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Foreword

Recent activities of major chip manufacturers such as NVIDIA make it more 
evident than ever that future designs of microprocessors and large HPC 
systems will be hybrid/heterogeneous in nature. These heterogeneous systems 
will rely on the integration of two major types of components in varying 
proportions:

multi- and many-core CPU technology•	 : The number of cores will continue to 
escalate because of the desire to pack more and more components on a chip 
while avoiding the power wall, the instruction-level parallelism wall, and the 
memory wall.

Special-purpose hardware and massively parallel accelerators•	 : For example, 
GPUs from NVIDIA have outpaced standard CPUs in floating-point performance 
in recent years. Furthermore, they have arguably become as easy, if not easier, 
to program than multicore CPUs.

The relative balance between these component types in future designs is not 
clear and will likely vary over time. There seems to be no doubt that future 
generations of computer systems, ranging from laptops to supercomputers,  
will consist of a composition of heterogeneous components. Indeed, the petaflop 
(1015 floating-point operations per second) performance barrier was breached by 
such a system.

And yet the problems and the challenges for developers in the new computational 
landscape of hybrid processors remain daunting. Critical parts of the software 
infrastructure are already having a very difficult time keeping up with the pace 
of change. In some cases, performance cannot scale with the number of cores 
because an increasingly large portion of time is spent on data movement rather 
than arithmetic. In other cases, software tuned for performance is delivered years 
after the hardware arrives and so is obsolete on delivery. And in some cases, as 
on some recent GPUs, software will not run at all because programming environ-
ments have changed too much.
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FOREWORD

CUDA by Example addresses the heart of the software development challenge by 
leveraging one of the most innovative and powerful solutions to the problem of 
programming the massively parallel accelerators in recent years.

This book introduces you to programming in CUDA C by providing examples and 
insight into the process of constructing and effectively using NVIDIA GPUs. It 
presents introductory concepts of parallel computing from simple examples to 
debugging (both logical and performance), as well as covers advanced topics and 
issues related to using and building many applications. Throughout the book, 
programming examples reinforce the concepts that have been presented.

The book is required reading for anyone working with accelerator-based 
computing systems. It explores parallel computing in depth and provides an 
approach to many problems that may be encountered. It is especially useful for 
application developers, numerical library writers, and students and teachers of 
parallel computing.

I have enjoyed and learned from this book, and I feel confident that you will 
as well.

Jack Dongarra 
University Distinguished Professor, University of Tennessee Distinguished Research 
Staff Member, Oak Ridge National Laboratory 
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Preface

This book shows how, by harnessing the power of your computer’s graphics 
process unit (GPU), you can write high-performance software for a wide range 
of applications. Although originally designed to render computer graphics on 
a monitor (and still used for this purpose), GPUs are increasingly being called 
upon for equally demanding programs in science, engineering, and finance, 
among other domains. We refer collectively to GPU programs that address 
problems in nongraphics domains as general-purpose. Happily, although you 
need to have some experience working in C or C++ to benefit from this book, 
you need not have any knowledge of computer graphics. None whatsoever! GPU 
programming simply offers you an opportunity to build—and to build mightily—
on your existing programming skills.

To program NVIDIA GPUs to perform general-purpose computing tasks, you 
will want to know what CUDA is. NVIDIA GPUs are built on what’s known as 
the CUDA Architecture. You can think of the CUDA Architecture as the scheme 
by which NVIDIA has built GPUs that can perform both traditional graphics-
rendering tasks and general-purpose tasks. To program CUDA GPUs, we will 
be using a language known as CUDA C. As you will see very early in this book, 
CUDA C is essentially C with a handful of extensions to allow programming of 
massively parallel machines like NVIDIA GPUs.

