hard-To-Test Code, 209
Highly Coupled Code, 210
Indirect Testing, 196–197
Irrelevant Information, 192–193
Multiple Test Conditions, 207

Mystery Guests, 188–189
Obscure Tests, 186
Production Logic in Test, 

204–205
Test Code Duplication, 213–214
Test Dependency in 

Production, 220
Test Logic in Production, 217
test smells, 10
For Tests Only, 219
Untestable Test Code, 211

symptoms, project smells
Buggy Tests, 260
Developers Not Writing Tests, 

263
High Test Maintenance 

Cost, 265
Infrequently Run Tests, 268–269
Lost Tests, 269
Missing Unit Tests, 271
Neverfail Tests, 274
Production Bugs, 268
Untested Code, 271–272
Untested Requirements, 272–273

symptoms, test smells, 10
synchronous tests

avoiding with Humble Object, 
696–697

defi ned, 810
system under test (SUT). See SUT 

(system under test)

T

Table Truncation Teardown
data access layer testing, 173
defi ned, 100
examples, 665–667
implementation, 662–664
motivating example, 664
overview, 661–662



873 Index

refactoring, 664–665
when to use, 662

tabular data, 291
Tabular Test

Chained Tests, 457–458
with framework support, 614
implementation, 609–610
Incremental, 613–614
Independent, 612–613

tasks, 811
TDD (test-driven development)

defi ned, 813
implementing utility methods, 

122
introduction, xxxiii–xxxiv
Missing Unit Tests, 271
need-driven development, 149
process, 4–5
Test Automation 

Frameworks, 301
test automation principles, 40

teardown, fi xture. See fi xture 
teardown

Teardown Guard Clause
example, 513
Implicit Teardown, 517–518
In-line Teardown, 511

tearDown method
Implicit Teardown, 516–519
persistent fi xtures, 98
Setup Decorator. See Setup 

Decorator
Template Method, 164
Temporary Test Stub

when to use, 530–531
xUnit terminology, 741–744

terminology
test automation introduction, 

xl–xli
transient fi xtures, 86–88
xUnit. See xUnit basics

test automater, 811
test automation, xxix–xliii

assumptions, xxxix–xl
automated unit testing, xxx–xxxii
brief tour, 3–8
code samples, xli–xlii
developer testing, xxx
diagramming notation, xlii
feedback, xxix
fragile test problem, xxxi–xxxii
limitations, xliii
overview, xxix
patterns, xxxiv–xxxviii
refactoring, xxxviii–xxxix
terminology, xl–xli
testing, xxx
uses of, xxxiii–xxxiv

Test Automation Framework
introduction, 75
pattern description, 298–301

test automation goals, 19–29
ease of running, 25–27
improving quality, 22–23
list of, 757–759
objectives, 21–22
reducing risk, 23–25
system evolution, 29
understanding SUT, 23
why test?, 19–21
writing and maintaining, 27–29

Test Automation Manifesto, 39
test automation philosophies, 31–37

author’s, 37
differences, 32–36
importance of, 31–32

test automation principles, 39–48
Communicate Intent, 41
Design for Testability, 40
Don’t Modify the SUT, 41–42
Ensure Commensurate Effort 

and Responsibility, 47–48



874 Index

Isolate the SUT, 43–44
Keep Test Logic Out of 

Production Code, 45
Keep Tests Independent, 

42–43
Minimize Test Overlap, 44
Minimize Untestable Code, 

44–45
overview, 39–40
Test Concerns Separately, 47
Use the Front Door First, 

40–41
Verify One Condition per Test, 

45–47
Write the Tests First, 40

test automation roadmap, 175–181
alternative path verifi cation, 

178–179
diffi culties, 175–176
direct output verifi cation, 178
execution and maintenance 

optimization, 180–181
happy path code, 177–178
indirect outputs verifi cation, 

178–180
maintainability, 176–177

test automation strategies, 49–73
brief tour, 3–8
control points and observation 

points, 66–67
cross-functional tests, 52–53
divide and test, 71–72
ensuring testability, 65
fi xture strategies overview, 58–61
interaction styles and testability 

patterns, 67–71
overview, 49–50
per-functionality tests, 50–52
persistent fresh fi xtures, 62–63
shared fi xture strategies, 63–65
test-driven testability, 66

tools for, 53–58
transient fresh fi xtures, 61–62
what’s next, 73
wrong, 264

Test Bed. See Prebuilt Fixture
test cases, 811
test code, 811
Test Code Duplication

causes, 214–215
Custom Assertions, 475
Delegated Setup, 412
High Test Maintenance 

