

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in all
capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

NVIDIA makes no warranty or representation that the techniques described herein are free from
any Intellectual Property claims. The reader assumes all risk of any such claims based on his or
her use of these techniques.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases
or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Sanders, Jason.
 CUDA by example : an introduction to general-purpose GPU programming /
Jason Sanders, Edward Kandrot.
 p. cm.
 Includes index.
 ISBN 978-0-13-138768-3 (pbk. : alk. paper)
 1. Application software—Development. 2. Computer architecture. 3.
Parallel programming (Computer science) I. Kandrot, Edward. II. Title.
 QA76.76.A65S255 2010
 005.2'75—dc22
 2010017618

Copyright © 2011 NVIDIA Corporation

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-138768-3
ISBN-10: 0-13-138768-5
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, July 2010

xiii

Foreword

Recent activities of major chip manufacturers such as NVIDIA make it more
evident than ever that future designs of microprocessors and large HPC
systems will be hybrid/heterogeneous in nature. These heterogeneous systems
will rely on the integration of two major types of components in varying
proportions:

multi- and many-core CPU technology•	 : The number of cores will continue to
escalate because of the desire to pack more and more components on a chip
while avoiding the power wall, the instruction-level parallelism wall, and the
memory wall.

Special-purpose hardware and massively parallel accelerators•	 : For example,
GPUs from NVIDIA have outpaced standard CPUs in floating-point performance
in recent years. Furthermore, they have arguably become as easy, if not easier,
to program than multicore CPUs.

The relative balance between these component types in future designs is not
clear and will likely vary over time. There seems to be no doubt that future
generations of computer systems, ranging from laptops to supercomputers,
will consist of a composition of heterogeneous components. Indeed, the petaflop
(1015 floating-point operations per second) performance barrier was breached by
such a system.

And yet the problems and the challenges for developers in the new computational
landscape of hybrid processors remain daunting. Critical parts of the software
infrastructure are already having a very difficult time keeping up with the pace
of change. In some cases, performance cannot scale with the number of cores
because an increasingly large portion of time is spent on data movement rather
than arithmetic. In other cases, software tuned for performance is delivered years
after the hardware arrives and so is obsolete on delivery. And in some cases, as
on some recent GPUs, software will not run at all because programming environ-
ments have changed too much.

xiv

FOREWORD

CUDA by Example addresses the heart of the software development challenge by
leveraging one of the most innovative and powerful solutions to the problem of
programming the massively parallel accelerators in recent years.

This book introduces you to programming in CUDA C by providing examples and
insight into the process of constructing and effectively using NVIDIA GPUs. It
presents introductory concepts of parallel computing from simple examples to
debugging (both logical and performance), as well as covers advanced topics and
issues related to using and building many applications. Throughout the book,
programming examples reinforce the concepts that have been presented.

The book is required reading for anyone working with accelerator-based
computing systems. It explores parallel computing in depth and provides an
approach to many problems that may be encountered. It is especially useful for
application developers, numerical library writers, and students and teachers of
parallel computing.

I have enjoyed and learned from this book, and I feel confident that you will
as well.

Jack Dongarra
University Distinguished Professor, University of Tennessee Distinguished Research
Staff Member, Oak Ridge National Laboratory

xv

Preface

This book shows how, by harnessing the power of your computer’s graphics
process unit (GPU), you can write high-performance software for a wide range
of applications. Although originally designed to render computer graphics on
a monitor (and still used for this purpose), GPUs are increasingly being called
upon for equally demanding programs in science, engineering, and finance,
among other domains. We refer collectively to GPU programs that address
problems in nongraphics domains as general-purpose. Happily, although you
need to have some experience working in C or C++ to benefit from this book,
you need not have any knowledge of computer graphics. None whatsoever! GPU
programming simply offers you an opportunity to build—and to build mightily—
on your existing programming skills.

To program NVIDIA GPUs to perform general-purpose computing tasks, you
will want to know what CUDA is. NVIDIA GPUs are built on what’s known as
the CUDA Architecture. You can think of the CUDA Architecture as the scheme
by which NVIDIA has built GPUs that can perform both traditional graphics-
rendering tasks and general-purpose tasks. To program CUDA GPUs, we will
be using a language known as CUDA C. As you will see very early in this book,
CUDA C is essentially C with a handful of extensions to allow programming of
massively parallel machines like NVIDIA GPUs.

We’ve geared CUDA by Example toward experienced C or C++ programmers
who have enough familiarity with C such that they are comfortable reading and
writing code in C. This book builds on your experience with C and intends to serve
as an example-driven, “quick-start” guide to using NVIDIA’s CUDA C program-
ming language. By no means do you need to have done large-scale software
architecture, to have written a C compiler or an operating system kernel, or to
know all the ins and outs of the ANSI C standards. However, we do not spend
time reviewing C syntax or common C library routines such as malloc() or
memcpy(), so we will assume that you are already reasonably familiar with these
topics.

xvi

PREFACE

You will encounter some techniques that can be considered general parallel
programming paradigms, although this book does not aim to teach general
parallel programming techniques. Also, while we will look at nearly every part of
the CUDA API, this book does not serve as an extensive API reference nor will it
go into gory detail about every tool that you can use to help develop your CUDA C
software. Consequently, we highly recommend that this book be used in conjunc-
tion with NVIDIA’s freely available documentation, in particular the NVIDIA CUDA
Programming Guide and the NVIDIA CUDA Best Practices Guide. But don’t stress
out about collecting all these documents because we’ll walk you through every-
thing you need to do.

Without further ado, the world of programming NVIDIA GPUs with CUDA C awaits!

37

Chapter 4

Parallel Programming
in CUDA C

In the previous chapter, we saw how simple it can be to write code that executes
on the GPU. We have even gone so far as to learn how to add two numbers
together, albeit just the numbers 2 and 7. Admittedly, that example was not
immensely impressive, nor was it incredibly interesting. But we hope you are
convinced that it is easy to get started with CUDA C and you’re excited to learn
more. Much of the promise of GPU computing lies in exploiting the massively
parallel structure of many problems. In this vein, we intend to spend this chapter
examining how to execute parallel code on the GPU using CUDA C.

PArAllel ProGrAmmInG In cudA c

38

Chapter Objectives4.1
Through the course of this chapter, you will accomplish the following:

You will learn one of the fundamental ways CUDA exposes its parallelism.•

You will write your first parallel code with CUDA C.•

CUDA Parallel Programming4.2
Previously, we saw how easy it was to get a standard C function to start running
on a device. By adding the __global__ qualifier to the function and by calling
it using a special angle bracket syntax, we executed the function on our GPU.
Although this was extremely simple, it was also extremely inefficient because
NVIDIA’s hardware engineering minions have optimized their graphics processors
to perform hundreds of computations in parallel. However, thus far we have only
ever launched a kernel that runs serially on the GPU. In this chapter, we see how
straightforward it is to launch a device kernel that performs its computations in
parallel.

summInG vectors4.2.1

We will contrive a simple example to illustrate threads and how we use them to
code with CUDA C. Imagine having two lists of numbers where we want to sum
corresponding elements of each list and store the result in a third list. Figure 4.1
shows this process. If you have any background in linear algebra, you will recog-
nize this operation as summing two vectors.

cudA PArAllel ProGrAmmInG

39

4.2 CUDA PARALLEL PROGRAMMING

c

a

b

Figure 4.1 Summing two vectors

cPu vector sums

First we’ll look at one way this addition can be accomplished with traditional C code:

#include "../common/book.h"

#define N 10

void add(int *a, int *b, int *c) {

 int tid = 0; // this is CPU zero, so we start at zero

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid += 1; // we have one CPU, so we increment by one

 }

}

int main(void) {

 int a[N], b[N], c[N];

 // fill the arrays 'a' and 'b' on the CPU

 for (int i=0; i<N; i++) {

 a[i] = -i;

 b[i] = i * i;

 }

 add(a, b, c);

PArAllel ProGrAmmInG In cudA c

40

 // display the results

 for (int i=0; i<N; i++) {

 printf("%d + %d = %d\n", a[i], b[i], c[i]);

 }

 return 0;

}

Most of this example bears almost no explanation, but we will briefly look at the
add() function to explain why we overly complicated it.

void add(int *a, int *b, int *c) {

 int tid = 0; // this is CPU zero, so we start at zero

 while (tid < N) {

 c[tid] = a[tid] + b[tid];

 tid += 1; // we have one CPU, so we increment by one

 }

}

We compute the sum within a while loop where the index tid ranges from 0 to
N-1. We add corresponding elements of a[] and b[], placing the result in the
corresponding element of c[]. One would typically code this in a slightly simpler
manner, like so:

void add(int *a, int *b, int *c) {

 for (i=0; i < N; i++) {

 c[i] = a[i] + b[i];

 }

}

Our slightly more convoluted method was intended to suggest a potential way to
parallelize the code on a system with multiple CPUs or CPU cores. For example,
with a dual-core processor, one could change the increment to 2 and have one
core initialize the loop with tid = 0 and another with tid = 1. The first core
would add the even-indexed elements, and the second core would add the odd-
indexed elements. This amounts to executing the following code on each of the
two CPU cores:

cudA PArAllel ProGrAmmInG

41

4.2 CUDA PARALLEL PROGRAMMING

CPU Core 1 CPU Core 2

void add(int *a, int *b, int *c)
{
 int tid = 0;
 while (tid < N) {
 c[tid] = a[tid] + b[tid];
 tid += 2;
 }
}

void add(int *a, int *b, int *c)
{
 int tid = 1;
 while (tid < N) {
 c[tid] = a[tid] + b[tid];
 tid += 2;
 }
}

Of course, doing this on a CPU would require considerably more code than we
have included in this example. You would need to provide a reasonable amount of
infrastructure to create the worker threads that execute the function add() as
well as make the assumption that each thread would execute in parallel, a sched-
uling assumption that is unfortunately not always true.

