
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780131103627
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780131103627
https://plusone.google.com/share?url=http://www.informit.com/title/9780131103627
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780131103627
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780131103627/Free-Sample-Chapter

 Preface to the Digital Edition

The second edition of The C Programming Language was published early
in 1988. At that time, the first C standard was almost complete, formalizing and
codifying the precise definition of the language. There have been two revisions
to the standard since then, in 1999 and 2011, that added a number of language
features and cleared up a few minor issues. But for many programmers, the
1988 definition of C covers the parts of the language that they use, so it has
never seemed necessary to update the book itself to track the newer standards.
Thus, the digital version is intentionally identical to the print edition.*

On the other hand, the computing world is very different from what it was
in 1988. The Internet has gone from a network primarily for researchers at
universities to a universal network linking everyone on the planet. Computers
have continued to get smaller, cheaper, and faster; a typical laptop or cell phone
today has more computing power than a supercomputer of 1988, yet costs so
little that probably half the people in the world have one. Languages such as
C++, Objective-C, Java, and JavaScript make it easier to program these systems
as well; all of them borrow heavily from C.

Remarkably, in spite of all of this change, C retains a central position. It is
still the core language for operating system implementation and tool building. It
remains unequaled for portability, efficiency, and ability to get close to the
hardware when necessary. C has sometimes been called a high-level assembler,
and this is not a bad characterization of how well it spans the range from
intricate data structure and control flow to the lowest level of external devices.

Sadly, Dennis Ritchie, the creator of C and the coauthor of this book, died
in October 2011 at the age of 70 and never saw this digital edition. Dennis was a
great language designer and programmer, and a superb writer, but he was also
funny, warm, and exceptionally kind. We are all in his debt. He will be greatly
missed.

 Brian Kernighan
 Princeton, New Jersey

November 2012

* Note: Example code can now be downloaded by visiting
www.informit.com/store/c-programming-language-9780131103627.

This page intentionally left blank

THE

C
PROGRAMMING

LANGUAGE

Second Edition

Brian W. Kernighan • Dennis M. Ritchie

AT&T Bell Laboratories
Murray Hill, New Jersey

Prentice Hall PTR, Upper Saddle River, New Jersey 07458

Library of Congress CaUloging-in-Publication Data

Kernighan, Brian W.
The C programming language.

Includes index.
1. C (Computer program language) I. Ritchie,

Dennis M. II. Title.
QA76.73.C15K47 1988 005.13'3 88-5934
ISBN 0-13-110370-9
ISBN 0-13-110362-8 (pbk.)

Copyright ° 1988, 1978 by Bell Telephone Laboratories, Incorporated.

C Published by Prentice Hall P T R
Prentice-Hall, Inc.
Upper Saddle River, NJ 07458

AH rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

UNIX is a registered trademark of AT&T.

This book was typeset (pic i tbl i eqn i trof f -ms) in Times Roman and Courier by
the authors, using an Autologic APS-5 phototypesetter and a DEC VAX 8550 running
the 9th Edition of the UNIX* operating system.

Prentice Hall Software Series
Brian Kernighan, Advisor

ISBN 0-13-110362-8

Text printed in the United States on recycled paper at Courier in Westford,
Massachusetts.
Fourty-ninth printing, January 2012

ISBN 0-13-llQ3b2-a -CPBIO
ISBN 0-13-110370-^

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall of Canada, Inc., Toronto
Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

Preface ix

Preface to the First Edition xi

Introduction 1

Chapter 1. A Tutorial Introduction 5
.1 Getting Started 5
.2 Variables and Arithmetic Expressions 8
.3 The For Statement 13
.4 Symbolic Constants 14
.5 Character Input and Output 15
.6 Arrays 22
.7 Functions 24
.8 Arguments—Call by Value 27
.9 Character Arrays 28
.10 External Variables and Scope 31

Chapter 2. Types, Operators, and Expressions 35
2.1 Variable Names 35
2.2 Data Types and Sizes 36
2.3 Constants 37
2.4 Declarations 40
2.5 Arithmetic Operators 41
2.6 Relational and Logical Operators 41
2.7 Type Conversions 42
2.8 Increment and Decrement Operators 46
2.9 Bitwise Operators 48
2.10 Assignment Operators and Expressions 50
2.11 Conditional Expressions 51
2.12 Precedence and Order of Evaluation 52

Chapter3. Control Flow 55
3.1 Statements and Blocks 55
3.2 If-Else 55

v

1
1
1
1
1
1
1
1
1
1

Vi THE C PROGRAMMING LANGUAGE CONTENTS

3.3 Else-If 57
3.4 Switch 58
3.5 Loops-While and For 60
3.6 Loops—Do-while 63
3.7 Break and Continue 64
3.8 Goto and Labels 65

Chapter 4. Functions and Program Structure 67
4.1 Basics of Functions 67
4.2 Functions Returning Non-integers 71
4.3 External Variables 73
4.4 Scope Rules 80
4.5 Header Files 81
4.6 Static Variables 83
4.7 Register Variables 83
4.8 Block Structure 84
4.9 Initialization 85
4.10 Recursion 86
4.11 The C Preprocessor 88

Chapter 5. Pointers and Arrays 93
5.1 Pointers and Addresses 93
5.2 Pointers and Function Arguments 95
5.3 Pointers and Arrays 97
5.4 Address Arithmetic 100
5.5 Character Pointers and Functions 104
5.6 Pointer Arrays; Pointers to Pointers 107
5.7 Multi-dimensional Arrays 110
5.8 Initialization of Pointer Arrays 113
5.9 Pointers vs. Multi-dimensional Arrays 113
5.10 Command-line Arguments 114
5.11 Pointers to Functions 118
5.12 Complicated Declarations 122

Chapter 6. Structures 127
6.1 Basics of Structures 127
6.2 Structures and Functions 129
6.3 Arrays of Structures 132
6.4 Pointers to Structures 136
6.5 Self-referential Structures 139
6.6 Table Lookup 143
6.7 Typedef 146
6.8 Unions 147
6.9 Bit-fields 149

Chapter?. Input and Output 151
7.1 Standard Input and Output 151
7.2 Formatted Output—Printf 153

THE C PROGRAMMING LANGUAGE CONTENTS Vli

7.3 Variable-length Argument Lists 155
7.4 Formatted Input—Scanf 157
7.5 File Access 160
7.6 Error Handling—Stderr and Exit 163
7.7 Line Input and Output 164
7.8 Miscellaneous Functions 166

Chapters. The UNIX System Interface 169
8.1 File Descriptors 169
8.2 Low Level I/O-Read and Write 170
8.3 Open, Creat, Close, Unlink 172
8.4 Random Access—Lseek 174
8.5 Example—An Implementation of Fopen and Getc 175
8.6 Example—Listing Directories 179
8.7 Example-A Storage Allocator 185

Appendix A. Reference Manual 191
Al Introduction 191
A2 Lexical Conventions 191
A3 Syntax Notation 194
A4 Meaning of Identifiers 195
A5 Objects and Lvalues 197
A6 Conversions 197
A7 Expressions 200
A8 Declarations 210
A9 Statements 222
A10 External Declarations 225
All Scope and Linkage 227
A12 Preprocessing 228
A13 Grammar 234

Appendix B. Standard Library 241
Bl Input and Output: <stdio.h> 241
B2 Character Class Tests: <ctype.h> 248
B3 String Functions: <string.h> 249
B4 Mathematical Functions: <math.h> 250
B5 Utility Functions: <stdlib.h> 251
B6 Diagnostics: <assert.h> 253
B7 Variable Argument Lists: <stdarg.h> 254
B8 Non-local Jumps: <setjmp.h> 254
B9 Signals: <signal.h> 255
BIO Date and Time Functions: <time.h> 255
Bll Implementation-defined Limits: <limits.h> and <float.h> 257

Appendix C. Summary of Changes 259

Index 263

This page intentionally left blank

Preface

The computing world has undergone a revolution since the publication of
The C Programming Language in 1978. Big computers are much bigger, and
personal computers have capabilities that rival the mainframes of a decade ago.
During this time, C has changed too, although only modestly, and it has spread
far beyond its origins as the language of the UNIX operating system.

The growing popularity of C, the changes in the language over the years,
and the creation of compilers by groups not involved in its design, combined to
demonstrate a need for a more precise and more contemporary definition of the
language than the first edition of this book provided. In 1983, the American
National Standards Institute (ANSI) established a committee whose goal was to
produce "an unambiguous and machine-independent definition of the language
C," while still retaining its spirit. The result is the ANSI standard for C.

The standard formalizes constructions that were hinted at but not described
in the first edition, particularly structure assignment and enumerations. It pro-
vides a new form of function declaration that permits cross-checking of defini-
tion with use. It specifies a standard library, with an extensive set of functions
for performing input and output, memory management, string manipulation,
and similar tasks. It makes precise the behavior of features that were not
spelled out in the original definition, and at the same time states explicitly
which aspects of the language remain machine-dependent.

