

C H A P T E R 4

Layer 7 Load Balancing and
Content Customization

This chapter will discuss the methods and protocols involved in accomplishing a Layer 7
load-balancing solution. The reasons for and benefits of deploying persistent and
customized load balancing will be explored.

TCP is the building block for Layer 7 protocols, such as the HTTP. This chapter will
examine the interaction between HTTP and TCP and how client and server communication
at the TCP and HTTP layers are accomplished.

Following the discussion of the TCP and HTTP, we will present a case study involving the
requirement for Layer 7 load balancing from the application, security, and infrastructure
perspective.

Benefits of Layer 7 Load Balancing
Load balancing for most applications can be accomplished using the basic information
about the clients and the services that they are trying to reach, be that web-based content
or VPN concentrators. Usually these decisions are made at the IP and TCP layers, which
include looking at either the source or destination IP address or the destination TCP or UDP
port number. However, as the applications and services offered become more complex,
there is an increasing need to provide load-balancing decisions at layers above the transport
layer (the TCP layer). This is where Layer 7 load balancing comes into the picture. Layer 7
load balancing provides inspection into the packet payload and identification of headers
and fields to allow for more intelligent load balancing of user requests. The decision could
be based on various HTTP method URLs or HTTP protocol headers, which we will discuss
in detail in the section “Introduction to HTTP.”

The three major reasons for Layer 7 load balancing are:

• Scalability and acceleration of the application

• Persistent user sessions on a server

• Content customization based on user profile

The following sections describe these advantages.

84 Chapter 4: Layer 7 Load Balancing and Content Customization

Scalability and Application Acceleration
As the number of clients of popular web-based applications increase multifold over a year,
scaling internal and external applications is one of the key worries of data center application
teams. Typically, the applications are scaled by adding more servers with replicated content
and adding real servers to the Layer 4 load balancer. This works well for the networking
team but is a cumbersome activity for the application team. This is because any change in
the application or server content needs to be updated on more servers.

Layer 7 load balancing provides a solution which is desirable by both the network and
application teams. The load balancer with its hardware-based Layer 7 packet inspection
capabilities can be used to direct clients to different groups of servers. The server load balancing
(SLB) devices can look into the URL and distinguish between various content requests. For
example, content distribution can be performed as users make request for an URL, such
as http://www.cisco.com/partner/index.html, which can be distinguished from an URL
http://www.cisco.com/cust/index.html for the same domain. An SLB device can direct users
for partner and cust to separate server farms respectively. Thus any change to partner-related
content would only need to be updated on the partner server farm. Application distribution
can also be performed by distinguishing */*.cgi from */*.html.

This is not just a method but also a great tool for improving server and application management,
as it makes a substantial difference in the end user’s experience. Because of dedicated content
and application servers that will function faster, users will notice faster page download times.

Session Persistence
User session persistence to applications is another key benefit of Layer 7 load balancing.
As the user’s request is load balanced to a particular server, it needs to be persisted to that
server. This is critical, as a client’s authentication or shopping cart (browsing history) may
exist in one server and not in the others. If the client’s next TCP connection is load balanced
to another server that does not have the client’s history or session information, then the
client would have to start from scratch.

In typical load-balanced environments, session persistence is provided by using the source IP
sticky method. The source IP sticky method is used by the load balancer to track client
connections to the application based on the client’s source IP address. Any time the client with
the same source IP address makes a connection via the load balancer, the load balancer will
stick or forward that client’s connection to the same application to which the client initially
connected. This works well, but it can result in uneven load balancing when a large number
of clients visit the site from behind mega proxies. Since mega proxies NAT multiple client
source addresses to a single IP address, multiple clients can be using the same IP address; and
if the source IP sticky method is enabled on the load balancer, multiple client connections will
be forwarded to the same application, resulting in uneven load balancing.

Layer 7 load balancing session persistence can be based on an HTTP cookie, a URL, or a
SSL session ID. This enables the load balancers to distinguish between users and also provide
persistence for connections to servers even when they have the same source IP address.

Introduction to TCP 85

Content Customization
As the global world is adapting to the Internet rapidly, providing customized content based
on language or geographic region is becoming increasingly important. By inspecting the
HTTP header requests, content can be inspected at the Layer 7 level (the HTTP protocol
level) and connection can be redirected to a geographically or linguistically appropriate
server or site. For example, if a client is making connections in Chinese, its requests should
be catered to the servers that serve content in Chinese.

Introduction to TCP
The TCP was designed to provide reliable mechanisms for communications between a
client and a server. Since TCP ensures the integrity of the data being transferred, not
only in the proper sequence but also in utilizing the network bandwidth optimally, it
is applied as a reliable connection-oriented protocol. A good understanding of TCP is
essential for Layer 7 load balancing. This is the protocol used by HTTP and SSL. In
the following sections, we will cover the details of the TCP protocol, which is a
standard-based protocol defined in RFC 793, including:

• Data segments

• TCP headers

• TCP connection establishment and termination

• TCP flow control

Data Segments
In order to provide reliability for data communication, TCP provides retransmission and
sequencing of the data segments being carried between the client and the server. A message
sent from the client to the server or vice versa is called a segment in the TCP world. In order
to ensure that a segment has reached the destination, the receiver sends an
acknowledgement to the sender.

The postal service is a great analogy that can be used to understand TCP/IP. For example,
when one sends a certified package in the mail, a message for the receipt of the package is
sent to the sender as soon as the package arrives at the destination. Similarly, once the data
has been successfully received in its original form, the receiver sends an acknowledgement
back to the sender that it has received the data properly and the data is in its original and
undamaged state. If the sent data is damaged or changed, the receiver simply ignores it.
After a certain specified time, if an acknowledgement from the receiver has not been
received, the sender checks to see the status of the sent data. Using TCP as the Layer 4
transport protocol ensures reliable communication and data integrity between the client and
the server.

86 Chapter 4: Layer 7 Load Balancing and Content Customization

TCP Headers
In this section, we will cover some of the important TCP header fields, such as source and
destination port, sequence number, acknowledgement number, header length, and more.

Figure 4-1 illustrates the structure of the TCP header. The size of the TCP header is 20 bytes
when the Options fields are not set.

Figure 4-1 TCP Protocol Header

The following subsections provide descriptions of the TCP header fields.

Source and Destination Port
A TCP segment is carried within an IP packet; thus the source and destination IP addresses
of the client and server are present within the IP header. The TCP header starts with a
16-bit Source Port field and a 16-bit Destination Port field. This port is the communication
channel that the client and server use to transmit TCP segments to and receive TCP
segments from each other. A very common example for identifying these values is when a
client makes a connection to a web server on TCP port 80 (the TCP Destination Port), while
the source port for a client is usually a random port above the well-known reserved ports of
1024. As many clients with random source ports make connections to a server on port 80,
the way for the server to distinguish between the connections as being separate from client
to client is to identify the connection based on the source IP, destination IP, source port, and
destination port. Since the destination IP and port stay the same, the IP address and source
port combination has to be unique in order for a connection to be unique.

Sequence Number
The 32-bit Sequence Number field in the TCP header indicates the first byte of data (the
start of the data byte) in this particular segment. This is important in order to track and
accomplish the reassembly of the TCP segments on the receiving end.

Bit 0 1 2 3 4 5 6 7 8

Source Port

Checksum

HLEN Reserved
U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Sequence Number

Data

• • •

Acknowledgment Number

Destination Port

Window

Urgent Pointer

PaddingOptions (if any)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Introduction to TCP 87

Acknowledgement Number
The 32-bit Acknowledgement Number field is used to identify the sequence number that
the sender of the acknowledgement is expecting to receive.

Header Length
The 4-bit Header Length field is the total length of the header. It is needed because some of
the OPTIONS bit fields can be of variable length. The maximum size for the Header Length
fields when all the possible OPTIONS are selected is 60 bytes; otherwise, it is a 20-byte
header.

Reserved
This 6-bit field is reserved and will be used for future enhancements to the TCP header.

Control Bits
The control bits are six flag bits, used in identifying and handling the TCP segment. The
following are the control bits used:

• URG—The Urgent Pointer (URG) flag indicates to the receiver to accept data as it is
deemed urgent.

