INDEX

Numerics
2B+D, 292, 379
10BaseT, 130, 466
10Base2, 466
10Base5, 466
100BaseFX, 130
100BaseT, 466
100BaseT4, 467
100BaseTX, 130, 467
100BaseVG-AnyLAN, 467
100 Mbps Ethernet, 9
802.2 LLC (Logical Link Control), 473
802.3 Ethernet, 473
802.3 standard (IEEE), 209
802.5 Token Ring, 474
1000 Mbps Ethernet, 9

A
access control lists. See ACLs
access layer, 328
 hierarchical network model, 314
 three-layer network model, 315–317
access rate, 384
access servers, 361
access tokens (SAM), 455
access VPNs, 574
access-group command, 627
accessing
 command-lines, 407
 networks, time-dependency, 311
access-list command, 627
ACLs, 170
 extended ACLs, 183
 standard ACLs, 175–179
accounting, 585
acknowledgment-oriented protocols, 51
ACKs (acknowledgments), 68, 476
 transport layer functionality, 30
ACLs (access control lists), 90, 163, 200
 applying to interfaces, 170
 assigning numbers, 170–171
 condition statements, 166
configuring, 169
 denying specific hosts, 179–180
 denying specific subnets, 180–181
 permitting source network traffic, 178–179
 standard ACLs, 178–181
 wildcard masking, 171–175
defining ACLs, 170
deleting, 166
 exceptions, 166
 extended, 181–182
 common IP port numbers, 182
 denying FTP traffic, 185–186
 examples, 183–186
 linking to outbound interfaces, 183
 placement, 190–191
 versus standard ACLs, 182
 grouping to interfaces, 170
inbound, 190
 named
 configuring, 188–189
 considerations, 187
 examples, 187
 naming ACLs, 187
 purposes, 187
network traffic limiting, 166
 numbered, 170–171
operation process, 167–168
overview, 163–164
packet checks, 167
placement, 190–191
protocols, 189–190
 ACL number ranges, 171
 inbound ACLs, 190
 purposes, 165
 standard, 175
 examples, 175–181
 placement, 190–191
 versus extended ACLs, 182
verifying, 193–194
wildcard masking, 171
 example, 173–175
 with border routers, 19
 with firewall routers, 191
 example, 191–192
Active Directory, 263
active hubs, 472
active network termination, VDSL, 566
Active state (Frame Relay connections), 397
adaptability
 as network design goal, 96
 dynamic routing, 144
 routing protocols, 143
 static routing, 143
adding users to VLANs, 81
address classes (IP), 480–481
Address field
 Frame Relay, 389
 PPP, 334
 address space, DLCIs, 390
addressing
 CAM, 56
 Frame Relay, 389, 393
 Inverse ARP, 394
 LMI, 391
 maps, 394
IP, 482
documentation scheme, 122
 path determination, 139
 routing protocols, 22–25
 141–143
 routing tables, 137
 subnets, 12
IPX, 205
MAC, 10–11
 network addresses, path communication, 14
administration
 client/server networks, 260–262
 security, 490–491
 administrative accounts, 490
ADSL (asymmetric DSL)
 aggregation, 559
 channels, 559
Index

694

distribution center, 540
OSI layers, 542–543
regional centers, 540
regional data centers, 541
client/server GNS, 216
LEO, 549
archive bit, 252
ARP (Address Resolution Protocol), 12, 16, 36, 442, 483, 517–520
ASs (autonomous systems), 146–147, 159
assigning
IPX network numbers to interfaces, 218
MAC addresses, 10–11
asymmetric switching, 57–58, 112, 131, 521, 523
ports, flow control, 58
ATM (Asynchronous Transfer Mode), 131, 298
point-to-point architecture, ADSL, 559
ATM Forum, 569
attachment unit interfaces (AUIs), 10, 36
attenuation, 47, 68
AUI (adapter unit interface), 473
AUIs (attachment unit interfaces), 10, 36
authentication by ISPs, 584
CHAP, 338
configuring, 340
usernames, adding, 339
PAP, 338
PPP, 337–340, 359
WANs, 554
authorization by ISPs, 584–585
VPNs, 578
automating tape backups, 496
auto-sensing NIC cards, 509
availability, 104
applications, 308
assessing customer needs, 103
increasing, 310
of servers, pinging, 266
of system resources, 264–265

B
B channel (bearer channel), 298, 364, 379
backbone, 49, 68, 131, 452
hierarchical network models, 314
VLAN transport mechanism, 76
backing up data
copy backups, 252–253
daily backups, 252–253
differential backups, 252–253
full backups, 252
incremental backups, 252–253
RAID, 254
SOPs, 495
tape backups, 458
archive bit, 252
balanced hybrid routing protocols, 22, 36
bandwidth, 46, 68, 159
as metric, 138
circuit-switched connections, 289
domains, 101
flat networks, 515
full-duplex Ethernet, 49
increasing, 116
ISDN, 292
Switched Ethernet, 52
switching, effect on, 56
WANs, provisioning, 277–278
baseband, 469
baseline privacy interface (BPI), 540
circuit-switched connections, 289
domains, 101
flat networks, 515
full-duplex Ethernet, 49
increasing, 116
ISDN, 292
Switched Ethernet, 52
switching, effect on, 56
WANs, provisioning, 277–278
baseband, 469
baseline privacy interface (BPI), 540
B channel (bearer channel), 298, 364, 379
backbone, 49, 68, 131, 452
hierarchical network models, 314
VLAN transport mechanism, 76
backing up data
copy backups, 252–253
daily backups, 252–253
differential backups, 252–253
full backups, 252
incremental backups, 252–253
RAID, 254
SOPs, 495
tape backups, 458
archive bit, 252
balanced hybrid routing protocols, 22, 36
bandwidth, 46, 68, 159
as metric, 138
circuit-switched connections, 289
domains, 101
flat networks, 515
full-duplex Ethernet, 49
increasing, 116
ISDN, 292
Switched Ethernet, 52
switching, effect on, 56
WANs, provisioning, 277–278
baseband, 469
baseline privacy interface (BPI), 540
backbone, 49, 68, 131, 452
hierarchical network models, 314
VLAN transport mechanism, 76
backing up data
copy backups, 252–253
daily backups, 252–253
differential backups, 252–253
full backups, 252
incremental backups, 252–253
RAID, 254
SOPs, 495
tape backups, 458
archive bit, 252
balanced hybrid routing protocols, 22, 36
bandwidth, 46, 68, 159
as metric, 138
circuit-switched connections, 289
domains, 101
flat networks, 515
full-duplex Ethernet, 49
increasing, 116
ISDN, 292
Switched Ethernet, 52
switching, effect on, 56
WANs, provisioning, 277–278
baseband, 469
baseline privacy interface (BPI), 540
circuit-switched connections, 289
domains, 101
flat networks, 515
full-duplex Ethernet, 49
increasing, 116
ISDN, 292
Switched Ethernet, 52
switching, effect on, 56
WANs, provisioning, 277–278
baseband, 469
baseline privacy interface (BPI), 540
B channel (bearer channel), 298, 364, 379
backbone, 49, 68, 131, 452
hierarchical network models, 314
VLAN transport mechanism, 76
backing up data
copy backups, 252–253
daily backups, 252–253
differential backups, 252–253
full backups, 252
incremental backups, 252–253
RAID, 254
SOPs, 495
tape backups, 458
archive bit, 252
balanced hybrid routing protocols, 22, 36
bandwidth, 46, 68, 159
as metric, 138
circuit-switched connections, 289
domains, 101
flat networks, 515
full-duplex Ethernet, 49
increasing, 116
ISDN, 292
Switched Ethernet, 52
switching, effect on, 56
WANs, provisioning, 277–278
baseband, 469
baseline privacy interface (BPI), 540
circuit-switched connections, 289
domains, 101
flat networks, 515
full-duplex Ethernet, 49
increasing, 116
ISDN, 292
Switched Ethernet, 52
switching, effect on, 56
WANs, provisioning, 277–278
baseband, 469
baseline privacy interface (BPI), 540
circuit-switched connections, 289
domains, 101
flat networks, 515
full-duplex Ethernet, 49
increasing, 116
ISDN, 292
Switched Ethernet, 52
switching, effect on, 56
WANs, provisioning, 277–278
baseband, 469
Index

695

LMIs, mandatory bytes, 392
bits, ISDN physical layer frames, 356
blocking mode (STP), 62, 531
BNC (British Naval Connector), 462
border router, 191, 200
bottlenecks, troubleshooting, 311
BPDUs (bridge protocol data units), 61, 68
BPI (baseline privacy interface), 540
bps (bits per second)
EIA/TIA-612/613, 282
WAN links, 277–278
BRI (Basic Rate Interface), 281, 292, 364, 379, 488
configuring, 367, 370
cost, 365
defining, 367
verifying configuration, 371–372
bridges, 53–54, 473
brouters, 474
flooding, 54
LAN segmentation, 50–51
latency, 51
ports, 493
broadband, 469
broadcast domains, 90, 131
VLANs, 523
broadcasts, 15, 68, 90, 215–217
ARP, 16
contention, 99
controlling, 81–82
non-broadcast multiaccess technologies, 288
SAP, 216
storms, 90
brouters, ports, 493
brute force attacks, 491
buffering, 514
building-to-building WLANs, 551
bus topologies, 450
bytes, 68
C

cable head ends, 537
regional centers, 540
cable modems, 535
Cisco uBR904, 535
CMTS, 538
downstream data flow, 537
EMS, 539
features, 536
head end, 537
HFC, 536
network architecture
CMTS, 540
distribution center, 540
OSI layers, 542–543
regional centers, 540
regional data centers, 541
one-to-two splitters, 538
operation, 537–540
telephone return systems, 538
tuners, 544
upstream data flow, 537
cable runs, labeling, 431
cable TV systems, 543
cabling, 462, 468
10Base2, 466
10Base5, 466
10BaseT, 466
100BaseT4, 467
100BaseTX, 467
100BaseVG-AnyLAN, 467
backbone, 452
bandwidth, increasing, 116
catchment areas, requirements, 107
circuit-switched connections, 289, 298, 385
circuit-termination phase, SVC communication, 277
Cisco IOS (Internetwork Operating System), 37, 166