We’ve geared CUDA by Example toward experienced C or C++ programmers 
who have enough familiarity with C such that they are comfortable reading and 
writing code in C. This book builds on your experience with C and intends to serve 
as an example-driven, “quick-start” guide to using NVIDIA’s CUDA C program-
ming language. By no means do you need to have done large-scale software 
architecture, to have written a C compiler or an operating system kernel, or to 
know all the ins and outs of the ANSI C standards. However, we do not spend 
time reviewing C syntax or common C library routines such as malloc() or 
memcpy(), so we will assume that you are already reasonably familiar with these 
topics. 
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PREFACE

You will encounter some techniques that can be considered general parallel 
programming paradigms, although this book does not aim to teach general 
parallel programming techniques. Also, while we will look at nearly every part of 
the CUDA API, this book does not serve as an extensive API reference nor will it 
go into gory detail about every tool that you can use to help develop your CUDA C 
software. Consequently, we highly recommend that this book be used in conjunc-
tion with NVIDIA’s freely available documentation, in particular the NVIDIA CUDA 
Programming Guide and the NVIDIA CUDA Best Practices Guide. But don’t stress 
out about collecting all these documents because we’ll walk you through every-
thing you need to do.

Without further ado, the world of programming NVIDIA GPUs with CUDA C awaits!



37

Chapter 4

Parallel Programming 
in CUDA C

In the previous chapter, we saw how simple it can be to write code that executes 
on the GPU. We have even gone so far as to learn how to add two numbers 
together, albeit just the numbers 2 and 7. Admittedly, that example was not 
immensely impressive, nor was it incredibly interesting. But we hope you are 
convinced that it is easy to get started with CUDA C and you’re excited to learn 
more. Much of the promise of GPU computing lies in exploiting the massively 
parallel structure of many problems. In this vein, we intend to spend this chapter 
examining how to execute parallel code on the GPU using CUDA C. 
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Chapter Objectives4.1 
Through the course of this chapter, you will accomplish the following:

You will learn one of the fundamental ways CUDA exposes its parallelism.• 

You will write your first parallel code with CUDA C.• 

CUDA Parallel Programming4.2 
Previously, we saw how easy it was to get a standard C function to start running 
on a device. By adding the __global__  qualifier to the function and by calling 
it using a special angle bracket syntax, we executed the function on our GPU. 
Although this was extremely simple, it was also extremely inefficient because 
NVIDIA’s hardware engineering minions have optimized their graphics processors 
to perform hundreds of computations in parallel. However, thus far we have only 
ever launched a kernel that runs serially on the GPU. In this chapter, we see how 
straightforward it is to launch a device kernel that performs its computations in 
parallel. 

summInG vectors4.2.1 

We will contrive a simple example to illustrate threads and how we use them to 
code with CUDA C. Imagine having two lists of numbers where we want to sum 
corresponding elements of each list and store the result in a third list. Figure 4.1 
shows this process. If you have any background in linear algebra, you will recog-
nize this operation as summing two vectors.
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c

a

b

Figure 4.1 Summing two vectors

cPu vector sums

First we’ll look at one way this addition can be accomplished with traditional C code:

#include "../common/book.h"

#define N   10

void add( int *a, int *b, int *c ) {

    int tid = 0;    // this is CPU zero, so we start at zero

    while (tid < N) {

        c[tid] = a[tid] + b[tid];

        tid += 1;   // we have one CPU, so we increment by one

    }

}

int main( void ) {

    int a[N], b[N], c[N];

    // fill the arrays 'a' and 'b' on the CPU

    for (int i=0; i<N; i++) {

        a[i] = -i;

        b[i] = i * i;

    }

    add( a, b, c );
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    // display the results

    for (int i=0; i<N; i++) {

        printf( "%d + %d = %d\n", a[i], b[i], c[i] );

    }

    return 0;

}

Most of this example bears almost no explanation, but we will briefly look at the 
add() function to explain why we overly complicated it.

void add( int *a, int *b, int *c ) {

    int tid = 0;    // this is CPU zero, so we start at zero

    while (tid < N) {

        c[tid] = a[tid] + b[tid];

        tid += 1;   // we have one CPU, so we increment by one

    }

}

We compute the sum within a while loop where the index tid ranges from 0 to 
N-1. We add corresponding elements of a[] and b[], placing the result in the 
corresponding element of c[]. One would typically code this in a slightly simpler 
manner, like so:

void add( int *a, int *b, int *c ) {

    for (i=0; i < N; i++) {

        c[i] = a[i] + b[i];

