

C H A P T E R 9
Advanced Custom Policy

The Cisco Security Agent (CSA) is an extremely flexible product that has granular policy
enforcement capabilities. Included as part of the product installation on the management
server is a suite of preconfigured policies that can be deployed to provide immediate
protection and control. These policies are a great start and in many cases provide the
security required by organizations. In addition, some minor tweaking might be required to
allow for approved system use. If you are familiar with the flexibility and applications of
the CSA product, you can extend the base capabilities to solve many host security issues in
your deployment. In this chapter, you learn about:

• The importance and basics of tuning CSA

• Rule capabilities

• Importance and usage of state sets

• Using dynamic application classes

• Basic forensics

Why Write Custom Policies?
There are several reasons for adding to or changing the default policies that ship with the
Cisco Security Agent Management Console (CSA MC). The most common and simplest
reason for change occurs during the normal tuning process. The second most common
reason for change involves writing custom application control policies to better secure your
system. The final reason to change policy is to perform forensic data gathering across the
deployment.

The Normal Tuning Process
The normal tuning process occurs during every CSA deployment and continues after
deployment when software and patches are added to your systems. These custom policies
are often called exception rules, which are rules the administrator creates to allow normal
system and application interaction to occur. Often, this also includes changing rules that
query the user into straight allow rules that require no interaction. This means you not only
tune the policy to allow specific use but also streamline and simplify the user interaction

174 Chapter 9: Advanced Custom Policy

with the agent, so it does not become a nuisance. If the product becomes too cumbersome
for users, they tend to attempt to circumvent the security measure, which would completely
go against your goals.

The following are a few reasons to create exception rules:

• Installers—You likely have a standard process for installing software in your
environment, such as using login scripts and software deployment tools. It is
important to allow these processes to maintain your systems unimpeded without user
interaction and without weakening the security of your endpoint.

• Application memory usage—Many poorly coded applications (or cleverly coded,
depending on your frame of reference) might attempt normal data or stack memory
access or even attempt to access memory used by another process. You might need to
allow these applications to perform this action for them to function correctly.

• Code injection—Some applications attempt to insert themselves or DLLs into other
processes as part of normal usage.

• Network access—You often need to tune systems to allow inbound and outbound
access to services on workstations and servers. This can include remote control
applications and other network services, such as FTP, TFTP, TELNET, SSH, and
HTTP.

Custom Application Control Policies
In addition to creating exception rules for your policy, you also need to craft additional
policies that control how other applications are used in your network. Many of the policies
written in CSA that control applications are a direct result of your written security policies
and acceptable use documents that the users acknowledge. CSA allows you to take the
verbiage in these documents and place actual enforcement controls on the systems rather
than hoping that your users follow the rules.

Examples of reasons you might write custom application control policies include:

• Preventing or controling certain application usage—Your organization might want
to prevent or control specific applications, such as P2P files sharing applications,
instant messengers, e-mail applications, and remote control products.

• Limiting system network exposure—You can institute policies that control which
services are available remotely when you connect to the corporate network rather than
at a remote, untrusted location. Examples of such connections include a user’s ISP
connection, a wireless hotspot, or a hotel network.

• Administrative policies—You can create policies that limit which users and systems
can access administrative tools and also provide higher levels of access to
administrative users (or any other users or groups necessary).

Preparing for the CSA Tuning Process 175

• Application installation policies—You can create policies that allow CSA to permit
mass deployment products to install software unimpeded (examples of mass
deployment products include those available from BigFix, Microsoft, and Altiris).
Other manual installs can either interactively prompt the user or be denied completely.

Forensic Data Gathering
Because CSA continually monitors system interaction on endpoints in your environment,
you might want to leverage this product to report certain interactions you find interesting.
By creating a specific set of rules that monitor interaction, you can create a “Honey Pot”
policy that when deployed reports interaction of specific processes for you to acknowledge.
Monitoring system interaction or at least specific interaction can provide an early warning
system that can alert you to suspicious activity before it becomes a real security issue.