CAM (content addressable memory), 56, 68
CAP (carrierless amplitude modulation/phase modulation), 565
carrier networks, 298
carrier protocols, 579
carrier sense multiple access/collision detect (CSMA/CD), 8, 68, 451
catchment areas, 131
cabling requirements, 107
categories of STP/UTP, 463
Category 5 cabling, 131
cell grants, 564
centralized administration, server-based networking, 468
centralized key management, 554
Challenge Handshake Authentication Protocol, See CHAP
catchment areas
configuring, 340
usernames, adding, 339
characterizing routing protocols, 141
circuits
interfaces, 10
PVCs, Frame Relay, 289, 388
TDM (time division multiplexing), 274
circuit-switched connections, 289, 328
DDN, 290
ISDN, 291

CIDR (classless interdomain routing), 481
ciphertext, 490
circuit-termination phase, SVC communication, 277
software, 298
interface types, specifying, 11
Cisco routers
Novell IPX global configuration, 218–219
Novell NetWare encapsulation, specifying frame types, 210
Cisco uBR904 cable modem, 535
Cisco VPN solutions, 578
end-to-end virtual dial-up process, 581–583
L2F, 580
tunneling, 579
virtual dial-up services, 579–580
Cisco WLAN devices, 555
Cisco/IETF encapsulation, 283
cladding, 463
classes of IP addresses, 480–481
clear interface command, 373, 627
client/server applications, 43, 68
client/server networks, 204, 240, 264, 468
administration, 259–260, 262
NetWare
binderies, 262
GNS, 216
single point of failure, 261
Windows NT, 262
clients, 240
CMTS (cable modem termination system), 538–540
CO (central office), 273–274, 298, 379
switches, 275
configuring, 368
ISDN, 354
local loops, 275
coaxial cable, 462, 466
collision detection, effect on network design, 99
collision domains, 49, 69, 90
effect on network design, 101
segmentation, 100
switching, 114
collisions, 69
CSMA/CD, 45
LAN switching, 510
combining
LANs and WANs, 305
switching technologies, Frame Relay, 387
command/response bit, LAPD frames, 357
command-lines, accessing, 407
commands. See individual command name
committed burst, 385
common LMI extensions, 391
common peripheral ports, 492
communication
end-to-end ISDN, 350
routed protocols, 140
full-duplex, 467
half-duplex, 467
modems, 279
simplex, 467
WANs, 303–305
comparing
BE and SLAs, 575
dynamic and static routing, 20
ISDN and PSTN, 488
link-state and distance-vector routing protocols, 24
routable and nonroutable protocols, 475
routed and routing protocols, 140
segmentation
LANs versus VLANs, 75–76
servers, enterprise and workgroup, 97–98
switching, Layer 2 and Layer 3, 54–55
WANs and LANs, 273
wireless and wired technologies, 544
XDSL and VDSL, 569–570
compatibility of Ethernet frame types, 209
components
ISDN, 350
BRI, 365
network termination, 351
reference points, 352–353
network design
collision detection, 99
collision domains, 101
segmentation, 100
server placement, 97
technologies
network design, 97
PPP, 332
computer hardware resources, effect on LAN design, 103
condition statements, ACLs
deleting, 166
order, 166
conducting interviews, requirements gathering, 309
configuring, 218
ACLs, 169
applying to interfaces, 170
assigning numbers to, 170–171
denying specific hosts, 179–180
denying specific subnets, 180–181
grouping to interfaces, 170
named ACLs, 188–189
permitting source network traffic, 178–179
standard ACLs, 178–181
dial-up modems, 488
Ethernet interfaces, 405
Frame Relay, 400
subinterfaces, 407–409
verifying operation, 402–406
IGRP, routing process, 147–148
IP routing, 24–25, 144
ISDN, 366
BRI, 367, 370
SPIDs, 368–370
verification, 371–372
Novell IPX, 210, 218
network numbers, assigning to interfaces, 218
verifying operation, 219
plug-and-play, 470
PPP authentication, 339–340
routers
Ethernet interface, 510
security, 401
Index

697

switches
CO, 368
ports, 509
wildcard masking, 171–175
congestion, 28, 43, 69, 104
bandwidth, effect on, 46
BECN, 385
FECN, 385
windowing, 29
congestion avoidance, TDM, 274
connecting VLANs to existing hubs, 84
connectionless protocols, 456, 476
connection-oriented protocols, 476
SPX, 204
TCP, 478–479
connectivity
devices, NICs, 10–11
establishing transport layer functionality, 27
Ethernet, workstations, 10
Frame Relay
subinterfaces, 399–400
verifying, 404
ISDN, 349–350
BRI, 365
data-link layer (OSI model), 357
DDR, 372–373
network layer (OSI model), 357
reference points, 352–353
remote access, 360
remote nodes, 361
SOHO, 362
SPIs, 354
TAs, 281
links, bps capacity, 277–278
monitoring, 425
point-to-point, full-duplex
Ethernet, 48–49
policy-based, 316
PPP, 331
authentication, 337–340
components, 332
frame formats, 334
functions, 333
sessions, 334–337
remote access, requirements, 489
testing, 483–486
troubleshooting, 266–267, 484
FTP, 486–487
Layer 1 problems, 499
NSTAT, 485
ping, 487
software utilities, 438–443
traceret, 484
virtual circuits, SVCs, 277
WANs. See WANs
collectors
coaxial cable, 462
digital, analog modem
installation, 494
RJ-45, 494
contention, 99, 131
Control field (PPP), 334
carder cards, duplexing, 457
controlling broadcasts, 81–82
convergence, 22, 37, 159
poison reverse updates, 150
routing protocols, 142–143
conversion process, data encapsulation, 8
copy backups, 252–253
core layer, 328
hierarchical network model, 314
three-layer network model, 314–316

corporate environment
computer resources
availability, 308
effect on LAN design, 103
mission-critical data, 103
identifying trustees, 309
SOHO, ISDN applications, 362
corporate gateway
accounting, 585
authentication, 584
in end-to-end virtual dial-up process, 581
cost (metric), 138, 159
cost analysis of networks, 423
cost-effectiveness
LAN switching, 56
LEO, 549
counters, RMON extensions, 428–430
CPE (customer premises equipment), 275, 298, 379
ADSL, 558
ISDN BRI, 365
VDSL, distribution of, 568
creating IPX Enhanced IGRP routing process, 214
criteria for exterior routing protocol operation, 141
CSMA/CD (carrier sense multiple access collision detect), 8, 68, 451, 461
data transmission rates, 45
CSU/DSU (channel service unit/data service unit), 276, 280, 298
cut-through switching, 54, 59, 69, 523

D
D channel (delta channel), 298, 364, 379
daily backups, 252–253
Dartmouth Design Matrix, 265
DAT (digital audio tape), 458, 495
data encapsulation, 506
conversion process, 8
OSI reference model, 7–8
data encryption, 490, 459
Data field
Frame Relay frames, 389
PPP frames, 334
data flows, head ends, 537
data-link layer, 5, 10–11, 37, 69, 461–462, 505
802.2 LLC, 473
802.3 Ethernet, 11, 473
802.5 Token Ring, 474
cable systems, 539–542
ISDN, 357
Layer 2 switching, 54–55, 279
MAC addresses, 474
migrating to higher bandwidth, 116
switching with hubs, 114
topology, designing, 112
WAN protocols, 283
data rates
cabling, 106
VDSL, 564
Index