    }

}

Our slightly more convoluted method was intended to suggest a potential way to 
parallelize the code on a system with multiple CPUs or CPU cores. For example, 
with a dual-core processor, one could change the increment to 2 and have one 
core initialize the loop with tid = 0 and another with tid = 1. The first core 
would add the even-indexed elements, and the second core would add the odd-
indexed elements. This amounts to executing the following code on each of the 
two CPU cores:
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CPU Core 1 CPU Core 2

void add( int *a, int *b, int *c ) 
{
    int tid = 0;
    while (tid < N) {
        c[tid] = a[tid] + b[tid];
        tid += 2;
    }
}

void add( int *a, int *b, int *c ) 
{
    int tid = 1;
    while (tid < N) {
        c[tid] = a[tid] + b[tid];
        tid += 2;
    }
}

Of course, doing this on a CPU would require considerably more code than we 
have included in this example. You would need to provide a reasonable amount of 
infrastructure to create the worker threads that execute the function add() as 
well as make the assumption that each thread would execute in parallel, a sched-
uling assumption that is unfortunately not always true.

GPu vector sums

We can accomplish the same addition very similarly on a GPU by writing add() 
as a device function. This should look similar to code you saw in the previous 
chapter. But before we look at the device code, we present main(). Although the 
GPU implementation of main() is different from the corresponding CPU version, 
nothing here should look new: 

#include "../common/book.h"

#define N   10

int main( void ) {

    int a[N], b[N], c[N];

    int *dev_a, *dev_b, *dev_c;

    // allocate the memory on the GPU

    HANDLE_ERROR( cudaMalloc( (void**)&dev_a, N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_b, N * sizeof(int) ) );

    HANDLE_ERROR( cudaMalloc( (void**)&dev_c, N * sizeof(int) ) );

    // fill the arrays 'a' and 'b' on the CPU

    for (int i=0; i<N; i++) {

        a[i] = -i;

        b[i] = i * i;

    }
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    // copy the arrays 'a' and 'b' to the GPU

    HANDLE_ERROR( cudaMemcpy( dev_a, a, N * sizeof(int),

                              cudaMemcpyHostToDevice ) );

    HANDLE_ERROR( cudaMemcpy( dev_b, b, N * sizeof(int),

                              cudaMemcpyHostToDevice ) );

    add<<<N,1>>>( dev_a, dev_b, dev_c );

    // copy the array 'c' back from the GPU to the CPU

    HANDLE_ERROR( cudaMemcpy( c, dev_c, N * sizeof(int),

                              cudaMemcpyDeviceToHost ) );

    // display the results

    for (int i=0; i<N; i++) {

        printf( "%d + %d = %d\n", a[i], b[i], c[i] );

    }

    // free the memory allocated on the GPU

    cudaFree( dev_a );

    cudaFree( dev_b );

    cudaFree( dev_c );

    return 0;

}

You will notice some common patterns that we employ again:

We allocate three arrays on the device using calls to • cudaMalloc(): two 
arrays, dev_a and dev_b, to hold inputs, and one array, dev_c, to hold the 
result. 

Because we are environmentally conscientious coders, we clean up after • 
ourselves with cudaFree().

Using • cudaMemcpy(), we copy the input data to the device with the parameter 
cudaMemcpyHostToDevice and copy the result data back to the host with 
cudaMemcpyDeviceToHost.

We execute the device code in • add() from the host code in main() using the 
triple angle bracket syntax.
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As an aside, you may be wondering why we fill the input arrays on the CPU. There 
is no reason in particular why we need to do this. In fact, the performance of this 
step would be faster if we filled the arrays on the GPU. But we intend to show how 
a particular operation, namely, the addition of two vectors, can be implemented 
on a graphics processor. As a result, we ask you to imagine that this is but one 
step of a larger application where the input arrays a[] and b[] have been 
generated by some other algorithm or loaded from the hard drive by the user. In 
summary, it will suffice to pretend that this data appeared out of nowhere and 
now we need to do something with it.