• ACK—The Acknowledgment (ACK) flag identifies the successful reception of the
segment and the next data byte, as specified in the Acknowledgment Number field, to
be expected by the sender from the receiver.

• PSH—The Push (PSH) flag, when set, tells the receiver to immediately forward or
push the data to the application.

• RST—The Reset (RST) flag is used to abort an existing connection and reset it so that
the buffers holding the data can be cleared.

• SYN—The Synchronization (SYN) flag is used to signal that the sequence number
between the receiver and the client need to be synchronized. The SYN bit is used
during the initial connection setup between the client and the server.

• FIN—The Finished (FIN) flag is used to tell the receiver that the sender is finished
sending the data and the receiver can close its half of the connection.

Window
The 16-bit Window field is for flow control using an advertised window size, which is
the amount of bytes the sender and receiver are willing to accept during the exchange of
TCP segments. The maximum size for the window is 65,535 bytes.

88 Chapter 4: Layer 7 Load Balancing and Content Customization

Checksum
The 16-bit checksum value is used to verify the integrity of the TCP headers and the data.
If a segment contains an odd number of header and text octets to be checked, the last octet
is padded on the right with zeros to form a 16-bit word for checksum purposes. The pad is
not transmitted as part of the segment. While computing the checksum, the checksum field
itself is replaced with zeros.

The checksum also covers a 96-bit pseudo header conceptually prefixed to the TCP header.
This pseudo header contains the source address, the destination address, the protocol,
and TCP length. This gives the TCP protection against misrouted segments. This information
is carried in the IP and is transferred across the TCP/IP interface in the arguments or
results of calls by the TCP on the IP.

The checksum value is stored in the Checksum field, and the pseudo header is discarded.
On the receiving end, a similar operation is performed and the values are checked. If the
checksum does not match, the segment is discarded.

Urgent Pointer
The 16-bit Urgent Pointer field indicates to the receiver that this value must be added to the
Sequence Number field to produce the last byte of the urgent data (primarily when the
urgent data ends). This field is used in conjunction with the URG flag.

Options
For added features and functionality, TCP has reserved the OPTIONS field. Depending on the
option(s) used, the length of this field will vary in size, but it cannot be larger than 40 bytes due
to the size of the header length field (4 bits). The Maximum Segment Size (MSS) option
is the most common one used. The MSS is used to negotiate between the sender and the receiver
the maximum size of the segment they will transfer. Other options for flow and congestion
control such as time stamp for TCP segments can also be set using the OPTIONS field. The
following are option codes that can be used in the OPTIONS field:

• No-Operation

This option code may be used between options, such as to align the
beginning of a subsequent option on a word boundary. There is no guarantee
that senders will use this option, so receivers must be prepared to process
options even if they do not begin on a word boundary.

• MSS

If this option is present, then it communicates the maximum receive segment
size at the TCP that sends this segment. This field must only be sent in the
initial connection request (that is, in segments with the SYN control bit set).
If this option is not used, any segment size is allowed.

Introduction to TCP 89

Padding
The TCP header padding is used to ensure that the TCP header ends and data begins on a
32-bit boundary. The padding is composed of zeros.

In the next section, we will discuss the TCP header fields in a lot more detail.

TCP Connection Establishment and Termination
There are various steps that need to be completed before data is transferred to and from a
client and server. The steps include the negotiations between the client and the server,
which are part of the TCP connection establishment phase. Similarly, when the data transfer
is complete, the client and server go through the steps of tearing down the connection so
that other processes on the client and server can use them. These steps are part of TCP
connection termination phase.

TCP Connection Establishment
TCP relies on the connection initiation and setup based on control information called a
handshake. This handshake is an exchange of control information between the client and the
server before data can be transferred. The handshake or the connection setup uses a three-step
process called the three-way handshake. If we follow the communication between host A and
host B, the TCP three-way handshake can be illustrated as shown in Figure 4-2.

Figure 4-2 TCP Connection Establishment

As shown in the figure, the following are steps that specify the details of the TCP
connection establishment phase:

1 A client initiates the connection by sending a TCP segment with the SYN flag set. This
segment tells the server that the client wants to establish a connection. The segment
also contains the sequence number that the client will use as a starting number for its

ServerClient

SYN

Ack

SYN Ack

90 Chapter 4: Layer 7 Load Balancing and Content Customization

segments. The segments are used to synchronize the data, as they might arrive out of
order on the client or server receiving the data.

2 In response to the SYN segment received from the client, the server responds to the
client with its own segment, which has the SYN bit and the ACK bit set (basically
acknowledging the segment sent from client to server). The server will also set the
sequence number that it will use for the communication.

3 Finally, the client sends a segment that acknowledges receipt of the server’s segment,
and this is the start of the transferring of data.

TCP Connection Termination
When the server and the client finish with the data transfers, they will conduct another
exchange of segments containing the FIN bit set to close the connection. As opposed to the
connection establishment phase, the connection termination phase includes the exchange
of four segments. Because in TCP, the segments are arriving independently of each other in
each direction, each connection end must shut down independently of the other. The
connection termination phase can be illustrated as in Figure 4-3.

Figure 4-3 TCP Connection Teardown

As shown in the figure, the following are steps that specify the details of the TCP connection
termination phase:

1 The client generates a FIN segment because the application running on the client is
closing the connection.

2 The server receives the FIN and signals its application that the client has requested to
close the connection. The server immediately acknowledges (ACK) the FIN from
the client.

ServerClient

FIN

ACK

ACK

FIN

Introduction to TCP 91

3 As the application on the server decides to shut down, it initiates a FIN segment to the
client to close the connection.

4 Upon receipt of the FIN segment from the server, the client acknowledges it with
an ACK.

TCP Flow Control
The TCP flow control techniques are implemented to optimize the transfer of data between
the client and the server along with the network parameters. The following sections discuss
these flow control techniques:

• TCP acknowledgements, retransmission, and timeout

• Sliding window

TCP Acknowledgements, Retransmission, and Timeout
TCP manages the data it sends as a continuous byte stream, and it has to maintain the
sequence in which bytes are sent and received. The Sequence Number and Acknowledgement
Number fields in the TCP header keep track of the bytes.

To ensure that the segments of the data stream are properly received, both the client and the
server need to know the segment’s initial sequence number. The two ends of the connection
synchronize byte-numbering systems exchanging SYN segments during the handshake.
The Sequence Number field in the SYN segment contains the initial sequence number
(ISN), which is the starting point for the byte-numbering system.

Each byte of data is numbered sequentially from the ISN, so the first real byte of data
sent has a sequence number of ISN + 1. The sequence number in the header of a data
segment identifies the sequential position in the data stream of the first data byte in
the segment.

Since TCP’s underlying network protocol is IP, one of the challenges that TCP faces is to
manage segments that are received out of order or are lost. TCP has to manage all flow
control and retransmissions because IP does not have any mechanisms to do so. During the
TCP data transfer phase, the receiver acknowledges the longest contiguous prefix of stream
that was received in order. Each segment is acknowledged, providing continuous feedback
to the sender as the data transfer progresses. The TCP acknowledgement specifies the
sequence number of the next octet that the receiver expects to receive. For example, if
the first byte sent was numbered 1 and 5200 bytes have been successfully received, the
acknowledgement number will be 5201.

For identifying the successful receipt of a segment, each time a TCP segment is delivered,
there is a timer that starts and waits for an acknowledgement. If the timer expires before the
segment has been acknowledged by the receiver, the TCP sender assumes that the segment

92 Chapter 4: Layer 7 Load Balancing and Content Customization

was lost or corrupted and needs to be retransmitted. This timer is referred to as the
retransmission timeout (RTO). This mechanism adapts to the changes in the networks and
delays in acknowledgments and adjusts the RTO.

Sliding Window
TCP uses the Window field to manage the number of bytes the remote end is able to accept.
If the receiver is capable of accepting 1000 more bytes, the window would be 1000. The
window indicates to the sender that it can continue sending segments as long as the total
number of bytes that it sends is smaller than the window of bytes the receiver can accept. The
receiver controls the flow of bytes from the sender by changing the size of the window. A zero
window tells the sender to cease transmission until it receives a non-zero window value. Both
the sender and the receiver advertise the number of bytes each is willing to receive from the
other. The window size reflects how much buffer size the receiving end is capable of handling.
The sender has to obey the size of the window before delivering the segment.