Preparing for the CSA Tuning Process
The CSA tuning process is more an art than a science, and you might need some practice
before you become efficient. Understanding the points discussed in this section will make
you more effective. These include understanding the components of CSA Policy, knowing
what protection each rule type provides, and understanding how to use advanced
components such as state sets and dynamic application classes. The following sections
explain those components and provide a process to follow when you tune or create a
custom policy.

NOTE This chapter reviews rather than thoroughly describes each component. For more detailed
information, refer to the Cisco Systems website and the Cisco Press book Cisco Security
Agent. Additionally, this chapter focuses on Windows components to illustrate our points.

Understanding Rule Capabilities
It is imperative that you know the protection provided by each rule type, so that you can
quickly write rules without using the Tuning Wizard or researching endlessly. The
following is a list of rules most commonly used when tuning. The list is ordered by
frequency of use in tuning. You should memorize these components to save time when
tuning an environment because memorization greatly simplifies your workload.

• System API Control—This rule provides many types of protection to hosts and is by
far the most common rule tuned in any deployment. This rule applies to processes as

176 Chapter 9: Advanced Custom Policy

defined by the associated application class and can provide the following common
protections or exclusions:

— Inject code into other applications—To function, some applications need
to insert themselves or DLL’s into other applications. This type of injection
can be malicious, however, because viruses often attempt to inject their
DLL into a privileged process to gain administrative rights to the system. Be
certain that this process is normal before you tune!

— Write memory owned by other applications—Occasionally applications
attempt to use another application’s memory space. This is somewhat
uncommon but has been seen in off-the-shelf software.

— Access systems functions from code executing in data or stack space—
Although this is a common buffer overflow action and should be treated
with care, some applications do this to check their licensing. Verify that this
is repeatable and normal through active testing or by confirming with the
vendor, then tune appropriately. You can tune this rule granularly through
the use of pattern matching, which the Tuning Wizard commonly performs.

— Trap keystrokes—Some software attempts to capture keystrokes as part of
normal behavior. Verify this is not malicious before proceeding.

— Monitor media devices—You can control which devices in your system
control or access media devices, such as video cameras and microphones.

• Application Control—This rule provides the ability to control whether an
application is allowed to run. It also controls what applications can start other
applications. It is an important rule type, especially when combined with dynamic
application classes, which you see later in the chapter in examples of advanced
custom policies.

• File Access Control—This rule controls which applications are allowed to read and
write files and create directories.

• Network Access Control—This rule controls how a process is allowed to initiate,
terminate, or listen for network connections.

Although you will become familiar with several other rule types through daily use of the
product, you should completely understand the rule types in the previous list before
beginning to tune and create customer policies in your own environment.

Discovering State Sets
State sets provide a level of granularity and control not provided by many other Host
Intrusion Prevention System (HIPS) products. Become familiar with two types of state sets:
user and system state sets. These sets provide mechanisms that enable a CSA administrator
to deploy policy to endpoints that are enforced only when a specific environment is
encountered, such as the administrator logging into the system or a specific IP address used
by the computer.

Preparing for the CSA Tuning Process 177

User-State Sets Overview
User-state sets are matched on an endpoint when specific users or groups are in use on the
system. You can both define as many of these sets as you want and use the state sets that are
pre-installed with the CSA MC. These objects allow you to enforce policy that is not
normally allowed. The following examples illustrate this, and a sample User-State Set
configuration screen is shown in Figure 9-1:

• Administrative access to manual installations—Although your average user might
not be able to install software locally, you could allow the administrator to log in and
perform the installation. The state set would identify this user account and allow the
installation by applying specific allow rules to the system temporarily while the
administrator is logged into the system.

• Remote access to the registry—You might use management tools to set registry
settings remotely that CSA would normally prevent. You could use a user-state set that
matches a specific account or group used to authenticate to the local system and
override the preventative policies.

• Administrative CSA control—You might define a rule module that allows the CSA
to be viewed or stopped only when the matching state set is active.

