mitigating

at host level, 23–25
at network level, 25–26
Morris worm, characteristics of, 18
Nimda worm, characteristics of, 20–22
replacement login, example of, 17
signatures. See signatures
SQL Slammer worm, characteristics of, 21

authentication

802.1x, 78
role in layered defense, 79
Auto mode (software bypass), 63
automated response to attacks, 26
automatic blocking, 143–144
automatic summarization, 46

B

balanced systems, 186
behavioral security policies, 122–123
behavior-based detection, 44
benefits of IPSs, 137
HIPS
acceptable use policy enforcement, 95–96
attack prevention, 92
internal attack propagation prevention, 93
patch relief, 92–93
policy enforcement, 94–95
security policy enforcement, 138
traffic normalization, 138
“benevolent” worms, 16
blade-based sensors, 153–154
block response, 61
block signature action, 47

branch office IPS deployment, 236–237
HIPS implementation, 238
limiting factors, 237
NIPS implementation, 239–240
security policy goals, 237
buffer overflow vulnerabilities, 22
buffer overrun exploit, 105–107

cabling, sensors, 221
capabilities
of Cisco IPS network components, 211
of IPSs
attack prevention, 27
regulatory compliance, 27
capturing network traffic
devices for, 158–161
with IPSs, 154
for Inline mode, 155–157
for promiscuous mode, 157–158
with RSPAN, 162
with SPAN, 162
with VACLs, 164
characteristics
of attacks
CIH virus, 19
Loveletter virus, 19–20
Morris worm, 18
Nimda worm, 20–22
replacement login attack, 17
SQL Slammer worm, 21
of signatures, 34
Chernobyl, 19
child processes, 107
CIH virus, 19
Cisco Catalyst 6500 series IDSM-2, 206–207
Cisco IDS Network Module, 207
Cisco IOS IPS sensors, 208
Cisco IPS 4200 series appliance sensors, 206
classifying IPS hosts, 185–187
client-server architecture, 8
client-server computing, 7–9
clipboard, 109
collaboration between layers, 81–82
COM (Component Object Model), 109
communications, securing management communication, 66–68
comparing IPS and IDS functionality, 136
correlation tools, 65–66
criteria for sensor selection
form factor, 152–154
interfaces, 151–152
processing capacity, 150–151
CSA (Cisco Security Agent), 77
phases of deployment, 177
conducting pilot tests, 194–196
full deployment, 197–198
implementing management, 189–194
predeployment planning, 180–184
selection and classification of target hosts, 184–188
tuning, 196
understanding the product, 178–179
CSA MC (CSA Management Center), 77
organizational units, 190–191
CS-MARs (Cisco Security Monitoring, Analysis and Response System), 82
customizing default corporate security policy configuration, 194
day zero attacks, 77
default allow organizations, 214
default deny organizations, 214
defense-in-depth, 71
corporate security policy, 79–80
elements of, 72–79
defining goals of IPS deployment, 213–216
delivery mechanism of attacks, 13
deny response, 61
deploying IPSs
at medium financial enterprises, 240
HIPS implementation, 241–242
limiting factors, 241
NIPS implementation, 242–243
security goals, 241
at branch offices, 236–237
HIPS implementation, 238
limiting factors, 237
NIPS implementation, 239–240
security policy goals, 237
at home office, 250
HIPS implementation, 251–252
limiting factors, 251
NIPS implementation, 252
security policy goals, 251
at medium educational institutions, 243
HIPS implementation, 245–246
limiting factors, 244
NIPS implementation, 246–247
security policy goals, 245
at small offices, 247
HIPS implementation, 248–249
limiting factors, 248
NIPS implementation, 250
security policy goals, 248
host IPS, 53
determining factors, 54–55
network IPS, 55
determining factors, 56–58
on large enterprise, 229–230
HIPS implementation, 231–233
limiting factors, 231
NIPS implementation, 233, 236
security policy goals, 231
sensors
large deployments, 169
small deployments, 168
deployment phases
- of CSA, 177
 - conducting pilot tests, 194–196
 - finalizing the project, 198
 - full deployment, 197–198
 - implementing management, 189–194
 - predeployment planning, 180–184
 - selection and classification of target hosts, 184–188
 - tuning, 196
 - understanding the product, 178–179
- of IPS, 204
 - finalizing the project, 225
 - predeployment planning, 212–220
 - sensor deployment, 221–222
 - tuning, 222–224
 - understanding the product, 205–211

devices
- failure
 - inline sensor failure, 62
 - management console failure, 63–64
 - intrinsic IPS, 80–81
- device-to-device communication, securing, 68
- directory traversal attacks, 40
- DMZ firewall, role in layered defense, 75
- drive-by spamming, 14
- drop signature action, 46
- dropping
 - all packets from source IP address, 137
 - all packets on connection, 137