GPu vector sums

We can accomplish the same addition very similarly on a GPU by writing add()
as a device function. This should look similar to code you saw in the previous
chapter. But before we look at the device code, we present main(). Although the
GPU implementation of main() is different from the corresponding CPU version,
nothing here should look new:

#include "../common/book.h"

#define N 10

int main(void) {

 int a[N], b[N], c[N];

 int *dev_a, *dev_b, *dev_c;

 // allocate the memory on the GPU

 HANDLE_ERROR(cudaMalloc((void**)&dev_a, N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_b, N * sizeof(int)));

 HANDLE_ERROR(cudaMalloc((void**)&dev_c, N * sizeof(int)));

 // fill the arrays 'a' and 'b' on the CPU

 for (int i=0; i<N; i++) {

 a[i] = -i;

 b[i] = i * i;

 }

PArAllel ProGrAmmInG In cudA c

42

 // copy the arrays 'a' and 'b' to the GPU

 HANDLE_ERROR(cudaMemcpy(dev_a, a, N * sizeof(int),

 cudaMemcpyHostToDevice));

 HANDLE_ERROR(cudaMemcpy(dev_b, b, N * sizeof(int),

 cudaMemcpyHostToDevice));

 add<<<N,1>>>(dev_a, dev_b, dev_c);

 // copy the array 'c' back from the GPU to the CPU

 HANDLE_ERROR(cudaMemcpy(c, dev_c, N * sizeof(int),

 cudaMemcpyDeviceToHost));

 // display the results

 for (int i=0; i<N; i++) {

 printf("%d + %d = %d\n", a[i], b[i], c[i]);

 }

 // free the memory allocated on the GPU

 cudaFree(dev_a);

 cudaFree(dev_b);

 cudaFree(dev_c);

 return 0;

}

You will notice some common patterns that we employ again:

We allocate three arrays on the device using calls to • cudaMalloc(): two
arrays, dev_a and dev_b, to hold inputs, and one array, dev_c, to hold the
result.

Because we are environmentally conscientious coders, we clean up after •
ourselves with cudaFree().

Using • cudaMemcpy(), we copy the input data to the device with the parameter
cudaMemcpyHostToDevice and copy the result data back to the host with
cudaMemcpyDeviceToHost.

We execute the device code in • add() from the host code in main() using the
triple angle bracket syntax.

cudA PArAllel ProGrAmmInG

43

4.2 CUDA PARALLEL PROGRAMMING

As an aside, you may be wondering why we fill the input arrays on the CPU. There
is no reason in particular why we need to do this. In fact, the performance of this
step would be faster if we filled the arrays on the GPU. But we intend to show how
a particular operation, namely, the addition of two vectors, can be implemented
on a graphics processor. As a result, we ask you to imagine that this is but one
step of a larger application where the input arrays a[] and b[] have been
generated by some other algorithm or loaded from the hard drive by the user. In
summary, it will suffice to pretend that this data appeared out of nowhere and
now we need to do something with it.

Moving on, our add() routine looks similar to its corresponding CPU
implementation:

__global__ void add(int *a, int *b, int *c) {

 int tid = blockIdx.x; // handle the data at this index

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

Again we see a common pattern with the function add():

We have written a function called • add() that executes on the device. We
accomplished this by taking C code and adding a __global__ qualifier to
the function name.

So far, there is nothing new in this example except it can do more than add 2 and
7. However, there are two noteworthy components of this example: The param-
eters within the triple angle brackets and the code contained in the kernel itself
both introduce new concepts.

Up to this point, we have always seen kernels launched in the following form:

 kernel<<<1,1>>>(param1, param2, …);

But in this example we are launching with a number in the angle brackets that is
not 1:

 add<<<N,1>>>(dev _ a, dev _ b, dev _ c);

What gives?

PArAllel ProGrAmmInG In cudA c

44

Recall that we left those two numbers in the angle brackets unexplained; we
stated vaguely that they were parameters to the runtime that describe how to
launch the kernel. Well, the first number in those parameters represents the
number of parallel blocks in which we would like the device to execute our kernel.
In this case, we’re passing the value N for this parameter.

For example, if we launch with kernel<<<2,1>>>(), you can think of the
runtime creating two copies of the kernel and running them in parallel. We call
each of these parallel invocations a block. With kernel<<<256,1>>>(), you
would get 256 blocks running on the GPU. Parallel programming has never been
easier.

But this raises an excellent question: The GPU runs N copies of our kernel code,
but how can we tell from within the code which block is currently running? This
question brings us to the second new feature of the example, the kernel code
itself. Specifically, it brings us to the variable blockIdx.x:

__global__ void add(int *a, int *b, int *c) {

 int tid = blockIdx.x; // handle the data at this index

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

At first glance, it looks like this variable should cause a syntax error at compile
time since we use it to assign the value of tid, but we have never defined it.
However, there is no need to define the variable blockIdx; this is one of the
built-in variables that the CUDA runtime defines for us. Furthermore, we use this
variable for exactly what it sounds like it means. It contains the value of the block
index for whichever block is currently running the device code.

Why, you may then ask, is it not just blockIdx? Why blockIdx.x? As it turns
out, CUDA C allows you to define a group of blocks in two dimensions. For prob-
lems with two-dimensional domains, such as matrix math or image processing,
it is often convenient to use two-dimensional indexing to avoid annoying transla-
tions from linear to rectangular indices. Don’t worry if you aren’t familiar with
these problem types; just know that using two-dimensional indexing can some-
times be more convenient than one-dimensional indexing. But you never have to
use it. We won’t be offended.

cudA PArAllel ProGrAmmInG

45

4.2 CUDA PARALLEL PROGRAMMING

When we launched the kernel, we specified N as the number of parallel blocks.
We call the collection of parallel blocks a grid. This specifies to the runtime
system that we want a one-dimensional grid of N blocks (scalar values are
interpreted as one-dimensional). These threads will have varying values for
blockIdx.x, the first taking value 0 and the last taking value N-1. So, imagine
four blocks, all running through the same copy of the device code but having
different values for the variable blockIdx.x. This is what the actual code being
executed in each of the four parallel blocks looks like after the runtime substi-
tutes the appropriate block index for blockIdx.x:

bloCK 1 bloCK 2

__global__ void

add(int *a, int *b, int *c) {

 int tid = 0;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

__global__ void

add(int *a, int *b, int *c) {

 int tid = 1;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

bloCK 3 bloCK 4

__global__ void

add(int *a, int *b, int *c) {

 int tid = 2;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

__global__ void

add(int *a, int *b, int *c) {

 int tid = 3;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

}

If you recall the CPU-based example with which we began, you will recall that we
needed to walk through indices from 0 to N-1 in order to sum the two vectors.
Since the runtime system is already launching a kernel where each block will
have one of these indices, nearly all of this work has already been done for us.
Because we’re something of a lazy lot, this is a good thing. It affords us more time
to blog, probably about how lazy we are.

The last remaining question to be answered is, why do we check whether tid
is less than N? It should always be less than N, since we’ve specifically launched
our kernel such that this assumption holds. But our desire to be lazy also makes
us paranoid about someone breaking an assumption we’ve made in our code.
Breaking code assumptions means broken code. This means bug reports, late

PArAllel ProGrAmmInG In cudA c

46

nights tracking down bad behavior, and generally lots of activities that stand
between us and our blog. If we didn’t check that tid is less than N and subse-
quently fetched memory that wasn’t ours, this would be bad. In fact, it could
possibly kill the execution of your kernel, since GPUs have sophisticated memory
management units that kill processes that seem to be violating memory rules.

If you encounter problems like the ones just mentioned, one of the HANDLE_
ERROR() macros that we’ve sprinkled so liberally throughout the code will
detect and alert you to the situation. As with traditional C programming, the
lesson here is that functions return error codes for a reason. Although it is
always tempting to ignore these error codes, we would love to save you the hours
of pain through which we have suffered by urging that you check the results of
every operation that can fail. As is often the case, the presence of these errors
will not prevent you from continuing the execution of your application, but they
will most certainly cause all manner of unpredictable and unsavory side effects
downstream.