Moving on, our add() routine looks similar to its corresponding CPU 
implementation:

__global__ void add( int *a, int *b, int *c ) {

    int tid = blockIdx.x;    // handle the data at this index

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

Again we see a common pattern with the function add():

We have written a function called • add() that executes on the device. We 
accomplished this by taking C code and adding a __global__ qualifier to  
the function name.

So far, there is nothing new in this example except it can do more than add 2 and 
7. However, there are two noteworthy components of this example: The param-
eters within the triple angle brackets and the code contained in the kernel itself 
both introduce new concepts.

Up to this point, we have always seen kernels launched in the following form:

        kernel<<<1,1>>>( param1, param2, … );

But in this example we are launching with a number in the angle brackets that is 
not 1:

        add<<<N,1>>>( dev _ a, dev _ b, dev _ c );

What gives?
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Recall that we left those two numbers in the angle brackets unexplained; we 
stated vaguely that they were parameters to the runtime that describe how to 
launch the kernel. Well, the first number in those parameters represents the 
number of parallel blocks in which we would like the device to execute our kernel. 
In this case, we’re passing the value N for this parameter. 

For example, if we launch with kernel<<<2,1>>>(), you can think of the 
runtime creating two copies of the kernel and running them in parallel. We call 
each of these parallel invocations a block. With kernel<<<256,1>>>(), you 
would get 256 blocks running on the GPU. Parallel programming has never been 
easier.

But this raises an excellent question: The GPU runs N copies of our kernel code, 
but how can we tell from within the code which block is currently running? This 
question brings us to the second new feature of the example, the kernel code 
itself. Specifically, it brings us to the variable blockIdx.x:

__global__ void add( int *a, int *b, int *c ) {

    int tid = blockIdx.x;    // handle the data at this index

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

At first glance, it looks like this variable should cause a syntax error at compile 
time since we use it to assign the value of tid, but we have never defined it. 
However, there is no need to define the variable blockIdx; this is one of the 
built-in variables that the CUDA runtime defines for us. Furthermore, we use this 
variable for exactly what it sounds like it means. It contains the value of the block 
index for whichever block is currently running the device code.

Why, you may then ask, is it not just blockIdx? Why blockIdx.x? As it turns 
out, CUDA C allows you to define a group of blocks in two dimensions. For prob-
lems with two-dimensional domains, such as matrix math or image processing, 
it is often convenient to use two-dimensional indexing to avoid annoying transla-
tions from linear to rectangular indices. Don’t worry if you aren’t familiar with 
these problem types; just know that using two-dimensional indexing can some-
times be more convenient than one-dimensional indexing. But you never have to 
use it. We won’t be offended.
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When we launched the kernel, we specified N as the number of parallel blocks. 
We call the collection of parallel blocks a grid. This specifies to the runtime 
system that we want a one-dimensional grid of N blocks (scalar values are 
interpreted as one-dimensional). These threads will have varying values for 
blockIdx.x, the first taking value 0 and the last taking value N-1. So, imagine 
four blocks, all running through the same copy of the device code but having 
different values for the variable blockIdx.x. This is what the actual code being 
executed in each of the four parallel blocks looks like after the runtime substi-
tutes the appropriate block index for blockIdx.x:

bloCK 1 bloCK 2

__global__ void 

add( int *a, int *b, int *c ) {

    int tid = 0;

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

__global__ void 

add( int *a, int *b, int *c ) {

    int tid = 1;

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

bloCK 3 bloCK 4

__global__ void 

add( int *a, int *b, int *c ) {

    int tid = 2;

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

__global__ void 

add( int *a, int *b, int *c ) {

    int tid = 3;

    if (tid < N)

        c[tid] = a[tid] + b[tid];

}

If you recall the CPU-based example with which we began, you will recall that we 
needed to walk through indices from 0 to N-1 in order to sum the two vectors. 
Since the runtime system is already launching a kernel where each block will 
have one of these indices, nearly all of this work has already been done for us. 
Because we’re something of a lazy lot, this is a good thing. It affords us more time 
to blog, probably about how lazy we are.