Cost, 266
impact, 214
In-Line Setup, 89
introduction, 16
possible solution, 216
reducing, 114–119
reducing with Confi gurable 

Test Doubles. See Confi gurable 
Test Double

reducing with Parameterized 
Tests. See Parameterized Test

reducing with Test Utility 
Methods. See Test Utility 
Method

removing with Testcase Class per 
Fixture. See Testcase Class per 
Fixture

reusing test code, 162
symptoms, 213–214

Test Commands, 82
Test Concerns Separately, 47
test conditions, 154, 811–812
test database, 812
test debt, 812
Test Dependency in Production, 

220–221
Test Discovery

introduction, 78
Lost Tests solution, 271



875 Index

pattern description, 393–398
Test Suite Object Generator, 293
Test Suite Objects, 388

Test Double, 125–151, 521–590
Back Door Manipulation, 332
Behavior Verifi cation, 112
Confi gurable Test Double. 

See Confi gurable Test Double
confi guring, 141–142
considerations, 150
customer testing, 5
database testing, 169–171
Dependency Injection. 

See Dependency Injection
Dependency Lookup, 144–145
dependency replacement, 739
design for testability, 7
Don’t Modify the SUT, 41–42
Dummy Object, 134–135
example, 526–528
Fake Object. See Fake Object
Fragile Test, 240
Hard-Coded Test Double. 

See Hard-Coded Test Double
Highly Coupled Code 

solution, 210
indirect input and output, 

125–126
indirect input control, 128–129
indirect input, importance 

of, 126
indirect output, importance of, 

126–127
indirect output verifi cation, 

130–133
installing, 143
minimizing risk, 25
Mock Object. See Mock Object
other uses, 148–150
outside-in development, 35–36
overview, 522–523

providing, 140–141
retrofi tting testability, 

146–148
reusing test code, 162
terminology, 741–744
vs. Test Hook, 709–712
Test Spy, 137, 538–543
Test Stub. See Test Stub
Test-Specifi c Subclass. 

See Test-Specifi c Subclass
types of, 133–134
when to use, 523–526

Test Double Class
example, 572–573
implementation, 569–570

Test Double Subclass
implementation, 570
when to use, 580–581

test drivers
Assertion Messages, 370
defi ned, 813

test driving, 813
Test Enumeration

introduction, 153
pattern description, 399–402

test errors, 80, 813
test failure, 80, 813
test fi rst development

defi ned, 813–814
process, 4–5
test automation philosophy, 

32–33
vs. test-last development, xxxiv

Test Fixture Registry
accessing Shared Fixtures, 104
Test Helper use, 644

test fi xtures. See fi xtures
Test Helper

Automated Teardown, 505
introduction, xxiii
pattern description, 643–647



876 Index

Test Helper Mixin
example, 641–642
vs. Testcase Superclass, 639

Test Hook
pattern description, 709–712
in Procedural Test Stub, 

135–136
retrofi tting testability, 148
Test Logic in Production, 

217–219
testability, 70

Test Logic, Conditional. 
See Conditional Test Logic

Test Logic in Production
Equality Pollution, 221–222
impact, 217
introduction, 17
symptoms, 217
Test Dependency in Production, 

220–221
Test Hooks, 148, 217–219
For Tests Only, 219–220

test maintainer, 815
Test Method

calling Assertion. See Assertion 
Method

Constructor Test example, 
355–357

Constructor Tests, 351
Dependency Initialization 

Tests, 352
enumeration, 401
Expected Exception Test, 

350–351
Expected Exception Test using 

block closure, 354–355
Expected Exception Test using 

method attributes, 354
Expected Exception Test using 

try/catch, 353–354
fi xture design, 59

implementation, 349
invocation, 402
Lost Tests, 269–270
minimizing untested code, 

44–45
organization, 7, 155–158. See

also test organization patterns
overview, 348–349
persistent fi xtures. See persistent 

fi xtures
right-sizing, 154–155
running, 81
selection, 404–405
Simple Success Test, 349–350
Simple Success Test example, 

352–353
test automation philosophies, 34
Test Commands, 82
Test Concerns Separately, 47
Test Suite Objects, 82
Testcase Object implementation, 

384–385
transient fi xture management. 

