Before You Begin
Coding—Application
Planning

T—IE IMPORTANCE OF APPLICATION PLANNING cannot be overstated. An
application plan provides a roadmap for the development process with vari-
ous waypoints and milestones signaling the completion of a phase of the
plan. Developers often jump straight into the development of application
code without a plan. It’s great that they’re eager to get started, but that’s not
the most important thing.

Imagine you wake up one morning and decide that you’re going to com-
pete in a local 5K road race.You show up at the advertised starting point
and pay your fee to register for the race.You get your number and go over
and stand with a swarming crowd of people. Someone walks over and with-
out explaining the course or giving anyone a map, fires the starter’s pistol.

What’s the result? Mass confusion? A couple of things are working against
you. Recall that we didn’t mention whether you’d prepared for this race. We
only said that you woke up and decided to run it.You showed up and made
your investment, but you received no instructions and had no idea of the
direction that you were to run.You had no clearly defined course, rules, or
a finish line.

This same type of scenario happens all too often in application develop-
ment. The fact is that there is plenty of work to be completed before a
developer starts to crank out application code. The work includes planning
and preparing the roadmap or framework on which the application will be

36 Chapter 3 Before You Begin Coding—Application Planning

structured. It also includes the planning of the physical structure of the envi-
ronment on which the application will function and the development of a
strict methodology for the application-development process. All are essential
to the successful completion of the project.

In this chapter, we discuss how attention to architectural considerations,
effective planning, and sticking with a standard development methodology
for your project can help you to successfully complete your application-
development project. The topics of discussion in this chapter help paint a
clear picture of the application-development process and can help every
developer gain a better understanding of how to effectively improve his
or her contribution to the process.

Application Architecture

Application architecture is an important concept to understand. The architec-
ture of an application describes the working parts of that application, how
they are defined, and how they interact with each other (see Figure 3.1).

— T
webroot —L
) —
N images
index.html
mN — image1.gif
—-O events.html ~
BN 1 image2.gif
—'e company.html ~
ol .
N — image3.gif
—'o products.html ~
—
services.html

contacts.html

|
(S5

Figure 3.1 Typical web site architecture.

Application Architecture 37

The application’s architectural model gives developers a view of the big pic-
ture of the application rather than a close-up shot of every detail. It provides
a framework that guides the interaction of various elements of the appli-
cation.

The operating system (OS) or physical architecture of the server environ-
ment can influence an application’s architecture. Your client’s scalability
requirements and their expectations in regards to the application’s perfor-
mance also have an effect on application architecture.

If you’ve ever bought something that was advertised to require “some
assembly,” you might be able to relate to how important it is to have a clear
plan of the product and how each part interconnects and is intended to
function. The instructions that are included serve much the same purpose as
our application architecture. It gives you, the developer, a view of the prod-
uct from several angles and from beginning to completion.

In software development, these instructions provide us with a clear vision
of the organization of the application. It should detail the parts of the appli-
cation and how those parts interact with other parts. It might also divide
parts of the application into smaller subsystems based on their functions or
behaviors. A good architecture should not stop there, however; it should also
take into consideration the requirements for performance, extensibility, reuse,
and presentation.

Understanding Tiered Architecture

Our discussion of application architecture now begins to take a more
descriptive turn. In this next section, we take a closer look at two concepts
of application architecture that define separate tiers within the application.
These tiers function as a filter between logical sections of the application.
The filters serve as a separator that enables the developer to group code by
function and separate data from code.

Many of the concepts that were going to talk about have a lot in com-
mon with object-oriented programming (OOP) and design principles. This
is not necessarily the way that ColdFusion developers have traditionally
looked at application development. As we move through the material in the
next several sections, you’ll see that these ideas begin to make more and
more sense.

The goal of a tiered architecture is to enable the developer to separate
application code into like chunks. Each tier of the application architecture
contains code that has a similar purpose within the application. It is easy to
take this separation of code to the extreme, but that’s not what we'’re trying
to do (nor is that very useful in most cases). Merely providing a logical divi-
sion of code functionality is usually enough.

38 Chapter 3 Before You Begin Coding—Application Planning

Two-Tier Architectures

We’ve all heard the term “client-server,” right? Well, a two-tier application
architecture is sometimes referred to as client-server architecture (see Figure
3.2). ColdFusion applications in their most basic form are two-tiered applica-
tions. There is code that creates an interface for the users to interact with,
and there is data in the database that feeds the display. The presentation code
is the first tier, or the presentation tier, and the database is the data tier.

Client Request

Server Response

Client

Server

Figure 3.2 Client-server architecture.