This second edition of The C Programming Language describes C as defined
by the ANSI standard. Although we have noted the places where the language
has evolved, we have chosen to write exclusively in the new form. For the most
part, this makes no significant difference; the most visible change is the new
form of function declaration and definition. Modern compilers already support
most features of the standard.

We have tried to retain the brevity of the first edition. C is not a big
language, and it is not well served by a big book. We have improved the exposi-
tion of critical features, such as pointers, that are central to C programming.
We have refined the original examples, and have added new examples in several
chapters. For instance, the treatment of complicated declarations is augmented
by programs that convert declarations into words and vice versa. As before, all

ix

X PREFACE

examples have been tested directly from the text, which is in machine-readable
form.

Appendix A, the reference manual, is not the standard, but our attempt to
convey the essentials of the standard in a smaller space. It is meant for easy
comprehension by programmers, but not as a definition for compiler writers—
that role properly belongs to the standard itself. Appendix B is a summary of
the facilities of the standard library. It too is meant for reference by program-
mers, not implementers. Appendix C is a concise summary of the changes from
the original version.

As we said in the preface to the first edition, C "wears well as one's experi-
ence with it grows." With a decade more experience, we still feel that way.
We hope that this book will help you to learn C and to use it well.

We are deeply indebted to friends who helped us to produce this second edi-
tion. Jon Bentley, Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob Pike
gave us perceptive comments on almost every page of draft manuscripts. We
are grateful for careful reading by Al Aho, Dennis Allison, Joe Campbell, G. R.
Emlin, Karen Fortgang, Allen Holub, Andrew Hume, Dave Kristol, John
Linderman, Dave Prosser, Gene Spafford, and Chris Van Wyk. We also
received helpful suggestions from Bill Cheswick, Mark Kernighan, Andy
Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and Peter Wein-
berger. Dave Prosser answered many detailed questions about the ANSI stand-
ard. We used Bjarne Stroustrup's C++ translator extensively for local testing
of our programs, and Dave Kristol provided us with an ANSI C compiler for
final testing. Rich Drechsler helped greatly with typesetting.

Our sincere thanks to all.

Brian W. Kernighan
Dennis M. Ritchie

Preface to the First Edition

C is a general-purpose programming language which features economy of
expression, modern control flow and data structures, and a rich set of operators.
C is not a "very high level" language, nor a "big" one, and is not specialized to
any particular area of application. But its absence of restrictions and its gen-
erality make it more convenient and effective for many tasks than supposedly
more powerful languages.

C was originally designed for and implemented on the UNIX operating sys-
tem on the DEC PDP-11, by Dennis Ritchie. The operating system, the C com-
piler, and essentially all UNIX applications programs (including all of the
software used to prepare this book) are written in C. Production compilers also
exist for several other machines, including the IBM System/370, the Honeywell
6000, and the Interdata 8/32. C is not tied to any particular hardware or sys-
tem, however, and it is easy to write programs that will run without change on
any machine that supports C.

This book is meant to help the reader learn how to program in C. It con-
tains a tutorial introduction to get new users started as soon as possible,
separate chapters on each major feature, and a reference manual. Most of the
treatment is based on reading, writing and revising examples, rather than on
mere statements of rules. For the most part, the examples are complete, real
programs, rather than isolated fragments. All examples have been tested
directly from the text, which is in machine-readable form. Besides showing how
to make effective use of the language, we have also tried where possible to illus-
trate useful algorithms and principles of good style and sound design.

The book is not an introductory programming manual; it assumes some fam-
iliarity with basic programming concepts like variables, assignment statements,
loops, and functions. Nonetheless, a novice programmer should be able to read
along and pick up the language, although access to a more knowledgeable col-
league will help.

In our experience, C has proven to be a pleasant, expressive, and versatile
language for a wide variety of programs. It is easy to learn, and it wears well
as one's experience with it grows. We hope that this book will help you to use it
well.

xi

Xli PREFACE TO THE 1ST EDITION

The thoughtful criticisms and suggestions of many friends and colleagues
have added greatly to this book and to our pleasure in writing it. In particular,
Mike Bianchi, Jim Blue, Stu Feldman, Doug Mcllroy, Bill Roome, Bob Rosin,
and Larry Rosier all read multiple versions with care. We are also indebted to
Al Aho, Steve Bourne, Dan Dvorak, Chuck Haley, Debbie Haley, Marion
Harris, Rick Holt, Steve Johnson, John Mashey, Bob Mitze, Ralph Muha, Peter
Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken Thompson, and Peter
Weinberger for helpful comments at various stages, and to Mike Lesk and Joe
Ossanna for invaluable assistance with typesetting.

Brian W. Kernighan
Dennis M. Ritchie

Introduction

C is a general-purpose programming language. It has been closely associ-
ated with the UNIX system where it was developed, since both the system and
most of the programs that run on it are written in C. The language, however, is
not tied to any one operating system or machine; and although it has been
called a "system programming language" because it is useful for writing com
pilers and operating systems, it has been used equally well to write major pro-
grams in many different domains.

Many of the important ideas of C stem from the language BCPL, developed
by Martin Richards. The influence of BCPL on C proceeded indirectly through
the language B, which was written by Ken Thompson in 1970 for the first
UNIX system on the DEC PDP-7.

BCPL and B are "typeless" languages. By contrast, C provides a variety of
data types. The fundamental types are characters, and integers and floating-
point numbers of several sizes. In addition, there is a hierarchy of derived data
types created with pointers, arrays, structures, and unions. Expressions are
formed from operators and operands; any expression, including an assignment or
a function call, can be a statement. Pointers provide for machine-independent
address arithmetic.

C provides the fundamental control-flow constructions required for well-
structured programs: statement grouping, decision making (if-else), selecting
one of a set of possible cases (switch), looping with the termination test at the
top (while, for) or at the bottom (do), and early loop exit (break).

Functions may return values of basic types, structures, unions, or pointers.
Any function may be called recursively. Local variables are typically
"automatic," or created anew with each invocation. Function definitions may
not be nested but variables may be declared in a block-structured fashion. The
functions of a C program may exist in separate source files that are compiled
separately. Variables may be internal to a function, external but known only
within a single source file, or visible to the entire program.

A preprocessing step performs macro substitution on program text, inclusion
of other source files, and conditional compilation.

C is a relatively "low level" language. This characterization is not

1

2 INTRODUCTION

pejorative; it simply means that C deals with the same sort of objects that most
computers do, namely characters, numbers, and addresses. These may be com-
bined and moved about with the arithmetic and logical operators implemented
by real machines.

C provides no operations to deal directly with composite objects such as
character strings, sets, lists, or arrays. There are no operations that manipulate
an entire array or string, although structures may be copied as a unit. The
language does not define any storage allocation facility other than static defini-
tion and the stack discipline provided by the local variables of functions; there is
no heap or garbage collection. Finally, C itself provides no input/output facili-
ties; there are no READ or WRITE statements, and no built-in file access
methods. All of these higher-level mechanisms must be provided by explicitly-
called functions. Most C implementations have included a reasonably standard
collection of such functions.

Similarly, C offers only straightforward, single-thread control flow: tests,
loops, grouping, and subprograms, but not multiprogramming, parallel opera-
tions, synchronization, or coroutines.

Although the absence of some of these features may seem like a grave defi-
ciency ("You mean I have to call a function to compare two character
strings?"), keeping the language down to modest size has real benefits. Since C
is relatively small, it can be described in a small space, and learned quickly. A
programmer can reasonably expect to know and understand and indeed regu-
larly use the entire language.

For many years, the definition of C was the reference manual in the first
edition of The C Programming Language. In 1983, the American National
Standards Institute (ANSI) established a committee to provide a modern,
comprehensive definition of C. The resulting definition, the ANSI standard, or
"ANSI C," was completed late in 1988. Most of the features of the standard
are already supported by modern compilers.

The standard is based on the original reference manual. The language is
relatively little changed; one of the goals of the standard was to make sure that
most existing programs would remain valid, or, failing that, that compilers could
produce warnings of new behavior.

For most programmers, the most important change is a new syntax for
declaring and defining functions. A function declaration can now include a
description of the arguments of the function; the definition syntax changes to
match. This extra information makes it much easier for compilers to detect
errors caused by mismatched arguments; in our experience, it is a very useful
addition to the language.

There are other small-scale language changes. Structure assignment and
enumerations, which had been widely available, are now officially part of the
language. Floating-point computations may now be done in single precision.
The properties of arithmetic, especially for unsigned types, are clarified. The
preprocessor is more elaborate. Most of these changes will have only minor

THE C PROGRAMMING LANGUAGE 3

effects on most programmers.
A second significant contribution of the standard is the definition of a library

to accompany C. It specifies functions for accessing the operating system (for
instance, to read and write files), formatted input and output, memory alloca-
tion, string manipulation, and the like. A collection of standard headers pro-
vides uniform access to declarations of functions and data types. Programs that
use this library to interact with a host system are assured of compatible
behavior. Most of the library is closely modeled on the "standard I/O library"
of the UNIX system. This library was described in the first edition, and has
been widely used on other systems as well. Again, most programmers will not
see much change.