Now that we have reviewed TCP and understood the session establishment and teardown,
we will discuss our core Layer 7 protocol, HTTP, which rides on TCP.

Introduction to HTTP
When the Internet was first designed, the designers had to come up with the solution of
clients being able to retrieve resources from servers. One of the most common features of
a web page is a hyperlink. This is the clickable link on the web page that points to other
resources.

For this concept to work, the uniqueness of the documents and names had to be globally
maintained. The naming convention on the Web that is used to maintain the uniqueness of
resources (web pages) is accomplished by the URL. The other issue that web designers had
to address was how these resources would be represented and formatted in a uniform and
readable format. This problem was solved by HTML. Web designers defined HTTP to
determine how the various formats, such as text, graphics that make up the web content
(HTML), and web page names (URLs), are transported from the client to the server and
back.

The HTTP is the most common protocol for transferring resources on the Web. HTTP
defines the format and meaning of messages exchanged between web components, such as
clients and servers. A protocol is simply a language, similar to natural languages used by
humans, except that it is used by machines or software components. In the next sections,
we will look at the following:

• Protocol details

• HTTP header field

• Differences between versions

Introduction to HTTP 93

The protocol definitions can be found in RFC 2068, which defines HTTP version 1.1.

Protocol Details
HTTP is a stateless protocol. Statelessness implies the absence of a state maintenance,
during the client and server communication. The HTTP protocol does not have any
awareness of the previous client or server request or response. The decision not to maintain
state in the HTTP protocol was to provide scalability on the Internet, where a large number
of clients could be making connections to the server. If the server started to maintain
state for each connection, the resources and the time for connections would increase
drastically, hampering end user experience. However, for applications that did require state
across the multiple HTTP requests, other enhancements and headers were included
(such as cookies) to satisfy the requirements. Figure 4-4 shows a client browser accessing
www.example.com.

Figure 4-4 A Client Browser Accessing www.example.com

Following are some of the key details of the HTTP header.

94 Chapter 4: Layer 7 Load Balancing and Content Customization

HTTP Methods
A request method notifies the HTTP server of what action should be performed on the
resource identified by the requested Uniform Resource Identifier (URI). The request
method is included in a client’s request along with several headers and a URI. The method
is applied to the resource by the origin server, and a response is generated. The response
consists of a response code, metadata information about the resource, and the other
response headers. Following are some of the key HTTP request methods.

GET Method
The GET method requests a document from a specific location on the server. This is the main
method used for document retrieval. The response to a GET request is returned to the
requesting client. If the URI refers to a static file, a GET request will read the file and return
it to the client. If the URI refers to an executable program or a script, the result of the program
or script is returned as part of the body within the entity body portion of the request.

The GET method can be constructed to add modifier headers to yield different results; for
example, if the If-Modified-Since modifier is used with the GET request along with a
specified date, the server sends the appropriate response code based on the changes made
to the resource according to the date specified.

Figure 4-5 shows a Sniffer capture of an HTTP GET request.

Figure 4-5 Sniffer Capture of an HTTP Get Request

Introduction to HTTP 95

HEAD Method
The HEAD method is used to obtain the metadata information for the resource. There is no
response body returned as a result of a HEAD request. However, the metadata that a server
returns should be the same metadata that would be returned if the request method had been
GET. One of the biggest advantages of using the HEAD method is to check the status of the
resource without the overhead of the resource being returned. This method is widely used
in SLBs to provide probes to check the resource availability of a server before being
brought into rotation for load balancing client requests. Another advantage is that the
HEAD method uses the modification time of a document.

POST Method
The POST method allows clients to provide data input to a data handling program, such as an
executable script running on the server. The server on which this data handling program is
being executed allows only for specific actions to be performed. Since the POST method can
potentially change the contents of the resource, the clients need to have access rights to execute
the process on the server. The POST method can be used for Common Gateway Interface
(CGI) programs, gateway-to-network services, CLI programs, and database operations. In a
POST request, the data sent to the server is in the entity body of the client’s request. After the
server processes the POST request and headers, it may pass the entity body to another program
for processing. In some cases, a server’s custom application programming interface (API)
may handle the data, instead of a program external to the server. POST requests should be
accompanied by a content-type header, describing the format of the client’s entity body.
The most commonly used format with POST is the URL-encoding scheme used for CGI
applications. It allows form data to be translated into a list of variables and values.

PUT Method
The PUT method is similar to the POST in that processing in the method would typically
result in a different version of the resource identified by the URI in the request. If the request
URI does not exist, it is created, and if it already exists, it is modified. However, the
resource identified in the PUT method alone would change as a result of the request. When
using the PUT method, the data is sent as part of the request and not as part of the URI.
When the client uses the PUT method, it requests that the included entity body should be
stored on the server at the requested URL.

DELETE Method
The DELETE method is used to delete the resource identified by the request URI. This
method is used to delete resources remotely; however, authorization with processing of the
DELETE method is required.

96 Chapter 4: Layer 7 Load Balancing and Content Customization

TRACE Method
The TRACE method allows programmers to see how a client’s message is modified as it
passes through a series of proxy servers. The recipient of the TRACE method echoes the
HTTP request headers back to the client. When the TRACE method is used with the
Max-Forwards and Via headers, a client can determine the chain of intermediate proxy
servers between the original client and the server.

URL
An URL is a means of identifying a resource that is accessible through the Internet. The
URL is a special case of a URI that is understood by web servers. A URL is any string that
uniquely identifies an Internet resource.

Each URL is composed of three parts, a mechanism (or protocol) for retrieving the resource,
the hostname of the server that can provide the resource, and a name for the resource. The
resource name is usually a filename preceded by a partial path, which is relative to the path
defined for the root of the web server. Here is an example:

http://www.cisco.com/en/US/support/index.html

In this example:

• The protocol is http; if no protocol is present, then most browsers default to http.

• The hostname or resource is www.cisco.com; this can be an IP address or a fully
qualified domain name.

• The resource has a file called index.html; the path to the resource is en/US/support/.

HTTP Cookie
As the Internet has taken over the task of providing e-commerce applications to users, new
requirements, such as maintaining a user to a specific server for a persistent connection, have
become important. As mentioned earlier, HTTP is a stateless protocol where each HTTP
request is independent of the other. For many applications, a server needs to track the
user’s request to send appropriate customized content to the user. This user tracking is
extremely important for dynamic content, which provides user-specific information, such
as the contents of a shopping cart. Earlier web servers tracked users by their IP addresses,
but this became difficult as users starting connecting to servers from behind mega proxy
links, such as AOL. In other words, an application cannot present the same shopping cart
information for everyone using AOL.

Netscape resolved this issue by proposing the use of strings called cookies within HTTP
headers. When the client sends the initial request to the server, the server returns a
“Set-Cookie” header that gives a cookie name, expiry time, and other info. When the user

Introduction to HTTP 97

returns to the same URL, the user’s browser returns the cookie if it has not expired. Cookies
can be long lived or per-session based.

Cookies are simply text-based strings. When a client makes a connection to a web server, a
cookie is inserted in the HTTP response from the server back to the client. An additional
line with the Set-Cookie field is added. For example, Figure 4-6 shows a response from a
server with an HTTP Set-Cookie header.

Figure 4-6 Sniffer Capture of an HTTP Response with a Set-Cookie

As the figure illustrates, the name of the cookie is the string “CP_GUTC,” and the value
for the cookie “CP_GUTC” is the numeric string that starts with “64.140.” The path
field indicates the particular directory within the site for which this cookie is valid. The path
“/” indicates that the cookie is valid for all subdirectories and URL paths. The “expires”
field specifies the validity time of the cookie. The client receives this cookie and stores it
with the path and domain information for the period of time specified by the “expires” value.
When the same client makes subsequent requests to the same URL, it uses the stored cookie
in the HTTP GET. The Sniffer capture in Figure 4-7 shows how the client’s second request
has the cookie in the HTTP header.