698

data recovery, 251
copy backups, 252–253
daily backups, 252–253
differential backups, 252–253
full backups, 252
incremental backups, 252–253
RAID, 254
tape backups, 251
archive bit, 252
data services
DBS, 548
WANs, 273–274
data transfer, transport layer functionality, 28
data transmission
acknowledgment, 30
bandwidth, 46
Ethernet, 45
full-duplex, 467
half-duplex, 45, 467
latency, 46
Novell RIP, split-horizon, 212
reliable transport, 27
simplex, 467
transmission time, 47
databases
address forwarding, 56
link-state routing protocols, 23
MIBs, RMON extension, 427, 430
datagrams, 37
best effort delivery, 12
congestion, 28
flooding, 54
headers, data encapsulation, 7–8
ICMP messages, 15–16
reliable transport, 27
windowing, 29
DAVIC (Digital Audio-Visual Council), 562, 568
DB (data bus) connectors, 492
DBS (direct broadcast satellite) architecture, 546
data service, 548
geosynchronous satellite positions, 547
operation, 547
QPSK, 547
DB-x, 492
DCE (data circuit-terminating equipment), 276, 298, 384, 488
DLCIs, address space, 390
physical layer connections, 281
DDR (dial-on-demand routing), 290, 298, 372
troubleshooting, 373–374
verifying operation, 373
DE (discard eligibility), 386
debug dialer command, 373, 627
debug ipx routing activity command, 229–230, 627
debug ipx sap command, 627
debug isdn q92 command, 373
debug isdn q921 command, 627
debug ppp command, 627
decentralized administration, peer-to-peer networks, 468
dedicated lines, 286–287, 328
dedicated print servers, 492
default gateways, 469, 475, 477, 482
default routes, 20, 37
defining
application needs of VPNs, 577
network problems, 431
SPIDs, 369–370
delay, 159
as metric, 138
Deleted state, Frame Relay connections, 397
demarcation, 275, 298
deny command, 627
named ACLs, 188
departmental segmentation, 317
depletion of IP addresses, 481
deploying Frame Relay services, 386
designing networks
hierarchical models, 313–318
LANs
collision detection, 99
collision domains, 101
components, 97
extended star topology, 107
goals, 96
logical structure, 120
methodology, 102
requirements, analyzing, 103–104
requirements gathering, 102
segmentation, 100, 121
server placement, 97
topologies, 104–118
OSI reference model, 3–6
WANs
goals, 306
requirements, analyzing, 310–311
requirements gathering, 308
sensitivity testing, 312
destination address, path determination, 139
destination/next hop routing tables, 137
development of Ethernet, 8–9
devices, 451
bridges, 50–54, 473
routers, 474
cable modems, 535–536
cable network architecture, 540–543
CMTS, 538
downstream data flow, 537
EMS, 539
head end, 537
one-to-two splitters, 538
operation, 537, 539–540
television return systems, 538
tuners, 544
upstream data flow, 537
Cisco WLAN, 555
connectivity
NICs, 10–11
testing, 425
transport layer (OSI model), 27–28
connectors, 494
CPE, 275
distribution in VDSL, 568
CSU/DSU, 280
data transmission
half-duplex, 45
transmission time, 47
DCE, 384
DTE, 384
DLCIs, 387–388
physical layer connections, 281
effect on network management, 421–422
environmental hazards, 255
hostnames, 483
hubs
frames, repeating, 511–513
half-duplex operation, 509
multiport, 472
shared LANs, 73
switching, 114
IPX network numbers, 206
IRQs, 471
ISDN, 350
BRI, 365
network termination, 351
reference points, 352–353
TAs, 281
terminal equipment, 351
labeling, 431
Layer 2 addressing, 55
MAC addresses, 494
MAUs, 472
modems, 279
MUX (multiplexer), 469
name resolution, ARP, 16
ports, 492–495
power supplies, 256
relocating, effect on network performance, 259
repeaters, 47, 472
RMON, 427
MIBs, 427, 429
probes, 427
routers, 18–19, 279, 468, 474
convergence, 22
Ethernet interface, configuring, 510
LAN segmentation, 51, 516, 518–520
segments, 452
shared-medium technologies, 44
store-and-forward, 51
memory buffering, 58
switches, 52–54, 279
buffering, 514
DMS-100, 368–369
flooding Ethernet frames, 513
frames, repeating, 512
half-duplex operation, 509
symmetric, 57–58
transceivers, 451, 473
DHCP (Dynamic Host Configuration File), 477
diagnostics, 471
dial backup, 363
dialer idle-timeout command, 627
dialer map command, 628
dialer wait-for-carrier-time command, 628
dialer-group command, 627
dialer-list protocol command, 627
dial-up. See also remote access configuring, 488
end-to-end virtual dial-up process, 581–583
virtual dial-up process, 579–580
accounting, 585
address allocation, 585
authentication, 584
authorization, 584–585
corporate gateway, 581
setup notification, 582
differential backups, 252–253, 496
DigiCipher-1, 547
digital audio tape (DAT), 458
Digital Audio-Visual Council (DAVIC), 562
digital linear tape (DLT), 458
digital services, ISDN, 349–350
BRI, 365
components, 350
configuring, 366
data link layer (OSI model), 357
encapsulation, 358
ISDN, 357
PPP encapsulation, 359–360
reference points, 352–353
remote access, 360
remote nodes, 361
SOHO, 362
SPIDs, 354
standards, 354–355
switches, 354
digital signaling, baseband, 469
digital subscriber line. See DSL
directory services
Novell NetWare, 455
UNIX, 455
Windows NT, 455
disabled state (Spanning-Tree), 62
discovery, split horizon, 398
disks
mirroring, 254, 457
stripping, 457
displaying statistics for IPX configuration, 207
distance-vector routing protocols, 22, 37, 144, 212
comparing to link-state routing protocols, 24
IGRP, 145
AS (autonomous system), 146–147
maximum hop count, 151
metrics, 145, 151
poison reverse updates, 150
routing process, 147–148
split horizon, 149–150
stability, 148–149
updates, 151
IPX RIP, 205
Novell RIP, 211–212
RIP, configuration, 25
distribution centers (cable systems), 540
distribution layer, 328
hierarchical network models, 314
three-layer network model, 314–316
divide and conquer, as troubleshooting methodology, 434–436
DIX (Digital, Intel, Xerox)
connectors, 473
Ethernet Version 1, 209
DLCI (data-link connection identifier), 299, 384, 418
address space, 390
numbers, 289
DLT (digital linear tape), 458, 495
Index

700

- DMA (Direct Memory Access), 471
- DMS-100 switches, 368–369
- DMT (discrete multitone), 565
- DNS (Domain Name System), 200, 478–480
- documenting
 - design goals, 96
 - error reporting, 423–424
 - logical network structure, 122–123
 - maintenance records, 247
- MDF/IDF, 245
- network layer (OSI model), 109
- network management, 245
- security measures, 248
- servers, 246
- software listings, 247
- troubleshooting methodology, 267, 430
- user policies, 249
- VPs, 578
- workstations, 246
- domains, 262, 483
- downstream data flow, 537
- ADLS, 560
- dropping packets, DE (discard eligibility), 386
- DSL (digital subscriber line), 556
- ADLS
 - channels, 559
 - downstream data rates, 560
 - modems, 560
 - services architecture, 557–559
 - standards, 562–563
 - transceiver network end, 561
- VDSL, 563
 - channel separation, 565
 - FEC, 565
 - line-codes, 565
 - non-ATM formats, 568
 - projected capabilities, 563–564
 - standards, 568–569
 - upstream multiplexing, 566–567
- DSLAMs (DSL access multiplexers), 558
- DSSS (direct sequence spread spectrum), 553
- DTE (data terminal equipment), 276, 299, 384
 - CSU/DSU, 280
 - DLCIs
 - address space, 390
 - assigning, 387–388
 - physical layer connections, 281
 - duplexing (RAID), 457
 - DWMT (discrete wavelet multitone), 565
 - dynamic allocation of buffer memory, 59
 - dynamic routing, 37, 144, 159
 - comparing to static routing, 20
 - convergence, 22
 - IP configuration, 25
 - routing protocols, 21
 - versus static routing, 476
 - dynamic VLANs, 80–81, 90
- E protocols (ISDN), 354
- efficiency of routing protocols, 142
- EIA (Electronic Industries Association), 281, 299
- EIA/TIA standards, 106, 131, 282
- EIGRP (Enhanced Interior Gateway Routing Protocol), 22
 - electrical grounding, 255
- electrical power supplies, 256
- element management system (EMS), 539
- e-mail, SMTP, 479
- EMI (electromagnetic interference), 257, 492
- EMS (element management system), 539
- enable password command, 628
- encapsulation, 7–8, 506, 579
 - conversion process, 8
 - datagrams, 204
- HDLC, 285, 487
- ISDN, 358–360
- NetWare, 208–210
- PPP, 284, 583
- serial line, 284
- VPN traffic, 579
- WANs, 283
 - encapsulation frame-relay command, 628
 - encapsulation nolvent-ether command, 219, 628
 - encapsulation ppp command, 337, 366, 628
 - encapsulation sap command, 219, 628
 - encryption, 490
 - keys, centralized management, 554
 - presentation layer, 459
 - VPs, 574
 - WLANs, 554
 - end command, 628
 - end-to-end virtual dial-up process, 581–583
 - corporate gateway, 581
 - setup notification, 582
 - enforcing network security policies, 251
 - Enhanced IGRP, 37, 213–214, 240
 - enterprise networks, 328
 - cabling, 106
 - cost analysis, 423
 - network management, 422
 - servers, 97, 131
 - VLAN transport mechanism, 76
- entries in routing tables, 137
- environmental factors of network management, 306, 491
- EMI, 257
 - RFI, 257
 - software viruses, 257
- network management, 255
- power supplies, 256
- EPROM (Erasable Programmable Read Only Memory), 470
- equal-cost paths, configuring, 213
- equipment
 - environmental hazards, 255
 - labeling, 431
 - power supplies, 256
 - relocating, 259
- Erasable Programmable Read Only Memory (EPROM), 470
- error checking
 - fast-forward switching, 523
 - RAID 2, 254
Index