It doesn’t matter how many servers you've clustered that code across; we’re
not talking about physical environment architecture right now, just the func-
tionality of the application code and how it is organized. Application archi-
tecture tiers are defined by their purpose. The following list breaks down the
tiers in a two-tier architecture:
» Application tier

» Presentation code

» Business logic code

» Business rule validation code

» Component interaction code

» Database interaction code
= Data tier

= Storage of data

The typical two-tier application architecture is one where your application
code is in one tier and your data is in another. This means that there is no
separation between your presentation code, your data interface code, and
your business logic code. This is typically the way that most ColdFusion
developers start creating applications because typical static web sites have no
need to separate code into functional groups. Check out the sample code in
Listing 3.1.

Application Architecture 39

Listing 3.1 Two-Tier Application Sample Code

<html>
<head>
<title>2-Tier Application Example</title>
</head>
<body>
<cfquery name="getCustomerEmails" datasource="ICFMX">
SELECT CustomerName, CustomerEmail
FROM Customers
</cfquery>
<table>
<tr>
<td>Customer Name</td>
<td>Customer Email</td>
</tr>
<cfoutput query="getCustomerEmails">
<tr>
<td>#getCustomerEmails.CustomerName#</td>
<td>#getCustomerEmails.CustomerEmail#</td>
</tr>
</cfoutput>
</table>
</body>
</html>

Of course, syntactically, there is nothing wrong with this code. It returns the
needed values from the database, creates a layout for the page, and outputs
the results into that layout.

The problems that you can run into with a two-tier architecture are the
real killer. One of the strengths of ColdFusion is that it enables developers to
easily write reusable and portable code that can be accessed from anywhere
in the application. A two-tier application architecture does not play to this
strength; in fact, it’s only a little better than static Hypertext Markup
Language (HTML). I know that you’ve got dynamic data coming out of the
database, but if you want to change the layout of items at the top of the page
or change the navigational elements of a page, you’ve got to touch several
code templates to get this done.

What if you need to use the same query on 50 pages throughout your
application? You are forced to write that query 50 times and maintain all 50
instance of that query, which can be a pain if the requirements for the query
change or if the structure of your database needs to change. We later talk
about code reuse in much more detail, but you should understand now that
creating a well-planned architectural model enables you to avoid reworking
your application down the road.

40 Chapter 3 Before You Begin Coding—Application Planning

N-Tier Architectures

Applications that consist of more than two tiers are often called N-tier applica-
tions. N-tier application architectures provide a model for developers to build
highly scalable and reusable applications. The N-tier architecture focuses on
breaking the application into logical segments. By doing this, the developers
can support each segment individually and maintain the application in sections
instead of recoding the entire system as a result of minor change requests. Do
you remember our code example from the typical two-tier application?
Contrast what we saw in Listing 3.1 with the code shown in Listing 3.2.

Listing 3.2 N-Tier Application Code Sample

<cfinclude template="common/header.cfm">
<cfinclude template="data/getcustomeremails.cfm">
<table>
<tr>
<td>Customer Name</td>
<td>Customer Email</td>
</tr>
<cfoutput query="getCustomerkEmails">
<tr>
<td>#getCustomerEmails.CustomerName#</td>
<td>#getCustomerEmails.CustomerEmail#</td>
</tr>
</cfoutput>
</table>
<cfinclude template="common/footer.cfm">

Of course, this is just an example of one way that you could accomplish a bit
more scalable application, and it’s a very narrow example, but you get the
picture. You now have reusable header, footer, and ColdFusion query or
stored procedure templates that easily can be maintained from one place. This
type of organizational structure for your code can help to alleviate numerous
problems that can occur within the application-development process. When
you start to think about all possible requirements that can go into the devel-
opment of an enterprise application, you see that the more logically you can
organize your code, the better oft you are.

It seems only logical that it would be easier to support and maintain pre-
sentation code in one area that is separate from the code and that supports
the business rules and business logic. Likewise, if all your data access is
through stored procedures, you can keep up with that code easier and with
the templates that you use to call your stored procedures as well. The N-tier
architecture enables you to separate support for application components, such
as databases, mail, and file servers, into their own logical areas within your
application structure and within other servers as well.

Application Architecture 41

Presentation Tier

HTML/CFML
Output Code
Business Tier
CFML Business
Templates

Data Interface Tier

CFML Stored
Procedure or Query
Templates

g AT

Client Computer
Web Server

Data Tier
Data Storage
Stored Procedures

Figure 3.3 N-tier application architecture.