At this point, you’re running code in parallel on the GPU. Perhaps you had heard
this was tricky or that you had to understand computer graphics to do general-
purpose programming on a graphics processor. We hope you are starting to see
how CUDA C makes it much easier to get started writing parallel code on a GPU.
We used the example only to sum vectors of length 10. If you would like to see
how easy it is to generate a massively parallel application, try changing the 10 in
the line #define N 10 to 10000 or 50000 to launch tens of thousands of parallel
blocks. Be warned, though: No dimension of your launch of blocks may exceed
65,535. This is simply a hardware-imposed limit, so you will start to see failures if
you attempt launches with more blocks than this. In the next chapter, we will see
how to work within this limitation.

A FUN EXAMPLE4.2.2

We don’t mean to imply that adding vectors is anything less than fun, but the
following example will satisfy those looking for some flashy examples of parallel
CUDA C.

The following example will demonstrate code to draw slices of the Julia Set. For
the uninitiated, the Julia Set is the boundary of a certain class of functions over
complex numbers. Undoubtedly, this sounds even less fun than vector addi-
tion and matrix multiplication. However, for almost all values of the function’s

cudA PArAllel ProGrAmmInG

47

4.2 CUDA PARALLEL PROGRAMMING

 parameters, this boundary forms a fractal, one of the most interesting and beau-
tiful curiosities of mathematics.

The calculations involved in generating such a set are quite simple. At its heart,
the Julia Set evaluates a simple iterative equation for points in the complex plane.
A point is not in the set if the process of iterating the equation diverges for that
point. That is, if the sequence of values produced by iterating the equation grows
toward infinity, a point is considered outside the set. Conversely, if the values
taken by the equation remain bounded, the point is in the set.

Computationally, the iterative equation in question is remarkably simple, as
shown in Equation 4.1.

Equation 4.1

Computing an iteration of Equation 4.1 would therefore involve squaring the
current value and adding a constant to get the next value of the equation.

cPu JulIA set

We will examine a source listing now that will compute and visualize the Julia
Set. Since this is a more complicated program than we have studied so far, we will
split it into pieces here. Later in the chapter, you will see the entire source listing.

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *ptr = bitmap.get_ptr();

 kernel(ptr);

 bitmap.display_and_exit();

}

Our main routine is remarkably simple. It creates the appropriate size bitmap
image using a utility library provided. Next, it passes a pointer to the bitmap data
to the kernel function.

PArAllel ProGrAmmInG In cudA c

48

void kernel(unsigned char *ptr){

 for (int y=0; y<DIM; y++) {

 for (int x=0; x<DIM; x++) {

 int offset = x + y * DIM;

 int juliaValue = julia(x, y);

 ptr[offset*4 + 0] = 255 * juliaValue;

 ptr[offset*4 + 1] = 0;

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

 }

 }

 }

The computation kernel does nothing more than iterate through all points we
care to render, calling julia()on each to determine membership in the Julia
Set. The function julia()will return 1 if the point is in the set and 0 if it is not
in the set. We set the point’s color to be red if julia()returns 1 and black if it
returns 0. These colors are arbitrary, and you should feel free to choose a color
scheme that matches your personal aesthetics.

int julia(int x, int y) {

 const float scale = 1.5;

 float jx = scale * (float)(DIM/2 - x)/(DIM/2);

 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(-0.8, 0.156);

 cuComplex a(jx, jy);

 int i = 0;

 for (i=0; i<200; i++) {

 a = a * a + c;

 if (a.magnitude2() > 1000)

 return 0;

 }

 return 1;

}

cudA PArAllel ProGrAmmInG

49

4.2 CUDA PARALLEL PROGRAMMING

This function is the meat of the example. We begin by translating our pixel
coordinate to a coordinate in complex space. To center the complex plane at the
image center, we shift by DIM/2. Then, to ensure that the image spans the range
of -1.0 to 1.0, we scale the image coordinate by DIM/2. Thus, given an image
point at (x,y), we get a point in complex space at ((DIM/2 – x)/(DIM/2),
((DIM/2 – y)/(DIM/2)).

Then, to potentially zoom in or out, we introduce a scale factor. Currently, the scale
is hard-coded to be 1.5, but you should tweak this parameter to zoom in or out. If you
are feeling really ambitious, you could make this a command-line parameter.

After obtaining the point in complex space, we then need to determine whether
the point is in or out of the Julia Set. If you recall the previous section, we do this
by computing the values of the iterative equation Zn+1 = zn

2 + C. Since C is some
arbitrary complex-valued constant, we have chosen -0.8 + 0.156i because it
happens to yield an interesting picture. You should play with this constant if you
want to see other versions of the Julia Set.

In the example, we compute 200 iterations of this function. After each iteration,
we check whether the magnitude of the result exceeds some threshold (1,000 for
our purposes). If so, the equation is diverging, and we can return 0 to indicate that
the point is not in the set. On the other hand, if we finish all 200 iterations and the
magnitude is still bounded under 1,000, we assume that the point is in the set,
and we return 1 to the caller, kernel().

Since all the computations are being performed on complex numbers, we define
a generic structure to store complex numbers.

struct cuComplex {

 float r;

 float i;

 cuComplex(float a, float b) : r(a), i(b) {}

 float magnitude2(void) { return r * r + i * i; }

 cuComplex operator*(const cuComplex& a) {

 return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

 }

 cuComplex operator+(const cuComplex& a) {

 return cuComplex(r+a.r, i+a.i);

 }

};

PArAllel ProGrAmmInG In cudA c

50

The class represents complex numbers with two data elements: a single-
 precision real component r and a single-precision imaginary component i.
The class defines addition and multiplication operators that combine complex
numbers as expected. (If you are completely unfamiliar with complex numbers,
you can get a quick primer online.) Finally, we define a method that returns the
magnitude of the complex number.

GPu JulIA set

The device implementation is remarkably similar to the CPU version, continuing a
trend you may have noticed.

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

 dim3 grid(DIM,DIM);

 kernel<<<grid,1>>>(dev_bitmap);

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(),

 dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 bitmap.display_and_exit();

 cudaFree(dev_bitmap);

}

This version of main() looks much more complicated than the CPU version, but
the flow is actually identical. Like with the CPU version, we create a DIM x DIM

cudA PArAllel ProGrAmmInG

51

4.2 CUDA PARALLEL PROGRAMMING

bitmap image using our utility library. But because we will be doing computa-
tion on a GPU, we also declare a pointer called dev_bitmap to hold a copy
of the data on the device. And to hold data, we need to allocate memory using
cudaMalloc().

We then run our kernel() function exactly like in the CPU version, although
now it is a __global__ function, meaning it will run on the GPU. As with the
CPU example, we pass kernel() the pointer we allocated in the previous line to
store the results. The only difference is that the memory resides on the GPU now,
not on the host system.

The most significant difference is that we specify how many parallel blocks on
which to execute the function kernel(). Because each point can be computed
independently of every other point, we simply specify one copy of the function for
each point we want to compute. We mentioned that for some problem domains,
it helps to use two-dimensional indexing. Unsurprisingly, computing function
values over a two-dimensional domain such as the complex plane is one of these
problems. So, we specify a two-dimensional grid of blocks in this line:

 dim3 grid(DIM,DIM);

The type dim3 is not a standard C type, lest you feared you had forgotten some
key pieces of information. Rather, the CUDA runtime header files define some
convenience types to encapsulate multidimensional tuples. The type dim3 repre-
sents a three-dimensional tuple that will be used to specify the size of our launch.
But why do we use a three-dimensional value when we oh-so-clearly stated that
our launch is a two-dimensional grid?

Frankly, we do this because a three-dimensional, dim3 value is what the CUDA
runtime expects. Although a three-dimensional launch grid is not currently
supported, the CUDA runtime still expects a dim3 variable where the last compo-
nent equals 1. When we initialize it with only two values, as we do in the state-
ment dim3 grid(DIM,DIM), the CUDA runtime automatically fills the third
dimension with the value 1, so everything here will work as expected. Although
it’s possible that NVIDIA will support a three-dimensional grid in the future, for
now we’ll just play nicely with the kernel launch API because when coders and
APIs fight, the API always wins.

PArAllel ProGrAmmInG In cudA c

52

We then pass our dim3 variable grid to the CUDA runtime in this line:

 kernel<<<grid,1>>>(dev _ bitmap);

Finally, a consequence of the results residing on the device is that after executing
kernel(), we have to copy the results back to the host. As we learned in
previous chapters, we accomplish this with a call to cudaMemcpy(), specifying
the direction cudaMemcpyDeviceToHost as the last argument.

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(),

 dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

One of the last wrinkles in the difference of implementation comes in the imple-
mentation of kernel().