The last remaining question to be answered is, why do we check whether tid 
is less than N? It should always be less than N, since we’ve specifically launched 
our kernel such that this assumption holds. But our desire to be lazy also makes 
us paranoid about someone breaking an assumption we’ve made in our code. 
Breaking code assumptions means broken code. This means bug reports, late 
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nights tracking down bad behavior, and generally lots of activities that stand 
between us and our blog. If we didn’t check that tid is less than N and subse-
quently fetched memory that wasn’t ours, this would be bad. In fact, it could 
possibly kill the execution of your kernel, since GPUs have sophisticated memory 
management units that kill processes that seem to be violating memory rules.

If you encounter problems like the ones just mentioned, one of the  HANDLE_
ERROR() macros that we’ve sprinkled so liberally throughout the code will 
detect and alert you to the situation. As with traditional C programming, the 
lesson here is that functions return error codes for a reason. Although it is 
always tempting to ignore these error codes, we would love to save you the hours 
of pain through which we have suffered by urging that you check the results of 
every operation that can fail. As is often the case, the presence of these errors 
will not prevent you from continuing the execution of your application, but they 
will most certainly cause all manner of unpredictable and unsavory side effects 
downstream.

At this point, you’re running code in parallel on the GPU. Perhaps you had heard 
this was tricky or that you had to understand computer graphics to do general-
purpose programming on a graphics processor. We hope you are starting to see 
how CUDA C makes it much easier to get started writing parallel code on a GPU. 
We used the example only to sum vectors of length 10. If you would like to see 
how easy it is to generate a massively parallel application, try changing the 10 in 
the line #define N 10 to 10000 or 50000 to launch tens of thousands of parallel 
blocks. Be warned, though: No dimension of your launch of blocks may exceed 
65,535. This is simply a hardware-imposed limit, so you will start to see failures if 
you attempt launches with more blocks than this. In the next chapter, we will see 
how to work within this limitation.

A FUN EXAMPLE4.2.2 

We don’t mean to imply that adding vectors is anything less than fun, but the 
following example will satisfy those looking for some flashy examples of parallel 
CUDA C. 

The following example will demonstrate code to draw slices of the Julia Set. For 
the uninitiated, the Julia Set is the boundary of a certain class of functions over 
complex numbers. Undoubtedly, this sounds even less fun than vector addi-
tion and matrix multiplication. However, for almost all values of the  function’s 
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 parameters, this boundary forms a fractal, one of the most interesting and beau-
tiful curiosities of mathematics.

The calculations involved in generating such a set are quite simple. At its heart, 
the Julia Set evaluates a simple iterative equation for points in the complex plane. 
A point is not in the set if the process of iterating the equation diverges for that 
point. That is, if the sequence of values produced by iterating the equation grows 
toward infinity, a point is considered outside the set. Conversely, if the values 
taken by the equation remain bounded, the point is in the set. 

Computationally, the iterative equation in question is remarkably simple, as 
shown in Equation 4.1.

Equation 4.1 

Computing an iteration of Equation 4.1 would therefore involve squaring the 
current value and adding a constant to get the next value of the equation. 

cPu JulIA set

We will examine a source listing now that will compute and visualize the Julia 
Set. Since this is a more complicated program than we have studied so far, we will 
split it into pieces here. Later in the chapter, you will see the entire source listing.

int main( void ) {

    CPUBitmap bitmap( DIM, DIM );

    unsigned char *ptr = bitmap.get_ptr();

    kernel( ptr );

    bitmap.display_and_exit();

}

Our main routine is remarkably simple. It creates the appropriate size bitmap 
image using a utility library provided. Next, it passes a pointer to the bitmap data 
to the kernel function.
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void kernel( unsigned char *ptr ){

    for (int y=0; y<DIM; y++) {

        for (int x=0; x<DIM; x++) {

            int offset = x + y * DIM;

            int juliaValue = julia( x, y );

            ptr[offset*4 + 0] = 255 * juliaValue;

            ptr[offset*4 + 1] = 0;

            ptr[offset*4 + 2] = 0;

            ptr[offset*4 + 3] = 255;