Figure 9-1 User-State Set Configuration

178 Chapter 9: Advanced Custom Policy

System State Sets Overview
System state sets are matched on an endpoint when various criteria are matched. There are
several reasons to build a system state set, such as identifying when a system is on or off a
specific subnet, when the CSA MC is reachable, when an installation is currently in
progress, or when your Network Admission Control (NAC) posture token is changed or set
among others. The following is a list of common settings that can be used alone or in
conjunction to match a specific state and a sample image of what the System State Set
configuration screen looks like in Figure 9-2.

Figure 9-2 System State Set Configuration Options

• Cisco Trust Agent posture for NAC—You can define a set that matches the various
posture settings that NAC provides, such as Healthy, Quarantine, and Infected. You
might decide to enforce different rules when the state matches, such as preventing
Outlook from opening attachments when NAC has determined the system is infected.

Preparing for the CSA Tuning Process 179

• Security level—If you allow users to see the CSA in the system trays of their
computers, you can also allow them to use the security-level selector that allows them
to change the setting to Off, Low, Medium, or High. These settings can enforce
different policies as defined by the CSA administrator.

• Network address ranges—This identifies the network to which the user is currently
attached.

• DNS suffix matching—This identifies the users’ DNS suffix, such as
ServiceProvider.net, Company.com, and VPN.Company.com.

• Management Center reachable—This matches if the agent determines that the CSA
MC can be contacted or not. This is a good way to know if the user is currently
connected to your network or not connected. You might use this to enforce restricting
inbound connectivity for the system if it is not connected to your network.

• Installation process detected—This matches when a process is placed into the
<*Installation Applications> special dynamic application class. This state allows the
alteration of the current running policy, so that the installation can continue without
too many user-required query responses, if any at all.

Using the combinations of the variables that create system state sets is powerful when
building custom policies for your environment. You should try to use these objects when
creating policy to ensure granular security policy enforcement as an alternative to creating
a policy that is too loose and allows negative actions to occur for all system states. An
example of using multiple variables for a system state is determining if a user is VPN-
connected. You could match on the system IP address, the DNS suffix, and the CSA MC
reachable parameters to determine that a system is connected to authorized VPN
concentrators. After this state matches, you can alter the system security policy to allow or
deny system functions, such as file transfers or remote control functions if necessary.

Discovering Dynamic Application Classes
Just as state sets can provide great distinction in levels of policy enforced, dynamic
application classes can also provide granular policy manipulation. If you use the dynamic
application classes effectively and efficiently, you can simplify the amount of work you
need to perform and the number of rules you need to create when tuning processes. In
addition to simplifying the number of rules required to maintain your environment,
dynamic application classes can provide much stronger security to the endpoint. The
following examples describe some common uses of dynamic application classes and Figure
9-3 shows the configuration of a dynamic application class.

• Telnet applications—You can automatically add processes to this class when they
attempt to access remote IP addresses over TCP/23.

180 Chapter 9: Advanced Custom Policy

• Limit executable actions after accessing a protected file—You could place
processes in a special class after they read or write to a specific folder. You could then
limit the capabilities of this process to ensure it cannot transmit files or perform other
actions.

Figure 9-3 Dynamic Application Class Configuration

Best Practices for Tuning
There are many ways to tune a policy, and often there are multiple variations of policies that
can accomplish the same tasks. It is often stated that there is no wrong way to tune, but there
are definitely some advanced issues you should consider before choosing to tune any rule.
Some of the issues to consider include: ease of migration of consistent policies among
multiple environments (development and production), ease of transition during CSA MC
software upgrades, and the flexibility and strength of the policy.

Best Practices for Tuning 181

Understanding Importing and Upgrading
When you design your policy and make changes to the default policy included with the
CSA MC, it is important to understand how any changes you make can impact the amount
of effort it takes to exchange policies between your production and development
environments and also when you upgrade minor or major revisions of the CSA product.

NOTE Many corporations use multiple environments to control their testing and implementation
processes and change control impacts. It is not unusual to see this between two and four
environments such as: testing, development, systems integration, and production.