Because the data types and control structures provided by C are supported
directly by most computers, the run-time library required to implement self-
contained programs is tiny. The standard library functions are only called
explicitly, so they can be avoided if they are not needed. Most can be written in
C, and except for the operating system details they conceal, are themselves port-
able.

Although C matches the capabilities of many computers, it is independent of
any particular machine architecture. With a little care it is easy to write port-
able programs, that is, programs that can be run without change on a variety of
hardware. The standard makes portability issues explicit, and prescribes a set
of constants that characterize the machine on which the program is run.

C is not a strongly-typed language, but as it has evolved, its type-checking
has been strengthened. The original definition of C frowned on, but permitted,
the interchange of pointers and integers; this has long since been eliminated, and
the standard now requires the proper declarations and explicit conversions that
had already been enforced by good compilers. The new function declarations
are another step in this direction. Compilers will warn of most type errors, and
there is no automatic conversion of incompatible data types. Nevertheless, C
retains the basic philosophy that programmers know what they are doing; it only
requires that they state their intentions explicitly.

C, like any other language, has its blemishes. Some of the operators have
the wrong precedence; some parts of the syntax could be better. Nonetheless, C
has proven to be an extremely effective and expressive language for a wide
variety of programming applications.

The book is organized as follows. Chapter 1 is a tutorial on the central part
of C. The purpose is to get the reader started as quickly as possible, since we
believe strongly that the way to learn a new language is to write programs in it.
The tutorial does assume a working knowledge of the basic elements of pro-
gramming; there is no explanation of computers, of compilation, nor of the
meaning of an expression like n=n+1. Although we have tried where possible to
show useful programming techniques, the book is not intended to be a reference
work on data structures and algorithms; when forced to make a choice, we have
concentrated on the language.

4 INTRODUCTION

Chapters 2 through 6 discuss various aspects of C in more detail, and rather
more formally, than does Chapter 1, although the emphasis is still on examples
of complete programs, rather than isolated fragments. Chapter 2 deals with the
basic data types, operators and expressions. Chapter 3 treats control flow:
if-else, switch, while, for, etc. Chapter 4 covers functions and program
structure—external variables, scope rules, multiple source files, and so on—and
also touches on the preprocessor. Chapter 5 discusses pointers and address
arithmetic. Chapter 6 covers structures and unions.

Chapter 7 describes the standard library, which provides a common interface
to the operating system. This library is defined by the ANSI standard and is
meant to be supported on all machines that support C, so programs that use it
for input, output, and other operating system access can be moved from one sys-
tem to another without change.

Chapter 8 describes an interface between C programs and the UNIX operat-
ing system, concentrating on input/output, the file system, and storage alloca-
tion. Although some of this chapter is specific to UNIX systems, programmers
who use other systems should still find useful material here, including some
insight into how one version of the standard library is implemented, and sugges-
tions on portability.

Appendix A contains a language reference manual. The official statement of
the syntax and semantics of C is the ANSI standard itself. That document,
however, is intended foremost for compiler writers. The reference manual here
conveys the definition of the language more concisely and without the same
legalistic style. Appendix B is a summary of the standard library, again for
users rather than implementers. Appendix C is a short summary of changes
from the original language. In cases of doubt, however, the standard and one's
own compiler remain the final authorities on the language.

CHAPTER 3: ContfOl FlOW

The control-flow statements of a language specify the order in which compu-
tations are performed. We have already met the most common control-flow
constructions in earlier examples; here we will complete the set, and be more
precise about the ones discussed before.

3.1 Statements and Blocks

An expression such as x = 0 or i++ or printf (...) becomes a statement
when it is followed by a semicolon, as in

x = 0;
i++;
printf (...);

In C, the semicolon is a statement terminator, rather than a separator as it is in
languages like Pascal.

Braces { and } are used to group declarations and statements together into a
compound statement, or block, so that they are syntactically equivalent to a
single statement. The braces that surround the statements of a function are one
obvious example; braces around multiple statements after an if, else, while,
or for are another. (Variables can be declared inside any block; we will talk
about this in Chapter 4.) There is no semicolon after the right brace that ends
a block.

3.2 If-Else

The if-else statement is used to express decisions. Formally, the syntax is

if (expression)
statement,

else
statement 2

55

56 CONTROL FLOW CHAPTER 3

where the else part is optional. The expression is evaluated; if it is true (that
is, if expression has a non-zero value), statement\ is executed. If it is false
(expression is zero) and if there is an else part, statement2 is executed
instead.

Since an if simply tests the numeric value of an expression, certain coding
shortcuts are possible. The most obvious is writing

if (expression)

instead of

if (expression != 0)

Sometimes this is natural and clear; at other times it can be cryptic.
Because the else part of an if-else is optional, there is an ambiguity

when an else is omitted from a nested if sequence. This is resolved by asso-
ciating the else with the closest previous else-less if. For example, in

if (n > 0)
if (a > b)

z = a;
else

z = b;

the else goes with the inner if, as we have shown by indentation. If that isn't
what you want, braces must be used to force the proper association:

if (n > 0) {
if (a > b)

z = a;
}
else

z = b;

The ambiguity is especially pernicious in situations like this:

if (n >= 0)
for (i » 0; i < n; i++)

if (s[i] > 0) {
printf ("...");
return i;

}
else /* WRONG */

printf("error — n is negativeXn");

The indentation shows unequivocally what you want, but the compiler doesn't
get the message, and associates the else with the inner if. This kind of bug
can be hard to find; it's a good idea to use braces when there are nested ifs.

By the way, notice that there is a semicolon after z = a in

SECTION 3.3 ELSE-IF 57

if (a > b)
z = a;

else
z = b;

This is because grammatically, a statement follows the if, and an expression
statement like "z = a;" is always terminated by a semicolon.

3.3 Else-lf

The construction

if (expression)
statement

else if (expression)
statement

else if (expression)
statement

else if (expression)
statement

else
statement

occurs so often that it is worth a brief separate discussion. This sequence of if
statements is the most general way of writing a multi-way decision. The
expressions are evaluated in order; if any expression is true, the statement asso-
ciated with it is executed, and this terminates the whole chain. As always, the
code for each statement is either a single statement, or a group in braces.

The last else part handles the "none of the above" or default case where
none of the other conditions is satisfied. Sometimes there is no explicit action
for the default; in that case the trailing

else
statement

can be omitted, or it may be used for error checking to catch an "impossible"
condition.

To illustrate a three-way decision, here is a binary search function that
decides if a particular value x occurs in the sorted array v. The elements of v
must be in increasing order. The function returns the position (a number
between 0 and n-1) if x occurs in v, and -1 if not.

Binary search first compares the input value x to the middle element of the
array v. If x is less than the middle value, searching focuses on the lower half
of the table, otherwise on the upper half. In either case, the next step is to com-
pare x to the middle element of the selected half. This process of dividing the
range in two continues until the value is found or the range is empty.

58 CONTROL FLOW CHAPTER 3

/* binsearch: find x in v[0] <= v[1] <= ... <= v[n-1] */
int binsearch(int x, int v[], int n)
{

int low, high, mid;

low SB 0;
high = n - 1;
while (low <= high) {

mid = (low+high) / 2;
if (x < v[mid])

high = mid - 1;
else if (x > v[mid])

low SB mid + 1;
else /* found match */

return mid;
}
return -1; /* no match */

}

The fundamental decision is whether x is less than, greater than, or equal to the
middle element v[mid] at each step; this is a natural for else-if.

Exercise 3-1. Our binary search makes two tests inside the loop, when one
would suffice (at the price of more tests outside). Write a version with only one
test inside the loop and measure the difference in run-time. D

3.4 Switch

The switch statement is a multi-way decision that tests whether an expres-
sion matches one of a number of constant integer values, and branches accord-
ingly.

switch (expression) {
case const-expri statements
case const -expri statements
default : statements

Each case is labeled by one or more integer-valued constants or constant expres-
sions. If a case matches the expression value, execution starts at that case. All
case expressions must be different. The case labeled default is executed if
none of the other cases are satisfied. A default is optional; if it isn't there
and if none of the cases match, no action at all takes place. Cases and the
default clause can occur in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit,
white space, and all other characters, using a sequence of if ... else if ...
else. Here is the same program with a switch:

}

SECTION 3.4 SWITCH 59

^include <stdio.h>

main() /* count digits, white space, others */
{

int c, i, nwhite, nother, ndigit[10];

nwhite = nother = 0;
for (i = 0; i < 10; i++)

ndigit[i] = 0;
while ((c = getcharO) l= EOF) {

switch (c) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':

ndigit[c-'0']++;
break;

case ' ':
case '\n':
case '\t':

nwhite++;
break;

default:
nother++;
break;

}
}
printf("digits =");
for (i « 0; i < 10; i++)

printf(" %d", ndigit[i]);
printf(", white space = %d, other = %d\n",

nwhite, nother);
return 0;

}
The break statement causes an immediate exit from the switch. Because

cases serve just as labels, after the code for one case is done, execution falls
through to the next unless you take explicit action to escape, break and
return are the most common ways to leave a switch. A break statement
can also be used to force an immediate exit from while, for, and do loops, as
will be discussed later in this chapter.