See transient fi xtures
unit testing, 6
Verify One Condition per Test, 

46–47
writing simple tests, 28

Test Method Discovery
defi ned, 394–395
examples, 395–397

Test Object Registry. See Automated 
Teardown

test organization, 153–165
code reuse, 162–164
introduction, 153
naming conventions, 158–159
overview, 7
right-sizing Test Methods, 

154–155
test fi les, 164–165



877 Index

Test Methods and Testcase 
Classes, 155–158

test suites, 160–162
test organization patterns, 591–647

Named Test Suite. See Named 
Test Suite

Parameterized Test. 
See Parameterized Test

Test Helper, 643–647
Test Utility Method. See Test 

Utility Method
Testcase Class per Class. 

See Testcase Class per Class
Testcase Class per Feature. 

See Testcase Class per Feature
Testcase Class per Fixture. 

See Testcase Class per Fixture
Testcase Superclass, 638–642

test packages
defi ned, 815
test fi le organization, 164–165

test readers, 815
test refactorings. See also refactoring

Extractable Test Component, 
735–736

In-line Resource, 736–737
Make Resources Unique, 

737–738
Minimize Data, 738–739
Replace Dependency with Test 

Double, 739
Set Up External Resource, 740

test results
defi ned, 815
introduction, 79–80
verifi cation. See result verifi cation

Test Run War
database testing, 169
Erratic Tests cause, 235–237
introduction, 15
vs. Shared Fixture strategy, 64

Test Runner
Graphical. See Graphical Test 

Runner
implementation, 378–381
introduction, 79
Missing Assertion Messages, 

226–227
overview, 377–378
Test Automation Frameworks, 

300
test runs, 815
Test Selection

pattern description, 403–405
Test Suite Object, 388

test smells, 9–17
aliases and causes, 761–765
behavior. See behavior smells
catalog of, 12–17
code smells. See code smells
database testing. See database 

testing
defi ned, 808, 816
introduction, xxxvi
overview, 9–11
patterns and principles vs., 

xxxv–xxxvi
project smells. See project smells
reducing Test Code Duplication, 

114–119
Test Spy

Back Door Verifi cation, 333
Behavior Verifi cation, 113
Confi gurable. See Confi gurable 

Test Double
examples, 542–543
implementation, 540–541
indirect outputs verifi cation, 

179–180
introduction, 131–133, 

137, 525
motivating example, 541



878 Index

overview, 538–539
Procedural Behavior 

Verifi cation, 470
refactoring, 541–542
when to use, 539–540
xUnit terminology, 741–744

test strategy patterns, 277–345
Data-Driven Test. See Data-

Driven Test
Fresh Fixture. See Fresh Fixture
Layer Test. See Layer Test
Minimal Fixture, 302–304
Recorded Test. See Recorded 

Test
Scripted Test, 285–287
Shared Fixture. See Shared 

Fixture
Standard Fixture. See Standard 

Fixture
Test Automation Framework, 

298–301
test strippers, 816
Test Stub

Behavior-Modifying Subclass, 
584–585

Confi gurable. See Confi gurable 
Test Double

confi guring, 141–142
Context Sensitivity solution, 246
controlling indirect inputs, 129
creating in-line resources, 737
examples, 533–537
implementation, 531–532
indirect inputs control, 179
inside-out development, 34–35
introduction, 133, 135–136, 524
motivating example, 532–533
overview, 529–530
refactoring, 533
unit testing, 6

when to use, 530–531
xUnit terminology, 741–744

test success, 816
Test Suite Enumeration

defi ned, 400
example, 402

Test Suite Factory, 232
Test Suite Object

enumeration, 400
Interacting Test Suites, 231–232
introduction, 7, 82
pattern description, 387–392

Test Suite Object Generator, 293
Test Suite Object Simulator, 293
Test Suite Procedure

defi ned, 388–389
example, 391–392

test suites
defi ned, 816
Lost Tests, 269–270
Named Test Suites. See Named 

Test Suite
Test Tree Explorer, 161–162, 

380–381
Test Utility Method

Communicate Intent, 41
eliminating loops, 121
example, 605–606
implementation, 602–603
introduction, xxiii, 16–17, 23, 

162–163
motivating example, 603–604
Obscure Tests solution, 199
overview, 599
reducing risk of bugs, 181
refactoring, 605
reusing, lviii–lix
reusing via Test Helper, 643–647
reusing via Testcase Superclass, 

638–642



879 Index

using TDD to write, 122
when to use, 600–602

Test Utility Test, 603
testability, design for. See design-

for-testability
Testcase Class

introduction, 78
organization, 7, 155–158
pattern description, 373–376
reusable test logic, 123
selection, 404–405