When you import objects you have exported from another CSA MC (or a previous export
from this CSA MC), you should understand which items are duplicated and renamed and
also which items replace the original. Additionally, you should understand that part of every
CSA software upgrade, such as moving from CSA v4.5.1.628 to CSA v4.5.1.639, also
includes an import process as part of the upgrade.

During software upgrades on the CSA MC, the imports compare each individual imported
objects against the current objects to see if there is a match by name. If there is a match, the
system determines if the object is an exact match or not. If it is an exact match, the new
object replaces the old object and the old one is removed. This means that any policy that
uses this object now includes the new object version automatically. If the object is not an
exact match and some of the parameters have changed with the upgrade, the new object is
imported and displays the new version number, but it does not automatically replace the
object in the current policy. You need to perform compares on the new and old object to see
what changed in the newly upgraded object and determine if you would like to incorporate
the changes.

During an import of an object that is not part of an upgrade procedure, the objects are also
compared. If the object name already exists, the system creates the new object being
imported but appends to the name to differentiate the newly imported object. The appended
name contains an underscore character followed by a portion of the name of the import
process you created to import this object, such as _import-name. You need to compare and
apply these new objects as necessary using a manual process. Of course, if the new
imported object does not match any existing objects, it simply adds the object to the system
without changing the name of the object.

You can see that the previous two types of imports can cause you to perform manual tasks
upon completion to apply the policy you want and to clean up the post upgrade and import
environments. This can be a tedious task. Ensuring that you make as few changes as
possible that cause the post-import tasks to grow in number greatly simplifies your job as
an administrator. For this reason, it is important that you think about the objects you edit

182 Chapter 9: Advanced Custom Policy

before you make the changes. At first, it might seem like a better idea to edit the settings in
default objects, so that you do not have to create an additional rule to add the functionality
you are attempting to add. However, if you do this you actually ensure that any imported or
upgraded policy does not match and results in duplication that requires manual cleanup.
You should always attempt to leave the default objects simple and unchanged if possible.
This is not always the case because there are exceptions to the rule, but if you attempt to
make this part of your decision-making process, you will have much simpler administrative
tasks in the future.

Variable and Application Class Usage
When creating policy, many types of objects are available to you. Often, because many of
the fields available to the administrator allow literal values to be entered along with
variables, the administrator enters the value into the fields rather than creating a new
variable (such as File Set, Network Set, and so on) or application class. It is recommended
that you attempt to create variables and classes as often as possible to allow your future
policy to deploy more rapidly. Any object that can be reused later in the software life-cycle
simplifies your policy development and also ensures consistency among multiple
administrators.

Sample Custom Policies
As with most events in life, seeing is believing. You need to be able to use all the CSA MC
policy objects effectively. This section illustrates a few examples of how to build custom
policies to assist in constructing your basic skills in this art.

NOTE The sample policies created in this section might need additional rules and components to
be completely effective in your own environment. The following examples help illustrate
the processes involved.

State-Based Policies
As discussed earlier, state-based policies can be powerful. Using states can be an effective
way to lighten policy enforcement on a single machine temporarily without completely
degrading the entire deployments security permanently.

Sample Custom Policies 183

Install Technician Agent Control
Often, you encounter the need to allow a local technician of a system to perform actions
that would not normally be allowed to the system user. This could be a technician’s manual
installation of a software package or hardware driver. To accomplish this, you can either use
a state-based set or place the system in a special group or test mode so that the installation
can be performed. The problem with the last two options is that the CSA administrator
would need to be involved in every daily task. In addition, it’s possible that the security is
completely removed in test mode rather than just slightly degraded and controlled. In this
example, we use the following procedure to start to configure the objects.

Step 1 Create a user-based state set named INSTALL-TECH that matches a
local group with the same name. This is effective only if you have a group
called INSTALL-TECH on your system and have a user in that group
perform the installation. This state set is displayed in Figure 9-4.