Falling through cases is a mixed blessing. On the positive side, it allows
several cases to be attached to a single action, as with the digits in this example.
But it also implies that normally each case must end with a break to prevent
falling through to the next. Falling through from one case to another is not
robust, being prone to disintegration when the program is modified. With the
exception of multiple labels for a single computation, fall-throughs should be
used sparingly, and commented.

As a matter of good form, put a break after the last case (the default
here) even though it's logically unnecessary. Some day when another case gets
added at the end, this bit of defensive programming will save you.

60 CONTROL FLOW CHAPTER 3

Exercise 3-2. Write a function escape(s,t) that converts characters like
newline and tab into visible escape sequences like \n and \t as it copies the
string t to s. Use a switch. Write a function for the other direction as well,
converting escape sequences into the real characters. D

3.5 Loops— While and For

We have already encountered the while and for loops. In

whi 1 e (expression)
statement

the expression is evaluated. If it is non-zero, statement is executed and expres-
sion is re-evaluated. This cycle continues until expression becomes zero, at
which point execution resumes after statement.

The for statement

for (expr}; expr2; expr3)
statement

is equivalent to

while (expr2) {
statement
expr3 ;

}

except for the behavior of continue, which is described in Section 3.7.
Grammatically, the three components of a for loop are expressions. Most

commonly, expr\ and expr$ are assignments or function calls and expr2 is a
relational expression. Any of the three parts can be omitted, although the semi-
colons must remain. If expr\ or expr3 is omitted, it is simply dropped from the
expansion. If the test, expr2, is not present, it is taken as permanently true, so

for (; ;) {

is an "infinite" loop, presumably to be broken by other means, such as a break
or return.

Whether to use while or for is largely a matter of personal preference.
For example, in

while ((c = getcharO) = = ' ' ! ! c == '\n' ! ! c == '\t')
; /* skip white space characters */

there is no initialization or re-initialization, so the while is most natural.
The for is preferable when there is a simple initialization and increment,

since it keeps the loop control statements close together and visible at the top of

expr 1;

}

SECTION 3.5 LOOPS-WHILE AND FOR 61

the loop. This is most obvious in

for (i » 0; i < n; i++)

which is the C idiom for processing the first n elements of an array, the analog
of the Fortran DO loop or the Pascal for. The analogy is not perfect, however,
since the index and limit of a C for loop can be altered from within the loop,
and the index variable i retains its value when the loop terminates for any rea-
son. Because the components of the for are arbitrary expressions, for loops
are not restricted to arithmetic progressions. Nonetheless, it is bad style to
force unrelated computations into the initialization and increment of a for,
which are better reserved for loop control operations.

As a larger example, here is another version of atoi for converting a string
to its numeric equivalent. This one is slightly more general than the one in
Chapter 2; it copes with optional leading white space and an optional + or -
sign. (Chapter 4 shows atof, which does the same conversion for floating-
point numbers.)

The structure of the program reflects the form of the input:

skip white space, if any
get sign, if any
get integer part and convert it

Each step does its part, and leaves things in a clean state for the next. The
whole process terminates on the first character that could not be part of a
number.

^include <ctype.h>

/* atoi: convert s to integer; version 2 */
int atoi (char s [])
{

int i, n, sign;

for (i = 0; isspace(s[i]) ; i++) /* skip white space */

sign'= (s[i] == '-') ? -1 : 1;
if (s[i] == '+' !! s[i] == '-') /* skip sign */

for (n = 0; isdigit(s[i]) ;
n = 10 * n + (s[i] - '0');

return sign * n;
}

The standard library provides a more elaborate function strtol for conversion
of strings to long integers; see Section 5 of Appendix B.

The advantages of keeping loop control centralized are even more obvious
when there are several nested loops. The following function is a Shell sort for
sorting an array of integers. The basic idea of this sorting algorithm, which was

;

i++;

62 CONTROL FLOW CHAPTER 3

invented in 1959 by D. L. Shell, is that in early stages, far-apart elements are
compared, rather than adjacent ones as in simpler interchange sorts. This tends
to eliminate large amounts of disorder quickly, so later stages have less work to
do. The interval between compared elements is gradually decreased to one, at
which point the sort effectively becomes an adjacent interchange method.

/* she 11 sort: sort v[0] . . ,v[n-1] into increasing order */
void shellsort(int v[] , int n)
{

int gap, i, j, temp;

for (gap = n/2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)

for (j=i-gap; j>=0 && v[j]>v[j+gap] ; j-=gap) {
temp = v[j];
v[j] = v[j+gap];
v[j+gap] = temp;

There are three nested loops. The outermost controls the gap between com-
pared elements, shrinking it from n/2 by a factor of two each pass until it
becomes zero. The middle loop steps along the elements. The innermost loop
compares each pair of elements that is separated by gap and reverses any that
are out of order. Since gap is eventually reduced to one, all elements are even-
tually ordered correctly. Notice how the generality of the for makes the outer
loop fit the same form as the others, even though it is not an arithmetic progres-
sion.

One final C operator is the comma ",", which most often finds use in the
for statement. A pair of expressions separated by a comma is evaluated left to
right, and the type and value of the result are the type and value of the right
operand. Thus in a for statement, it is possible to place multiple expressions in
the various parts, for example to process two indices in parallel. This is illus-
trated in the function reverse (s), which reverses the string s in place.

include <string.h>

/* reverse: reverse string s in place */
void reverse (char s [])
{

int c, i, j;

for (i = 0, j = strlen(s)-1; i < j; i++, j—) {
c = s[i];
sCi] = s[j];
sCj] = c;

}
]

}

}

SECTION 3.6 LOOPS-DO-WHILE 63

The commas that separate function arguments, variables in declarations, etc.,
are not comma operators, and do not guarantee left to right evaluation.

Comma operators should be used sparingly. The most suitable uses are for
constructs strongly related to each other, as in the for loop in reverse, and in
macros where a multistep computation has to be a single expression. A comma
expression might also be appropriate for the exchange of elements in reverse,
where the exchange can be thought of as a single operation:

for (i = 0, j = strlen(s)-1; i < j; i++, j —)
c = s[i], s[i] = s[j], s[j] = c;

Exercise 3-3. Write a function expand(s1 ,s2) that expands shorthand nota-
tions like a-z in the string s1 into the equivalent complete list abc...xyz in
s2. Allow for letters of either case and digits, and be prepared to handle cases
like a-b-c and a-zO-9 and -a-z. Arrange that a leading or trailing - is
taken literally. D

3.6 Loops—Do-while

As we discussed in Chapter 1, the while and for loops test the termination
condition at the top. By contrast, the third loop in C, the do-while, tests at
the bottom after making each pass through the loop body; the body is always
executed at least once.

The syntax of the do is

do
statement

whi 1 e (expression);

The statement is executed, then expression is evaluated. If it is true, statement
is evaluated again, and so on. When the expression becomes false, the loop ter-
minates. Except for the sense of the test, do-while is equivalent to the Pascal
repeat-until statement.

Experience shows that do-while is much less used than while and for.
Nonetheless, from time to time it is valuable, as in the following function itoa,
which converts a number to a character string (the inverse of atoi). The job
is slightly more complicated than might be thought at first, because the easy
methods of generating the digits generate them in the wrong order. We have
chosen to generate the string backwards, then reverse it.

64 CONTROL FLOW CHAPTER 3

/* itoa: convert n to characters in s */
void itoa(int n, char s[])
{

int i, sign;

if ((sign = n) < 0) /* record sign */
n = -n; /* make n positive */

i = 0;
do { /* generate digits in reverse order */

s[i++] = n % 10 + '0'; /* get next digit */
} while ((n /= 10) > 0); /* delete it */
if (sign < 0)

sCi] = 'NO';
reverse(s) ;

}

The do-while is necessary, or at least convenient, since at least one character
must be installed in the array s, even if n is zero. We also used braces around
the single statement that makes up the body of the do- while, even though
they are unnecessary, so the hasty reader will not mistake the while part for
the beginning of a while loop.