__global__ void kernel(unsigned char *ptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = blockIdx.x;

 int y = blockIdx.y;

 int offset = x + y * gridDim.x;

 // now calculate the value at that position

 int juliaValue = julia(x, y);

 ptr[offset*4 + 0] = 255 * juliaValue;

 ptr[offset*4 + 1] = 0;

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

}

First, we need kernel() to be declared as a __global__ function so it runs
on the device but can be called from the host. Unlike the CPU version, we no
longer need nested for() loops to generate the pixel indices that get passed

cudA PArAllel ProGrAmmInG

53

4.2 CUDA PARALLEL PROGRAMMING

to julia(). As with the vector addition example, the CUDA runtime generates
these indices for us in the variable blockIdx. This works because we declared
our grid of blocks to have the same dimensions as our image, so we get one block
for each pair of integers (x,y) between (0,0) and (DIM-1, DIM-1).

Next, the only additional information we need is a linear offset into our output
buffer, ptr. This gets computed using another built-in variable, gridDim. This
variable is a constant across all blocks and simply holds the dimensions of the
grid that was launched. In this example, it will always be the value (DIM, DIM).
So, multiplying the row index by the grid width and adding the column index will
give us a unique index into ptr that ranges from 0 to (DIM*DIM-1).

 int offset = x + y * gridDim.x;

Finally, we examine the actual code that determines whether a point is in or out
of the Julia Set. This code should look identical to the CPU version, continuing a
trend we have seen in many examples now.

__device__ int julia(int x, int y) {

 const float scale = 1.5;

 float jx = scale * (float)(DIM/2 - x)/(DIM/2);

 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(-0.8, 0.156);

 cuComplex a(jx, jy);

 int i = 0;

 for (i=0; i<200; i++) {

 a = a * a + c;

 if (a.magnitude2() > 1000)

 return 0;

 }

 return 1;

}

PArAllel ProGrAmmInG In cudA c

54

Again, we define a cuComplex structure that defines a method for storing a
complex number with single-precision floating-point components. The structure
also defines addition and multiplication operators as well as a function to return
the magnitude of the complex value.

struct cuComplex {

 float r;

 float i;

 cuComplex(float a, float b) : r(a), i(b) {}

 __device__ float magnitude2(void) {

 return r * r + i * i;

 }

 __device__ cuComplex operator*(const cuComplex& a) {

 return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

 }

 __device__ cuComplex operator+(const cuComplex& a) {

 return cuComplex(r+a.r, i+a.i);

 }

};

Notice that we use the same language constructs in CUDA C that we use in our
CPU version. The one difference is the qualifier __device__, which indicates
that this code will run on a GPU and not on the host. Recall that because these
functions are declared as __device__ functions, they will be callable only from
other __device__ functions or from __global__ functions.

Since we’ve interrupted the code with commentary so frequently, here is the
entire source listing from start to finish:

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define DIM 1000

cudA PArAllel ProGrAmmInG

55

4.2 CUDA PARALLEL PROGRAMMING

struct cuComplex {

 float r;

 float i;

 cuComplex(float a, float b) : r(a), i(b) {}

 __device__ float magnitude2(void) {

 return r * r + i * i;

 }

 __device__ cuComplex operator*(const cuComplex& a) {

 return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

 }

 __device__ cuComplex operator+(const cuComplex& a) {

 return cuComplex(r+a.r, i+a.i);

 }

};

__device__ int julia(int x, int y) {

 const float scale = 1.5;

 float jx = scale * (float)(DIM/2 - x)/(DIM/2);

 float jy = scale * (float)(DIM/2 - y)/(DIM/2);

 cuComplex c(-0.8, 0.156);

 cuComplex a(jx, jy);

 int i = 0;

 for (i=0; i<200; i++) {

 a = a * a + c;

 if (a.magnitude2() > 1000)

 return 0;

 }

 return 1;

}

PArAllel ProGrAmmInG In cudA c

56

__global__ void kernel(unsigned char *ptr) {

 // map from threadIdx/BlockIdx to pixel position

 int x = blockIdx.x;

 int y = blockIdx.y;

 int offset = x + y * gridDim.x;

 // now calculate the value at that position

 int juliaValue = julia(x, y);

 ptr[offset*4 + 0] = 255 * juliaValue;

 ptr[offset*4 + 1] = 0;

 ptr[offset*4 + 2] = 0;

 ptr[offset*4 + 3] = 255;

}

int main(void) {

 CPUBitmap bitmap(DIM, DIM);

 unsigned char *dev_bitmap;

 HANDLE_ERROR(cudaMalloc((void**)&dev_bitmap,

 bitmap.image_size()));

 dim3 grid(DIM,DIM);

 kernel<<<grid,1>>>(dev_bitmap);

 HANDLE_ERROR(cudaMemcpy(bitmap.get_ptr(), dev_bitmap,

 bitmap.image_size(),

 cudaMemcpyDeviceToHost));

 bitmap.display_and_exit();

 HANDLE_ERROR(cudaFree(dev_bitmap));

}

When you run the application, you should see an animating visualization of the
Julia Set. To convince you that it has earned the title “A Fun Example,” Figure 4.2
shows a screenshot taken from this application.

CHAPTER REVIEW

57

4.3 CHAPTER REVIEW

Figure 4.2 A screenshot from the GPU Julia Set application

Chapter Review4.3
Congratulations, you can now write, compile, and run massively parallel code
on a graphics processor! You should go brag to your friends. And if they are still
under the misconception that GPU computing is exotic and difficult to master,
they will be most impressed. The ease with which you accomplished it will be
our secret. If they’re people you trust with your secrets, suggest that they buy the
book, too.

We have so far looked at how to instruct the CUDA runtime to execute multiple
copies of our program in parallel on what we called blocks. We called the collec-
tion of blocks we launch on the GPU a grid. As the name might imply, a grid can
be either a one- or two-dimensional collection of blocks. Each copy of the kernel
can determine which block it is executing with the built-in variable blockIdx.
Likewise, it can determine the size of the grid by using the built-in variable
gridDim. Both of these built-in variables proved useful within our kernel to
calculate the data index for which each block is responsible.

279

Index

A
add() function, CPU vector sums, 40–44
add_to_table() kernel, GPU hash table, 272
ALUs (arithmetic logic units)

CUDA Architecture, 7
using constant memory, 96

anim_and_exit() method, GPU ripples, 70
anim_gpu() routine, texture memory, 123, 129
animation

GPU Julia Set example, 50–57
GPU ripple using threads, 69–74
heat transfer simulation, 121–125

animExit(), 149
asynchronous call
cudaMemcpyAsync()as, 197
using events with, 109

atomic locks
GPU hash table, 274–275
overview of, 251–254

atomicAdd()
atomic locks, 251–254
histogram kernel using global memory, 180
not supporting floating-point numbers, 251

atomicCAS(), GPU lock, 252–253
atomicExch(), GPU lock, 253–254
atomics, 163–184

advanced, 249–277
compute capability of NVIDIA GPUs, 164–167
dot product and, 248–251
hash tables. see hash tables
histogram computation, CPU, 171–173
histogram computation, GPU, 173–179
histogram computation, overview, 170
histogram kernel using global memory atomics,

179–181
histogram kernel using shared/global memory

atomics, 181–183
for minimum compute capability, 167–168

locks, 251–254
operations, 168–170
overview of, 163–164, 249
summary review, 183–184, 277

B
bandwidth, constant memory saving, 106–107
Basic Linear Algebra Subprograms (BLAS), CUBLAS

library, 239–240
bin counts, CPU histogram computation, 171–173
BLAS (Basic Linear Algebra Subprograms), CUBLAS

library, 239–240
blend_kernel()

2D texture memory, 131–133
texture memory, 127–129

blockDim variable
2D texture memory, 132–133
dot product computation, 76–78, 85
dot product computation, incorrect

optimization, 88
dot product computation with atomic locks,

255–256
dot product computation, zero-copy memory,

221–222
GPU hash table implementation, 272
GPU ripple using threads, 72–73
GPU sums of a longer vector, 63–65
GPU sums of arbitrarily long vectors, 66–67
graphics interoperability, 145
histogram kernel using global memory atomics,

179–180
histogram kernel using shared/global memory

atomics, 182–183
multiple CUDA streams, 200
ray tracing on GPU, 102
shared memory bitmap, 91
temperature update computation, 119–120

INDEX

280

blockIdx variable
2D texture memory, 132–133
defined, 57
dot product computation, 76–77, 85
dot product computation with atomic locks,

255–256
dot product computation, zero-copy memory,

221–222
GPU hash table implementation, 272
GPU Julia Set, 53
GPU ripple using threads, 72–73
GPU sums of a longer vector, 63–64
GPU vector sums, 44–45
graphics interoperability, 145
histogram kernel using global memory atomics,

179–180
histogram kernel using shared/global memory

atomics, 182–183
multiple CUDA streams, 200
ray tracing on GPU, 102
shared memory bitmap, 91
temperature update computation, 119–121

blocks
defined, 57
GPU Julia Set, 51
GPU vector sums, 44–45
hardware-imposed limits on, 46
splitting into threads. see parallel blocks, splitting

into threads
breast cancer, CUDA applications for, 8–9
bridges, connecting multiple GPUs, 224
buckets, hash table

concept of, 259–260
GPU hash table implementation, 269–275
multithreaded hash tables and, 267–268

bufferObj variable
creating GPUAnimBitmap, 149
registering with CUDA runtime, 143
registering with cudaGraphicsGL-