E
- encoding mechanisms, 40
- encryption, role in layered defense, 78–79
- endpoint agents, access control process, 101
 - access resource, identifying, 102
 - consulting the security policy, 119–124
 - determining system state, 115–116, 119
 - gathering operation data, 110–115
 - taking action, 124
- enforcing security policies, 138
- EtherChannel, 63
- event correlation, 65–66
- event horizon, 36
- events, 109

evolution of security threats, 6
- client-server computing, 7–9
- Internet, 9
- mobile computing, 10–11
- wireless connectivity, 10

examples
- of attacks
 - CIH virus, 19
 - Loveletter virus, 19–20
 - Morris worm, 18
 - Nimda worm, 20–22
 - replacement login, 17
 - SQL Slammer worm, 21
- of effective defense-in-depth, 72
 - external attack against corporate database, 72–77
 - internal attacks against management servers, 77–79

exploits, 104

F
- false negatives, 59
- false positives, 59
- finalizing CSA deployment, 198
- firewalls, 6
- flows, 164
- form factor as sensor selection criteria, 152–154
- forwarding devices, 136
- full CSA deployment, 197–198
- future of IPS, intrinsic IPS, 80–81

G-H
- generating alerts, 141
- goals of IPS deployment
 - defining, 213–216
- HIDS (host-based intrusion detection systems), 25
- hierarchical management model, 127
- HIPS (host-based intrusion prevention systems), 89, 101
 - benefits of
 - acceptable use policy enforcement, 95–96
 - attack prevention, 92
internal attack propagation
prevention, 93
patch relief, 92–93
policy enforcement, 94–95
endpoint agents, 101
access control process, 101–124
limitations of, acceptable use policy enforcement, 96–97
management infrastructure, 125
management center, 127–129
management interface, 129
required capabilities, 90–92
role in layered defense, 79
security policies
anomaly-based, 120
atomic-rule based, 121
behavioral, 122–123
home office IPS deployment, 250
HIPS implementation, 251–252
limiting factors, 251
NIPS implementation, 252
security policy goals, 251
Host IPS
deploying, 53–55
role in layered defense, 77
signature tuning, 59–60
host-based signatures
atomic, 35
stateful, 36
triggering mechanisms, 39
host-level attack mitigation, 23
antivirus, 23–24
HIDS, 25
personal firewalls, 24
hosts, classifying, 185–187
hubs, 158
hybrid IPS/IDS systems, 140, 145

IDSM-2 sensors, 207
impact of attack, 16
incident response plans, 66
individual management method, 65
information theft, 12
inline mode sensor operation, 208
capturing network traffic, 155, 157
sensor failure, 62
inline on a stick, 152
inline prevention, 26
insecure management protocol, 67
installing
IPS MC, 222
sensors, 221–222
integrated IPS software, 154
interfaces as sensor selection criteria, 151–152
Internet as security threat, 9
Internet perimeter firewall, role in layered defense, 74
Internet perimeter router, role in layered defense, 73
intrinsic IPS, 80–81
IP blocking, 143–146
IP logging, 142
IP spoofing, 144
IPSs
hosts, classifying, 185–187
integrated software, 154
network management options, 209–211
network traffic, capturing, 154–158
phases of deployment, 204
finalizing the project, 225
predeployment planning, 212–220
sensor deployment, 221–222
tuning, 222–224
understanding the product, 205–211
response methods
alerting actions, 166
blocking actions, 167
dropping actions, 167
logging actions, 167
sensors
Cisco Catalyst 6500 series IDSM-2,
206–207
Cisco IDS Network Module, 207
Cisco IOS IPS sensors, 208
Cisco IPS 4200 series appliance sensors, 206
Cisco product availability, 205
large deployments, 169
selecting location for placement, 216–218
small deployments, 168
signature updates, 212
IPS MC (IPS Management Center), installing, 222
K-L

kernel, 109
 modification, 111
 modules, 108

large enterprise IPS deployment, 229–230
 HIPS implementation, 231–233
 limiting factors, 231
 NIPS implementation, 233, 236
 security policy goals, 231
 sensor deployment, 169

layered defense. See also defense-in-depth
 against corporate database attacks, 72–77
 against management server attacks, 77–79

least privilege, 124

lifecycle of attacks, 103
 application execution, 107
 file resources, 108
 memory resources, 105, 107
 network resources, 104–105
 persistence process, 107, 109

limitations
 of IPS, 138–140, 145
 of HIPS, acceptable use policy enforcement, 96–97

line cards, 153–154

location state conditions, 116

log response, 61

log signature action, 47

logging
 attacker traffic, 142
 traffic between attacker and victim, 143
 victim traffic, 142