701

F

Fast Ethernet, 9, 69, 131

100BaseT cable, 466
effect on network design, 109

Spanning-Tree Protocol, 61

fast-forward switching, 69, 523

FAT16 file system, 263

FAT32, 264

fault tolerance

RAID, 254–255, 457
tape backups, 458

FCS (frame check sequence), error checking/recovery, 523

FCS field

Frame Relay frames, 389

PPP frames, 334

FDM (frequency division multiplexing), 469

features of cable modems, 536

FEC (forward error correction), 560, 564–565

FECN (Forward Explicit Congestion Notification), 385, 418

FHSS (frequency-hopping spread spectrum), 553

fiber-optic cable, 9, 132, 463–464

file systems

NFS, 261, 455

NTFS, 263

File Transfer Protocol (FTP), 479

file transfers, throughput, 308

Filter Group (MIB), 429

filtering Ethernet frames on switches, 513

filters. See ACLs

firewalls, 90, 200, 490

ACLs, 191–192

broadcasts, controlling, 82

extending, 83

firewall architecture, 191–193

flag fields

Frame Relay frames, 389

PPP frames, 334

flags, 477

flash updates, 151, 160

flat networks, 82, 91, 515–516

flexibility

as network design goal, 96
dynamic routing, 144
Index

702

routing protocols, 143
static routing, 143
flooding, 54, 69, 132
Ethernet frames, 513
flow control, 27, 38
Frame Relay, 392
half-duplex, 45
hierarchical networks, 55, 319
windowing, 29
focus groups, requirements gathering, 308
forward error correction (FEC), 560
forwarding packets, 138
forwarding mode (STP), 62, 531
FQDNs (fully qualified domain names), 483
fragmentation, ID numbers, 477
fragment-free switching, 60, 69, 523
frame filtering, 78
Frame Relay, 275, 283, 287–289, 299, 321, 328, 418
access rate, 384
addressing, 389, 394
CIR, 385
committed burst, 385
configuring, 400
verifying operation, 402–406
DCE, 384
DLCIs, address space, 390
DTE, 384
excess burst, 385
flow control, 392
frames, 389
global addressing, 391–393
Inverse ARP, 394
keepalives
interval, setting, 410
messages, 397
LMIs, 384–385, 390–391
mandatory bytes, 392
multicasting, 391
protocol discriminator, 392
map table, 396
multicasting, 393
multiplexing, 387–388
PVCs, 388
services, deploying, 386
split horizon, 398
subinterfaces, 397
configuring, 407–409
reachability, 399–400
switching tables, 394–395, 397
switching technologies, combining, 387
traffic, dedicated paths, 387
frame tagging, 79
frame-relay local-dlci command, 628
frame-relay map command, 409
frames, 91, 241
802.3
encapsulation, Novell NetWare, 208–210
Ethernet
buffering, 514
error checking/recovery, 523
interoperability, 209
MAC address, 511
processing on hubs, 511–513
processing on switches, 512
SNAP, 209
Frame Relay, 389
HDLC encapsulation, 285
headers, data encapsulation, 7–8
ISDL, LAPD, 357
ISDN, encapsulation, 358–360
latency, 46
LCP, 335
link establishment/negotiation phase, 335
link quality determination phase, 336
link termination phase, 337
network-layer protocol configuration, 336
PPP, 284, 334, 359
serial line encapsulation, fields, 284
transmission time, 47
frequency division multiplexing (FDM), 469
frequency-hopping spread spectrum (FHSS), 553
Frozen Yellow Garden Hose, 466
FTP (File Transfer Protocol), 185–186, 479, 486–487
ftp command, 486–487
full backups, 252, 496
full-duplex operation, 459, 467, 509
Ethernet, 49, 69
fully meshed topologies, 289, 299
future of WLANs, 553–555
G
gateway of last resort, 147, 160
gateways, 469
geosynchronous satellite positions (DBS), 547
Get Nearest Server Protocol (GNS), 216–217, 241
Gigabit Ethernet, 9
global addressing (Frame Relay), 391–393
global parameter tasks, ISDN configuration, 366
GNS (Get Nearest Server protocol), 216–217, 241
grounding electronics, 255
groups (user), 264
growth. See scalability
H
half-duplex communication
half-duplex data transmission, 45, 459, 509, 467
Ethernet, 69
LAN switching, 508
handshakes, three-way, 338
hardware firewalls, 490
HCC (horizontal cross-connect), 132
HDLC (High-Level Data Link Control) encapsulation, 283–285, 487
head ends, 537, 540
headers, 38, 132
data encapsulation, 7–8
frame tagging, 79
LLC (logical link control), 209
hexidecimal notation (base 16), 240, 299
MAC addresses, 10
HFC (hybrid fiber coax), 536
hierarchical network models
 access layer, 317
 core layer, 315–316
 distribution layer, 316
 flow control, 55, 319
 one-layer model, 318
 OSI reference model, 313–314
 server placement, 320
 three-layer model, 314–315
 two-layer model, 318
higher-layer protocols, PPP, 333
History Control Group (MIB), 428
hold downs, 148–150, 160
hop counts, 38, 138, 151, 160
horizontal cabling
 bandwidth, increasing, 116
 EIA/TIA industry standard, 106
host address, path determination, 139
Host Group (MIB), 429
hostnames, 483
Host TOPN Group (MIB), 429
 “host” wildcards, masking, 174–175
hostname command, 628
hosts, 468
 denying with standard ACLs, 179–180
HOSTS file, 478
HSSI (High Speed Serial Interface), 282
HTTP (Hypertext Transfer Protocol), 479
hubs, 48, 69, 91, 471–472
 half-duplex operation, 509
 LAN switching, 114
 ports, 492
 segmentation, 73
human factors testing, requirements gathering, 309
Hypertext Transfer Protocol (HTTP), 479
I protocols (ISDN), 355
I/O (input/output) base addresses, 471, 489
ICMP (Internet Control Message Protocol), 12, 15–16, 38
tracert, 484
identifying networking model, 312
 scope of VPNs, 577
 trustees of mission-critical data, 309
IDF (intermediate distribution facility), 97, 132
documenting, 245
LAN switching, 113
IEEE (Institute of Electrical and Electronic Engineers), 91
 MFG code, assigning, 55
IEEE 802.3 standard, 552–553
 Ethernet, 9
 full-duplex Ethernet, 48–49
 media performance, 44
IEEE 802.11 standard, 553–554
IETF (Internet Engineering Task Force), 299
WAN standardization, 281
IGRP (Interior Gateway Routing Protocol), 22, 38, 145, 160
 ASs, 146–147
 hot count, 151
 metrics, 145, 151
 routing process, configuring, 147–148
 stability, 148
 hold downs, 148–149
 poison reverse updates, 150
 updates, 151
 implementing VPNs, 577–578
 improving LAN performance, 48
 full duplex transmission, 48–49
 segmentation, 49–52
 Inactive state (Frame Relay connections), 397
 inbound ACLs, 190
 in-building WLANs, 551
increasing bandwidth, 116
incremental backups, 252–253, 496
industry standards, EIA/TIA 568, 106
infinity as metric, 150
information units, PDUs (protocol data units), 7–8
installing modems into digital jacks, 494
insulation, cladding, 463
integrating LANs and WANs, 305
intelligent hubs, 472
interesting traffic, 290
interface bri command, 366–367
interface circuitry, 10
interface command, 628
interface E0 access-group command, 186
interface ethernet 0.1 command, 219
interface ethernet 0.2 command, 219
interface parameter tasks, ISDN configuration, 366
interface serial command, 628
interfaces, 70, 221–222
interior routes, 146
interior routing protocols, 141, 160
interoperability
 Ethernet frame types, 209
 Frame Relay, LMI, 390–391
 Interrupt Requests (IRQs), 471
 interviewing, requirements gathering, 308
intranets, 132
 server placement, 99
VPNs, 574
Inverse ARP (Frame Relay), 394
IP (Internet Protocol), 456, 480
 addresses, 38, 480–482
 documentation, 122
 path determination, 139
 subnets, 12
cable modem applications, 539
cable modem, 539
common port numbers, 182
default gateways, 482
DNS servers, 480
domain names, 483
FQDN, 483
hostnames, 483
MAC addresses, mapping to, 16
port numbers, 481
proxy servers, 482
routing protocols, 22, 141
 configuring, 24–25
 convergence, 142–143
dynamic, 144
efficiency, 142
flexibility, 143
optimal routes, 142
RIP, 25
robustness, 142
static routing, 143
subnet masks, 482
versus wildcard masks, 172
workstation configuration, 482
ip access-group 1 out command, 179
ip access-group command, 628
ip address command, 24, 628
ip unnumbered command, 629
IPCONFIG, 485–486, 491
IPconfig, 442–443
IPv6, 481
IPX (Internetwork Packet Exchange), 204, 241, 456
 addressing, 205
 configuring, 210
 encapsulation, 209
 Enhanced IGRP routing process, 214
global configuration, 218
network management
 interfaces, 221
 routing, 229
 routing tables, 222–224
 servers, 224–225
 traffic, 226–229
network numbers, 206
packets, 210
ping command, 231–233
SAP, 230
ipx delay command, 629
ipx ipxwan command, 629
ipx maximum-paths 2 command, 218
ipx maximum-paths command, 213, 629
ipx network command, 629
ipx router command, 629
ipx routing command, 212, 218, 629
ipx sap-interval command, 629
ipx type-20-input-checks command, 629
IRQs (Interrupt Requests), 471, 489
ISDN (Integrated Services Digital Network), 283, 291, 321, 349–350, 379
 B channels, 364
 BRI, 292, 364
 configuring, 367
 connectivity, 365
 example configuration, 370
 hardware, 365
 switch types, defining, 367
 commands, 366
 components, 350
 configuration, 366
cost-containment, 350
D channels, 364
data-link layer (OSI reference model), 357
DDR, 372
troubleshooting, 373–374
verifying operation, 373
devices, NTI, 351
dial backup, 363
encapsulation, 358–360
LAPD, 357
network layer (OSI reference model), 357
physical layer, 356–357
PRI, 292, 364
reference points, 352–353
remote access, 360
remote nodes, 361
security, 350
SPIDs, 354, 368–370
standards, 354–355
switches, 354
TAs, 281, 351
versus POTS, 488
isdn spid1 command, 629
isdn spid2 command, 369, 629
ldn argument, 369
isdn switch-type command, 368, 629
ISO (International Organization for Standardization), WAN standardization, 281
isolating network problems, 499
ISPs (Internet service providers)
 authentication method, 584
 authorization method, 584–585
CO (central office) switch, 273–275
toll networks, 275
ITU-T (International Telecommunication Union-Telecommunication Standardization Sector)
 DTE/DCE physical layer connections, standards, 282
 ISDN standards, 354–355
 WAN standardization, 281

J-K

jumper(s), 470
keepalive command, 629
keepalive messages (Frame Relay), 397
 interval, setting, 410
kernel-based operating systems, 261
 keys, centralized management, 554

L

L2F (Layer 2 Forwarding), 580, 584
labeling as troubleshooting methodology, 431
LAN routers, 365
LANs (local-area networks), 132.
 See also WLANs
 backbone, 452
 bridging, 53–54
 bus topology, 450
 comparing to WANs, 273
designing
 collision detection, 99
 collisions domains, 101
 components, 97
 example, 165
 flat networks, 515–516
 goals of, 96
 logical diagram, 109, 111
 methodology, 102
requirements, analyzing, 103–104
requirements gathering, 102
segmentation, 100
server placement, 97
Ethernet. See Ethernet
flat networks, bandwidth consumption, 515
full-duplex, 509
half-duplex, 509
intranets, server placement, 99
logical structure, physical layer, 120
mesh topology, 451
nonroutable protocols, 475
performance, 48
ring topology, 452
routers, 51, 516–520
switches, 52
shared hubs, segmentation, 73
shared-media, repeaters, 47
star topology, 449
switched, 75–76
switching, 53–54, 508
asymmetric, 57–58
bandwidth, 56
collisions, 510
cost-effectiveness, 56
dynamic address acquisition, 56
delay, 54
microsegmentation, 514
store-and-forward, 59
STP, 531
symmetric, 57–58
topologies, 104–105
data link layer, 112–114
extended star topology, 107
network layer, 105, 109
physical layer, 117–118
star topology, 106
VLANs. See VLANs
WAN integration, 305
LAPB (Link Access Procedure, Balanced), 283, 299, 379
LAPD (Link Access Procedure on the D channel), 357, 380
last-mile technologies. See remote access
latency, 46, 70
bridging, effect on, 51
of VPNs, 577
switching, 54
fast-forward, 60
fragment-free, 60
store-and-forward, 59
voice calls using LEO, 548
launch capacity, LEO, 549
Layer 1 problems, troubleshooting, 499
Layer 2
filtering, 493
switching, 54–56
Layer 3
routing, 468
switching, 54–56
layered models
application layer (OSI), 458
data link layer (OSI), 10–11, 461–462
802.2 LLC, 473
802.3 Ethernet, 473
802.5 Token Ring, 474
MAC addresses, 474
hierarchical network model
access layer, 317
core layer, 315–316
distribution layer, 316
one-layer model, 318
three-layer model, 314–315
two-layer model, 318
network layer (OSI), 12, 460–461, 474
bouters, 474
default gateway, 475
dynamic versus static routing, 476
ICMP, 15–16
IP addressing, 12
path communication, 14
path determination, 13–14
protocols, comparing routed and routing, 21
routing, 18–19, 474
routing protocols, 22
peer-to-peer communication, 6
physical layer (OSI), 8–9
hubs, 471–472
MAUs, 472
repeaters, 472
switching hubs, 472
transceivers, 473
troubleshooting, 469–471
presentation layer (OSI), 459
SAPs, 7
session layer (OSI), 459
transport layer (OSI), 27, 460, 476
acknowledgment, 30
connections, establishing, 27
data transfer, 28
windowing, 29
layered protocols, ISDN
data link layer, 357
network layer, 357
physical layer, 356–357
layering, 7–8, 38
LCP (Link Control Protocol), 332, 346, 359, 487
frames, 335
link establishment/negotiation phase, 335
link quality determination phase, 336
link termination phase, 337
network-layer protocol configuration, 336
point-to-point connections, 359
ldn argument (isdn spid2 command), 369
learning state (Spanning-Tree), 62
Index