        }

    }

 }

The computation kernel does nothing more than iterate through all points we 
care to render, calling julia()on each to determine membership in the Julia 
Set. The function julia()will return 1 if the point is in the set and 0 if it is not 
in the set. We set the point’s color to be red if julia()returns 1 and black if it 
returns 0. These colors are arbitrary, and you should feel free to choose a color 
scheme that matches your personal aesthetics.

int julia( int x, int y ) {

    const float scale = 1.5;

    float jx = scale * (float)(DIM/2 - x)/(DIM/2);

    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);

    cuComplex a(jx, jy);

    int i = 0;

    for (i=0; i<200; i++) {

        a = a * a + c;

        if (a.magnitude2() > 1000)

            return 0;

    }

    return 1;

}
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This function is the meat of the example. We begin by translating our pixel 
coordinate to a coordinate in complex space. To center the complex plane at the 
image center, we shift by DIM/2. Then, to ensure that the image spans the range 
of -1.0 to 1.0, we scale the image coordinate by DIM/2. Thus, given an image 
point at (x,y), we get a point in complex space at ( (DIM/2 – x)/(DIM/2), 
((DIM/2 – y)/(DIM/2) ).

Then, to potentially zoom in or out, we introduce a scale factor. Currently, the scale 
is hard-coded to be 1.5, but you should tweak this parameter to zoom in or out. If you 
are feeling really ambitious, you could make this a command-line parameter. 

After obtaining the point in complex space, we then need to determine whether 
the point is in or out of the Julia Set. If you recall the previous section, we do this 
by computing the values of the iterative equation Zn+1 = zn

2 + C. Since C is some 
arbitrary complex-valued constant, we have chosen -0.8 + 0.156i because it 
happens to yield an interesting picture. You should play with this constant if you 
want to see other versions of the Julia Set.

In the example, we compute 200 iterations of this function. After each iteration, 
we check whether the magnitude of the result exceeds some threshold (1,000 for 
our purposes). If so, the equation is diverging, and we can return 0 to indicate that 
the point is not in the set. On the other hand, if we finish all 200 iterations and the 
magnitude is still bounded under 1,000, we assume that the point is in the set, 
and we return 1 to the caller, kernel(). 

Since all the computations are being performed on complex numbers, we define 
a generic structure to store complex numbers. 

struct cuComplex {

    float   r;

    float   i;

    cuComplex( float a, float b ) : r(a), i(b)  {}

    float magnitude2( void ) { return r * r + i * i; }

    cuComplex operator*(const cuComplex& a) {

        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

    }

    cuComplex operator+(const cuComplex& a) {

        return cuComplex(r+a.r, i+a.i);

    }

};
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The class represents complex numbers with two data elements: a single-
 precision real component r and a single-precision imaginary component i. 
The class defines addition and multiplication operators that combine complex 
numbers as expected. (If you are completely unfamiliar with complex numbers, 
you can get a quick primer online.) Finally, we define a method that returns the 
magnitude of the complex number. 

GPu JulIA set

The device implementation is remarkably similar to the CPU version, continuing a 
trend you may have noticed.

int main( void ) {

    CPUBitmap bitmap( DIM, DIM );

    unsigned char    *dev_bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap, 

                              bitmap.image_size() ) );

    dim3    grid(DIM,DIM);

    kernel<<<grid,1>>>( dev_bitmap );

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), 

                              dev_bitmap, 

                              bitmap.image_size(), 

                              cudaMemcpyDeviceToHost ) );

    bitmap.display_and_exit();

    cudaFree( dev_bitmap );

}

This version of main() looks much more complicated than the CPU version, but 
the flow is actually identical. Like with the CPU version, we create a DIM x DIM 
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bitmap image using our utility library. But because we will be doing computa-
tion on a GPU, we also declare a pointer called dev_bitmap to hold a copy 
of the data on the device. And to hold data, we need to allocate memory using 
cudaMalloc(). 

We then run our kernel() function exactly like in the CPU version, although 
now it is a __global__ function, meaning it will run on the GPU. As with the 
CPU example, we pass kernel() the pointer we allocated in the previous line to 
store the results. The only difference is that the memory resides on the GPU now, 
not on the host system.