Exercise 3-4. In a two's complement number representation, our version of
itoa does not handle the largest negative number, that is, the value of n equal
to -(2wordsizc-1). Explain why not. Modify it to print that value correctly,
regardless of the machine on which it runs. D

Exercise 3-5. Write the function itob(n,s,b) that converts the integer n
into a base b character representation in the string s. In particular,
itob (n , s , 1 6) formats n as a hexadecimal integer in s. D

Exercise 3-6. Write a version of itoa that accepts three arguments instead of
two. The third argument is a minimum field width; the converted number must
be padded with blanks on the left if necessary to make it wide enough. D

3.7 Break and Continue

It is sometimes convenient to be able to exit from a loop other than by test-
ing at the top or bottom. The break statement provides an early exit from
for, while, and do, just as from switch. A break causes the innermost
enclosing loop or switch to be exited immediately.

The following function, trim, removes trailing blanks, tabs, and newlines
from the end of a string, using a break to exit from a loop when the rightmost
non-blank, non-tab, non-newline is found.

s[i++] = '-':

SECTION 3.8 GOTO AND LABELS 65

/* trim: remove trailing blanks, tabs, newlines */
int trim(char s[])
{

int n;

for (n = strlen(s)-1; n >= 0; n—)
if (s[n] != ' ' && s[n] != '\t' && s[n] != '\n')

break;
s[n+1] = 'NO';
return n;

}

strlen returns the length of the string. The for loop starts at the end and
scans backwards looking for the first character that is not a blank or tab or
newline. The loop is broken when one is found, or when n becomes negative
(that is, when the entire string has been scanned). You should verify that this
is correct behavior even when the string is empty or contains only white space
characters.

The continue statement is related to break, but less often used; it causes
the next iteration of the enclosing for, while, or do loop to begin. In the
while and do, this means that the test part is executed immediately; in the
for, control passes to the increment step. The continue statement applies
only to loops, not to switch. A continue inside a switch inside a loop
causes the next loop iteration.

As an example, this fragment processes only the non-negative elements in
the array a; negative values are skipped.

for (i = 0; i < n; i++) {
if (a[i] < 0) /* skip negative elements */

continue;
/* do positive elements */

}

The continue statement is often used when the part of the loop that follows is
complicated, so that reversing a test and indenting another level would nest the
program too deeply.

3.8 Goto and Labels

C provides the infinitely-abusable goto statement, and labels to branch to.
Formally, the goto is never necessary, and in practice it is almost always easy
to write code without it. We have not used goto in this book.

Nevertheless, there are a few situations where gotos may find a place. The
most common is to abandon processing in some deeply nested structure, such as
breaking out of two or more loops at once. The break statement cannot be
used directly since it only exits from the innermost loop. Thus:

66 CONTROL FLOW CHAPTER 3

for (...)
for (...){

if (disaster)
goto error;

}

error:
clean up the mess

This organization is handy if the error-handling code is non-trivial, and if errors
can occur in several places.

A label has the same form as a variable name, and is followed by a colon. It
can be attached to any statement in the same function as the goto. The scope
of a label is the entire function.

As another example, consider the problem of determining whether two
arrays a and b have an element in common. One possibility is

for (i * 0; i < n; i++)
for (j = 0; j < m; j + +)

if (a[i] == b [j])
goto found;

/* didn't find any common element */

found:
/* got one: a[i] == b[j] */

Code involving a goto can always be written without one, though perhaps at
the price of some repeated tests or an extra variable. For example, the array
search becomes

found = 0;
for (i = 0; i < n && !found; i++)

for (j = 0; j < m && !found; j++)
if (a[i] == b[j])

found = 1;
if (found)

/* got one: a[i-1] == b[j-1] #/

else
/* didn't find any common element */

With a few exceptions like those cited here, code that relies on goto state-
ments is generally harder to understand and to maintain than code without
gotos. Although we are not dogmatic about the matter, it does seem that
goto statements should be used rarely, if at all.

Index

0... octal constant 37, 193
Ox... hexadecimal constant 37, 193
+ addition operator 41, 205
&. address operator 93, 203
= assignment operator 17, 42, 208
+= assignment operator 50
\\ backslash character 8, 38
& bitwise AND operator 48, 207
* bitwise exclusive OR operator 48, 207
! bitwise inclusive OR operator 48, 207
, comma operator 62, 209
? : conditional expression 5 1 , 208
. . . declaration 155, 202
— decrement operator 18, 46, 106, 203
/ division operator 10, 41, 205
== equality operator 19, 41, 207
>= greater or equal operator 41, 206
> greater than operator 4 1 , 206
++ increment operator 18, 46, 106, 203
* indirection operator 94, 203
!= inequality operator 16, 41, 207
« left shift operator 49, 206
<= less or equal operator 41, 206
< less than operator 41, 206
&&. logical AND operator 21, 41, 49, 207
! logical negation operator 42, 203-204
! ! logical OR operator 21, 41, 49, 208

% modulus operator 41, 205
* multiplication operator 41, 205
• one's complement operator 49, 203-204
preprocessor operator 90, 230
preprocessor operator 90, 230
' quote character 19, 37-38, 19
" quote character 8, 20, 38, 194
> > right shift operator 49, 206
. structure member operator 128, 201
- > structure pointer operator 131, 20 1
- subtraction operator 41, 205
- unary minus operator 203-204
+ unary plus operator 203-204

underscore character 35,192,241
\0 null character 30, 38, 193

\aalertcharacter 38,193
abort library function 252

abs library function 253
abstract declarator 220
access mode, file 160, 178, 242
acos library function 251
actual argument see argument
addition operator, + 41, 205
additive operators 205
addpoint function 130
address arithmetic see pointer arithmetic
address of register 210
address of variable 28, 94, 203
address operator, &. 93, 203
addtree function 141
afree function 102
alert character, \a 38, 193
alignment, bit-field 150, 213
alignment by union 186
alignment restriction 138, 142, 148, 167,

199
alloc function 101
allocator, storage 142,185-189
ambiguity, if-else 56, 223, 234
American National Standards Institute (ANSI)

ix, 2, 191
a . out 6, 70
argc argument count 1 14
argument, definition of 25, 201
argument, function 25, 202
argument list, variable length 155, 174, 202

218, 225, 254
argument list, void 33, 73, 218, 225
argument, pointer 100
argument promotion 45, 202
argument, subarray 100
arguments, command-line 114-118
argv argument vector 114, 163
arithmetic conversions, usual 42, 198
arithmetic operators 41
arithmetic, pointer 94,98, 100-103, 117, 138

205
arithmetic types 196
array, character 20, 28, 104
array declaration 22, 111, 216
array declarator 216
array initialization 86, 113, 219
array, initialization of two-dimensional 1 12,

220

263

264 THE C PROGRAMMING LANGUAGE INDEX

array, multi-dimensional 110, 217
array name argument 28, 100, 112
array name, conversion of 99, 200
array of pointers 107
array reference 201
array size, default 86, 113, 133
array, storage order of 1 12, 217
array subscripting 22, 97, 201, 217
array, two-dimensional 110, 112, 220
array vs. pointer 97, 99-100, 104, 113
arrays of structures 1 32
ASCII character set 19, 37, 43, 229, 249
asctime library function 256
as in library function 251
asm keyword 192
<assert.h> header 253
assignment, conversion by 44, 208
assignment expression 17, 21, 51, 208
assignment, multiple 21
assignment operator, = 17, 42, 208
assignment operator, += 50
assignment operators 42, 50, 208
assignment statement, nested 17, 21, 51
assignment suppression, scanf 157, 245
associativity of operators 52, 200
atan, atan2 library functions 251
atexit library function 253
atof function 71
atof library function 251
atoi function 43, 61, 73
atoi library function 251
atol library function 251
auto storage class specifier 210
automatic storage class 31, 195
automatic variable 31, 74, 195
automatics, initialization of 31, 40, 85, 219
automatics, scope of 80, 228
avoiding goto 66