706

learning switches, 512–513
leased lines, 286–287, 328
LEO (low earth orbit) satellites, 548–549
line console command, 629
line vty command, 629
line-codes, VDSL, 565
Link Control Protocol. See LCP
link security sublayer, cable modem operation, 540
links
BPS capacity, 277–278
Frame Relay, 321
ISDN, 321
remote access, 361
point-to-point, establishing, 334–335
PPP
establishment/negotiation phase, 335
link quality determination phase, 336
link termination phase, 337
network-layer protocol configuration, 336
session establishment, 334–335
termination, 335
WANs, 286
circuit-switched connections, 289–291
dedicated lines, 286–287
Frame Relay, 287–289
packet switching, 287
link-state routing protocols, 23–24, 38, 144
Linux, 455
listening state (Spanning-Tree), 62
LLC (Logical Link Control), 209, 346, 461, 473
LMHOSTS, 478
LMI (Local Management Interface), 384, 390–391, 418
Frame Relay, 385, 394
global addressing, 393
Inverse ARP, 394
mandatory bytes, 392
message type field, 392
multicasting, 393
protocol discriminator, 392
switching tables, 394–397
load sharing, 241
local access rate, 418
local ARP, 16
local echo cancellation, 561
local loop, 275
ISDN BRI, 365
termination devices, 351
local profiles, 265
logging in, passwords, 489
logical bus topology, Fast Ethernet, 109
logical diagrams, 109–111
logical network structure documenting, 122–123
physical layer, 120
logical VLAN configuration, 75
frame filtering, 78
frame tagging, 79
login accounts, permissions, 264
login command, 629
loopback testing, 470
LSAs (link-state advertisements), 23, 38
MAC (Media Access Control), 39
addresses, 10–11, 91, 241, 474–475, 494
bridging, 473
Ethernet, 511–513
mapping to IP addresses, 16
name resolution, 476
cable systems, ranging, 543
sublayer, 461
magnetic tape backups, 458
mail protocols, POP3, 479
maintenance records, 247
manageability as network design goal, 96
hierarchical network models, 313
managed hubs, 472
management agents (SNMP), 426
management stations (SNMP), 426
managing, 222, 229
IPX networks, 220–233
interfaces, 221–222
ping command, 231, 233
routing command, 224
SAP, 230
servers, 224–225
traffic, 227
WLANs, 555
mandatory bytes (LMIs), 392
mandatory profiles, 265
map table entries (Frame Relay), 396
mapping
DLCI values to outbound ports, 388
Frame Relay addresses, 394
IP addresses to MAC addresses, 16
masking wildcards
“any” wildcard, 173–174
configuring ACLs, 171–175
eleample, 173
“host” wildcard, 174–175
versus IP subnet masking, 172
Matrix Group (MIB), 429
MAUs (media attachment units), 10, 39
MAUs (multistation access units), 472
maximum hop count, IGRP, 151
maximum port speed, 489
MDF (main distribution facility), 132
documentation, 245
LAN switching, 113
server placement, 97–98
MDF-to-IDF vertical cabling (Fast Ethernet), 109
measuring
performance baseline, 43, 47, 258
security level of VPNs, 576
traffic, 310–311
media, 132, 418
Ethernet
cabling, 9
performance, 44
shared-medium technologies, 44, 47
media access, contention, 100
media attachment units (MAUs), 10, 39
media filters, 494
memory
 buffering, 58–59, 70
 CAM, 56
 DMA, 471
 EPROM, 470
mesh topologies, 313–314, 451
message type field (LMIs), 392
messages
 ICMP, 15–16
 routing updates, 137
 virtual circuit status, 391
methodologies
 network design, 102
 extended star topology, 107
 logical structure, 120
 requirements gathering, 102
 requirements, analyzing, 103–104
 scalability, 118
 segmentation, 121
 star topology, 106
network troubleshooting. See troubleshooting
metric holddown command, 630
metrics, 137, 160
 comparing, 24
 cost, 138, 159
 distance-vector routing protocols, 22, 25
 IGRP, 145, 151
 holddowns, 148–149
ticks, 205
MBIs (Management Information Bases), 427, 430, 479
microsegmentation, 70, 91, 514
collisions, reducing, 112
effect on performance, 114
Microsoft Windows NT, 453
MID (multiplex ID), 581
MIPS (one million instructions per second), 43
mirroring (RAID), 457
mission-critical data, 102
 identifying trustees of, 309
mobility services, WLANs, 555
models of networking
 hierarchical, 313–314
 one-layer model, 318
 selecting, 312
 three-layer model, 314–317
 two-layer model, 318
modems (modulator-demodulator), 279, 299. See also cable modems
 ADSL, 560
dial-up, configuring, 489
 DSL, 556
 ADSL, 556–560
 installing into digital jacks, 49
modulation
 CAP, 565
 spread spectrum, 553
modulation/demodulation, 279, 299. See also cable modems
monitoring, 221, 227, 229
capability, 425
IPX networks, 220, 227–229, 231, 233
 interfaces, 221–222
 ping command, 231–232
 routing tables, 222, 224
 SAP, 230
 servers, 225
 performance, 491
traffic, 425
moving VLAN users, 81
MPLS (Multiprotocol Label Switching), 559
MTU (maximum transmission unit), 160
multicasting Frame Relay, 391–393
multidomain model, 263
multiplexing, 387–388
ADSL data flows, 561
 VDSL, 564, 566–567
 multipoint subinterfaces, 399, 408
 multiport bridges, 472
 multiport repeaters, 472
 Multilayer Switching (MPLS), 559
multiconfiguration routing, 140, 160
multitasking, 43
multiuser operating systems
 UNIX, 262
 Windows NT, 263
MUX (multiplexor) devices, 469
N
name resolution, 476
 ARP, 16
 DNS, 478
hostnames, 483
 HOSTS file, 478
 WINS, 478
named ACLs, 187
 configuring, 188–189
 examples, 187
 naming ACLs, 187
 purposes of, 187
naming IP protocol, 190
NAPs (network access providers), 557
NAT (network address translation), 481
NBSTAT, 484
NCP (NetWare Core Protocol), 204
NCP (Network Control Program), 346
NCP (Network Control Protocol), 332, 487
NDS (Novell Directory Services), 262, 455
NetBEUI (NetBIOS Extended User Interface), 456
netstat, 440, 485
NetWare, 204, 241, 453
 Bindery, 262
directory services, 455
 encapsulation, 208–210
 features, 454
 GNS, 216
 IPX. See IPX
 SAP, 215–216
 version 3.12, 262
network access services, application
 layer, 458
network addresses, 14, 132
network administration, 259
costs, 423
error reporting, 423–424
Network Analyzer (Fluke), 425
network card diagnostics, 470–471
network command, 25, 148, 630
Network Control Protocols (NCPs), 332
network layer (OSI model), 5, 12, 39, 460–461, 505
ARP, 16
brouters, 474
cabling, 105
default gateway, 475
dynamic versus static routing, 476
ICMP, 15–16
in cable systems, 543
IP addressing, 12
Layer 3 switching, 54–55
path communication, 14
path determination, 13–14, 136–137
routers, 51, 474
routing protocols
comparing to routed protocols, 21
distance-vector, 22
link-state, 23
topology, designing, 105
documentation, 109
extended star topology, 107
star topology, 106
network management
cables, monitoring, 425
devices, 421–422
documentation, 245
IDF/MDF, 245
maintenance, 247
security, 248, 251
user policies, 249
equipment networks, 422
environmental factors, 255
EMI, 257
power supply, 256
RFI, 257
software viruses, 257
maintenance, 495
monitoring, 424
security, permissions, 264
server/workstation details, 246
SNMP, 426–427, 479
software patches, 496
SOPs, backing up data, 495
statistics gathering, MIBs, 427, 430
traffic, measuring, 310
troubleshooting methodologies, 497
virus infections, preventing, 258
Network Management Protocol, 426–427
network media. See cabling
Network Monitor, 499
network numbers (IPX), 206, 218
network performance
baseline, 258
monitoring, 425–429, 499
network. See security
travels, 7–8
accessing, time-dependency, 311
ASs (autonomous systems), 146–147
availability, 308–310
 backbone, 49
collaborative clients and servers, 204
collision detection, 99
goods, 96
logical diagrams, 109, 111
methodology, 102
requirements analyzing, 103–104
requirements gathering, 102
segmentation, 100
server placement, 97
environmental hazards, 491
networks, designing
firewalls, 490
Frame Relay. See Frame Relay
hierarchical, 313–314
flow control, 55
Intranets, server placement, 99
IPX. See IPX
ISDN. See ISDN
logical structure
documenting, 122–123
physical layer, 120
microsegmentation, 112
OSI model. See OSI reference model
physical structure,
documenting, 122–123
scalability, 118
segmentation, 49
bridges, 50–51
physical layer, 121
routers, 51
switches, 52
segments, 452
sensitivity testing, 312
shared-medium, repeaters, 47
subnets, VLAN transport
mechanism, 76
topologies. See topologies
traffic. See traffic
troubleshooting, 430
divide and conquer technique, 434, 437
process of elimination technique, 431, 434
WANs. See WANs
workstations, connectivity, 10
network-number command, 630
next hops, 137–138
next-hop address, 139, 160
NFS (Network File System), 261, 455
NICs (network interface cards), 10–11, 39, 70, 468, 494
auto-sensing, 509
diagnostics, 471
jumpers, 470
loopback testing, 470
Token Ring media filters, 494
NLSP (NetWare Link Services Protocol), 241
no ip access-group command, 177
NOC (network operations center), 539
nodes, 70, 474
IPX addressing, 205
Switched Ethernet, 52
non-broadcast multiaccess technologies, 288
nondedicated print servers, 492
nonroutable protocols, 475
North American Digital Hierarchy, WAN links, 277–278
North American digital video specifications, 542
Index