RegisterBuffer(), 151
setting up graphics interoperability, 141, 143–144

buffers, declaring shared memory, 76–77

C
cache[] shared memory variable

declaring buffer of shared memory named, 76–77
dot product computation, 79–80, 85–86
dot product computation with atomic locks,

255–256
cacheIndex, incorrect dot product optimization, 88
caches, texture, 116–117

callbacks, GPUAnimBitmap user registration
for, 149

Cambridge University, CUDA applications, 9–10
camera

ray tracing concepts, 97–98
ray tracing on GPU, 99–104

cellular phones, parallel processing in, 2
central processing units. see CPUs (central

processing units)
cleaning agents, CUDA applications for, 10–11
clickDrag(), 149
clock speed, evolution of, 2–3
code, breaking assumptions, 45–46
code resources, CUDa, 246–248
collision resolution, hash tables, 260–261
color

CPU Julia Set, 48–49
early days of GPU computing, 5–6
ray tracing concepts, 98

compiler
for minimum compute capability, 167–168
standard C, for GPU code, 18–19

complex numbers
defining generic class to store, 49–50
storing with single-precision floating-point

components, 54
computational fluid dynamics, CUDA applications

for, 9–10
compute capability

compiling for minimum, 167–168
cudaChooseDevice()and, 141
defined, 164
of NVIDIA GPUs, 164–167
overview of, 141–142

computer games, 3D graphic development for, 4–5
constant memory

accelerating applications with, 95
measuring performance with events, 108–110
measuring ray tracer performance, 110–114
overview of, 96
performance with, 106–107
ray tracing introduction, 96–98
ray tracing on GPU, 98–104
ray tracing with, 104–106
summary review, 114

__constant__function
declaring memory as, 104–106
performance with constant memory, 106–107

copy_const_kernel() kernel
2D texture memory, 133
using texture memory, 129–130

INDEX

281

copy_constant_kernel(), computing
 temperature updates, 119–121

CPUAnimBitmap class, creating GPU ripple, 69–70,
147–148

CPUs (central processing units)
evolution of clock speed, 2–3
evolution of core count, 3
freeing memory. see free(), C language
hash tables, 261–267
histogram computation on, 171–173
as host in this book, 23
thread management and scheduling in, 72
vector sums, 39–41
verifying GPU histogram using reverse CPU

histogram, 175–176
CUBLAS library, 239–240
cuComplex structure, CPU Julia Set, 48–49
cuComplex structure, GPU Julia Set, 53–55
CUDA, Supercomputing for the Masses , 245–246
CUDA Architecture

computational fluid dynamic applications, 9–10
defined, 7
environmental science applications, 10–11
first application of, 7
medical imaging applications, 8–9
resource for understanding, 244–245
using, 7–8

cudA c
computational fluid dynamic applications, 9–10
CUDA development toolkit, 16–18
CUDA-enabled graphics processor, 14–16
debugging, 241–242
development environment setup. see development

environment setup
development of, 7
environmental science applications, 10–11
getting started, 13–20
medical imaging applications, 8–9
NVIDIA device driver, 16
on multiple GPUs. see GPUs (graphics processing

units), multi-system
overview of, 21–22
parallel programming in. see parallel

programming, CUDA
passing parameters, 24–27
querying devices, 27–33
standard C compiler, 18–19
summary review, 19, 35
using device properties, 33–35
writing first program, 22–24

CUDA Data Parallel Primitives Library (CUDPP), 246
CUDA event API, and performance, 108–110

CUDA Memory Checker, 242
CUDA streams

GPU work scheduling with, 205–208
multiple, 198–205, 208–210
overview of, 192
single, 192–198
summary review, 211

CUDA Toolkit, 238–240
in development environment, 16–18

CUDA tools
CUBLAS library, 239–240
CUDA Toolkit, 238–239
CUFFT library, 239
debugging CUDA C, 241–242
GPU Computing SDK download, 240–241
NVIDIA Performance Primitives, 241
overview of, 238
Visual Profiler, 243–244

CUDA Zone, 167
cuda_malloc_test(), page-locked memory, 189
cudaBindTexture(), texture memory, 126–127
cudaBindTexture2D(), texture memory, 134
cudaChannelFormatDesc(), binding 2D

textures, 134
cudaChooseDevice()

defined, 34
GPUAnimBitmap initialization, 150
for valid ID, 141–142

cudaD39SetDirect3DDevice(), DirectX
interoperability, 160–161

cudaDeviceMapHost(), zero-copy memory dot
product, 221

cudaDeviceProp structure
cudaChooseDevice()working with, 141
multiple CUDA streams, 200
overview of, 28–31
single CUDA streams, 193–194
using device properties, 34

CUDA-enabled graphics processors, 14–16
cudaEventCreate()

2D texture memory, 134
CUDA streams, 192, 194, 201
GPU hash table implementation, 274–275
GPU histogram computation, 173, 177
measuring performance with events, 108–110, 112
page-locked host memory application, 188–189
performing animation with GPUAnimBitmap, 158
ray tracing on GPU, 100
standard host memory dot product, 215
texture memory, 124
zero-copy host memory, 215, 217

INDEX

282

cudaEventDestroy()
defined, 112
GPU hash table implementation, 275
GPU histogram computation, 176, 178
heat transfer simulation, 123, 131, 137
measuring performance with events, 111–113
page-locked host memory, 189–190
texture memory, 136
zero-copy host memory, 217, 220

cudaEventElapsedTime()
2D texture memory, 130
CUDA streams, 198, 204
defined, 112
GPU hash table implementation, 275
GPU histogram computation, 175, 178
heat transfer simulation animation, 122
heat transfer using graphics interoperability, 157
page-locked host memory, 188, 190
standard host memory dot product, 216
zero-copy memory dot product, 219

cudaEventRecord()
CUDA streams, 194, 198, 201
CUDA streams and, 192
GPU hash table implementation, 274–275
GPU histogram computation, 173, 175, 177
heat transfer simulation animation, 122
heat transfer using graphics interoperability,

156–157
measuring performance with events, 108–109
measuring ray tracer performance, 110–113
page-locked host memory, 188–190
ray tracing on GPU, 100
standard host memory dot product, 216
using texture memory, 129–130

cudaEventSynchronize()
2D texture memory, 130
GPU hash table implementation, 275
GPU histogram computation, 175, 178
heat transfer simulation animation, 122
heat transfer using graphics interoperability, 157
measuring performance with events, 109, 111, 113
page-locked host memory, 188, 190
standard host memory dot product, 216

cudaFree()
allocating portable pinned memory, 235
CPU vector sums, 42
CUDA streams, 198, 205
defined, 26–27
dot product computation, 84, 87
dot product computation with atomic locks, 258
GPU hash table implementation, 269–270, 275
GPU ripple using threads, 69
GPU sums of arbitrarily long vectors, 69

multiple CPUs, 229
page-locked host memory, 189–190
ray tracing on GPU, 101
ray tracing with constant memory, 105
shared memory bitmap, 91
standard host memory dot product, 217

cudaFreeHost()
allocating portable pinned memory, 233
CUDA streams, 198, 204
defined, 190
freeing buffer allocated with

cudaHostAlloc(), 190
zero-copy memory dot product, 220

CUDA-GDB debugging tool, 241–242
cudaGetDevice()

CUDA streams, 193, 200
device properties, 34
zero-copy memory dot product, 220

cudaGetDeviceCount()
device properties, 34
getting count of CUDA devices, 28
multiple CPUs, 224–225

cudaGetDeviceProperties()
determining if GPU is integrated or discrete, 223
multiple CUDA streams, 200
querying devices, 33–35
zero-copy memory dot product, 220

cudaGLSetGLDevice()
graphics interoperation with OpenGL, 150
preparing CUDA to use OpenGL driver, 142

cudaGraphicsGLRegisterBuffer(), 143, 151
cudaGraphicsMapFlagsNone(), 143
cudaGraphicsMapFlagsReadOnly(), 143
cudaGraphicsMapFlagsWriteDiscard(), 143
cudaGraphicsUnapResources(), 144
cudaHostAlloc()

CUDA streams, 195, 202
malloc() versus, 186–187
page-locked host memory application, 187–192
zero-copy memory dot product, 217–220

cudaHostAllocDefault()
CUDA streams, 195, 202
default pinned memory, 214
page-locked host memory, 189–190

cudaHostAllocMapped()flag
default pinned memory, 214
portable pinned memory, 231
zero-copy memory dot product, 217–218

cudaHostAllocPortable(), portable pinned
memory, 230–235

cudaHostAllocWriteCombined()flag
portable pinned memory, 231
zero-copy memory dot product, 217–218