98 Chapter 4: Layer 7 Load Balancing and Content Customization

Figure 4-7 Sniffer Capture of the Second HTTP Request from the Client with the Cookie

HTTP Cookie Parameters
As seen in the previous section, an HTTP cookie has six key parameters associated with it:

• The name and value of the cookie, a pair of strings used to identify the cookie and the
value set for it. This is a mandatory header required by the Set-Cookie field.

• The expiration date of the cookie attribute specifies a date string that defines the
validity of the cookie. The cookie is expired from the client browser and is no longer
sent once the date has been reached. This is an optional header and is not required
by the Set-Cookie field. If there is no expiration date sent from the server to the client,
the cookie is considered a session cookie and is only valid for the length of the session
to the URL. Once the client browser is closed, the cookie is not saved.

• The path the cookie sets is for the URL within which the cookie is valid. Pages outside
of that path cannot read or use the cookie. If the path parameter is not set explicitly,
then it defaults to the URL path of the document that the server is creating. If the path
for the cookie is /test and the cookie value pair is test=ing123, the cookie will be sent
along with the HTTP requests if those paths include /test/cgi-bin or /test/Cisco. As long as
the /test is in the path, the cookie will be sent. The path “/” is the most general path
and will send cookies to the sites associated with any HTTP requests the client issues.

Introduction to HTTP 99

• The domain value for the cookie is used when the server is doing a cookie match, and a
comparison of the domain attributes of the cookie is made with the Internet domain
name of the host from which the HTTP URL request is being requested. If a domain is
matched, the request will be matched to the path of the request. The default value of
the domain attribute is the domain of the server that generates the cookie response.

• The secure field specifies to transmit the cookie only if the connection is HTTPS, an
SSL-encrypted connection. If secure is not specified, a cookie is considered safe to
be sent in the clear text.

HTTP Header Fields
Headers are crucial to HTTP, as they determine the handling of a request. If a header is not
recognized by the recipient, it should be ignored; if it is received by a proxy, it should be
forwarded. HTTP (1.0) defines the following headers:

• General headers

• Request headers

• Response headers

• Entity headers

General Headers
General headers indicate general information, such as the date or whether the connection
should be maintained. They are used by both clients and servers. The following are some
of the general header fields:

• The Date Header in the corresponding response message indicates that the message
was generated at the indicated time and has no bearing on when the associated entity
may have been created or modified.

• The Pragma header permits directives to be sent to the recipient of the message. A
directive is a way to request that components behave in a particular way while
handling a request or a response.

• The Connection general header field allows the sender to specify options that are
desired for that particular connection but that are not to be communicated by proxies
over further connections.

• The Trailer general field value indicates that the given set of header fields is present
in the trailer of a message encoded with chunked transfer coding.

• The Transfer-Encoding general header field indicates what (if any) type of
transformation has been applied to the message body in order to safely transfer it
between the sender and the recipient.

100 Chapter 4: Layer 7 Load Balancing and Content Customization

• The Upgrade general header allows the client to specify what additional communication
protocols it supports and would like to use if the server finds it appropriate to switch
protocols. The server must use the Upgrade header field within a 101 (Switching
Protocols) response status code to indicate which protocol(s) are being switched.

• The Upgrade header field only applies to switching application-layer protocols upon the
existing transport-layer connection. Upgrade cannot be used to insist on a protocol
change; its acceptance and use by the server is optional. The capabilities and nature of
the application-layer communication after the protocol change is entirely dependent
upon the new protocol chosen, although the first action after changing the protocol must
be a response to the initial HTTP request containing the Upgrade header field.

• The Via general header field must be used by gateways and proxies to indicate the
intermediate protocols and recipients between the user agent and the server on
requests, and between the origin server and the client on responses.

• The Warning general header field is used to carry additional information about the
status or transformation of a message that might not be reflected in the message. This
information is typically used to warn about a possible lack of semantic transparency
from caching operations or transformations applied to the entity body of the message.

Request Headers
Request headers are used only for client’s requests. They convey the client’s configuration
and desired format to the servers. Following are some of the request header fields:

• The Authorization header is used by the client to include the appropriate credentials
required to access a resource. Certain resources cannot be accessed by the servers
without proper authorization.

• The From header allows users to include their e-mail address as an identification.
General use of the From header is discouraged, as it violates the privacy of the user.

• The If-Modified-Since header is a conditional header, indicating that the request may
be handled in a different way based on the value specified in the header field.

• The Referer header lets the clients include the URI of the resource from which the
request URI was obtained.

• The Accept-Charset request header field can be used to indicate what character sets
are acceptable for the response. This field allows clients capable of understanding
more comprehensive or special-purpose character sets to signal that capability to a
server capable of representing documents in those character sets.

• The Accept-Encoding request header field is similar to Accept-Charset but restricts
the content codings that are acceptable in the response. If an Accept-Encoding field is
present in a request, and if the server cannot send a response that is acceptable
according to the Accept-Encoding header, then the server should send an error
response with the 406 (Not Acceptable) status code.

Introduction to HTTP 101

• The Accept-Language request header field is similar to Accept-Charset, but restricts
the set of natural languages that are preferred as a response to the request.

• The Authorization field value consists of credentials containing the authentication
information of the user agent for the realm of the resource being requested.

• The Expect request header field is used to indicate that particular server behaviors are
required by the client.

• The From request header field, if given, should contain an Internet e-mail address for
the human user who controls the requesting user agent.

• The Host request header field specifies the Internet host and port number of the
resource being requested, as obtained from the original URI given by the client.

• The If-Match request header field is used with a method to make it conditional. A
client that has one or more entities previously obtained from the resource can verify
that one of those entities is current by including a list of their associated entity tags in
the If-Match header field.

• The If-Unmodified-Since request header field is used with a method to make it
conditional. If the requested resource has not been modified since the time specified
in this field, the server should perform the requested operation as if the If-Unmodified-
Since header were not present.

• The Location response header field is used to redirect the recipient to a location other
than the Request-URI for completion of the request or identification of a new resource.

• The Max-Forwards request header field provides a mechanism with the TRACE and
OPTIONS methods to limit the number of proxies or gateways that can forward the
request to the next inbound server. This can be useful when the client is attempting to
trace a request chain that appears to be failing or looping in mid-chain.

• The Proxy-Authorization request header field allows the client to identify itself (or its
user) to a proxy that requires authentication. The Proxy-Authorization field value
consists of credentials containing the authentication information of the user agent for
the proxy and/or realm of the resource being requested.

• The Referer request header field allows the client to specify, for the server’s benefit, the
address (URI) of the resource from which the Request-URI was obtained (the “referrer,”
although the header field is misspelled.) The Referer request header allows a server to
generate lists of back-links to resources for interest, logging, optimized caching, and so
on. It also allows obsolete or mistyped links to be traced for maintenance.

• The TE request header field indicates what extension transfer-codings it is willing to
accept in the response and whether it is willing to accept trailer fields in a chunked
transfer coding.

• The User-Agent request header field contains information about the user agent
originating the request. This is for statistical purposes, the tracing of protocol
violations, and the automated recognition of user agents for the sake of tailoring
responses to avoid particular user agent limitations.

102 Chapter 4: Layer 7 Load Balancing and Content Customization

Response Headers
Response headers are used only in server responses. They describe the server’s
configuration and information about the requested URL. The response headers start with
the status line followed by the other request-initiated headers. The status line of the server’s
response includes the HTTP version number, a three-digit status code, and a textual
description of the result.

HTTP defines a few specific codes in each range, although these ranges will become more
populated as HTTP evolves. If a client cannot decipher a status code, it should be able to
understand its basic meaning from its numerical range.