709

O

NOSs (network operating systems), 241
gateways, 469
note-taking as troubleshooting methodology, 430
Novell
IPX, 224
addressing, 205
global configuration, 218
interfaces, monitoring, 221
network management interfaces, 220–222
network numbers, assigning to interfaces, 218
ping command, 231–233
routting, 229
routing tables, monitoring, 222
SAP, 230
servers, monitoring, 224–225
traffic, monitoring, 226–229
troubleshooting, 220
verifying operation, 219
NetWare, 204, 453
directory services, 455
encapsulation, 208–210
features, 454
network numbers, 206
SAP, 215–216
RIP, 211–212
Novell Directory Services (NDS), 262, 455
NSPs (network service providers), 557
NT1 (Network Termination type 1), 291, 299, 351, 380
NT2 (Network Termination type 2), 291, 351, 380
NTFS (New Technology File System), 263
numbered ACLs, configuring, 170–171
OAR (one-armed router), 528
object types, SAP services, 215
obtaining Novell network addresses, 206
offset numbers (fragments), 477
onboard transceivers, 473
one-layer network model, 318
one-to-two splitters, 538
one-way cable systems, 538
one-way latency, LEOs, 548
operating systems, 264
client/server, 262
gateways, 469
Linux, 455
Microsoft Windows NT, 453
multitasking, 43
Novell NetWare, 453
directory services, 455
features, 454
software listings, 247
UNIX, 261, 453
directory services, 455
features, 454
Windows 2000, Active Directory, 263
Windows NT
directory services, 455
features, 454
operator error, troubleshooting, 498
optical fiber, 463–464
optimal routes, 142
optional LMI extensions, 391
organizational segmentation, 317
OSI reference model, 312
application layer, 458, 503
data encapsulation, 7–8
data link layer, 10–11, 461–462, 505
802.2 LLC, 473
802.3 Ethernet, 473
802.5 Token Ring, 474
MAC addresses, 474
migrating to higher bandwidth, 116
switching, 114, 279
topology, designing, 112–114
WAN protocols, 283
in cable systems, 542–543
application layer, 543
data link layer, 542
network layer, 543
physical layer, 542
transport layer, 543
network layer, 12, 474
ARP, 16
bouters, 474
cabling, 105, 109
default gateway, 475
dynamic versus static routing, 476
ICMP, 15–16
IP addressing, 12
path communication, 14
path determination, 13–14, 136–137
routers, 474
routting, 18–19, 21–23
topology, designing, 105–109
one-layer model, 318
peer-to-peer communication, 6
physical layer, 8–9, 469–471
Ethernet wiring standards, 9
hubs, 471–472
logical structure, imposing, 120
MAUs, 472
repeaters, 472
scalability, 118
segmentation, 121
switching hubs, 472
topology, designing, 117–118
transceivers, 473
VLANs, 118
WAN protocols, 281–282
presentation layer, 459, 503
protocol suites, Novell
NetWare, 204
session layer, 459, 504
three-layer model, 314–315
access layer, 317
core layer, 315–316
distribution layer, 316
transport layer, 27, 460, 476, 504–505
acknowledgment, 30
connections, establishing, 27
data transfer, 28
functionality, 27
windowing, 29
two-layer model, 318
OSPF (Open Shortest Path First) protocol, 39, 22
P
Packet Capture Group (MIB), 429
packet internet groper (ping), 266–267, 425, 438, 487
packet switching, 275, 287, 328
packets, 39
ACL checks, 167
collision detection, effect on network design, 99
congestion, 28, 104
delivery acknowledgment, 30
dropping, DE (discard eligibility), 386
eapsulation, 506
NetWare, 207–209
errors, fast-forward switching, 60
flagging, 477
forwarding, 138
headers
data encapsulation, 7–8
frame tagging, 79
IPX, 210
ISDN
eapsulation, 358
PPP encapsulation, 359–360
latency, 46
path communication, 14
path determination, 13–14
queues, port-based memory buffering, 59
reliable transport, 27
routing
comparing dynamic and static, 20
default routes, 20
SAP, 216
switching, 19
transmission time, 47
latency, 54
tunneling, 579
windowing, 29
PAP (Password Authentication Protocol), 338, 346
parallel ports, 492
parity, disk striping, 457
partially meshed topologies, 289, 300
passenger protocols, 579
passive hubs, 471
passive network termination, VDSL, 567
passwords, 489
patch panels, 493
path communication, 14
path determination, 13–14, 20, 39, 160
adaptability, 143
default routes, 20
gateway of last resort, 147
IP addresses, 139
MAC addresses, mapping to IP addresses, 16
metrics, 137
IGRP, 145
network layer, 136–137
next hop, 138
optimal routes, 142
routing, 18–19
stub networks, 20
routing tables, 137
split horizons, 149–150
switching, 19
PBXs (private branch exchanges), 351, 380
PC TAs (terminal adapters), 365
PCS (personal communication services), 546
PDCs (primary domain controllers), 262
PDN (public data network), 419
Frame Relay services, deploying, 383, 386
PDUs (protocol data units), 6, 39
datagrams, ICMP messages, 15–16
headers, data encapsulation, 7–8
peer-to-peer networking, 6–7, 259, 468
performance, 258
attenuation, 47
baselining, 258
constraints, effect on WAN design, 306
Ethernet, 44
bandwidth, 46
propagation delay, 46
transmission time, 47
LANs, 48
full-duplex, 48–49
segmentation, 49–52
latency, effect on bridges, 51
measuring, 43
monitoring, 424–425, 491, 553
statistics gathering, MIBs, 427, 430
switches, 54–56
peripheral ports, 492
permanent virtual circuits (PVCs), 287
permissions, 264
permit command, 630
physical address (packets), path determination, 138
physical layer (OSI model), 8–9, 39, 70, 469–471, 506
cable systems, 542
Ethernet, wiring standards, 9
hubs, 471–472
ISDN, 356–357
logical structure, 120
MAUs, 472
repeaters, 47, 472
scalability, 118
segmentation, 121
switching hubs, 472
topology, designing, 117–118
transceivers, 473
VLANs, 118
WAN protocols, 281–282
physical network structure, documenting, 122–123
physical security, documenting, 249
ping, 266–267, 425, 438, 487
ping command, 231–233, 630
ping command (IPX), 231–233
placement of servers, 97–99
hierarchical network models, 320
intranets, 99
planning subnets, 507
plug-and-play software, 470
point-to-point connections
full-duplex Ethernet, 48–49
LCP, 359
point-to-point data services (DBS), 548
point-to-point links, 286–287, 300
establishing, 334–335
Point-to-Point Protocol. See PPP
point-to-point subinterfaces, 399
configuring, 408
poison reverse update, 160
IGRP, 150
policies, 264–265
policy-based connectivity, 316
polling, 426
POP (Point of Presence), 273–275, 300, 558
POP3 (Post Office Protocol version 3), 479
port numbers, 481
port-based memory buffering, 59
port-centric VLANs, 79, 91, 524
port-mapping VLANs, 74
ports, 70, 91, 492
asymmetric switching, 58
common port numbers, 182
external SCSI connections, 492
maximum port speed, 489
print servers, 492
Spanning-Tree Protocol, forwardig, 62
POTS (Plain Old Telephone Service), 349–350, 488
power supplies, 256
UPS, 493
PPP (Point-to-Point Protocol), 283, 331, 346, 487
authentication, 337, 359
CHAP, 338–340
configuring, 339–340
PAP, 338
components, 332
encapsulation, 284
frame formats, 334
framing, 359
functions, 333
ISDN encapsulation, 359–360
L2F encapsulation, 359–360
LCP frames, 335
sessions, 334–335
link establishment/negotiation phase, 335
link quality determination phase, 336
link termination phase, 337
network-layer protocol configuration, 336
ppp authentication command, 360, 630
ppp chap hostname command, 630
ppp chap password command, 630
ppp pap sent-username command, 630
PPTP (Point-to-Point Tunneling Protocol), 487
predictability in hierarchical network models, 313
preemptive troubleshooting, Alarm Group MIB, 429 methodologies, 430
presentation layer (OSI model), 4, 39, 459, 503
preventing virus infections, 258
PRI (Primary Rate Interface), 292, 364, 380
primary networks, 218
print servers, 492
privacy, VPNs, 573–574
authorization, 578
documenting, 578
example of, 575
implementing, 577–578
remote access policies, 578
ships-in-the-night, 577
traffic, segregating, 577
private branch exchanges (PBXs), 351
privileged ping command (IPX), 231–232
probes, RMON, 427
problem isolation, 499
process of elimination as troubleshooting methodology, 431, 433
profiles, 264
user community, requirements gathering, 308
user policies, 249
programs
response time, 308
Trojan horses, 257
worms, 257
projected capabilities of VDSL, 563–564
propagation delay, 46, 70
protocol command, 630
protocol data units. See PDUs
protocol discriminator, 392
Protocol field (PPP), 334
protocol suites, Novell NetWare, 204
directory services, 455
capsulation, 208–210
features, 454
network numbers, 206
SAP, 215–216
provisioning bandwidth (WANs), 277–278
proxy agent (WINS), 478
proxy servers, 482
PSTN (Public Switched Telephone Network), 488
PTT (post, telephone, and telegraph), 300
PVC (permanent virtual circuit), 277, 287, 300, 419
DLCI numbers, 289
Frame Relay, 388–389
Q
Q protocols (ISDN), 355
Q.931, 380
QIC (quarter-inch tape), 458
QoS (quality of service), 306
QPSK (quadrature phase shift keying) modulation, 547
quarter-inch tape (QIC), 458
queuing, 40, 70, 200
port-based memory buffering, 59
R
R (ISDN reference point), 352
R interface, 292
RAID (redundant array of inexpensive disks), 254–255, 457
ranging MAC layer in cable systems, 543
Index