INDEX

283

cudaHostGetDevicePointer()
portable pinned memory, 234
zero-copy memory dot product, 218–219

cudaMalloc(), 124
2D texture memory, 133–135
allocating device memory using, 26
CPU vector sums application, 42
CUDA streams, 194, 201–202
dot product computation, 82, 86
dot product computation, standard host

memory, 215
dot product computation with atomic locks, 256
GPU hash table implementation, 269, 274–275
GPU Julia Set, 51
GPU lock function, 253
GPU ripple using threads, 70
GPU sums of arbitrarily long vectors, 68
measuring ray tracer performance, 110, 112
portable pinned memory, 234
ray tracing on GPU, 100
ray tracing with constant memory, 105
shared memory bitmap, 90
using multiple CPUs, 228
using texture memory, 127

cuda-memcheck, 242
cudaMemcpy()

2D texture binding, 136
copying data between host and device, 27
CPU vector sums application, 42
dot product computation, 82–83, 86
dot product computation with atomic locks, 257
GPU hash table implementation, 270, 274–275
GPU histogram computation, 174–175
GPU Julia Set, 52
GPU lock function implementation, 253
GPU ripple using threads, 70
GPU sums of arbitrarily long vectors, 68
heat transfer simulation animation, 122–125
measuring ray tracer performance, 111
page-locked host memory and, 187, 189
ray tracing on GPU, 101
standard host memory dot product, 216
using multiple CPUs, 228–229

cudaMemcpyAsync()
GPU work scheduling, 206–208
multiple CUDA streams, 203, 208–210
single CUDA streams, 196
timeline of intended application execution using

multiple streams, 199
cudaMemcpyDeviceToHost()

CPU vector sums application, 42
dot product computation, 82, 86–87
GPU hash table implementation, 270
GPU histogram computation, 174–175

GPU Julia Set, 52
GPU sums of arbitrarily long vectors, 68
multiple CUDA streams, 204
page-locked host memory, 190
ray tracing on GPU, 101
shared memory bitmap, 91
standard host memory dot product, 216
using multiple CPUs, 229

cudaMemcpyHostToDevice()
CPU vector sums application, 42
dot product computation, 86
GPU sums of arbitrarily long vectors, 68
implementing GPU lock function, 253
measuring ray tracer performance, 111
multiple CPUs, 228
multiple CUDA streams, 203
page-locked host memory, 189
standard host memory dot product, 216

cudaMemcpyToSymbol(), constant memory, 105–106
cudaMemset()

GPU hash table implementation, 269
GPU histogram computation, 174

CUDA.NET project, 247
cudaSetDevice()

allocating portable pinned memory, 231–232,
233–234

using device properties, 34
using multiple CPUs, 227–228

cudaSetDeviceFlags()
allocating portable pinned memory, 231, 234
zero-copy memory dot product, 221

cudaStreamCreate(), 194, 201
cudaStreamDestroy(), 198, 205
cudaStreamSynchronize(), 197–198, 204
cudaThreadSynchronize(), 219
cudaUnbindTexture(), 2D texture memory,

136–137
CUDPP (CUDA Data Parallel Primitives Library), 246
CUFFT library, 239
CULAtools, 246
current animation time, GPU ripple using threads,

72–74

D
debugging CUDA C, 241–242
detergents, CUDA applications, 10–11
dev_bitmap pointer, GPU Julia Set, 51
development environment setup

CUDA Toolkit, 16–18
CUDA-enabled graphics processor, 14–16
NVIDIA device driver, 16
standard C compiler, 18–19
summary review, 19

INDEX

284

device drivers, 16
device overlap, GPU, 194, 198–199
__device__function

GPU hash table implementation, 268–275
GPU Julia Set, 54

devices
getting count of CUDA, 28
GPU vector sums, 41–46
passing parameters, 25–27
querying, 27–33
use of term in this book, 23
using properties of, 33–35

devPtr, graphics interoperability, 144
dim3 variable grid, GPU Julia Set, 51–52
DIMxDIM bitmap image, GPU Julia Set, 49–51, 53
direct memory access (DMA), for page-locked

memory, 186
DirectX

adding standard C to, 7
breakthrough in GPU technology, 5–6
GeForce 8800 GTX, 7
graphics interoperability, 160–161

discrete GPUs, 222–224
display accelerators, 2D, 4
DMA (direct memory access), for page-locked

memory, 186
dot product computation

optimized incorrectly, 87–90
shared memory and, 76–87
standard host memory version of, 215–217
using atomics to keep entirely on GPU, 250–251,

254–258
dot product computation, multiple GPUs

allocating portable pinned memory, 230–235
using, 224–229
zero-copy, 217–222
zero-copy performance, 223

Dr. Dobb's CUDA, 245–246
DRAMs, discrete GPUs with own dedicated, 222–223
draw_func, graphics interoperability, 144–146

E
end_thread(), multiple CPUs, 226
environmental science, CUDA applications for, 10–11
event timer. see timer, event
events

computing elapsed time between recorded. see
cudaEventElapsedTime()

creating. see cudaEventCreate()
GPU histogram computation, 173
measuring performance with, 95
measuring ray tracer performance, 110–114

overview of, 108–110
recording. see cudaEventRecord()
stopping and starting. see

cudaEventDestroy()
summary review, 114

EXIT_FAILURE(), passing parameters, 26

F
fAnim(), storing registered callbacks, 149
Fast Fourier Transform library, NVIDIA, 239
first program, writing, 22–24
flags, in graphics interoperability, 143
float_to_color() kernels, in graphics

 interoperability, 157
floating-point numbers

atomic arithmetic not supported for, 251
CUDA Architecture designed for, 7
early days of GPU computing not able to handle, 6

FORTRAN applications
CUBLAS compatibility with, 239–240
language wrapper for CUDA C, 246

forums, NVIDIA, 246
fractals. see Julia Set example
free(), C language
cudaFree()versus, 26–27
dot product computation with atomic locks, 258
GPU hash table implementation, 275
multiple CPUs, 227
standard host memory dot product, 217

G
GeForce 256, 5
GeForce 8800 GTX, 7
generate_frame(), GPU ripple, 70, 72–73, 154
generic classes, storing complex numbers with,

49–50
GL_PIXEL_UNPACK_BUFFER_ARB target, OpenGL

interoperation, 151
glBindBuffer()

creating pixel buffer object, 143
graphics interoperability, 146

glBufferData(), pixel buffer object, 143
glDrawPixels()

graphics interoperability, 146
overview of, 154–155

glGenBuffers(), pixel buffer object, 143
global memory atomics

GPU compute capability requirements, 167
histogram kernel using, 179–181
histogram kernel using shared and, 181–183

INDEX

285

__global__function
add function, 43
kernel call, 23–24
running kernel() in GPU Julia Set application,

51–52
GLUT (GL Utility Toolkit)

graphics interoperability setup, 144
initialization of, 150
initializing OpenGL driver by calling, 142

glutIdleFunc(), 149
glutInit(), 150
glutMainLoop(), 144
GPU Computing SDK download, 18, 240–241
GPu ripple

with graphics interoperability, 147–154
using threads, 69–74

GPU vector sums
application, 41–46
of arbitrarily long vectors, using threads, 65–69
of longer vector, using threads, 63–65
using threads, 61–63

gpu_anim.h, 152–154
GPUAnimBitmap structure

creating, 148–152
GPU ripple performing animation, 152–154
heat transfer with graphics interoperability,

156–160
GPUs (graphics processing units)

called "devices" in this book, 23
developing code in CUDA C with CUDA-enabled,

14–16
development of CUDA for, 6–8
discrete versus integrated, 222–223
early days of, 5–6
freeing memory. see cudaFree()
hash tables, 268–275
histogram computation on, 173–179
histogram kernel using global memory atomics,

179–181
histogram kernel using shared/global memory

atomics, 181–183
history of, 4–5
Julia Set example, 50–57
measuring performance with events, 108–110
ray tracing on, 98–104
work scheduling, 205–208

GPUs (graphics processing units), multiple,
213–236

overview of, 213–214
portable pinned memory, 230–235
summary review, 235–236
using, 224–229

zero-copy host memory, 214–222
zero-copy performance, 222–223

graphics accelerators, 3D graphics, 4–5
graphics interoperability, 139–161

DirectX, 160–161
generating image data with kernel, 139–142
GPU ripple with, 147–154
heat transfer with, 154–160
overview of, 139–140
passing image data to Open GL for rendering,

142–147
summary review, 161

graphics processing units. see GPUs (graphics
processing units)

grey(), GPU ripple, 74
grid

as collection of parallel blocks, 45
defined, 57
three-dimensional, 51

gridDim variable
2D texture memory, 132–133
defined, 57
dot product computation, 77–78
dot product computation with atomic locks,

255–256
GPU hash table implementation, 272
GPU Julia Set, 53
GPU ripple using threads, 72–73
GPU sums of arbitrarily long vectors, 66–67
graphics interoperability setup, 145
histogram kernel using global memory atomics,