Figure 9-4 INSTALL-TECH State Set

184 Chapter 9: Advanced Custom Policy

Step 2 Create a policy named Install Allowed Policy and also a rule module
named Install Allowed Rule Module. The rule module should be
enforced only when the INSTALL-TECH state set matches. The
configuration for the rule module can be seen in Figure 9-5. The rule
module should be associated with the policy.

Figure 9-5 Install Allowed Rule Module with State Set

Step 3 Insert the following rules in the rule module. See these rules in
Figure 9-6.

— Agent UI control—Allows the agent to become visible to the install
technician.

— Agent service control—Allows the agent service to be stopped by
the install technician.

Step 4 Attach the policy to groups as necessary.

Sample Custom Policies 185

Figure 9-6 Add Necessary Rules to the Rule Module

At this point, an install technician should be able to log in on any system that carries the
policy and install software. They can receive query messages and stop the agent service
when necessary.

Remote Registry Access
It is not unusual for certain systems in your environment to attempt registry access to
workstations for various purposes. To allow this access, yet not open up remote registry
access to all systems, you need to use a user-state set. Follow these steps to create the policy
required to accomplish this task.

Step 5 Create a user-based state set named MGMT that ties to a group that the
user who will attempt the remote access is a member. When a user who
is a member of this group authenticates to the remote system, the state set
will match and your rules will temporarily apply to the system.

186 Chapter 9: Advanced Custom Policy

Step 6 Create a policy named Remote Registry Access Policy and a rule
module named Remote Registry Access Rule Module that you can
associate to the policy. This rule module should be enforced only when
your state set matches on the system.

Step 7 As shown in Figure 9-7, add a Registry Access Control rule to the rule
module that allows <Remote Clients> to access all registry keys.

Step 8 Apply this policy to the correct groups.

Figure 9-7 Remote Registry Access Rule

Remember, if you apply this correctly, you allow access to the registry remotely only after
a successful authentication of a specific user or group member. This is much more secure
than allowing all access to the registry at all times.

Sample Custom Policies 187

Securing the System When Away from Home
When systems connect to your network, corporate firewalls, intrusion detection systems
(IDS), intrusion prevention systems (IPS), and other security devices protect them. When
they disconnect and travel to remote networks at coffee shops, hotels, or even their home,
they lose all that protection. Therefore, it might be desirable to raise the level of network
security enforced on these systems when they travel abroad. In many cases, endpoints run
many services that listen on the network, such as mass deployment and system management
software, remote control packages, file sharing, and web servers. The following example
creates a system state set and a policy to help you lock down your systems when they leave
your premises.

Step 1 Create a system-based state set named OFF-NET that matches IP
addresses that are not part of your address space. Also, be certain that the
CSA MC is not reachable as shown in Figure 9-8. When a system does
not have an IP address you own and also cannot reach the CSA MC
server, you can assume that the system is not local.

Figure 9-8 OFF-NET Systems Set

188 Chapter 9: Advanced Custom Policy

Step 2 Create a policy named OFF-NET Protection Policy and a rule module
named OFF-NET Protection Rule Module that you can associate to the
policy. Enforce this rule module only when your OFF-NET state set has
matched on the system.

Step 3 Add the following rules as displayed in Figure 9-9:

— Add an NAC rule to the rule module that denies all applications
from acting as a server on all TCP and UDP ports. This should be
enforced only when you are not connected to the corporate
network.

— Add a Network shield rule that prevents all malicious packets and
various scanning mechanism but does not log the messages. Your
systems are guaranteed to be scanned and see some of the worst the
Internet can throw at them when they are off your network. It is
therefore advised that you do not log these attempts as you have
little recourse when the host is miles away from any protection you
can provide. Additionally, you are not likely to receive these
messages until the host next connects via remote access or locally,
which most likely guarantees you would be too late to react.

Step 4 Apply this policy to the correct groups.