712

RARP (Reverse Address Resolution Protocol), 40
raw Ethernet, 209
RBOC (regional Bell operating company), 273, 300
reachability, Frame Relay, 399–400
reconfiguring VLANs, 81
recovering lost data from tape backups, 251
redundancy
RAID, 254–255
RMON management consoles, 427
Redundant Array of Inexpensive Disks (RAID)
reference points (ISDN), 352–353, 380
regional Bell operating company (RBOC), 273, 300
regional data centers, 540–541
reliability, 160, 300
applications, 308
as metric, 138
design goals, 96
relocating
equipment, effect on network performance, 259
VLAN users, 81
remote access
cable modems, 535
CMTS, 538
downstream data flow, 537
EMS, 539
features, 536
head end, 537
HFC, 536
network architecture, 540–543
one-to-two splitters, 538
operation, 537, 539–540
telephone return systems, 538
repeaters, 544
upstream data flow, 537
connections, requirements, 489
DBS, 546
architecture, 546
data service, 548
operation, 547
QPSK, 547
DSL, 556
ADSL, 556–560
VDSL, 563–569
ISDN, 360
DDI, 372–373
virtual dial-up services
accounting, 585
address allocation, 585
authorization, 584
VPNs, policies, 578
wireless, 544, 546
WLANs, 550
building-to-building, 551
future of, 553, 555
IEEE 802.3 standard, 552–553
in-building, 551
management, 555
mobility services, 555
performance, 553
security, 554–555
transmission medium, 550
remote nodes, ISDN, 361
repeaters, 70, 472
request/replies (ARP), 517
requirements
WAN design
analyzing, 310–311
gathering, 308
LAN design
analyzing, 103–104
gathering, 102
link security sublayer (cable modems), 540
network design, 96
RAID, 255
remote connections, 489
resources, availability, 104
response time of applications, 308
restricting switch ports, 83
Reverse ARP (Address Resolution Protocol), 12
RFI (radio frequency interference), 257
ring topologies, 452
RIP (Routing Information Protocol), 22, 40, 204
configuration, 25
Novell, 211–212
ticks, 205
RJ-45 connectors, 494
RMON (Remote Monitoring)
management consoles, 427
MIBs, 427–429
probes, 427
RMON2, 430
roaming profiles, 265
robustness
IGRP, 148
holddowns, 148–149
poison reverse updates, 150
split horizons, 149–150
routing protocols, 142
rotating tape backups, 496
round-trip time, LEO voice calls, 548
routed protocols, 40, 140, 161, 475
versus routing protocols, 21
router igrp command, 147, 630
router rip command, 25, 630
router-on-a-stick, 528
routers, 70, 279, 468, 474
ACLs. See ACLs
command-line access, 407
firewall routers, 191–192
interface type, specifying, 11
ports, 493
scalability, effect on, 118
security, configuring, 401
routing, 18–19, 214, 229
comparing to static routing, 20
convergence, 22
default gateway, 475–477, 482
default routes, 20
dynamic routing, 144
IP, configuring, 144
IPX, 231–233
ping command, 231, 233
SAP, 230
troubleshooting, 229
LAN segmentation, 51, 516–520
logical network structure, 120
loops, 143
metrics, 241
path communication, 14
Novell, specifying IPX encasulations types, 210
pinging, 266–267, 425
placement, 98–99
effect on network design, 97
hierarchical network models, 320
IDF, 97
MDF, 97
proxy, 482
stand-alone, 263
volumes, 457
servers, monitoring, 224
service access point identifier (SAPI), 357
service providers, WANs, 275–276
services
Frame Relay, deploying, 386
IRQs, 471
ISDN, 292, 365
transport layer, 27
WANs, 273–274, 303–305
session layer (OSI model), 5, 40, 459, 504
sessions, PPP, 334–335
link establishment/negotiation phase, 335
link quality determination phase, 336
link termination phase, 337
network-layer protocol configuration, 336
setup notification, end-to-end virtual dial-up process, 582
shared media LANs, 73
full-duplex Ethernet, 48–49
hub switching, 114
performance, 48
segmentation, 49
bridges, 50–51
repeaters, 47
routers, 51
switches, 52
shared memory buffering, 59
shared-medium technologies, 44
share-level security, 489
shielding
classing, 463
EMI, 492
ships-in-the-night VPNs, 577
shortest path first (SPF), 23–24, 38, 144
show access-list command, 177 193, 630
show dialer command, 631
show frame-relay lmi command, 631
show frame-relay map command, 631
show frame-relay pvc command, 367, 631
show interfaces command, 631
show interfaces serial command, 631
show ip interface command, 193–194, 631
show ip route command, 631
show ipx interface command, 206–208, 631
show ipx route command, 631
show ipx servers command, 631
show ipx traffic command, 631
show isdn active command, 631
show isdn status command, 631
show protocols command, 206, 631
show spantree command, 62, 631
show status command, 632
signaling, 274, 360
baseband, 469
broadband, 469
ISDN, D channel, 364
ISDN specifications, 357
WANs, 277–278
simplex communication, 459, 467
single point of failure, client/server networks, 261
SLAs (service-level agreements), 574–575
SLC (simple line code), 565
sliding windows, 51, 71
SLIP (Serial Line Internet Protocol), 346, 487
SMTP (Simple Mail Transfer Protocol), 479
sniffers, 491
SNMP (Simple Network Management Protocol), 426–429, 479
SNMPv2, 430
software
effect on network congestion, 46
anti-virus, 496
firewalls, 490
listings, 247
network management, measuring traffic, 310
patches, 496
plug-and-play, 470
resources, effect on LAN design, 103
traffic monitoring, 425
troubleshooting tools, 438
ARP, 442
IPconfig, 442–443
netstat, 440
ping, 438
telnet, 440
trace-route, 439
viruses, 257
SOHO (small office/home office), 362, 380
SOPs (standard operating procedures)
backup procedures, 495
security administration, 490–491
troubleshooting methodologies, 498–500
Spanning-Tree Protocol, 61–62, 71, 531
specifying
interface types (routers), 11
IPX encapsulation, 210
SPF (shortest path first), 22, 40
link-state routing protocols, 23–24, 38, 144
SPIPs (service profile identifiers), 354, 380
configuring, 368, 370
defining, 369–370
split horizon, 161, 398
IGRP, 149–150
Novell RIP, 212
spread spectrum, 553
Index
715

SPX (Sequenced Packet Exchange), 204, 242
SS7 (signaling system 7), 274, 300
stability
IGRP, 148
 holldowns, 148–149
 poison reverse
 updates, 150
 split horizons, 149–150
 routing protocols, 142
stand-alone servers, 263
standard ACLs (standard access control lists), 201
examples, 175, 177
 denying specific hosts, 179–180
 denying specific subnets, 180–181
 permitting source network traffic, 178–179
 placement, 190–191
 versus extended ACLs, 182
star topologies, 104–107, 133, 300, 449
starting telnet, 483
states of Spanning-Tree Protocol, 62
static electricity, protecting against, 255
static maps, 410
static routing, 40, 143, 161
default routes, 20
 versus dynamic routing, 20, 476
static VLANs, 80, 92
statistics gathering, MIBs, 427, 430
status-inquiry messages, 393
store-and-forward devices, 51, 59, 523
bridges, 51
switches, memory buffering, 58
STP (shielded twisted-pair), 463, 468
STP (Spanning-Tree Protocol), 61–62, 71, 531
striping (RAID), 457
stub networks, 20, 40
subinterfaces, 218, 242
 Frame Relay, 397
 configuring, 407–409
reachability, 399–400
sublayers, data link layer, 539
subnet masks, 40, 480–482
subnets 40, 475
 default gateways, 469, 477
denying, 180–181
 planning, 507
 VLAN transport
 mechanism, 76
subscribe to WAN services, 275–276
subtending, 558
surveys, requirements gathering, 308
SVCs (switched virtual circuits), 277, 300, 559
switch ports, restricting, 83
Switched Ethernet, 52
switched virtual circuits (SVCs), 277, 300, 559
switching, 14, 19, 52–54, 114, 279, 508
 asymmetric, 57–58, 112
 broadcasts, 101
 buffering, 514
 CO switch, 275, 368
collision domains, 114
collisions, 510
 comparing Layer 2 and Layer 3, 54–55
cut-through, 54, 59, 523
DMS-100, 368–369
dynamic address acquisition, 56
 flat networks, 515–516
 flooding Ethernet frames, 513
 fragment-free, 60
 Frame Relay, switching tables, 394–397
 full duplex Ethernet, 49
 hubs, 114, 472
 ISDN, 354, 367
 LANs
 cost-effectiveness, 56
 full-duplex operation, 509
 half-duplex operation, 509
 segmentation, 75–76
 latency, 54
 memory buffering, 58
 microsegmentation, 113, 514
 performance, 54–56
port configuration, 509
 routing loops, 143
 SAT (source address table), 512
 store-and-forward, 59, 523
 STP, 531
 symmetric, 57–58, 521–523
technologies, combining
 Frame Relay, 387
 virtual circuits, 53
 VLANs, 60, 77–78, 523
 frame filtering, 78
 frame tagging, 79
 port-centric, 524
WANs
 circuit switching, 289–291
 packet switching, 287
 switch-type argument, isdn switch-type command, 368
 symmetric switching, 57–58, 521–523
synchronization, wireless traffic, 546
syntax
 IPX routing command, 212
 network command, 148
 show ipx interface command, 207
system backups, RAID, 251–254
system resources
 availability, 265
 security, 264
system routes, 146