In a ColdFusion application, you often access databases that reside on the
same server as the ColdFusion Markup Language (CEML) templates. With an
N-tier architecture, you add an additional layer to your application and can
separate the presentation-level code from the data in the database. This means
that the code that supports what the user sees is separated from the code that
makes up the pieces of business logic that run the application. The business-
oriented code also is kept separate from the data that is at the heart of the
application.

This type of application architecture makes much more sense and is easier
to keep up with if you employ ColdFusion mappings. Take a look at Figure
3.4 to get a feel for ColdFusion mappings.

You might know that by using ColdFusion mappings, you can refer to
templates using the CFINCLUDE tag by simply referring to that mapping. Note
that the mapping 1s merely an alias for a physical directory to which your
server has access. Don’t worry if you’re not familiar with how ColdFusion
mappings are set up or even how they work. We discuss them thoroughly in
Chapter 25, “Administering the ColdFusion Server.”

For your application to perform specific functions or to conduct certain
transactions, the various layers of the application interact with each other.
One of the advantages of separating your application into a layered architec-
ture is to minimize the interaction of the client or presentation layer with
the backend data. The reason for this is that all your business logic code is
wrapped into the business layer and only this layer interacts directly with the
data. In OOP approaches, these different layers are sometimes referred to as
the interface and the implementation.

42

2l Neo Administrator, - Microsoft Internet Explorer

Fle Edt View Favorites Tools Help

Chapter 3 Before You Begin Coding—Application Planning

ColdFusion Mappings

on yaur server.

ColdFusion mappings apply anly to pages processed by the ColdFusion Serverwith the ciinclude and cimodule tags. fyou save
CFML pages outside of the Wieh root (or whatever directory is mapped to '), you must add a mapping to the location of those files

Directary Path |

[===m

Drectory Path

& s0

Note: these mappings are independent ofwebsewervirual directories. Ifyou'd like 1o create avirtual directory to access a given
directary via a URL, please consultyour webserver's documentation

Add / Edit ColdFusion Mappings

Active ColdFusion Mappings

Cilinetpublwwnroot InsideCFélbusiness_code]

Cfinetpublwnr oot InsideCFé|display_cods|images}

inetpubluwnroot InsideCFéldisplay_codel,

lInsideCFéldbaccess_code)

jretpubiyswnroot| InsideCFs)

Add Mapping
Actions Logical Path
@O | function
@R | fmages
G | Hspoy
[E] fdata
Ge |«
@@ | lcommon

i :
cli n
Cilinetpubluwrroct
c .
cli L [InsideCF !

inetpubluwnroot! display_codelcommon’,

n

Links >

I3

[£] https fes-work/cE

&3 Localintranet

Figure 3.4

Application Layers

Developers should take the time to understand the fundamentals of appli-
cation layers to write well-organized applications that are easy to maintain. In
this section, we take a look at how applications can logically be divided into
layers, regardless of the physical architecture on which the application is
loaded. At its most basic, the N-tier application architecture can be divided

ColdFusion MX CFAS mappings.

into the following tiers or layers:

= Presentation
= Business

= Data Interface
= Data

The layers of your application code can be separated by your physical file
and directory structure. Figure 3.5 shows the ColdFusion Studio develop-
ment interface. The directory structure is set up to mimic the division of

application layers that we’ve been discussing.

Application Layers 43

/3 Macrome dia ColdFusion Studio 5 - [Y:MnsideCF 6lindex.cfm] [E=E]

File Edic Search Tools Project Options Debug Tags View Help
[EEIETEEEC T YT =1 A e |
|: =28 & o« o‘§_|“@v|g$|wﬂi @@ I || e b s T O N N (,‘
2| Edt | gromse |
|,g codesweeper on TS wark [Cswork] 7] == <
= - - % [2 Template; index.cfin
g”j;‘:je' on T Watk (Cawork] [Y:) e Author: Nell Ross - nell@codeswesper.corm
=) CFIDE o 4 Purpose: This is the index for the entire application..
£ ICFE_DSN [# & p 2
5D Irsidecrs al «cfparam name="variables.display_code" default="welcome"
E-3) business_code al <cfinclude template="/common/header,cfm'>
£ dbaccess_code — 8 <table width="750" cellpadding="2" cellspacing="0">
B3 display_code Ol <trs
£ comman = o <td width="630">Inside ColdFusion</td>
£ images = m «td width="120" rowspan="4"»</--- right column navigational elerments here --—->
2 WEBHNF T2 <cfinclude template="/common,/right_nav.cfm'>
= i3 </tds
Name. Size [Modified o |1s </tr>
gl Applcation. cim KB 21220027425 « [18 <trs
@l index ofm KB 2/12/2002 7430 ’f 16 «<td width="630"><hr size="1"/></td>
= <ftr>
o[<trs
s) <td width="630">
% (20 <cfinclude template="/display/#varisbles.display_code#. cfim's
21 </td»
22 </tr>
23 <tre
24 <td width="630"><hr size="1"/></td>
25 </trs
26 </table>
o7 cefinclude template="/common /footer. cfin's|
<3 m I B
|24 12T &
| s M BE o= EEREAE || s R e P E
Zraz [ms | IFi [:\IngdeCFaNndex.cfm |

Figure 3.5 Physical directory structure of our application as seen in ColdFusion Studio 5.