Figure 9-9 OFF-NET Rules

Sample Custom Policies 189

You can add any other rules that would control the system when it is not attached to your
network. You might decide that no client connections should be made out of the system
except virtual private network (VPN) initiation back to the corporate facility for example.

NAC Policy
If your company decides to implement Cisco NAC, you will find it advantageous to use the
CSA to complement the solution. You can use the NAC posture token returned by the Cisco
Access Control Server (ACS) Policy Server to match a policy and therefore cause an
additional policy to become effective. This example uses the pre-defined Cisco Trust Agent
Infected Posture system state set to determine when the NAC server deems your system
infected. After you have matched that set, you initiate a rule that does not allow e-mail
applications to start other applications, such as viewers.

Step 1 Create a policy named NAC Infected Policy and a rule module named
NAC Infected Rule Module that you can associate to the policy. This
rule module should be enforced only when the Cisco Trust Agent
Infected Posture system state set has matched on the system. View the
system state in Figure 9-10.

Figure 9-10 Cisco Trust Agent Infected Posture State Set

190 Chapter 9: Advanced Custom Policy

Step 2 Add an application control rule to the rule module that prevents e-mail
applications from starting any other application as displayed in
Figure 9-11.

Step 3 Apply this policy to the correct groups.

Figure 9-11 Application Control Rule

You can add other protections if desired, such as limited network connectivity. As you can
see, this type of configuration can alter the endpoint capabilities if the NAC process deemed
that you are infected or quarantined. You would then have limited capabilities until you
brought the agent-protected system back into a compliant state by using an endpoint
management product, such as the BigFix Agent, at which point the system policy can revert
to its original policy.

Using Dynamic Application Classes 191

Using Dynamic Application Classes
Dynamic application classes are a key component in the CSA architecture. Learning to use
these effectively allows you to complete complex tasks using a limited number of rules
rather than a great number of static rules. After you understand how to use this type of
control, you will use it often and continue to become a more effective and efficient CSA
administrator.

An example of dynamic application classes follows. The example tunes an item many
corporations use to simplify their environments. Many companies use mass deployment
software distribution products to install software, software updates, and patches to their
systems automatically. Because the software deployment mechanism is trusted, no CSA
administrator wants to tune the policy for every software installation and update. Instead,
you can build a rule module that makes use of a dynamic application class to provide the
capabilities needed to all the installers that are started by the trusted deployment
mechanism.

For this example, assume the software distribution mechanism is named AUTO-
INSTALLER.EXE and is pre-installed on every system. The following steps walk you
through a high-level approach that enables you to create your own policy that allows your
enterprise software distribution system to function.

Step 1 Create an application class named AUTO-INSTALLER.EXE that
includes your application as shown in Figure 9-12.

Figure 9-12 AUTO-INSTALLER.EXE Application Class

192 Chapter 9: Advanced Custom Policy

Step 2 Create another application class named Processes Started by AUTO-
INSTALLER.EXE and Children.

This is a dynamic application class that includes processes started by
AUTO-INSTALLER.EXE and their child processes as well. You select
only When Dynamically Defined by Policy Rules to make this a
dynamic application class. Do not select This process and all its
descendants. You can see the configuration of this in Figure 9-13.

Figure 9-13 Dynamic Application Class

Step 3 Create a policy named Installation Policy and a rule module named
Installation Rule Module that you can associate to the policy.

Step 4 Create the following rules in the rule module.

(a) Add an Application Control rule that has an action of Add New
Process to Application Class and select Our Dynamic Application
Class from the dropdown list. Select the Allow checkbox to list the
type of matching action. Select AUTO-INSTALLER.EXE and

Using Dynamic Application Classes 193

Processes Started by AUTO-INSTALLER.EXE and Children as
the application classes to monitor. Finally, select All applications
under attempt to run. This is shown in Figure 9-14.

This rule can be interpreted as, “When AUTO-INSTALLER.EXE,
processes started by AUTO-INSTALLER.EXE, and all subsequent
processes start any allowed application, add the new process (as a
child) to the dynamic application class.”