T
T (ISDN reference point), 352
T1 connections, 328, 536
T3 connections, 328
TA/NT1 (terminal adapter/network termination 1), 276
tagging (VLANs), 529–530
tape backups, 251, 458
archive bit, 252
TAs (terminal adapters), 281, 291, 300, 351, 380
TCP (Transmission Control Protocol), 478–479
TCP/IP (Transmission Control Protocol/Internet Protocol)
 ARP, 483
default gateways, 477
DHCP, 477
DNS, 478
HOSTS file, 478
IP, 480
 address classes, 480–481
 addresses, 12, 482
 default gateways, 482
 depletion of addresses, 481
 DNS servers, 480
 domain names, 483
 FQDN, 483
 hostnames, 483
 port numbers, 481
 proxy servers, 482
 subnet masks, 482
 workstation configuration, 482
TCP, 478–479
utilities
 FTP, 486–487
 IPCONFIG, 485–486
 NBSTAT, 485
 NETSTAT, 485
 ping, 487
 telnet, 483
 tracert, 484
 WINIPCONFIG, 485–486
WINS, 478
TDM (time division multiplexing), 274, 301
TE1 (Terminal Equipment type 1), 291, 351, 380
TE2 (Terminal Equipment type 2), 291, 351, 380
telephone services, WANs, 273–274
telnet, 440, 483
term ip netmask-format command, 24, 632
Terminal Equipment type 1 (TE1), 291, 351, 380
Terminal Equipment type 2 (TE2), 291, 351, 380
terminating PPP session links, 335–337
test accounts, 491
testing
 connectivity, 425, 483–485
 FTP, 486–487
IPCONFIG, 485–486
 ping, 487
WINIPCONFIG, 485–486
 human factors (requirements gathering), 309
 thicknet, 466
thinnet, 466
three-layer model, 314–315
 access layer, 317
 core layer, 315–316
 distribution layer, 316
three-way handshakes, CHAP, 338
thresholds, Alarm Group MIB, 428
throughput. See also bandwidth
 applications, 308
 full-duplex operation, 49, 509
 windowing, 29
TIA (Telecommunications Industries Association) 281, 301
TIA/EIA-568-A standards, 495
ticks, 138, 161, 205
time-dependency, network
 access, 311
timers basic command, 632
TIR (total internal reflection), 463
TDMA (time-division multiple access), 564
Token Ring Group (MIB), 430
Token Ring, 474
 hubs, 472
 media filters, 494
toll networks, 275, 301
tools
 network monitoring, 431
 performance monitoring, 258
topologies, 71
 bus, 450
 convergence, 22, 142–143
 data link layer
 designing, 112
 switching, 113–114
 designing, 104–105
 extended star, 107
 fully meshed, 289
 logical diagrams, 109–111
 mesh, 451
 network layer
 designing, 105
 documentation, 109
 partially meshed, 289
 path communication, 14
 path determination, 13–14
 physical layer
 designing, 117–118
 logical structure, 120
 scalability, 118
 segmentation, 121
 VLANs, 118
 ring, 452
 star, 106, 449
 Switched Ethernet, 52
 traceroute, 439
 tracert, 484
 traffic, 226–229
 bandwidth, 46
 BECN, 385
 bps capacity, 277–278, 282
 broadcasts, 15, 81–82
 characterizing, 307
 collisions, 45, 99
 congestion, 28, 43, 104
 convergence, 22
 diversity, effect on performance, 312
 downstream, 537, 560
 estimating, 310
 FECN, 385
 flooding, 54
 flow control, 27, 319
 Frame Relay
 dedicated paths, 387
 flow control, 392
 multiplexing, 387–388
 half-duplex data transmission, 45
 head ends, 537
 interesting, 290
 IPX, 226–228
 latency, 46
 measuring, 310
 monitoring, 425
 multiplexing, 274
 path communication, 14
 path determination, 13–14
 routing, 18–19, 21
 distance-vector routing protocols, 22
 link-state routing protocols, 23
segregating with VPNs, 577
switching, 279
transmission time, 47
troubleshooting, 311
upstream, 537
VLAN transport
mechanism, 76
windowing, 29
wireless, synchronization, 546
transceiver cables, 9, 451, 473
transceiver network end (ADSL), 561
transferring files, throughput, 308
transmission systems, satellite broadcasting systems, 547
transmission time, 47, 54
fast-forward switching, 60
fragment-free switching, 60
store-and-forward switching, 59
transport layer (OSI model), 5, 27, 40, 204, 460, 476, 504–505
acknowledgment, 30
cable systems, 543
connections, establishing, 27
data transfer, 28
functionality, 27
windowing, 29
TRI (telephony return interface), 538
Trojan horse attacks, 257
troubleshooting, 265, 430
broadcasts, 82
connectivity
FTP, 486–487
IPCONFIG, 485–486
NBSSTAT, 484
NETSTAT, 485
ping, 487
telnet, 483
WINIPCONFIG, 485–486
Dartmouth Design Matrix, 265
hierarchical network models, 313
IPX routing, 229–232
ISDN DDR, 373–374
methodologies, 266–267, 497
defining the problem, 431
divide and conquer technique, 434, 436
problem isolation, 499
process of elimination technique, 431, 433
network traffic, 311
operator error, 498
physical layer, 469–471
software tools, 438
ARP, 442
IPconfig, 442–443
netstat, 440
ping, 438
telnet, 440
traceroute, 439
trunks, 275, 452, 529
tuners, cable modems, 544
tunneling, 579
L2F, 584
MID, 581
TWA (two-way alternate) dialog, 459
twisted-pair cable, Fast Ethernet, 9
two-layer network model, 318
two-way cable systems
QPSK/16 QAM modems, 538
upstream data channel, 542
TWS (two-way simultaneous) dialog, 459
V
validating
connectivity, 485
error displays, 499
IP connectivity, 483, 485–487
VCC (vertical cross-connect), 133
VDSL (Very High Data Rate DSL), 563
channel separation, 565
CPE, 566
data rates, 564
FEC, 565
line-codes, 565
multiplexing, 564
non-ATM formats, 568
relationship to ADSL, 569–570
standards, 568–569
upstream multiplexing, 566–567
vendor-supplied diagnostics tests, 471
verifying
ACLs, 193–194
Index

718

Frame Relay operation, 402–406
ISDN, 371–373
vertical cabling, 109, 133
increasing bandwidth, 116
Fast Ethernet, 109
viewing IPX configuration statistics, 207
virtual circuits, 53, 71, 301
PVCs, 277
status messages, 391
SVCs, 277
virtual dial-up services, 579–580
accounting, 585
address allocation, 585
authentication, 584
authorization, 584–585
dynamic, 80–81
end-to-end virtual dialup process, 581–583
viruses (software), 257
VLANs, 60, 73, 92, 523
connecting to existing hubs, 84
dynamic, 80–81
logical configurations, 75
physical layer, 118
port-centric, 79, 524
port-mapping, 74
router-on-stick, 528
routing, 77, 526, 528
security, 83–84, 118
Spanning-Tree Protocol, 61
static, 80
switch ports, restricting, 83
switching, 77–78
frame filtering, 78
frame tagging, 79
tagging, 529–530
transport mechanism, 76
trunks, 529
users, mobility, 81
VLSM (variable-length subnet masking), 481
volumes (RAID), 457
VPNs (virtual private networks), 573
advantages of, 573
authorization, 578
Cisco solutions, 578
dynamic, 80–81
end-to-end virtual dialup process, 581, 583
L2F, 580
tunneling, 579
virtual dial-up services, 579–580
documenting, 578
examples, 575
implementing, 577–578
latency, testing, 577
remote access policy, 578
security level, measuring, 576
SLAs, 574–575
traffic, segregating, 577
tunneling, L2F, 584
types of, 574

W

WANs (wide-area networks), 133, 273
backbone, 452
call setup, 274
circuit-switched connections, 289–291
communication, 303–305
connectivity testing, 425
data link layer protocols, 283
dedicated lines, 286–287
demarcation, 275
designing, 306
goals, 306
hierarchical network models, 313–318
requirements analysis, 310–311
requirements gathering, 308
sensitivity testing, 312
devices, 278–281
encapsulation formats, 284
Frame Relay, 275, 321
HDLC encapsulation, 285
ISDN, 321
LAN integration, 305
links, 277–278, 286
mesh topology, 451
OSI reference model, 281
packet switching, 287–289
physical layer protocols, 281–282
PPP, 331
authentication, 337–340
components, 332
capsulation, 284
frame formats, 334
functions, 333
sessions, 334–337
RBOC (regional Bell operating company), 273
serial line encapsulation, frame fields, 284
services, 275–276
services, 273–274
signaling, 277–278
TDM (time division multiplexing), 274
traffic, measuring, 310
virtual circuits, 277
Web content, DBS, 548
well-known port numbers, 481
WEP (wireless equivalent privacy), 554
wildcards, masking, 201
“any” wildcards, 173–174
configuring ACLs, 173
“host” wildcards, 174–175
windowing, 40
Windows 2000, Active
Directory, 263
Windows NT, 262
directory services, 455
features, 454
Network Monitor, 499
Windows NT Server, 453
WinIPcfg, 442–443
WINPCONFIG, 485–486
WINS (Windows Internet Naming Service), 478
wired equivalent privacy (WEP), 554
wireless technologies, 544–546
See also satellite broadcasting systems
wiring closets
IDF/MDF, documentation, 245
labeling cable runs, 431
WLANs (wireless LANs), 550
building-to-building, 551
IEEE 802.3 standard, 552–553
in-building, 551
transmission medium, 550
workgroups
logical VLAN configuration, 76
servers, 97, 133
workstations, 468
client /server architecture, 204
configuring for Internet connectivity, 482
connectivity, 10
documentation, 246
nodes, 474
software listings, 247
user policies, 249
worms, 257

X-Y-Z
X.25, 301
xDSL, 556
ADSL
channels, 559
CPE, 558
downstream data rates, 560
DSLAMs, 558
modems, 560
services architecture, 557–559
standard, 562–563
transceiver network end, 561
VDSL, 563
channel separation, 565
FEC, 565
line-codes, 565
non-ATM formats, 568
projected capabilities, 563–564
standards, 568–569
upstream multiplexing, 566–567

Yellow Cable, 466