The Presentation Layer

The presentation layer is made up of all elements of the application with
which the user sees and interacts. This list of elements can include colors,
font faces and styles, images, form controls, navigational elements, and more.
These elements together are often referred to as the graphical user interface
(GUI) or the user interface (UI). These elements define the look and feel of
the application and their consistency and flow can determine the disposition
of the user experience.

Users generally interact with ColdFusion applications through the use of a
web browser. I say “generally” because ColdFusion applications are client-
independent. This means that the ColdFusion Server is not concerned with
the presentation-layer method or with the application logic and processing.
This enables ColdFusion to output data to different types of clients, includ-
ing web browsers (HTML), Personal Data Assistants (PDAs) (cHTML,
XHTML), cell-phones and other wireless client browsers (WML), and even
voice browsers (VoiceXML).

44 Chapter 3 Before You Begin Coding—Application Planning

The UI

It seems that a new technology pops up every day to enable designers and
developers to produce more feature-rich Uls. In an N-tier application, the
presentation code for the Ul should never access the database directly.
Likewise, the Ul code should never handle business rules or process logic. It
should merely provide for screen layout. Figure 3.6 shows a simple UI.

3 Inside ColdFusion 6 - NEO - Microsoft Internet Explorer:

Fle Edt Vew Favortes Toos Help w

Qe - (0 =] [F] (h O s S roertes @ redn £2) - & JAD

fackaress | @] htpigfes-wark v B nks

Inside ColdFusion 6

Inside ColdFusion

ICFB News
This is the welcome template, This template is 3 representation of what your most basic ICFB Store
screen layout might ook like. IF you don't like the layout of this template, 's Up t you 10 |1Cpg g
change it. vou can change the layout of the welcome page, just by modifying the welcome
template. You can add information to the screen whether static or dynamic. You can also
change the layout of the page, add images or navigational elements,

ICFB Events
Cammunity

Inside ColdFusion &

Figure 3.6 A simple UI for our application.

When discussing Ul considerations, again the application architect and
designer have to rely on the completeness of the requirements that have
been gathered. These requirements should bring into better focus issues

such as layout, colors, fonts, screen resolution, plug-ins, scripting, and browser
compatibility that are necessary to deliver an application that meets the
customer’s needs.

Layout

I’'m no artist or graphic designer and you might not be either, but paying
close attention to layout of the screens throughout your application not only
makes your application more aesthetically appealing to the user, but also it
enhances the usability of the application itself. Consistency is one of the key
elements that you need to remember about layout. You don’t want your user
hopping from page to page in your application and being forced to search
for common elements such as navigation and form controls.

Correctly treating the unused spaces in the browser screen and having a
balanced layout that utilizes all areas of the screen are important. Remember
that you can say as much with a clean and professional layout as you can
with lots of flashing banners, blinking text, and dancing cartoon characters.

Application Layers 45

Advertising and publishing companies employ experts in layout who pro-
vide ads with balanced and proportional layouts that mix typography, images,
and text to convey a message. Each element is important to layout.

Online, layout is not quite as cut and dry. We have to worry about users’
screen resolution settings and color-quality settings. Many web designers and
developers use framed layouts for their sites. Some employ dynamic naviga-
tional elements. One thing is clear, however; consistency in your chosen lay-
out method is key to making and keeping users comfortable with your
application.

Colors

You should consider colors when planning the look and feel of your applica-
tion. Colors can calm or can stir up emotions in users. Be careful with col-
ors, however. Many times, designers or developers use too many colors or the
wrong colors. This has the undesired eftect of pulling the user’s attention
away from the content, and it distracts their focus.

Color on the web is quite different from color in print media. After the
printed item is completed, the color cannot be changed and everyone sees
the same color. It does not work this way online, however. There are many
limitations to presenting color on the web. Some of the things that you
should keep in mind include the following:

= Monitors that display your web site or application have a wide variety
of depth settings.