\b backspace character 8, 38, 193
backslash character, \\ 8, 38
bell character see alert character
binary stream 160,241-242
binary tree 1 39
binsearch function 58, 134, 137
bit manipulation idioms 49, 149
bitcount function 50
bit-field alignment 150, 213
bit-field declaration 150,212
bitwise AND operator, & 48, 207
bitwise exclusive OR operator, * 48, 207
bitwise inclusive OR operator, ! 48, 207
bitwise operators 48, 207
block see compound statement
block, initialization in 84, 223
block structure 55, 84, 223
boundary condition 19,65
braces 7, 10, 55, 84
braces, position of 10
break statement 59, 64, 224
bsearch library function 253
buffered getchar 172
buffered input 170

buffering see setbuf, setvbuf
BUFSIZ 243

calculator program 72, 74, 76, 158
call by reference 27
call by value 27, 95, 202
calloc library function 167, 252
canonrect function 131
carriage return character, \r 38, 193
case label 58, 222
cast, conversion by 45, 198-199, 205
cast operator 45, 142, 167, 198, 205, 220
cat program 160,162-163
cc command 6, 70
ceil library function 251
char type 10, 36, 195, 211
character array 20, 28, 104
character constant 19,37,193
character constant, octal 37
character constant, wide 193
character count program 18
character input/output 15, 151
character set 229
character set, ASCII 19, 37, 43, 229, 249
character set, EBCDIC 43
character set, ISO 229
character, signed 44, 195
character string see string constant
character testing functions 166, 248
character, unsigned 44, 195
character-integer conversion 23,42, 197
characters, white space 157, 166, 245, 249
clearerr library function 248
CLOCKS_PER_SEC 255
clock library function 255
clock_t type name 255
close system call 174
closedir function 184
coercion see cast
comma operator, , 62, 209
command-line arguments 114-118
comment 9, 191-192, 229
comparison, pointer 102, 138, 187, 207
compilation, separate 67, 80, 227
compiling a C program 6, 25
compiling multiple files 70
compound statement 55, 84, 222, 225-226
concatenation, string 38,90,194
concatenation, token 90, 230
conditional compilation 91,231
conditional expression, ? : 51, 208
const qualifier 40,196,211
constant expression 38, 58, 91, 209
constant, manifest 230
constant suffix 37, 193
constant, type of 37, 193
constants 37, 192
continue statement 65, 224
control character 249
control line 88, 229-233
conversion 197-199
conversion by assignment 44, 208
conversion by cast 45, 198-199, 205

THE C PROGRAMMING LANGUAGE INDEX 265

conversion by return 73, 225
conversion, character-integer 23,42, 197
conversion, double-float 45, 198
conversion, float-double 44, 198
conversion, floating-integer 45, 197
conversion, integer-character 45
conversion, integer-floating 12, 197
conversion, integer-pointer 199, 205
conversion of array name 99, 200
conversion of function 200
conversion operator, explicit see cast
conversion, pointer 142, 198, 205
conversion, pointer-integer 198-199, 205
conversions, usual arithmetic 42, 198
copy function 29, 33
cos library function 251
cosh library function 251
creat system call 172
CRLF 151, 241
ctime library function 256
<ctype.h> header 43,248

date conversion 1 1 1
day_of _year function 1 1 1
del function 123
del program 125
declaration 9,40,210-218
declaration, array 22,111,216
declaration, bit-field 150, 212
declaration, external 225-226
declaration of external variable 31, 225
declaration of function 2 1 7-2 1 8
declaration of function, implicit 27, 72, 201
declaration of pointer 94, 100, 216
declaration, storage class 210
declaration, structure 128,212
declaration, type 216
declaration, typedef 146, 210, 2
declaration, union 147, 212
declaration vs. definition 33, 80, 210
declarator 215-218
declarator, abstract 220
declarator, array 216
declarator, function 217
decrement operator, -- 18, 46, 106, 20
default array size 86,113,133
default function type 30, 201
default initialization 86, 219
default label 58, 222
defensive programming 57, 59
#define 14,89,229
#def ine, multi-line 89
#def ine vs. enum 39, 149
#def ine with arguments 89
defined preprocessor operator 91, 232
definition, function 25, 69, 225
definition, macro 229
definition of argument 25, 201
definition of external variable 33, 227
definition of parameter 25, 201
definition of storage 210
definition, removal of see #undef
definition, tentative 227

dereference see indirection
derived types 1, 10, 196
descriptor, file 170
designator, function 201
dif f time library function 256
DIR structure 180
dirdcl function 124
directory list program 1 79
Dirent structure 180
dir.h include file 183
dirwalk function 182
div library function 253
division, integer 10, 41
division operator, / 10, 41, 205
div_t, ldiv_t type names 253
do sFatement 63, 224
do-nothing function 70
double constant 37,194
double type 10, 18, 36, 196, 211
double-float conversion 45, 198

E notation 37, 194
EBCDIC character set 43
echo program 115-116
EDOM 250
efficiency 51,83,88, 142, 187
else see if-else statement
#else, #elif 91, 232
else-if 23, 57
empty function 70
empty statement see null statement
empty string 38
end of file see EOF
#endif 91
enum specifier 39,215
enumvs. #define 39, 149
enumeration constant 39, 91, 193-194, 215
enumeration tag 215
enumeration type 196
enumerator 194, 215
EOF 16, 151, 242
equality operator, == 19, 41, 207
equality operators 41,207
equivalence, type 221
ERANGE 250
errno 248, 250
<errno.h> header 248
#error 233
error function 174
errors, input/output 164, 248
escape sequence 8, 19, 37-38, 193, 229
escape sequence, \x hexadecimal 37, 193
escape sequences, table of 38, 193
evaluation, order of 21, 49, 53, 63, 77, 90, 95,

200
exceptions 200, 255
exit library function 163, 252
EXIT_FAILURE, EXIT_SUCCESS 252
exp library function 251
expansion, macro 230
explicit conversion operator see cast
exponentiation 24, 251
expression 200-209

266 THE C PROGRAMMING LANGUAGE INDEX

expression, assignment 17, 21, 51, 208
expression, constant 38, 58, 91, 209
expression order of evaluation 52, 200
expression, parenthesized 201
expression, primary 200
expression statement 55, 57, 222
extern storage class specifier 31, 33, 80, 210
external declaration 225-226
external linkage 73, 192, 195, 211, 228
external names, length of 35, 192
external static variables 83
external variable 31, 73, 195
external variable, declaration of 3 1 , 225
external variable, definition of 33, 227
externals, initialization of 40, 81, 85, 219
externals, scope of 80, 228

\f formfeed character 38, 193
f abs library function 251
f close library function 162, 242
fcntl.h include file 172
f eof library function 164, 248
feof macro 176
f error library function 164, 24
f error macro 176
f flush library function 242
f getc library function 246
f getpos library function 248
fgets function 165
fgets library function 164, 247
field see bit-field
file access 160, 169, 178, 24
file access mode 160, 178, 24
file appending 160, 175, 242
file concatenation program 160
file copy program 16-17, 171, 17
file creation 161, 169
file descriptor 1 70
file inclusion 88, 231
file opening 160, 169, 172
file permissions 173
file pointer 160, 175, 242

FILE preprocessor name 254
FILE type name 160
f ilecopy function 162
filename suffix, .h 33
FILENAME MAX 242
.fillbuf function 178
float constant 37,194
float type 9, 36, 196, 211
float-double conversion 44, 198
<float.h> header 36,257
floating constant 12, 37, 194
floating point, truncation of 45, 197
floating types 196
floating-integer conversion 45,197
floor library function 251
fmod library function 251
f open function 177
fopen library function 160, 242
FOPEN MAX 242
for(; ;) infinite loop 60, 89
for statement 13, 18, 60, 224

for vs while 14, 60
formal parameter see parameter
formatted input see scanf
formatted output see print f
formfeed character, \f 38, 193
fortr an keyword 192
f pos_t type name 248
fprintf library function 161, 243
f putc library function 247
fputs function 165
f puts library function 164, 247
f read library function 247
free function 188
free library function 167, 252
f reopen library function 162, 24
f rexp library function 251
f scanf library function 161, 24
f seek library function 248
f setpos library function 248
f size function 182
f size program 181
fs tat system call 183
f tell library function 248
function argument 25, 202
function argument conversion see argument

promotion
function call semantics 201
function call syntax 201
function, conversion of 200
function, declaration of 217-218
function declaration, static 83
function declarator 217
function definition 25, 69, 225
function designator 201
function, implicit declaration of 27, 72,
function names, length of 35, 192
function, new-style 202
function, old-style 26, 33, 72, 202
function, pointer to 118, 147, 201
function prototype 26, 30, 45, 72, 120,
function type, default 30, 201
functions, character testing 166, 248
fundamental types 9, 36, 195
f write library function 247

generic pointer see void * pointer
getbits function 49
getc library function 161, 247
getc macro 176
getch function 79
getchar, buffered 172
getchar library function 15, 151, 161
getchar, unbuffered 171
getenv library function 253
getint function 97
getline function 29, 32, 69, 165
getop function 78
gets library function 164, 247
gettoken function 125
getword function 1 36
gmtime library function 256
goto statement 65, 224
greater or equal operator, >= 41, 206

201

202

, 247

THE C PROGRAMMING LANGUAGE INDEX 267

greater than operator, > 41, 206

. h filename suffix 33
hash function 144
hash table 144
header file 33, 82
headers, table of standard 241
hexadecimal constant, Ox... 37, 193
hexadecimal escape sequence, \x 37, 193
Hoare, C. A. R. 87
HUGE_VAL 250

identifier 192
#if 91, 135, 231
#ifdef 91, 232
if-else ambiguity 56, 223, 234
if-else statement 19, 21, 55, 223
#ifndef 91, 232
illegal pointer arithmetic 102-103, 138,205
implicit declaration of function 27, 72, 201
#include 33, 88, 152, 231
incomplete type 212
inconsistent type declaration 72
increment operator, ++ 18, 46, 106, 203
indentation 10, 19, 23, 56
indirection operator, * 94, 203
inequality operator, != 16,41,207
infinite loop, for(; ;) 60, 89
information hiding 67-68, 75, 77
initialization 40, 85, 218
initialization, array 86, 113, 219
initialization by string constant 86, 219
initialization, default 86,219
initialization in block 84, 223
initialization of automatics 31, 40, 85, 219
initialization of externals 40, 81, 85, 219
initialization of statics 40, 85, 219
initialization of structure arrays 1 33
initialization of two-dimensional array 1 1 2,