If you turn on logging for this rule, you can see the process tree of
who starts whom. You might not want to do this in a production
environment due to the load it can create on the CSA MC, but it can
be useful at times.

Figure 9-14 Tagging Child Processes

194 Chapter 9: Advanced Custom Policy

(b) Clone the Application Control Rule described previously by
selecting the rule from the rule module and pressing the Copy button
to copy a clone to the same rule module. Edit the new rule and
change the action associated to the new rule to Allow and also the
description as shown in Figure 9-15.

This rule allows the installation program and any software package,
patch, or update to start any programs required to complete the
installation. This also allows the installer to start the patches and
other installers in the first place.

Figure 9-15 Allow the Installers to Execute Applications

(c) Add a File Access Control rule to allow AUTO-INSTALLER.EXE
and the contents of the dynamic application class to Read File,
Write File, and Write Directory on all files. This allows the
installer to write to all locations required, which includes writing
DLLs and services. It is important to test your installers before
allowing your mass distribution system to install the software.

Using Dynamic Application Classes 195

Remember, you assume that anything installed by your installation
and distribution program is trusted 100 percent. This rule is
displayed in Figure 9-16.

Figure 9-16 Allow the Installers to Write Files

(d) Add a Registry Access Control rule to allow the same two
application classes to write to all registry locations.

(e) Add a System API Control rule that allows whatever temporary
security controls you want to provide to the installers. Common
installer System API rule violations could include: trapping
keystrokes, accessing memory of other applications, injecting code
into other applications, and accessing functions in data or stack.

Remember, this policy does not weaken the entire system, but just provides these specific
installation applications the temporary rights they need to complete an installation without
causing the CSA administrator the headache of providing updated policy every time a new
installation occurs. The key to everything in the previous example is the dynamic
application class and the amount of intelligence and control it provides you. Mastering this
concept ensures a successful deployment. The list of rules we added, as seen in Figure

196 Chapter 9: Advanced Custom Policy

9-17, might not be a complete configuration for every installation application on the market,
but should provide you a start in creating your own policy.

Figure 9-17 List of Rules from the Installation Policy

Forensics
You can use the CSA and various rules and features of the product to report behavior you
want to monitor on certain systems. The two methods used are: Monitor Rules and
Application Behavior Investigation. The remaining portion of the chapter discusses these
two methods.

Monitor Rules
You can create rules that do not enforce any security Allow or Deny actions but rather log
an event only when the matching rule is triggered. These rules use an action of Monitor.
You can create any type of rule with this type of action. The following are examples of rules
that might be useful:

• Monitor execution of a specific application, such as a known P2P, Instant Messenger,
or other unapproved application.

Summary 197

• Monitor FTP, TFTP, IRC, and other connections that should not leave your corporate
network.

• Monitor file access of certain directories and file types.

You can use these rules when needed or create a Rule Module that includes several different
types of rules with the Monitor action, each tied to a specific empty application class. Using
this approach, you can add an executable to this application class when you locate a process
you want to monitor, and you instantly begin to receive forensic data about the process after
the next rule generation. This can provide you a Honey-Pot approach to monitoring that is
available to you anywhere in the deployment at any time.

Application Behavior Investigation
The CSA product also provides a mechanism for monitoring a process natively named
Application Behavior Investigation. This is configured by selecting Analysis>Application
Behavior Investigation>Windows Behavior Analyses. Select New to create an
investigation. You define the matching application class and the host the investigation
should target. After completion and after a specified period or number of executions, you
receive a report that displays all the network interaction, file interaction, COM object
interaction, and registry interaction of that process. This can be a useful way to collect data
about what a process does as part of research and also prior to creating and application
control policy for this software.

Summary
Creating your own policies is a major part of operating a successful CSA deployment. To
accomplish this, you must thoroughly understand the components available to you and the
methods of research available. Understanding the rule types and the events caused by those
rules helps you move forward in your deployment and perform day-to-day support. A solid
grasp of the fundamentals and advanced components not only makes you an effective
administrator but also an efficient one.