179–180
histogram kernel using shared/global memory

atomics, 182–183
ray tracing on GPU, 102
shared memory bitmap, 91
temperature update computation, 119–120
zero-copy memory dot product, 222

H
half-warps, reading constant memory, 107
HANDLE_ERROR() macro

2D texture memory, 133–136
CUDA streams, 194–198, 201–204, 209–210
dot product computation, 82–83, 86–87
dot product computation with atomic locks,

256–258
GPU hash table implementation, 270
GPU histogram computation completion, 175
GPU lock function implementation, 253
GPU ripple using threads, 70
GPU sums of arbitrarily long vectors, 68

INDEX

286

HANDLE_ERROR() macro, continued
heat transfer simulation animation, 122–125
measuring ray tracer performance, 110–114
page-locked host memory application, 188–189
passing parameters, 26
paying attention to, 46
portable pinned memory, 231–235
ray tracing on GPU, 100–101
ray tracing with constant memory, 104–105
shared memory bitmap, 90–91
standard host memory dot product, 215–217
texture memory, 127, 129
zero-copy memory dot product, 217–222

hardware
decoupling parallelization from method of

executing, 66
performing atomic operations on memory, 167

hardware limitations
GPU sums of arbitrarily long vectors, 65–69
number of blocks in single launch, 46
number of threads per block in kernel launch, 63

hash function
CPU hash table implementation, 261–267
GPU hash table implementation, 268–275
overview of, 259–261

hash tables
concepts, 259–261
CPU, 261–267
GPU, 268–275
multithreaded, 267–268
performance, 276–277
summary review, 277

heat transfer simulation
2D texture memory, 131–137
animating, 121–125
computing temperature updates, 119–121
with graphics interoperability, 154–160
simple heating model, 117–118
using texture memory, 125–131

"Hello, World" example
kernel call, 23–24
passing parameters, 24–27
writing first program, 22–23

Highly Optimized Object-oriented Many-particle
Dynamics (HOOMD), 10–11

histogram computation
on CPUs, 171–173
on GPUs, 173–179
overview, 170

histogram kernel
using global memory atomics, 179–181
using shared/global memory atomics, 181–183

hit() method, ray tracing on GPU, 99, 102

HOOMD (Highly Optimized Object-oriented
Many-particle Dynamics), 10–11

hosts
allocating memory to. see malloc()
CPU vector sums, 39–41
CUDA C blurring device code and, 26
page-locked memory, 186–192
passing parameters, 25–27
use of term in this book, 23
zero-copy host memory, 214–222

I
idle_func() member, GPUAnimBitmap, 154
IEEE requirements, ALUs, 7
increment operator (x++), 168–170
initialization

CPU hash table implementation, 263, 266
CPU histogram computation, 171
GLUT, 142, 150, 173–174
GPUAnimBitmap, 149

inner products. see dot product computation
integrated GPUs, 222–224
interleaved operations, 169–170
interoperation. see graphics interoperability

J
julia() function, 48–49, 53
Julia Set example

CPU application of, 47–50
GPU application of, 50–57
overview of, 46–47

K
kernel

2D texture memory, 131–133
blockIdx.x variable, 44
call to, 23–24
defined, 23
GPU histogram computation, 176–178
GPU Julia Set, 49–52
GPU ripple performing animation, 154
GPU ripple using threads, 70–72
GPU sums of a longer vector, 63–65
graphics interoperability, 139–142, 144–146
"Hello, World" example of call to, 23–24
launching with number in angle brackets that is

not 1, 43–44
passing parameters to, 24–27
ray tracing on GPU, 102–104
texture memory, 127–131

key_func, graphics interoperability, 144–146

INDEX

287

keys
CPU hash table implementation, 261–267
GPU hash table implementation, 269–275
hash table concepts, 259–260

l
language wrappers, 246–247
LAPACK (Linear Algebra Package), 246
light effects, ray tracing concepts, 97
Linux, standard C compiler for, 19
Lock structure, 254–258, 268–275
locks, atomic, 251–254

M
Macintosh OS X, standard C compiler, 19
main()routine

2D texture memory, 133–136
CPU hash table implementation, 266–267
CPU histogram computation, 171
dot product computation, 81–84
dot product computation with atomic locks,

255–256
GPU hash table implementation, 273–275
GPU histogram computation, 173
GPU Julia Set, 47, 50–51
GPU ripple using threads, 69–70
GPU vector sums, 41–42
graphics interoperability, 144
page-locked host memory application, 190–192
ray tracing on GPU, 99–100
ray tracing with constant memory, 104–106
shared memory bitmap, 90
single CUDA streams, 193–194
zero-copy memory dot product, 220–222

malloc()
cudaHostAlloc() versus, 186
cudaHostAlloc()versus, 190
cudaMalloc()versus, 26
ray tracing on GPU, 100

mammograms, CUDA applications for medical
imaging, 9

maxThreadsPerBlock field, device properties, 63
media and communications processors (MCPs), 223
medical imaging, CUDA applications for, 8–9
memcpy(), C language, 27
memory

allocating device. see cudaMalloc()
constant. see constant memory
CUDA Architecture creating access to, 7
early days of GPU computing, 6
executing device code that uses allocated, 70
freeing. see cudaFree(); free(), C language

GPU histogram computation, 173–174
page-locked host (pinned), 186–192
querying devices, 27–33
shared. see shared memory
texture. see texture memory
use of term in this book, 23

Memory Checker, CUDA, 242
memset(), C language, 174
Microsoft Windows, Visual Studio C compiler, 18–19
Microsoft.NET, 247
multicore revolution, evolution of CPUs, 3
multiplication, in vector dot products, 76
multithreaded hash tables, 267–268
mutex, GPU lock function, 252–254

N
nForce media and communications processors

(MCPs), 222–223
nvIdIA

compute capability of various GPUs, 164–167
creating 3D graphics for consumers, 5
creating CUDA C for GPU, 7
creating first GPU built with CUDA Architecture, 7
CUBLAS library, 239–240
CUDA-enabled graphics processors, 14–16
CUDA-GDB debugging tool, 241–242
CUFFT library, 239
device driver, 16
GPU Computing SDK download, 18, 240–241
Parallel NSight debugging tool, 242
Performance Primitives, 241
products containing multiple GPUs, 224
Visual Profiler, 243–244

NVIDIA CUDA Programming Guide, 31

o
offset, 2D texture memory, 133
on-chip caching. see constant memory; texture

memory
one-dimensional blocks

GPU sums of a longer vector, 63
two-dimensional blocks versus, 44

online resources. see resources, online
OpenGL

creating GPUAnimBitmap, 148–152
in early days of GPU computing, 5–6
generating image data with kernel, 139–142
interoperation, 142–147
writing 3D graphics, 4

operations, atomic, 168–170
optimization, incorrect dot product, 87–90

INDEX

288

P
page-locked host memory

allocating as portable pinned memory, 230–235
overview of, 186–187
restricted use of, 187
single CUDA streams with, 195–197

parallel blocks
GPU Julia Set, 51
GPU vector sums, 45

parallel blocks, splitting into threads
GPU sums of arbitrarily long vectors, 65–69
GPU sums of longer vector, 63–65
GPU vector sums using threads, 61–63
overview of, 60
vector sums, 60–61

Parallel NSight debugging tool, 242
parallel processing

evolution of CPUs, 2–3
past perception of, 1

parallel programming, CUDA
CPU vector sums, 39–41
example, CPU Julia Set application, 47–50
example, GPU Julia Set application, 50–57
example, overview, 46–47
GPU vector sums, 41–46
overview of, 38
summary review, 56
summing vectors, 38–41

parameter passing, 24–27, 40, 72
PC gaming, 3D graphics for, 4–5
PCI Express slots, adding multiple GPUs to, 224
performance

constant memory and, 106–107
evolution of CPUs, 2–3
hash table, 276
launching kernel for GPU histogram computation,

176–177
measuring with events, 108–114
page-locked host memory and, 187
zero-copy memory and, 222–223

pinned memory
allocating as portable, 230–235
cudaHostAllocDefault()getting default, 214
as page-locked memory. see page-locked host

memory
pixel buffer objects (PBO), OpenGL, 142–143
pixel shaders, early days of GPU computing, 5–6
pixels, number of threads per block, 70–74
portable computing devices, 2
Programming Massively Parallel Processors: A

Hands-on Approach (Kirk, Hwu), 244

properties
cudaDeviceProp structure. see

 cudaDeviceProp structure
maxThreadsPerBlock field for device, 63
reporting device, 31
using device, 33–35

PyCUDA project, 246–247
Python language wrappers for CUDA C, 246

Q
querying, devices, 27–33

r
rasterization, 97
ray tracing

concepts behind, 96–98
with constant memory, 104–106
on GPU, 98–104
measuring performance, 110–114

read-modify-write operations
atomic operations as, 168–170, 251
using atomic locks, 251–254

read-only memory. see constant memory; texture
memory

reductions
dot products as, 83
overview of, 250
shared memory and synchronization for, 79–81

references, texture memory, 126–127, 131–137
registration
bufferObj with cudaGraphicsGLRegister-