Following are some of the response header fields:

• Status-Line is the first line of a response message and consists of the protocol
version followed by a numeric status code and its associated textual phrase.
HTTP status codes are extensible. Following are key status code definitions
from RFC 2616:

— 1xx Informational

— 100 Continue

— 101 Switching Protocols

— 2xx Successful

— 200 OK

— 201 Created

— 202 Accepted

— 203 Non-Authoritative Information

— 204 No Content

— 205 Reset Content

— 206 Partial Content

— 3xx Redirection

— 300 Multiple Choices

— 301 Resource Moved Permanently

— 301 Resource Moved Temporarily

— 303 See Other

— 304 Not Modified

— 305 Use Proxy

— 306 (Unused)

— 307 Temporary Redirect

Introduction to HTTP 103

— 4xx Client Error

— 400 Bad Request

— 401 Unauthorized

— 402 Payment Required

— 403 Forbidden

— 404 Not Found

— 405 Method Not Allowed

— 406 Not Acceptable

— 407 Proxy Authentication Required

— 408 Request Timeout

— 409 Conflict

— 410 Gone

— 411 Length Required

— 412 Precondition Failed

— 413 Request Entity Too Large

— 414 Request-URI Too Long

— 415 Unsupported Media Type

— 416 Requested Range Not Satisfiable

— 417 Expectation Failed

— 5xx Server Error

— 500 Internal Server Error

— 501 Not Implemented

— 502 Bad Gateway

— 503 Service Unavailable

— 504 Gateway Timeout

— 505 HTTP Version Not Supported

• The Age response header field conveys the sender’s estimate of the amount of time
since the response (or its revalidation) was generated at the origin server. A cached
response is “fresh” if its age does not exceed its freshness lifetime.

• The ETag response header field provides the current value of the entity tag for the
requested variant.

• The Location response header field is used to redirect the recipient to a location other
than the Request-URI for completion of the request or identification of a new
resource.

104 Chapter 4: Layer 7 Load Balancing and Content Customization

• The Proxy-Authenticate response header field must be included as part of a 407
(Proxy Authentication Required) status code response. The field value consists of a
challenge that indicates the authentication scheme and parameters applicable to the
proxy for this Request-URI.

• The Server response header field contains information about the software used by the
origin server to handle the request.

• The Vary field value indicates the set of request header fields that fully determines,
while the response is fresh, whether a cache is permitted to use the response to reply
to a subsequent request without revalidation.

• The WWW-Authenticate response header field must be included in 401 (Unauthorized)
response messages. The field value consists of at least one challenge that indicates the
authentication scheme(s) and parameters applicable to the Request-URI.

Entity Headers
Entity headers describe the document format of the data being sent between the client and
the server. Although entity headers are most commonly used by the server when returning
a requested document, they are also used by clients when using the POST and PUT
methods. Following are some of the entity header fields:

• The Content-Encoding entity header field is used as a modifier to the media-type.
When present, its value indicates what additional content codings have been applied
to the entity body, and thus what decoding mechanisms must be applied in order to
obtain the media type referenced by the Content-Type header field.

• The Content-Language entity header field describes the natural language(s) of the
intended audience for the enclosed entity. Note that this might not be equivalent to all
the languages used within the entity body.

• The Content-Length entity header field indicates the size of the entity body, in decimal
number of OCTETs, sent to the recipient—or, in the case of the HEAD method, the
size of the entity body that would have been sent had the request been a GET.

• The Content-Location entity header field may be used to supply the resource location
for the entity enclosed in the message when that entity is accessible from a location
separate from the requested resource’s URI. A server should provide a Content-
Location for the variant corresponding to the response entity. Especially in the case
where a resource has multiple entities associated with it and those entities actually
have separate locations by which they might be individually accessed, the server
should provide a Content-Location for the particular variant returned.

• The Content-MD5 entity header field, as defined in RFC 1864, is an MD5 digest of
the entity body for the purpose of providing an end-to-end message integrity check
(MIC) of the entity body. (Note that a MIC is good for detecting accidental
modification of the entity body in transit, but it is not proof against malicious attacks.)

Introduction to HTTP 105

• The Content-Range entity header is sent with a partial entity body to specify where in
the full entity body the partial body should be applied. The Content-Type entity
header field indicates the media type of the entity body sent to the recipient or, in the
case of the HEAD method, the media type that would have been sent had the request
been a GET.

• The Expires entity header field gives the date and time after which the response is
considered stale. A stale cache entry cannot normally be returned by a cache (either
a proxy cache or a user agent cache) unless it is first validated with the origin server
(or with an intermediate cache that has a fresh copy of the entity).

• The Last-Modified entity header field indicates the date and time at which the origin
server believes the variant was last modified.

Differences Between HTTP Versions 1.0 and 1.1
The following sections discuss some of the key differences between HTTP 1.0 and 1.1:

• Persistent connections

• Chunked messages

• Hostname

• Pipelining requests

Persistent Connections
Persistent connection is the main difference between version 1.0 and 1.1. HTTP 1.0,
in its documented form, made no provision for persistent connections. Some HTTP 1.0
implementations use a Keep-Alive header to request that a connection persist.

HTTP 1.1 makes persistent connections by default. HTTP 1.1 clients, servers, and proxies
assume that a connection will be kept open after the transmission of a request and its
response. The protocol does allow an implementation to close a connection at any time, in
order to manage its resources, although it is best to do so only after the end of a response.

Chunked Messages
HTTP 1.1 resolves the problem of delimiting message bodies by introducing the chunked
transfer coding. The sender breaks the message body into chunks of arbitrary length, and each
chunk is sent with its length prepended; it marks the end of the message with a zero-length
chunk. The sender uses the transfer encoding chunked header to signal the use of chunking.

This mechanism allows the sender to buffer small pieces of the message, instead of
the entire message, without adding much complexity or overhead. All HTTP 1.1
implementations must be able to receive chunked messages.

106 Chapter 4: Layer 7 Load Balancing and Content Customization

Hostname
HTTP 1.0 requests do not pass the hostname as part of the request URL. For example, if a
user makes a request for the resource at URL http://www.cisco.com/index.html, the
browser sends a message with the following request line to the server at www.cisco.com:

GET /index.html HTTP/1.0

This prevents the binding of another HTTP server hostname, such as exampleB.org to the
same IP address, because the server receiving such a message cannot tell which server the
message is meant for.

HTTP 1.1 requires that requests include a Host header that carries the hostname. This
converts the preceding example to:

GET /index.html HTTP/1.1
Host: www.cisco.com

If the URL references a port other than the default (TCP port 80), this is also given in the
Host header.

Pipelining Requests
Although HTTP 1.1 encourages the transmission of multiple requests over a single TCP
connection, each request must still be sent in one contiguous message, and a server must
send responses in the order that it received the corresponding requests. However, a client
need not wait to receive the response for one request before sending another request on the
same connection. In fact, a client could send an arbitrarily large number of requests over a
TCP connection before receiving any of the responses. This practice, known as pipelining,
can greatly improve performance. It avoids the need to wait for network round-trips, and it
makes the best possible use of the TCP protocol.

Layer 7 Load Balancing Mechanisms
In the previous section, we covered the HTTP protocol in detail. You now understand the
URLs, methods, and cookies. In Layer 7 load balancing, the SLB device proxies the client’s
TCP connection and receives the HTTP request. The SLB device buffers the client request and
parses through it. The load balancer can perform many functions while inspecting the HTTP
header. Following are some of the key mechanisms that can be used in Layer 7 load balancing:

• HTTP methods-based load balancing

• HTTP URL-based load balancing

• HTTP cookie-based load balancing

• HTTP cookie passive-based load balancing

• HTTP cookie learn-based load balancing

Layer 7 Load Balancing Mechanisms 107

HTTP Methods-Based Load Balancing
The SLB device can definitely inspect the HTTP method used by the client and make
appropriate load-balancing decisions. For instance, the SLB device can be configured to
distribute GET and POST methods to separate server farms. The SLB device can easily
drop DELETE method calls to prevent hackers from deleting web content.

HTTP URL-Based Load Balancing
The SLB device can inspect the HTTP URL and make appropriate load-balancing
decisions. The device can distribute requests based on access content or application to
different server farms. For example, all .cgi requests can be sent to servers optimized for
request processing and computation, while all static content requests (.htm, .gif, and so on)
can be sent to servers with a lot of disk space. Similarly, server management can be eased
up by keeping separate server farms for /sports/* and /news/*. Figure 4-8 shows how a
Layer 7 load-balancing device can be used to inspect HTTP requests and distribute client
requests based on content type.