220
initialization, pointer 102,138
initialization, structure 128,219
initialization, union 219
initializer 227
initializer, form of 85, 209
inode 179
input, buffered 170
input, formatted see scanf
input, keyboard 15,151,170
input pushback 78
input, unbuffered 170
input/output, character 15,151
input/output errors 1 64, 248
input/output redirection 152, 161, 1
install function 145
inttype 9, 36, 211
integer constant 12, 37, 193
integer-character conversion 45
integer-floating conversion 12,197
integer-pointer conversion 199,205
integral promotion 44, 197
integral types 196

internal linkage 195, 228
internal names, length of 35, 192
internal static variables 83
_IOFBF, _IOLBF, _IONBF 243
isalnum library function
isalpha library function
iscntrl library function
isdigit library function
isgraph library function
is lower library function
ISO character set 229
isprint library function
ispunct library function
isspace library function
isupper library function
isxdigit library function
iteration statements 224
itoa function 64

136,
136,
249
166,
249
166,

249
249
136,
166,

249

249
166,

249

249

166,
249

249

249

jump statements 224

keyboard input 15, 151, 170
keyword count program 133
keywords, list of 192

label 65, 222
label, case 58, 222
label, default 58, 222
label, scope of 66, 222, 228
labeled statement 65, 222
labs library function 253
%ld conversion 18
Idexp library function 251
Idiv library function 253
leap year computation 41, 111
left shift operator, « 49, 20
length of names 35, 192
length of string 30, 38, 104
length of variable names 192
less or equal operator, <= 41, 206
less than operator, < 41, 206
lexical conventions 191
lexical scope 227
lexicographic sorting 1 1 8
library function 7, 67, 80
<limits.h> header 36,257
#line 233
line count program 19
__LINE__ preprocessor name 254
line splicing 229
linkage 195,227-228
linkage, external 73, 192, 195, 211, 228
linkage, internal 195, 228
list directory program 179
list of keywords 192
locale issues 241
<locale.h> header 241
localtime library function 256
log, log 10 library functions 251
logical AND operator, &&. 21, 41, 49, 207
logical expression, numeric value of 44

INDEX

logical negation operator, ! 42, 203-204
logical OR operator, \\ 21, 41, 49, 208
long constant 37, 193
long double constant 37, 194
long double type 36, 196
long type 10, 18, 36, 196, 211
longest-line program 29, 32
long jmp library function 254
LONG_MAX, LONG_MIN 252
lookup function 145
loop see while, for, do
lower case conversion program 153
lower function 43
Is command 179
Iseek system call 174
lvalue 197

macro preprocessor 88, 228-233
macros with arguments 89
magic numbers 14
main function 6
main, return from 26, 164
makepoint function 130
ma Hoc function 187
malloc library function 143, 167, 252
manifest constant 230
<math.h> header 44,250
member name, structure 128, 213
memchr library function 250
memcmp library function 250
memcpy library function 250
memmove library function 250
memset library function 250
missing storage class specifier 21 1
missing type specifier 211
mktime library function 256
modf library function 251
modularization 24, 28, 34, 67, 74-75, 108
modulus operator, % 41, 205
month_day function 1 1 1
month_name function 1 1 3
morecore function 188
multi-dimensional array 110, 217
multiple assignment 21
multiple files, compiling 70
multiplication operator, * 41, 205
multiplicative operators 205
multi-way decision 23, 57
mutually recursive structures 1 40, 2 1

\n newline character 7, 15, 20, 37-38, 193
241

name 192
name hiding 84
name space 227
names, length of 35, 192
negative subscripts 100
nested assignment statement 17, 21, 51
nested structure 1 29
newline 191, 229
newline character, \n 7, 15, 20, 37-38, 193

241

new-style function 202
NULL 102
null character, \0 30, 38, 193
null pointer 102, 198
null statement 18, 222
null string 38
numbers, size of 9, 18, 36, 257
numcmp function 1 2 1
numeric sorting 1 1 8
numeric value of logical expression 44
numeric value of relational expression 42, 44

object 195, 197
octal character constant 37
octal constant, 0... 37, 193
old-style function 26, 33, 72, 202
one's complement operator, - 49, 203-204
open system call 172
opendir function 1 83
operations on unions 148
operations permitted on pointers 103
operators, additive 205
operators, arithmetic 41
operators, assignment 42, 50, 208
operators, associativity of 52, 200
operators, bitwise 48, 207
operators, equality 41, 207
operators, multiplicative 205
operators, precedence of 17, 52, 95, 131-132,

200
operators, relational 16, 41, 206
operators, shift 48, 206
operators, table of 53
order of evaluation 21, 49, 53, 63, 77, 90, 95,

200
order of translation 228
O_RDONLY, O_RDWR, O_WRONLY 172
output, formatted see print f
output redirection 1 52
output, screen 15,152,163,170
overflow 41, 200, 250, 255

parameter 84, 99, 202
parameter, definition of 25, 201
parenthesized expression 201
parse tree 1 23
parser, recursive-descent 123
pattern finding program 67, 69, 116-117
permissions, file 173
perror library function 248
phases, translation 191, 228
pipe 152, 170
pointer argument 100
pointer arithmetic 94, 98, 100-103, 117, 13

205
pointer arithmetic, illegal 102-103, 138, 205
pointer arithmetic, scaling in 103, 19
pointer comparison 102, 138, 187, 2
pointer conversion 142, 198, 205
pointer, declaration of 94, 100, 21
pointer, file 160, 175, 242
pointer generation 200

268 THE C PROGRAMMING LANGUAGE

THE C PROGRAMMING LANGUAGE INDEX 269

pointer initialization 102,138
pointer, null 102, 198
pointer subtraction 103,138,198
pointer to function 118, 147, 201
pointer to structure 136
pointer, void * 93, 103, 120, 199
pointer vs. array 97, 99-100, 104, 113
pointer-integer conversion 198-199, 205
pointers and subscripts 97, 99, 217
pointers, array of 107
pointers, operations permitted on 103
Polish notation 74
pop function 77
portability 3, 37, 43, 49, 147, 151, 153, 5
position of braces 10
postfix ++ and — 46, 105
pow library function 24, 25 1
power function 25, 27
#pragma 233
precedence of operators 17, 52, 95, 131-132,

200
prefix ++ and — 46, 106
preprocessor, macro 88, 228-233
preprocessor name, FILE 254
preprocessor name, LINE 254
preprocessor names, predefined 233
preprocessor operator, # 90, 230
preprocessor operator, ## 90, 230
preprocessor operator, defined 91, 232
primary expression 200
printd function 87
printf conversions, table of 154, 24
printf examples, table of 13, 154
printf library function 7, 11, 18, 153, 244
printing character 249
program arguments see command-line

arguments
program, calculator 72, 74, 76, 1 58
program, cat 160, 162-163
program, character count 1 8
program, del 125
program, echo 115-116
program, file concatenation 1 60
program, file copy 16-17, 171, 17
program format 10, 19, 23, 40, 138, 191
program, f size 181
program, keyword count 133
program, line count 19
program, list directory 1 79
program, longest-line 29, 32
program, lower case conversion 153
program, pattern finding 67, 69, 116-117
program readability 10, 51, 64, 86, 147
program, sorting 108,119
program, table lookup 143
program, temperature conversion 8-9, 12-13,

15
program, undcl 126
program, white space count 22, 59
program, word count 20, 1 39
promotion, argument 45, 202
promotion, integral 44, 197
prototype, function 26, 30, 45, 72, 120, 202
ptinrect function 130

ptrdif f _t type name 103, 147, 206
push function 77
pushback, input 78
putc library function 161, 247
putc macro 176
putchar library function 15, 152, 161, 247
puts library function 164, 247

qsort function 87, 110, 120
qsort library function 253
qualifier, type 208, 211
quicksort 87, 110
quote character, ' 19, 37-38, 19
quote character, " 8, 20, 38, 194