Testcase Class Discovery
defi ned, 394
example, 397–398

Testcase Class per Class
example, 618–623
implementation, 618
overview, 617
when to use, 618

Testcase Class per Feature
example, 628–630
implementation, 626
motivating example, 626–627
overview, 624
refactoring, 627–628
when to use, 625

Testcase Class per Fixture
example, 635–637
implementation, 632–633
motivating example, 

633–634
overview, 631
refactoring, 634–635
Verify One Condition per Test, 

46–47
when to use, 632

Testcase Class per Method, 625
Testcase Class per User Story, 625
Testcase Object

introduction, 81
pattern description, 382–386

Testcase Superclass
pattern description, 638–642
reusing test code, 163–164
Test Discovery using, 397–398

test-driven bug fi xing, 812
test-driven development (TDD). 

See TDD (test-driven development)
Test-Driven Development: By 

Example (Beck), 301
test-driven testability, 66
Testing by Layers. See Layer Test
testing terminology. See terminology
test-last development

defi ned, 815
strategy, 65
test automation philosophy, 

32–33
vs. test-fi rst development, xxxiv

TestNG
defi ned, 750
Interacting Tests, 231
Testcase Object exception, 

384–385
vs. xUnit, 57

Tests as Documentation
Communicate Intent, 41
customer testing, 5
defi ned, 23
reusing test code, 162
unit testing, 6

Tests as Safety Net, 24, 260
Tests as Specifi cation, xxxiii, 22
test-specifi c equality, 588–589, 816
Test-Specifi c Extension. 

See Test-Specifi c Subclass
Test-Specifi c Subclass

Behavior-Exposing Subclass, 
587

Behavior-Modifying Subclass 
(Substituted Singleton), 
586–587



880 Index

Behavior-Modifying Subclass 
(Test Stub), 584–585

defi ning Test-Specifi c Equality, 
588–589

Don’t Modify the SUT, 42
implementation, 581–582
Isolate the SUT, 44
motivating example, 582–584
overview, 579–580
refactoring, 584
retrofi tting testability, 146–147
State-Exposing Subclass, 

289–590
For Tests Only solution, 220
when to use, 580–581

Test::Unit, 750
Thread-Specifi c Storage, 688–689
Too Many Tests, 256–257
tools

automated unit testing, 
xxx–xxxi

commercial record and playback, 
282–283

QTP. See QTP (QuickTest 
Professional)

robot user. See robot user tools
for test automation strategy, 

53–58
types of, 753–756

Transaction Controller, Humble. 
See Humble Transaction 
Controller

Transaction Rollback Teardown
data access layer testing, 173
defi ned, 100
examples, 673–675
implementation, 671
motivating example, 672
overview, 668–669
refactoring, 672
when to use, 669–671

transient fi xtures, 85–94
Delegated Setup, 89–91
hybrid setup, 93
Implicit Setup, 91–93
In-Line Setup, 88–89
overview, 85–86
vs. persistent fi xtures, 96
tearing down, 93–94
terminology, 86–88
what’s next, 94

Transient Fresh Fixture
database testing, 170
defi ned, 60–61, 314
vs. Shared Fixture, 61–62

troubleshooting
Buggy Tests, 261
Developers Not Writing Tests, 

264
Erratic Tests, 228–229
Fragile Tests, 239–240
High Test Maintenance Cost, 

267
Slow Tests, 253–254

True Humble Executable, 703–706
True Humble Objects, 699–700
TRUNCATE command. See Table 

Truncation Teardown
try/catch

Expected Exception Tests, 
353–354

Single-Outcome Assertions, 367
try/fi nally block

cleaning up fi xture teardown 
logic, l–liv

Implicit Teardown, 519
In-line Teardown, 512–513

type compatibility, 679
type visibility

Test Helper use, 644
Test Utility Methods, 603
Testcase Superclass use, 639



881 Index

U

UAT (user acceptance tests)
defi ned, 817
principles, 42

UI (User Interface) tests
asynchronous tests, 70–71
Hard-To-Test Code, 71–72
tools, 55

UML (Unifi ed Modeling 
Language), 816

Unconfi gurable Test Doubles, 527
unexpected exceptions, 352
Unfi nished Test Assertion, 494–497
Unfi nished Test Method from 