Figure 4-8 Layer 7 SLB Used for Distributed Content

Figure 4-9 shows how a Layer 7 load-balancing device can be used to inspect HTTP
requests and distribute client requests based on the applications being accessed.

Layer 7
SLB Device

Client

Server Farm B

slb policy url = /sports/*
http://www.example.com/sports

Server Farm A

slb policy url = /news/*
http://www.example.com/news

Client Client

108 Chapter 4: Layer 7 Load Balancing and Content Customization

Figure 4-9 Layer 7 SLB Used for Distributed Applications

HTTP Cookie-Based Load Balancing
The SLB device can make a load-balancing decision based on the clients’ cookies. This is
vital for applications, such as Web Logic, which uses multiple cookies to provide client
session redundancy.

The Content Switching Module (CSM) has the “Cookie” expression matching feature that
can filter for a specific cookie name and value. In this configuration, the CSM is not looking
at the “cookie” inserted by the server; it is only matching the cookie in the client HTTP
request. For example:

!
 map COOKIE_SERVER1 cookie
 match protocol http cookie CookieName cookie-value 101617
!
 map COOKIE_SERVER2 cookie
 match protocol http cookie CookieName cookie-value 101327
!

Each cookie map maps to a policy that has a single server farm. All the policies are added
to the virtual. A default policy needs to be configured to make sure the user request is load
balanced across the servers in case a cookie match is not found in the user HTTP GET. In
cookie matching, the cookie name needs to be a specific name, while the value of the cookie
can be a regular expression.

Server Farm B

slb policy url = *.js
http://www.example.com/update.js

Server Farm A

slb policy url = *.cgi
http://www.example.com/cal.cgi

Layer 7
SLB Device

Client Client Client

Layer 7 Load Balancing Mechanisms 109

The functional steps of the cookie matching feature are as follows:

1 The user connects to the virtual server. The CSM proxies the TCP connect and waits
for the HTTP GET.

2 The HTTP GET is received from the user, and then the CSM parses the GET and
searches for the configured cookie names. If a match is found, the policy action is
taken.

3 If a cookie match is not found, the default policy is used to load balance the user
among the servers.

HTTP Cookie Passive-Based Persistence
When making persistent session decisions on cookies, the SLB device can read the cookie
value for the specified named cookie that the server has installed and send the next request
to the first server. This basically means that the load balancer reads the cookies set by the
server. The HTTP cookie values from each server would need to be different and also to be
configured on the SLB device.

HTTP Cookie Learn-Based Persistence
Cookie learn-based persistence (also known as cookie sticky) is similar to passive-based
persistence except that in this mode the SLB device dynamically learns the cookie values
set by the server for each client and stores them in the cookie sticky table.

The CSM supports the cookie sticky feature. It requires the real server to insert the
cookie into the HTTP reply. Assume that you configure the real server to insert cookie
“USERID=<xyz>”; where “USERID” is the name of the cookie and “xyz” is a unique per-
user value. The CSM can stick the user to a real server based on the value of cookie
“USERID”.

The cookie name is case sensitive. Configuration is fairly simple; for example:

module ContentSwitchingModule 9
 !
 serverfarm REALS
 nat server
 no nat client
 real 10.2.6.17
 inservice
 real 10.2.6.27
 inservice
 !
 sticky 10 cookie USERID timeout 60
 !
 vserver WWW
 virtual 10.2.44.56 tcp www
 serverfarm REALS
 sticky 60 group 10
 inservice
 !

110 Chapter 4: Layer 7 Load Balancing and Content Customization

Functional steps of the cookie sticky feature are as follows:

1 The user connects to the virtual server. The CSM proxies the TCP connect and waits
for the HTTP GET.

2 The HTTP GET is received from the user, and then the CSM parses the GET and
searches for the configured cookie name (USERID). If the cookie is found with a non-
null value, that value is searched in the sticky table and the user is sent to the server
that first issued the cookie.

3 If the cookie “USERID” is not found, the configured load-balancing method is used
to select an available server—let’s say real 10.2.6.17 is selected.

4 Real server 10.2.6.17 sends an HTTP response. The CSM parses through the response and
searches for the “USERID” cookie. If there is a set cookie (let’s say USERID=znaseh),
then the CSM adds that to the sticky table. Thus the sticky table looks like this:

znaseh ---- 10.2.6.17

5 Next time the client comes in with USERID=znaseh, the request would be sent to
server 10.2.6.17.

HTTP Cookie Insert-Based Persistence
The current load balancer can even insert cookies in the HTTP headers to provide
persistence. This is a unique feature where the SLB device adds a cookie (name and value)
into the HTTP response from the server. The client accepts the cookie as being sent by the
server when in fact it comes from the SLB device.

The CSM supports the cookie insert feature. This feature is used when you want to use a
session cookie for persistence if the server is not currently setting the appropriate cookie. With
this feature enabled, the CSM inserts the cookie in the response from the server to the client.

The following example shows how to specify a cookie insert feature for session persistence:

module ContentSwitchingModule 9
!
sticky 25 cookie USERID insert timeout 30
!
 vserver WWW
 virtual 10.2.44.56 tcp www
 serverfarm REALS
 sticky 30 group 25
 inservice
 !

Case Study: Layer 7–Based Solution
Now that we understand TCP and HTTP protocol definitions and Layer 7 load-balancing
functionality, we will start our discussion of how this solution should be deployed to
solve various application scalability and security needs. Deploying a Layer 7–based

Case Study: Layer 7–Based Solution 111

load-balancing solution requires extensive planning and research on how the application
functions.

In this case study, we will examine a specific customer deployment where three
different applications are being deployed: an online download application, an online
shop application, and an online user profile application. We will show how each application’s
requirements are achieved by our Layer 7 load-balancing solution. The product of choice
used in this solution is the CSM on the Cisco Catalyst 6500 Series Switch. The idea behind
the following case study and others in chapters in the rest of the book is to understand not
only the concepts but the implementation details.

In this case study, we will focus on server and application requirements. The management
and security requirements as well as the infrastructure requirements stay the same as those
defined in the Chapter 3 case study.

Server and Application Requirements
Server and application requirements for this case study are defined as follows:

• Directly manage the servers from the front end (client-side network)

• Number of servers 20—100 per site

• Following three different applications with their own distinct requirements

• Online Download Services Application

— This custom application provides web-based software download
capabilities to the clients.

— Use TCP server port 80 for the client connections initiated to the server.

— Clients can be distinguished by the URLs they use. Partner and premium
clients should be sent to the high-end server farm. This ensures that the
premium customers and partners get expedited services.

— Source IP–based stickiness is needed for this application for up to 20
minutes.

• Online Shop Application

— This custom application provides web-based software purchase capabilities
to the client.

— TCP/80, TCP/443

— This is a secure application and only allowed on TCP port 443. A client that
sends requests on HTTP (TCP:80) should be redirected to come back on the
HTTPS site.

— Source IP–based stickiness is needed for this application for up to 30
minutes.

112 Chapter 4: Layer 7 Load Balancing and Content Customization

• Online User Profile Application

— This custom application provides web-based user profile update capabilities
to the client.

— TCP/80.

— This application provides different features to internal and external users.
The internal and external users should be sent to different servers. The
internal and external users will use different domain names to reach the
application.

— No stickiness is required for this application.

• TCP-based keep alive required for all the application servers

• Potentially, server persistence needed when user transitions from HTTP to HTTPS

Infrastructure Configuration
In the Layer 7 SLB design, the CSM is used in routed mode with one client-side VLAN
(12) and one server-side VLAN (112). The CSM’s default gateway is the HSRP group IP
on the MSFC, and the server’s default gateway is the alias IP address on the CSM.