Buffer(), 151
callback, 149

rendering, GPUs performing complex, 139
resource variable

creating GPUAnimBitmap, 148–152
graphics interoperation, 141

resources, online
CUDA code, 246–248
CUDA Toolkit, 16
CUDA University, 245
CUDPP, 246
CULAtools, 246
Dr. Dobb's CUDA, 246
GPU Computing SDK code samples, 18
language wrappers, 246–247
NVIDIA device driver, 16
NVIDIA forums, 246
standard C compiler for Mac OS X, 19
Visual Studio C compiler, 18

INDEX

289

resources, written
CUDA U, 245–246
forums, 246
programming massive parallel processors, 244–245

ripple, GPu
with graphics interoperability, 147–154
producing, 69–74

routine()
allocating portable pinned memory, 232–234
using multiple CPUs, 226–228

Russian nesting doll hierarchy, 164

S
scalable link interface (SLI), adding multiple GPUs

with, 224
scale factor, CPU Julia Set, 49
scientific computations, in early days, 6
screenshots

animated heat transfer simulation, 126
GPU Julia Set example, 57
GPU ripple example, 74
graphics interoperation example, 147
ray tracing example, 103–104
rendered with proper synchronization, 93
rendered without proper synchronization, 92

shading languages, 6
shared data buffers, kernel/OpenGL rendering

 interoperation, 142
shared memory

atomics, 167, 181–183
bitmap, 90–93
CUDA Architecture creating access to, 7
dot product, 76–87
dot product optimized incorrectly, 87–90
and synchronization, 75

Silicon Graphics, OpenGL library, 4
simulation

animation of, 121–125
challenges of physical, 117
computing temperature updates, 119–121
simple heating model, 117–118

SLI (scalable link interface), adding multiple GPUs
with, 224

spatial locality
designing texture caches for graphics with, 116
heat transfer simulation animation, 125–126

split parallel blocks. see parallel blocks, splitting
into threads

standard C compiler
compiling for minimum compute capability,

167–168

development environment, 18–19
kernel call, 23–24

start event, 108–110
start_thread(), multiple CPUs, 226–227
stop event, 108–110
streams

CUDA, overview of, 192
CUDA, using multiple, 198–205, 208–210
CUDA, using single, 192–198
GPU work scheduling and, 205–208
overview of, 185–186
page-locked host memory and, 186–192
summary review, 211

supercomputers, performance gains in, 3
surfactants, environmental devastation of, 10
synchronization

of events. see cudaEventSynchronize()
of streams, 197–198, 204
of threads, 219

synchronization, and shared memory
dot product, 76–87
dot product optimized incorrectly, 87–90
overview of, 75
shared memory bitmap, 90–93

__syncthreads()
dot product computation, 78–80, 85
shared memory bitmap using, 90–93
unintended consequences of, 87–90

t
task parallelism, CPU versus GPU applications, 185
TechniScan Medical Systems, CUDA applications, 9
temperatures

computing temperature updates, 119–121
heat transfer simulation, 117–118
heat transfer simulation animation, 121–125

Temple University research, CUDA applications,
10–11

tex1Dfetch() compiler intrinsic, texture memory,
127–128, 131–132

tex2D() compiler intrinsic, texture memory,
132–133

texture, early days of GPU computing, 5–6
texture memory

animation of simulation, 121–125
defined, 115
overview of, 115–117
simulating heat transfer, 117–121
summary review, 137
two-dimensional, 131–137
using, 125–131

INDEX

290

threadIdx variable
2D texture memory, 132–133
dot product computation, 76–77, 85
dot product computation with atomic locks,

255–256
GPU hash table implementation, 272
GPU Julia Set, 52
GPU ripple using threads, 72–73
GPU sums of a longer vector, 63–64
GPU sums of arbitrarily long vectors, 66–67
GPU vector sums using threads, 61
histogram kernel using global memory atomics,

179–180
histogram kernel using shared/global memory

atomics, 182–183
multiple CUDA streams, 200
ray tracing on GPU, 102
setting up graphics interoperability, 145
shared memory bitmap, 91
temperature update computation, 119–121
zero-copy memory dot product, 221

threads
coding with, 38–41
constant memory and, 106–107
GPU ripple using, 69–74
GPU sums of a longer vector, 63–65
GPU sums of arbitrarily long vectors, 65–69
GPU vector sums using, 61–63
hardware limit to number of, 63
histogram kernel using global memory atomics,

179–181
incorrect dot product optimization and divergence

of, 89
multiple CPUs, 225–229
overview of, 59–60
ray tracing on GPU and, 102–104
read-modify-write operations, 168–170
shared memory and. see shared memory
summary review, 94
synchronizing, 219

threadsPerBlock
allocating shared memory, 76–77
dot product computation, 79–87

three-dimensional blocks, GPU sums of a longer
vector, 63

three-dimensional graphics, history of GPUs, 4–5
three-dimensional scenes, ray tracing producing 2-D

image of, 97
tid variable
blockIdx.x variable assigning value of, 44
checking that it is less than N, 45–46
dot product computation, 77–78
parallelizing code on multiple CPUs, 40

time, GPU ripple using threads, 72–74
timer, event. see cudaEventElapsedTime()
Toolkit, CUDA, 16–18
two-dimensional blocks

arrangement of blocks and threads, 64
GPU Julia Set, 51
GPU ripple using threads, 70
gridDim variable as, 63
one-dimensional indexing versus, 44

two-dimensional display accelerators, development
of GPUs, 4

two-dimensional texture memory
defined, 116
heat transfer simulation, 117–118
overview of, 131–137

U
ultrasound imaging, CUDA applications for, 9
unified shader pipeline, CUDA Architecture, 7
university, CUDA, 245

v
values

CPU hash table implementation, 261–267
GPU hash table implementation, 269–275
hash table concepts, 259–260

vector dot products. see dot product computation
vector sums

CPU, 39–41
GPU, 41–46
GPU sums of arbitrarily long vectors, 65–69
GPU sums of longer vector, 63–65
GPU sums using threads, 61–63
overview of, 38–39, 60–61

verify_table(), GPU hash table, 270
Visual Profiler, NVIDIA, 243–244
Visual Studio C compiler, 18–19

W
warps, reading constant memory with, 106–107
while() loop

CPU vector sums, 40
GPU lock function, 253

work scheduling, GPU, 205–208

Z
zero-copy memory

allocating/using, 214–222
defined, 214
performance, 222–223

GPU GEMS: Programming Techniques,
Tips, and Tricks for Real-Time Graphics
Edited by Randima Fernando
ISBN-13: 978-0-321-22832-1

GPU GEMS 2: Programming Techniques
for High-Performance Graphics and
General-Purpose Computation
Edited by Matt Pharr
ISBN-13: 978-0-321-33559-3

GPU GEMS 3
Edited by Hubert Nguyen
ISBN-13: 978-0-321-51526-1

• Natural Effects
• Lighting and Shadows
• Materials
• Image Processing

• Performance and
Practicalities

• Beyond Triangles
• Geometry

Alias Systems
Apple
Brown University
Croteam
Cyan Worlds
discreet
Industrial Light & Magic
iXBT.com
Massachusetts Institute
 of Technology
Microsoft Research
Monolith Productions
New York University

NVIDIA
Piranha Bytes
Pixar Animation Studios
Siemens Medical Solutions
Softimage Co.
Softlab-NSK
Sony Pictures Imageworks
Stanford University
UC Davis
UNC-Chapel Hill
University of Utah
University of Waterloo

CONTRIBUTORS ARE FROM THE FOLLOWING
CORPORATIONS AND UNIVERSITIES:

GPU Gems, GPU Gems 2, and GPU Gems 3 are compilations of
contributed chapters covering practical real-time graphics
techniques arising from the research and practice of cutting-
edge developers. They focus on the programmable graphics
pipeline available in today’s GPUs and highlight quick-and-dirty
tricks used by leading developers, as well as fundamental,
performance-conscious techniques for creating advanced visual
effects. GPU Gems, GPU Gems 2, and GPU Gems 3 together
provide a comprehensive guide to taking advantage of the
power of the new generation of GPUs.

ALSO OF INTEREST

The Cg Tutorial
by Randima Fernando
and Mark J. Kilgard
ISBN-13: 978-0-321-19496-1

WINNER OF THE

2004 Front Line

Award for Best

Book from

Game Developer

Magazine

For additional information:
informit.com/aw • developer.nvidia.com

ALSO AVAILABLE: GPU GEMS

MAJOR TOPICS COVERED INCLUDE:

A

b
a
I

Sanders_BoBad.indd 1 5/11/10 12:01 PM

	Foreword
	Preface
	4 PARALLEL PROGRAMMING IN CUDA C
	4.1 Chapter Objectives
	4.2 CUDA Parallel Programming
	4.2.1 Summing Vectors
	4.2.2 A Fun Example

	4.3 Chapter Review

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