The most significant difference is that we specify how many parallel blocks on 
which to execute the function kernel(). Because each point can be computed 
independently of every other point, we simply specify one copy of the function for 
each point we want to compute. We mentioned that for some problem domains, 
it helps to use two-dimensional indexing. Unsurprisingly, computing function 
values over a two-dimensional domain such as the complex plane is one of these 
problems. So, we specify a two-dimensional grid of blocks in this line:

    dim3 grid(DIM,DIM);

The type dim3 is not a standard C type, lest you feared you had forgotten some 
key pieces of information. Rather, the CUDA runtime header files define some 
convenience types to encapsulate multidimensional tuples. The type dim3 repre-
sents a three-dimensional tuple that will be used to specify the size of our launch. 
But why do we use a three-dimensional value when we oh-so-clearly stated that 
our launch is a two-dimensional grid? 

Frankly, we do this because a three-dimensional, dim3 value is what the CUDA 
runtime expects. Although a three-dimensional launch grid is not currently 
supported, the CUDA runtime still expects a dim3 variable where the last compo-
nent equals 1. When we initialize it with only two values, as we do in the state-
ment dim3 grid(DIM,DIM), the CUDA runtime automatically fills the third 
dimension with the value 1, so everything here will work as expected. Although 
it’s possible that NVIDIA will support a three-dimensional grid in the future, for 
now we’ll just play nicely with the kernel launch API because when coders and 
APIs fight, the API always wins.
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We then pass our dim3 variable grid to the CUDA runtime in this line:

    kernel<<<grid,1>>>( dev _ bitmap );

Finally, a consequence of the results residing on the device is that after executing 
kernel(), we have to copy the results back to the host. As we learned in 
previous chapters, we accomplish this with a call to cudaMemcpy(), specifying 
the direction cudaMemcpyDeviceToHost as the last argument.

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), 

                              dev_bitmap, 

                              bitmap.image_size(), 

                              cudaMemcpyDeviceToHost ) );

One of the last wrinkles in the difference of implementation comes in the imple-
mentation of kernel().

__global__ void kernel( unsigned char *ptr ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = blockIdx.x;

    int y = blockIdx.y;

    int offset = x + y * gridDim.x;

    // now calculate the value at that position

    int juliaValue = julia( x, y );

    ptr[offset*4 + 0] = 255 * juliaValue;

    ptr[offset*4 + 1] = 0;

    ptr[offset*4 + 2] = 0;

    ptr[offset*4 + 3] = 255;

}

First, we need kernel() to be declared as a __global__ function so it runs 
on the device but can be called from the host. Unlike the CPU version, we no 
longer need nested for() loops to generate the pixel indices that get passed 
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to julia(). As with the vector addition example, the CUDA runtime generates 
these indices for us in the variable blockIdx. This works because we declared 
our grid of blocks to have the same dimensions as our image, so we get one block 
for each pair of integers (x,y) between (0,0) and (DIM-1, DIM-1). 

Next, the only additional information we need is a linear offset into our output 
buffer, ptr. This gets computed using another built-in variable, gridDim. This 
variable is a constant across all blocks and simply holds the dimensions of the 
grid that was launched. In this example, it will always be the value (DIM, DIM). 
So, multiplying the row index by the grid width and adding the column index will 
give us a unique index into ptr that ranges from 0 to (DIM*DIM-1).

    int offset = x + y * gridDim.x;

Finally, we examine the actual code that determines whether a point is in or out 
of the Julia Set. This code should look identical to the CPU version, continuing a 
trend we have seen in many examples now.