\r carnage return character 38, 19
raise library function 255
rand function 46
rand library function 252
RAND_MAX 2522
read system call 170
readdir function 184
readlines function 109
realloc library function 252
recursion 86, 139, 141, 182, 202, 269
recursive-descent parser 123
redirection see input/output redirection
register, address of 210
register storage class specifier 83, 210
relational expression, numeric value of 42, 44
relational operators 16, 41, 206
removal of definition see #undef
remove library function 242
rename library function 242
reservation of storage 210
reserved words 36, 192
return from main 26, 164
return statement 25, 30, 70, 73, 225
return, type conversion by 73, 225
reverse function 62
reverse Polish notation 74
rewind library function 248
Richards, M. 1
right shift operator, » 49, 20
Ritchie, D. M. xi

sbrk system call 187
scaling in pointer arithmetic 103, 198
scanf assignment suppression 157, 245
scanf conversions, table of 158, 246
scanf library function 96, 157, 246
scientific notation 37, 73
scope 195,227-228
scope, lexical 227
scope of automatics 80, 228
scope of externals 80, 228
scope of label 66, 222, 228
scope rules 80, 227
screen output 15,152,163,170
SEEK_CUR, SEEK_END, SEEK, SET 248
selection statement 223

270 THE C PROGRAMMING LANGUAGE INDEX

self-referential structure 140, 213
semicolon 10, 15, 18, 55, 57
separate compilation 67, 80, 227
sequencing of statements 222
setbuf library function 243
set jmp library function 254
<setjmp.h> header 254
setvbuf library function 243
Shell, D. L. 61
she 11 sort function 62
shift operators 48, 206
short type 10, 36, 196, 211
side effects 53, 90, 200, 202
SIG_DFL, SIG_ERR, SIG_IGN 255
sign extension 44-45, 177, 193
signal library function 255
<signal .h> header 255
signed character 44, 1 95
signed type 36, 211
sin library function 251
sinh library function 251
size of numbers 9, 18, 36, 257
size of structure 138,204
sizeof operator 91, 103, 135, 203-204, 247
size_t type name 103, 135, 147, 204, 242
sorting, lexicographic 1 1 8
sorting, numeric 1 1 8
sorting program 108,119
sorting text lines 107, 119
specifier, auto storage class 210
specifier, enum 39, 215
specifier, extern storage class 31, 33, 80,

210
specifier, missing storage class 21 1
specifier, register storage class 83, 210
specifier, static storage class 83, 210
specifier, storage class 210
specifier, struct 212
specifier, type 211
specifier, union 212
splicing, line 229
sprintf library function 1 55, 245
sqrt library function 25 1
squeeze function 47
srand function 46
srand library function 252
sscanf library function 246
standard error 161, 170
standard headers, table of 241
standard input 151, 161, 1
standard output 152,161,170
stat structure 180
stat system call 180
statement terminator 10, 55
statements 222-225
statements, sequencing of 222
stat. h include file 180-181
static function declaration 83
static storage class 31, 83, 195
static storage class specifier 83, 210
static variables, external 83
static variables, internal 83
statics, initialization of 40, 85, 219
<stdarg.h> header 155, 174, 254

<stddef .h> header 103, 135, 24
stderr 161, 163, 2
stdin 161, 242
<stdio.h> contents 176
<stdio.h> header 6, 16, 89-90, 102,

151-152, 241
<stdlib.h> header 71, 142, 25
stdout 161, 242
storage allocator 142,185-189
storage class 195
storage class, automatic 31, 195
storage class declaration 210
storage class specifier 210
storage class specifier, auto 210
storage class specifier, extern 31, 33, 80,

210
storage class specifier, missing 21 1
storage class specifier, register 83, 210
storage class specifier, static 83, 210
storage class, static 31, 83, 195
storage, definition of 210
storage order of array 112, 217
storage, reservation of 210
strcat function 48
strcat library function 249
strchr library function 249
strcmp function 106
strcmp library function 249
strcpy function 105-106
strcpy library function 249
strcspn library function 250
stream, binary 160, 241-242
stream, text 15, 151, 241
strerror library function 250
strf time library function 256
strindex function 69
string concatenation 38, 90, 194
string constant 7, 20, 30, 38, 99, 104, 194
string constant, initialization by 86, 219
string constant, wide 194
string, length of 30, 38, 104
string literal see string constant
string, type of 200
<string.h> header 39, 106, 24
strlen function 39, 99, 103
strlen library function 250
strncat library function 249
strncmp library function 249
strncpy library function 249
strpbrk library function 250
strrchr library function 249
strspn library function 250
strstr library function 250
strtod library function 251
strtok library function 250
strtol, strtoul library functions 252
struct specifier 212
structure arrays, initialization of 133
structure declaration 128, 212
structure initialization 128, 219
structure member name 128, 213
structure member operator, . 128,201
structure, nested 129
structure pointer operator, -> 131, 201

THE C PROGRAMMING LANGUAGE INDEX 271

structure, pointer to 1 36
structure reference semantics 202
structure reference syntax 202
structure, self-referential 1 40, 213
structure, size of 138, 204
structure tag 128, 212
structures, arrays of 132
structures, mutually recursive 1 40, 213
subarray argument 100
subscripting, array 22, 97, 201, 217
subscripts and pointers 97, 99, 217
subscripts, negative 100
subtraction operator, - 41, 205
subtraction, pointer 103,138,198
suffix, constant 193
swap function 88, 96, 110, 121
switch statement 58, 75, 223
symbolic constants, length of 35
syntax notation 194
syntax of variable names 35, 192
sy seal Is.h include file 171
system calls 169
system library function 167, 253

\ttabcharacter 8, 11, 38, 193
table lookup program 143
table of escape sequences 38, 193
table of operators 53
table of printf conversions 154, 244
table of printf examples 13, 154
table of scanf conversions 158, 246
table of standard headers 241
tag, enumeration 215
tag, structure 128, 212
tag, union 212
talloc function 142
tan library function 251
tanh library function 251
temperature conversion program 8-9, 12-13,

15
tentative definition 227
terminal input and output 1 5
termination, program 162, 164
text lines, sorting 107,119
text stream 15, 151, 241
Thompson, K. L. 1
time library function 256
<time.h> header 255
time_t type name 255
tmpf ile library function 243
TMP_MAX 243
tmpnam library function 243
token 191, 229
token concatenation 90, 230
token replacement 229
tolower library function 153, 166, 2
toupper library function 166, 249
translation, order of 228
translation phases 191, 228
translation unit 191, 225, 227
tree, binary 139
tree, parse 123
treeprint function 142

trigraph sequence 229
trim function 65
truncation by division 10, 41, 205
truncation of floating point 45, 197
two-dimensional array 110, 112, 220
two-dimensional array, initialization of 112,

220
type conversion by return 73, 225
type conversion operator see cast
type conversion rules 42, 44, 198
type declaration 216
type declaration, inconsistent 72
type equivalence 221
type, incomplete 212
type names 220
type of constant 37,193
type of string 200
type qualifier 208, 211
type specifier 211
type specifier, missing 21 1
typedef declaration 146, 210, 221
types, arithmetic 196
types, derived 1, 10, 196
types, floating 196
types, fundamental 9, 36, 195
types, integral 196
type s.h include file 181,183

ULONG_MAX 252
unary minus operator, - 203-204
unary plus operator, + 203-204
unbuffered getchar 171
unbuffered input 170
undcl program 126
#undef 90, 172, 230
underflow 41, 250, 255
underscore character, _ 35, 192, 241
ungetc library function 166, 247
ungetch function 79
union, alignment by 186
union declaration 147,212
union initialization 219
union specifier 212
union tag 212
unions, operations on 148
UNIX file system 169, 179
unlink system call 174
unsigned char type 36, 171
unsigned character 44, 195
unsigned constant 37,193
unsigned long constant 37, 193
unsigned type 36, 50, 196, 211
usual arithmetic conversions 42, 198

\v vertical tab character 38, 193
va list, va start, va arg, va end

155, 174, 245, 254
variable 195
variable, address of 28, 94, 203
variable, automatic 31, 74, 195
variable, external 31, 73, 195
variable length argument list 155, 174, 202,

218, 225, 254

variable names, length of 192
variable names, syntax of 35, 192
vertical tab character, \v 38, 193
void * pointer 93, 103, 120, 199
void argument list 33, 73, 218, 225
void type 30, 196, 199, 2
volatile qualifier 196,211
vprintf, vf printf , vsprintf library

functions 174, 245

wchar_t type name 193
while "statement 10, 60, 224
while vs. for 14, 60
white space 191
white space characters 157, 166, 245, 24
white space count program 22, 59
wide character constant 193
wide string constant 194
word count program 20, 1 39
write system call 170
writelines function 109

\x hexadecimal escape sequence 37, 193

zero, omitted test against 56, 105

272 THE C PROGRAMMING LANGUAGE INDEX

	Contents
	Preface
	Preface to the First Edition
	Introduction
	Chapter 3. Control Flow
	3.1 Statements and Blocks
	3.2 If-Else
	3.3 Else-If
	3.4 Switch
	3.5 Loops—While and For
	3.6 Loops—Do-while
	3.7 Break and Continue
	3.8 Goto and Labels

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