Loveletter virus, 19–20

M

MAC (mandatory access control), 124

mainframes, 7

malicious mobile code, 103

malware, 232

management communication
 device-to-device, securing, 68
 OOB, securing, 67
 securing, 66

management console failure, 63–64

management infrastructure, 125
 management center, 125–129
 management interface, 129

management method, selecting, 65

manager-of-managers, 127

McAfee Entercept, 122

medium educational institution IPS
 deployment, 243
 HIPS implementation, 245–246
 limiting factors, 244
 NIPS implementation, 246–247
 security policy goals, 245

medium financial enterprise IPS
 deployment, 240
 HIPS implementation, 241–242
 limiting factors, 241
 NIPS implementation, 242–243
 security goals, 241

Microsoft Component Object Model, 109

mirroring traffic, 158

mitigating attacks
 at host level, 23
 antivirus, 23–24
 HIDS, 25
 personal firewalls, 24
 at network level, 25
 inline prevention, 26
 promiscuous monitoring, 25
 system log analysis, 25

mobile computing as security threat, 10–11

modems, 13

monitoring IPS activities, 64

Morris worm, 16, 18

Morris, Robert, 16

N

NetFlow, role in layered defense, 76

network adapters, 94

network flows, 164

network IPS
 deploying, 55
 determining factors, 56–58
 role in layered defense, 75, 78
 signature tuning, 59–60

network taps, 159
network traffic

- analyzing, 114
 - via anomaly operations, 165
 - via atomic operations, 164
 - via normalizing operations, 165–166
 - via protocol decode operations, 165
 - via stateful operations, 164–165
- capturing, 154
 - devices for, 158–161
 - with inline mode IPS, 155–157
 - with promiscuous mode IPS, 157–158
 - with SPAN, 162
 - with VACLs, 164

network-based signatures
- atomic signatures, 35
- stateful signatures, 37
- triggering mechanisms, 39

network-level attack mitigation, 25
- inline prevention, 26
- promiscuous monitoring, 25
- system log analysis, 25

Nimda worm, 20–22

NIPS, selecting management architecture, 218–220

normalizing traffic, 138, 165–166

NTP (Network Time Protocol), 65

O
- Off mode (software bypass), 63
- On mode (software bypass), 63
- OOB (out-of-band) management communication, securing, 67
- operating systems
 - events, 109
 - kernel, 109–111
- organizational units (CSA MC), 190–191
- OSI reference model, 26
- OTPs (one-time passwords), 79

P
- parent processes, 107
 - passwords, OTPs, 79
- pattern detection, 40–41
- pattern matching, regular expressions, 40
- pattern-based security policies, 122
- PCs, zombies, 12
- peer-to-peer networks, 9
- permissive systems, 186
- persistence process
 - application execution, 107
 - file modification, 108
 - system configuration, 108
- personal firewalls, 24
- phases of deployment, 177
 - for CSA
 - conducting pilot tests, 194–196
 - finalizing the project, 198
 - full deployment, 197–198
 - implementing management, 189–194
 - predeployment planning, 180–184
 - selection and classification of target hosts, 184–188
 - tuning, 196
 - understanding the product, 178–179
 - for IPS, 204
 - finalizing the project, 225
 - predeployment planning, 212–220
 - sensor deployment, 221–222
 - tuning, 222–224
 - understanding the product, 205–211
- pilot test, conducting, 194, 196
- placing IPS sensors in network, 216–218
- policy groups
 - configuring, 191–193
 - secondary groups, 192–193
- port security, 78
- PortMapper, 45
- predeployment planning phase of IPS deployment, 212–220
- processing capacity as sensor selection criteria, 150–151
- promiscuous mode sensor operation, 25, 246
 - capturing network traffic, 157–158
- protocol decodes, 38, 165
- Pull model (management console), 64
- Push model (management console), 64