__device__ int julia( int x, int y ) {

    const float scale = 1.5;

    float jx = scale * (float)(DIM/2 - x)/(DIM/2);

    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);

    cuComplex a(jx, jy);

    int i = 0;

    for (i=0; i<200; i++) {

        a = a * a + c;

        if (a.magnitude2() > 1000)

            return 0;

    }

    return 1;

}
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Again, we define a cuComplex structure that defines a method for storing a 
complex number with single-precision floating-point components. The structure 
also defines addition and multiplication operators as well as a function to return 
the magnitude of the complex value. 

struct cuComplex {

    float   r;

    float   i;

    cuComplex( float a, float b ) : r(a), i(b)  {}

    __device__ float magnitude2( void ) { 

        return r * r + i * i; 

    }

    __device__ cuComplex operator*(const cuComplex& a) { 

        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i); 

    }

    __device__ cuComplex operator+(const cuComplex& a) { 

        return cuComplex(r+a.r, i+a.i); 

    }

};

Notice that we use the same language constructs in CUDA C that we use in our 
CPU version. The one difference is the qualifier __device__, which indicates 
that this code will run on a GPU and not on the host. Recall that because these 
functions are declared as __device__ functions, they will be callable only from 
other __device__ functions or from __global__ functions.

Since we’ve interrupted the code with commentary so frequently, here is the 
entire source listing from start to finish:

#include "../common/book.h"

#include "../common/cpu_bitmap.h"

#define DIM 1000
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struct cuComplex {

    float   r;

    float   i;

    cuComplex( float a, float b ) : r(a), i(b)  {}

    __device__ float magnitude2( void ) {

        return r * r + i * i;

    }

    __device__ cuComplex operator*(const cuComplex& a) {

        return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i);

    }

    __device__ cuComplex operator+(const cuComplex& a) {

        return cuComplex(r+a.r, i+a.i);

    }

};

__device__ int julia( int x, int y ) {

    const float scale = 1.5;

    float jx = scale * (float)(DIM/2 - x)/(DIM/2);

    float jy = scale * (float)(DIM/2 - y)/(DIM/2);

    cuComplex c(-0.8, 0.156);

    cuComplex a(jx, jy);

    int i = 0;

    for (i=0; i<200; i++) {

        a = a * a + c;

        if (a.magnitude2() > 1000)

            return 0;

    }

    return 1;

}
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__global__ void kernel( unsigned char *ptr ) {

    // map from threadIdx/BlockIdx to pixel position

    int x = blockIdx.x;

    int y = blockIdx.y;

    int offset = x + y * gridDim.x;

    // now calculate the value at that position

    int juliaValue = julia( x, y );

    ptr[offset*4 + 0] = 255 * juliaValue;

    ptr[offset*4 + 1] = 0;

    ptr[offset*4 + 2] = 0;

    ptr[offset*4 + 3] = 255;

}

int main( void ) {

    CPUBitmap bitmap( DIM, DIM );

    unsigned char    *dev_bitmap;

    HANDLE_ERROR( cudaMalloc( (void**)&dev_bitmap, 

                               bitmap.image_size() ) );

    dim3    grid(DIM,DIM);

    kernel<<<grid,1>>>( dev_bitmap );

    HANDLE_ERROR( cudaMemcpy( bitmap.get_ptr(), dev_bitmap,

                              bitmap.image_size(),

                              cudaMemcpyDeviceToHost ) );

    bitmap.display_and_exit();

    HANDLE_ERROR( cudaFree( dev_bitmap ) );

}

When you run the application, you should see an animating visualization of the 
Julia Set. To convince you that it has earned the title “A Fun Example,” Figure 4.2 
shows a screenshot taken from this application.
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Figure 4.2 A screenshot from the GPU Julia Set application

Chapter Review4.3 
Congratulations, you can now write, compile, and run massively parallel code 
on a graphics processor! You should go brag to your friends. And if they are still 
under the misconception that GPU computing is exotic and difficult to master, 
they will be most impressed. The ease with which you accomplished it will be 
our secret. If they’re people you trust with your secrets, suggest that they buy the 
book, too.

We have so far looked at how to instruct the CUDA runtime to execute multiple 
copies of our program in parallel on what we called blocks. We called the collec-
tion of blocks we launch on the GPU a grid. As the name might imply, a grid can 
be either a one- or two-dimensional collection of blocks. Each copy of the kernel 
can determine which block it is executing with the built-in variable blockIdx. 
Likewise, it can determine the size of the grid by using the built-in variable 
gridDim. Both of these built-in variables proved useful within our kernel to 
calculate the data index for which each block is responsible.
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