Template, 496–497
Unifi ed Modeling Language 

(UML), 816
unique resources, 737–738
Unit Testing with Java (Link), 743
unit tests

defi ned, 817
introduction, 6
per-functionality, 51
rules, 307
Scripted Tests, 285–287
xUnit vs. Fit, 290–292

unnecessary object elimination, 
303–304

Unrepeatable Test
database testing, 169
Erratic Test cause, 234–235
introduction, 15, 64
persistent fresh fi xtures, 96
vs. Repeatable Test, 26–27

Untestable Test Code
avoiding Conditional Logic, 

119–121
Hard-To-Test Code, 211–212

Untested Code
alternative path verifi cation, 

178–179
indirect inputs and, 126
Isolate the SUT, 43
minimizing, 44–45
preventing with Test Doubles, 

523
Production Bugs, 271–272
unit testing, 6

Untested Requirement
Frequent Debugging cause, 

249
indirect output testing, 127
preventing with Test 

Doubles, 523
Production Bugs cause, 

272–274
reducing via Isolate the 

SUT, 43
usability tests, 53
use cases, 817
Use the Front Door First

defi ned, 40–41
Overspecifi ed Software 

avoidance, 246
user acceptance tests (UAT)

defi ned, 817
principles, 42

User Interface (UI) tests
asynchronous tests, 70–71
Hard-To-Test Code, 71–72
tools, 55

user story
defi ned, 817
Testcase Class per, 625

utility methods. See Test Utility 
Method

utPLSQL, 750



882 Index

V

value patterns, 713–732
Derived Values, 718–722
Dummy Objects, 728–732
Generated Values, 723–727
Literal Values, 714–717

variables
in Derived Values, 718–722
global, 92, 798
instance. See instance variables
local. See local variables
procedure variables, 805–806
static, 809

VB Lite Unit, 751
VbUnit

defi ned, 751
Suite Fixture Setup support, 442
Testcase Class terminology, 376
xUnit terminology, 300

Verbose Tests. See Obscure Test
verifi cation

alternative path, 178–179
Back Door Manipulation, 

329–330
Back Door using Test Spy, 333
cleaning up logic, xlvi–l
direct output, 178
indirect outputs, 130–133, 

178–180
state vs. behavior, 36
test results. See result verifi cation
Verify One Condition per Test, 

45–47
Verifi cation Method

defi ned, 477, 602
example, 482–483

Verify One Condition per Test
defi ned, 40, 45–47
right-sizing Test Methods, 

154–155
verify outcome, 817
Virtual Clock, 246

visibility
of SUT features from Test-

Specifi c Subclass, 581–582
test fi le organization, 165
type. See type visibility

visual objects, Humble Dialog 
use, 706

Visual Studio, 756

W

waterfall design, 65
Watir

defi ned, 756
Test Automation Frameworks, 

301
test automation tools, 53

Weinberg, Gerry, xxiv–xxv, 61–62
widgets

Humble Dialog use, 706
recognizers, 299

Wikipedia, 729
Working Effectively with Legacy 

Code (Feathers), 210
Write the Tests First, 40
writing tests

Developers Not Writing Tests 
project smells, 263–264

development process, 4–5
goals, 27–29
philosophies. See test automation 

philosophies
principles. See test automation 

principles

X

XML data fi les, Data-Driven Tests, 
294–295

xUnit
Data-Driven Tests with CSV 

input fi le, 296
Data-Driven Tests with XML 

data fi le, 294–295



883 Index

defi ned, 751
family members, 747–751
vs. Fit, 291–292
fi xture defi nitions, 86
Interacting Test Suites, 232
introduction, 56–57
language-specifi c terminology, 

xl–xli
modern, 55
Naive xUnit Test Interpreter, 

292–293
profi ling tools, 254
Suite Fixture Setup support, 

442–443
sweet spot, 58
terminology, 741–746
Test Automation Frameworks, 

300
test fi xtures, 814
test organization mechanisms, 

153
xUnit basics, 75–83

defi ning suites of tests, 78–79
defi ning tests, 76–78

fi xtures, 78
overview, 75–76
procedural world, 82–83
running Test Methods, 81
running tests, 79
Test Commands, 82
test results, 79–80
Test Suite Object, 82

xUnit basics patterns, 347–405
Assertion Message, 370–372
Assertion Method. 

See Assertion Method
Four-Phase Test, 358–361
Test Discovery, 393–398
Test Enumeration, 399–402
Test Method. 

See Test Method
Test Runner. 

See Test Runner
Test Selection, 403–405
Test Suite Object, 82, 

387–392
Testcase Class, 373–376
Testcase Object, 382–386