R
- RBAC (role-based access control) matrix, 124
- regular expressions, 40
- regulatory compliance, 27
remote delivery mechanisms, 14
replacement login, example of, 17
required HIPS capabilities, 90–92
reset signature action, 47
resetting TCP connections, 143
responses to suspicious activity
 alerting actions, 166
 blocking actions, 167
 dropping actions, 167
 logging actions, 167
restrictive systems, 186
reviewing corporate security policies, 212
RFI (Request for Information), sample questions, 261–269
rootkit, 109, 119
RPC (Remote Procedure Call), 45
RRs (risk ratings), 223
RSPAN (Remote Switch Port Analyzer), capturing network traffic, 162
rule modules, 190

sample RFI questions, 261–269
sandbox, 113
scenarios for IPS deployment
 at branch offices, 236–240
 at home office, 250–252
 at large enterprises, 229–233, 236
 at medium educational institutions, 243–247
 at medium financial enterprises, 240–243
 at small offices, 247–250
secondary policy groups, configuring, 192–193
securing management communication, 66
device-to-device, 68
OOB, 67
security policies
 anomaly-based, 120
 atomic rule-based, 121–122
 behavioral, 122–123
 pattern-based, 122
selecting
 location for IPS sensor placement, 216–218
management method, 65
NIPS management architecture, 218–220

sensors, criteria
 form factor, 152–154
 interfaces, 151–152
 processing capacity, 150–151

sensors
 alerts, risk ratings, 223
 Cisco Catalyst 6500 series IDSM-2, 206–207
 Cisco IDS Network Module, 207
 Cisco IOS IPS sensors, 208
 Cisco IPS 4200 series appliance sensors, 206
 Cisco product availability, 205
 configuring, 221
 inline mode
 failure of, 62
 functionality, 208
 installing, 221–222
 large deployments, 169
 promiscuous mode, 246
 selection criteria
 form factor, 152–154
 interfaces, 151–152
 processing capacity, 150–151
 small deployments, 168

shared IPS/IDS capabilities, 145
 alert generation, 141
 initiating IP blocking, 143–144
 IP logging, 142
 logging attacker traffic, 142
 logging traffic between attacker and victim, 143
 logging victim traffic, 142
 resetting TCP connections, 143

shims, 111

signature updates, 212

signatures, 33
 alerts, 45
 allow signature action, 47
 atomic signatures, 34–35
 host-based, 35
 network-based, 35
 block signature action, 47
 cabling, 221
 characteristics of, 34
 drop signature action, 46
 event horizon, 36
 event responses, 61
 log signature action, 47
reset signature action, 47
stateful, 36
 host-based, 36
 network-based, 37
 with anomaly-based triggering mechanism, 43
triggering mechanisms, 37–39
 anomaly-based detection, 42–43
 behavior-based detection, 44
 pattern detection, 40–41
tuning, 59–60
single packets, dropping, 136
single-server management model, 127
small IPS sensor deployments, 168
small office IPS deployment, 247
 HIPS implementation, 248–249
 limiting factors, 248
 NIPS implementation, 250
 security policy goals, 248
social engineering, 105
software bypass, 63
software updates, 61
source IP addresses
 dropping all packets from, 137
 spoofing, 144
Spacefiller, 19
spam, 14
SPAN (Switch Port Analyzer), capturing network traffic, 162
spyware, 248
SQL Slammer worm, 230
stack memory, 106
standalone appliance sensors, 153
stateful operation method of network traffic analysis, 164–165
stateful signatures, 36
 host-based, 36
 network-based, 37
summary alerts, 46
suspicious activity, IPS response methods
 alerting actions, 166
 blocking actions, 167
 dropping actions, 167
 logging actions, 167
switch ports, role in layered defense, 78
switches, 136
 capturing network traffic, 160
symbolic links, 110
system call interception, 111–113

system log analysis, 25
system state conditions, 118–119

T

TCP connections
 resetting, 143
 three-way handshake, 74
TCP Reset interface, 207
TCP/IP, 10
threats to security, evolution of, 6
 client-server computing, 7, 9
 Internet, 9
 mobile computing, 10–11
 wireless connectivity, 10
three-way handshake, 74
tiered management model, 127
traffic mirroring, 158
traffic flows, 164
traffic normalization, 138
triggers, 37–39
 anomaly-based detection, 42–43
 behavior-based detection, 44
 pattern detection, 40–41
Trojan horses, 19
 rootkits, 119
true negatives, 60
true positives, 60
tuning phase of CSA deployment, 196

U

uRPF (unicast reverse path forwarding), 73
user state conditions, 117

V

VACLs (VLAN access control lists), capturing network traffic, 164
virtual operating systems, 113
viruses, 18
 CIH virus, characteristics of, 19
 Loveletter virus, characteristics of, 19–20
vulnerabilities, 93, 104
W-X-Y-Z
war-dialers, 13
wireless connectivity as security threat, 10
wireless network adapters, 94
worms, 19
 Nimda, characteristics of, 20–22
 SQL Slammer, characteristics of, 21
zombies, 12