Following is the infrastructure configuration of the CSM, showing the client- and server-side
VLANs. Notice that there are two VLANs defined. The client VLAN 12 is the client-facing
VLAN, which also has a gateway defined (acting as the default gateway for the CSM) and
the server VLAN 112, which is the server-facing VLAN. These VLANs are part of the port-
channel from the CSM to the Supervisor (the Layer 2 Switch on the Cisco Catalyst 6500
Series Switch). Traffic will be forwarded from the Client VLAN 12 and will hit a vserver;
from there it will be forwarded to the server VLAN 112 to be forwarded to the server. The
alias address is the virtual address that is shared between the active and the standby CSM.
The alias IP address shares a virtual MAC (Layer 2) address between the active and standby,
and only the active CSM responds to requests for the virtual MAC address.

Probe Configuration
Following are the probes that would be used to provide the health check of the applications.
Notice the two kinds of probes that are defined (HTTP and TCP). The HTTP probe issues
an HTTP GET request to the server under the server farm HTTP (under the server farm

module ContentSwitchingModule 9
 vlan 12 client
 ip address 10.2.10.5 255.255.255.0
 gateway 10.2.10.1
 alias 10.2.10.4 255.255.255.0
!
 vlan 112 server
 ip address 10.2.12.2 255.255.255.0
 alias 10.2.12.1 255.255.255.0
!

Case Study: Layer 7–Based Solution 113

configuration for the real servers 10.2.12.27 and 10.2.12.28), and it expects to get a 200 OK
status back for it to keep the real server operational and for it to be forwarded connections from
the client. Similarly, for the server farm TCP, the probe TCP will issue a TCP SYN to the real
servers, and expects to receive a SYN-ACK back for the real servers to be operational and for
it to be forwarded connections from the client. The frequencies for the probes to check the status
of the real servers are defined by keyword interval (under the probe configuration) in seconds.
The interval is the time in between probes when the real server is operational. The keyword
retries is an integer used to set the number of failed probes that are allowed before marking the
server as nonoperational. The failed keyword is used to set the time in seconds, in between
probes when the real servers have been marked as nonoperational. The port numbers for these
probes, if not defined under the probe configurations, are inherited from the server farm; if not
defined under the server farm, the port numbers are inherited from the vserver. For the probe to
be activated, the vserver (which has the server farm configuration) needs to be activated.

!
 probe HTTP http
 request method get url /keepalive.html
 expect status 200
 interval 5
 failed 5
!
 probe TCP tcp
 interval 5
 retries 2
 failed 5
!
serverfarm HTTP
 nat server
 no nat client
 real 10.2.12.27
 inservice
 real 10.2.12.28
 inservice
 probe HTTP
!
serverfarm TCP
 nat server
 no nat client
 real 10.2.12.27
 inservice
 real 10.2.12.28
 inservice
 probe TCP
!

Online Download Application
Following is the solution that meets the custom Online Download Application requirements.
Notice how the URL maps capture partner and premium client requests. Clients without
the partner and premium in their URLs are sent to the default server farm.

!
 map ONL_URLS url
 match protocol http url /partner/*
 match protocol http url /premium/*

114 Chapter 4: Layer 7 Load Balancing and Content Customization

!
sticky 11 netmask 255.255.255.255 timeout 20
sticky 12 netmask 255.255.255.255 timeout 20
!
 serverfarm ONL_80_DEF
 nat server
 no nat client
 real 10.2.12.27
 inservice
 real 10.2.12.28
 inservice
 probe TCP
!
 serverfarm ONL_80_URL
 nat server
 no nat client
 real 10.2.12.17
 inservice
 real 10.2.12.18
 inservice
 probe TCP
!
!
 policy ONL_80_URL
 url-map ONL_URLS
 sticky-group 11
 serverfarm ONL_80_URL
!
 policy ONL_80_DEF
 sticky-group 12
 serverfarm ONL_80_DEF
!
 vserver V_ONL_80
 virtual 10.2.10.101 tcp www
 vlan 12
 replicate csrp connection
 persistent rebalance
 slb-policy ONL_80_URL
 slb-policy ONL_80_DEF
 inservice
!
!

Online Shop Application
The Online Shop Application solution is shown here. Notice how the webhost relocation
feature is used to send an HTTP 302 to the client when it arrives on clear text TCP
port 80.

!
 serverfarm SHOP_443
 nat server
 no nat client
 real 10.2.12.57
 inservice
 real 10.2.12.58
 inservice
!
 serverfarm SHOP_80
 nat server
 no nat client

Case Study: Layer 7–Based Solution 115

 redirect-vserver REDIRECT
 webhost relocation https://shop.example.com/
 inservice
!
!
sticky 13 netmask 255.255.255.255 timeout 30
!
 policy SHOP_80
 serverfarm SHOP_80
!
 policy SHOP_443
 sticky-group 13
 serverfarm SHOP_443
!
 vserver SHOP_443
 virtual 10.2.10.105 tcp https
 vlan 12
 replicate csrp sticky
 replicate csrp connection
 persistent rebalance
 slb-policy SHOP_443
 inservice
!
 vserver REDIRECT
 virtual 10.2.10.105 tcp www
 vlan 12
 persistent rebalance
 slb-policy SHOP_80
 inservice
!

Online User Profile Application
The Online User Profile Application requirements are met by the following solution. Notice
how the http field and header information is specified by the USER_EXT map for the
profile.example.com domain and the USER_INT header for the inprofile.example.com
domain. Under the vserver, both the policies are applied and will be checked in linear order
(that is, the USER_INT policy will be checked first and then the USER_EXT policy). Once
a match is found based on the HTTP HOST header value, the real servers for the server
farms defined under the policy will be forwarded the client request.

!
!
 map USER_EXT header
 match protocol http header Host header-value profile.example.com
!
 map USER_INT header
 match protocol http header Host header-value inprofile.example.com
!
 serverfarm USER_EXT
 nat server
 no nat client
 real 10.2.12.47
 inservice
 real 10.2.12.48
 inservice
 probe TCP
!
 serverfarm USER_INT
 nat server

116 Chapter 4: Layer 7 Load Balancing and Content Customization

 no nat client
 real 10.2.12.57
 inservice
 real 10.2.12.58
 inservice
 probe TCP
!
!
 policy USER_EXT
 header-map USER_EXT
 serverfarm USER_EXT
!
 policy USER_INT
 header-map USER_INT
 serverfarm USER_INT
!
 vserver V_ONL_80
 virtual 10.2.10.107 tcp www
 vlan 12
 replicate csrp connection
 persistent rebalance
 slb-policy USER_INT
 slb-policy USER_EXT
 inservice
!

Maximum HTTP Request Parse Length
The key to note in the following captures is the maximum parse length. The parse length is
the number of bytes the CSM will look through in an HTTP request in search of the
configured URLs or cookies. If the configured data is not found within the parse length, the
client request is discarded.

CAT-Native-4#show module contentSwitching 9 vservers name V_ONL_80 detail
V_ONL_80, type = SLB, state = OUTOFSERVICE, v_index = 14
 virtual = 10.2.10.101/32:80 bidir, TCP, service = NONE, advertise = FALSE
 idle = 3600, replicate csrp = connection, vlan = 12, pending = 30, layer 7
 max parse len = 2000, persist rebalance = TRUE
 ssl sticky offset = 0, length = 32
 conns = 0, total conns = 0
 Policy Tot matches Client pkts Server pkts

 ONL_80_URL 0 0 0
 ONL_80_DEF 0 0 0
 (default) 0 0 0
CAT-Native-4#

Notice next how the parse length can be increased up to 4000 bytes from within the virtual
server configuration mode.

CAT-Native-4#conf t
Enter configuration commands, one per line. End with CNTL/Z.
CAT-Native-4(config)#
CAT-Native-4(config)#module contentSwitchingModule 9
CAT-Native(config-module-csm)# vserver V_ONL_80
CAT-Nativ(config-slb-vserver)#
CAT-Nativ(config-slb-vserver)#parse-length ?
 <1-4000> maximum number of bytes to parse
CAT-Nativ(config-slb-vserver)#parse-length 4000
CAT-Nativ(config-slb-vserver)#exit

Case Study: Layer 7–Based Solution 117

CAT-Native(config-module-csm)#exit
CAT-Native-4(config)#exit
CAT-Native-4#
CAT-Native-4#show module contentSwi 9 vservers name V_ONL_80 detail
V_ONL_80, type = SLB, state = OUTOFSERVICE, v_index = 14
 virtual = 10.2.10.101/32:80 bidir, TCP, service = NONE, advertise = FALSE
 idle = 3600, replicate csrp = connection, vlan = 12, pending = 30, layer 7
 max parse len = 4000, persist rebalance = TRUE
 ssl sticky offset = 0, length = 32
 conns = 0, total conns = 0
 Policy Tot matches Client pkts Server pkts

 ONL_80_URL 0 0 0
 ONL_80_DEF 0 0 0
 (default) 0 0 0
CAT-Native-4#

Parse length can also be increased globally by adjusting the MAX_PARSE_LEN_
MULTIPLIER global variable.

CAT-Native-4#conf t
Enter configuration commands, one per line. End with CNTL/Z.
CAT-Native-4(config)#
CAT-Native-4(config)#
CAT-Native-4(config)#module contentSwitchingModule 9
CAT-Native(config-module-csm)#
CAT-Native(config-module-csm)#vserver V_ONL_80
CAT-Nativ(config-slb-vserver)#parse-length 1500
CAT-Nativ(config-slb-vserver)#exit
CAT-Native(config-module-csm)#variable MAX_PARSE_LEN_MULTIPLIER 3
CAT-Native(config-module-csm)#exit
CAT-Native-4(config)#exit
CAT-Native-4#
CAT-Native-4#show module contentSwitching 9 vservers name V_ONL_80 detail
V_ONL_80, type = SLB, state = OUTOFSERVICE, v_index = 14
 virtual = 10.2.10.101/32:80 bidir, TCP, service = NONE, advertise = FALSE
 idle = 3600, replicate csrp = connection, vlan = 12, pending = 30, layer 7
 max parse len = 4500, persist rebalance = TRUE
 ssl sticky offset = 0, length = 32
 conns = 0, total conns = 0
 Policy Tot matches Client pkts Server pkts

 ONL_80_URL 0 0 0
 ONL_80_DEF 0 0 0
 (default) 0 0 0
CAT-Native-4#
CAT-Native-4#

CSM Configuration
The following is the completed CSM configuration:

module ContentSwitchingModule 9
 vlan 12 client
 ip address 10.2.10.5 255.255.255.0
 gateway 10.2.10.1
 alias 10.2.10.4 255.255.255.0
!
 vlan 112 server
 ip address 10.2.12.2 255.255.255.0
 alias 10.2.12.1 255.255.255.0

118 Chapter 4: Layer 7 Load Balancing and Content Customization

!
variable MAX_PARSE_LEN_MULTIPLIER 3
!
 map ONL_URLS url
 match protocol http url /partner/*
 match protocol http url /premium/*
!
 map USER_EXT header
 match protocol http header Host header-value profile.example.com
!
 map USER_INT header
 match protocol http header Host header-value inprofile.example.com
!
 probe HTTP http
 request method get url /keepalive.html
 expect status 200
 interval 5
 failed 5
!
 probe TCP tcp
 interval 5
 retries 2
 failed 5
!
sticky 11 netmask 255.255.255.255 timeout 20
sticky 12 netmask 255.255.255.255 timeout 20
sticky 13 netmask 255.255.255.255 timeout 30
!
 serverfarm ONL_80_DEF
 nat server
 no nat client
 real 10.2.12.27
 inservice
 real 10.2.12.28
 inservice
 probe TCP
!
 serverfarm ONL_80_URL
 nat server
 no nat client
 real 10.2.12.17
 inservice
 real 10.2.12.18
 inservice
 probe TCP
!
 serverfarm SHOP_443
 nat server
 no nat client
 real 10.2.12.57
 inservice
 real 10.2.12.58
 inservice
!
 serverfarm SHOP_80
 nat server
 no nat client
 redirect-vserver REDIRECT
 webhost relocation https://shop.example.com/
 inservice
!
 serverfarm USER_EXT
 nat server
 no nat client

Case Study: Layer 7–Based Solution 119

 real 10.2.12.47
 inservice
 real 10.2.12.48
 inservice
 probe TCP
!
 serverfarm USER_INT
 nat server
 no nat client
 real 10.2.12.57
 inservice
 real 10.2.12.58
 inservice
 probe TCP
!
 policy ONL_80_URL
 url-map ONL_URLS
 sticky-group 11
 serverfarm ONL_80_URL
!
 policy ONL_80_DEF
 sticky-group 12
 serverfarm ONL_80_DEF
!
policy SHOP_80
 serverfarm SHOP_80
!
 policy SHOP_443
 sticky-group 13
 serverfarm SHOP_443
!
policy USER_EXT
 header-map USER_EXT
 serverfarm USER_EXT
!
 policy USER_INT
 header-map USER_INT
 serverfarm USER_INT
!
 vserver V_ONL_80
 virtual 10.2.10.101 tcp www
 vlan 12
 replicate csrp connection
 persistent rebalance
 slb-policy ONL_80_URL
 slb-policy ONL_80_DEF
 inservice
!
vserver SHOP_443
 virtual 10.2.10.105 tcp https
 vlan 12
 replicate csrp sticky
 replicate csrp connection
 persistent rebalance
 slb-policy SHOP_443
 inservice
!
 vserver REDIRECT
 virtual 10.2.10.105 tcp www
 vlan 12
 persistent rebalance
 slb-policy SHOP_80
 inservice
!

120 Chapter 4: Layer 7 Load Balancing and Content Customization

vserver V_ONL_80
 virtual 10.2.10.107 tcp www
 vlan 12
 replicate csrp connection
 persistent rebalance
 slb-policy USER_INT
 slb-policy USER_EXT
 inservice
!

Test and Verification
Test and verification of the Layer 7 application load-balanced environment is a lot more
critical than for Layer 4 SLB solutions. This is because in the case of the Layer 7 load-
balancing solution the SLB device has to proxy the client TCP connect and to buffer and
search through the HTTP request. Each application is unique with respective to the number
of sockets used, duration of TCP connections, activity in each session in terms of packets
per second, idle timeouts, the size and number of the HTTP cookie, the TCP MSS value
used, and so on. Thus, it is critical to test and verify the Layer 7 SLB environment with the
particular applications.

Following are a few critical test cases that should be verified after a new deployment or a
major or minor infrastructure change.

• Verifying and testing an exact trace of a production client load-balanced session.

• Verifying and testing a completed transaction with authentication and authorization
from the client to the server.

• Verifying and testing a server-initiated session to a back-end database or internal
application server.

• Verifying and testing a server-initiated backup or data replication session.

• Verifying and testing an application daemon failure and detection by the load
balancer.

• Testing with clients using different browser types, such as Netscape, MS IE, Opera,
Mozilla Firefox, and so on.

• Testing with clients coming in from behind different service providers and different
service types, such as DSL, Cable broadband, wireless, dial-up, AOL, and so on.

Summary
This chapter introduced the Layer 7 load-balancing technology. The chapter covered the
TCP and HTTP protocols and defined the protocol header fields and how they can be used
in scaling applications. The TCP connection establishment and connection termination via
the TCP SYN and SYN-ACK acknowledgements was discussed in detail. Similarly, based
on the TCP handshakes between the client and the server, the HTTP Request and Response

Summary 121

headers were analyzed. The HTTP Cookie solution and how the URLs are handled by the
HTTP protocol brought to light how load balancers handle the implementation of these HTTP
features. The enhancements of persistent connections and having hostnames in HTTP 1.1
were reviewed. Several Layer 7 solutions, such as URL or HTTP header-based load
balancing were also presented. In order to combine all the concepts of Layer 7 SLB from
the perspective of the CSM platform, this chapter also presented a case study. This case
study focused on the deployment scenario of a real-world enterprise solution where
three distinct applications were being deployed. The applications illustrated the CSM
Layer 7 load-balancing functionality via the use of HTTP URLs and HEADERS to match
specific client connections to specific servers. The infrastructure setup for the CSM
client and server VLANs and how the CSM operates probes to the server farms were
reviewed. CSM configurations were provided to introduce the reader to the Layer 7
configuration CLI.

With the increased demand for security and for security devices to perform at greater
speeds, Chapter 5 discusses firewall load balancing.