= Color settings can be calibrated differently or use different gamma
settings.

= OSs affect the way that color is displayed.

= Web browsers affect the way that color is displayed.

Color should be a big concern to anyone who is developing a UI.You should
know that there are certain colors that are considered browser-safe. By work-
ing within the limits of those browser-safe colors, you can be more confident
that your users are seeing the colors that you intended them to see.

Note
You can download the color-safe browser palette and find more tips regarding colors from Lynda Weinman's
web site at www. lynda.com.

46

Chapter 3 Before You Begin Coding—Application Planning

Screen Resolution

When planning your application, keep in mind the screen resolution settings
of your users’ video adapters. Most computers are shipped with video settings
defaulted to 800x600 pixels. However, newer flat-panel monitors often have
a lowest resolution setting of 1024X768.

Many developers forget that the actual usable screen real estate is less than
what the resolution setting would lead you to believe. Check out the popular
resolution settings and corresponding browser window sizes shown in Table
3.1 to help you keep your layout on target.

Table 3.1 Screen Resolutions and Browser Window Sizes

Screen Resolution Setting Browser Window Size
640x480 600x300
800x600 760x420
1024x768 955%600

It’s always a good idea to design your application so that the lowest resolu-
tion monitors can view and interact with your application without any
formatting problems or excessive scrolling. Don’t guess at what your users’
resolution settings are. If at all possible, this information should be provided
as part of your requirements-gathering process.

Fonts

We communicate user instructions with text on our screens, so, of course, we
need to make sure that we pick fonts that are going to be easy for the user
to read. The most commonly used fonts are Arial and Times New Roman.
However, most web presentations look better with a font from the sans-serif
font family. These fonts include Arial, Helvetica, or Verdana. The reason for
using these standard fonts is that the user must have the specified font on his
or her system, or you must push that font to the user along with your code.

By varying font sizes, styles, and colors, you can convey not only informa-
tion, but also the importance of that information. Keep in mind that it’s not
a good idea to use more than one or two fonts in your application. In addi-
tion, remaining consistent with font sizes and styles when calling out head-
ings or identifying notes throughout your application is an important factor
in maintaining continuity.

Application Layers 47

Images

As we move through the development of our application, we are adding
more and more content and are developing web graphics to support that
content. As they say, a picture is worth a thousand words, and if you have
the choice of reading all those words or checking out a cool graphic, 'm
sure you'd choose the graphic.

There are, however, drawbacks to stufting your application with graphics
and photos. One of the largest drawbacks is the eftect that overloading your
web pages with references to images can cause. The reason for this is that the
user must wait for all images to download before the requested page 1s fully
viewable. Thus, if youre downloading lots of images on every page, you can
slow down your page response times.

Another thing to keep in mind when youre planning your graphical pre-
sentation and considering photos, graphics, and other graphical elements
(such as Flash or Shockwave files) is that the bandwidth of the end user
likely is not as fast as your access to your development server (often local).

Client-Side Scripting

Many web applications use client-side scripting languages such as JavaScript
and VBScript to enhance the user experience. Developers often utilize client-
side scripting for form validation, user alerts and confirmation, and new
windows.

VBScript is a scaled-down version of Microsoft’s Visual Basic (VB) lan-
guage. Support for VBScript is built in to Microsoft’s Internet Explorer (IE).
However, if your user is accessing your application using a Netscape or other
web browser, he or she might need to download special plug-ins to support
the code.

JavaScript was originally a creation of Netscape. It was called LiveScript,
but the name was changed when Netscape and Sun Microsystems struck up
a partnership and developed the language jointly. JavaScript shares some of
the same structures and syntax with Java, but the languages are totally sepa-
rate. JavaScript is most often the client-side scripting language of choice for
most developers because of its cross-browser compatibility.

Browser Compatibility

Speaking of browser compatibility, developers need to be wary of problems
with the compatibility of their code with various browsers. Such compatibil-
ity often affects the placement of elements on the screen.

48 Chapter 3 Before You Begin Coding—Application Planning

The key to avoiding problems with browser compatibility is to find out
what browser and browser version your users are using. Of course, unless
your application will be viewed within a closed environment such as an
intranet, this task is next to impossible. What you must do is build a profile
of your typical user and build the application to support that profile.

Even after determining your typical user profile and building your appli-
cation, you still have to test for compatibility. In your user’s preferred browser
and its nearest competitor, test your application for proper placement and
alignment of screen elements. In other words, if the typical user’s browser
1s IE 5.5, test with it, but also test with a comparable version of Netscape
Navigator.

You also need to be aware that the user might have disabled support for
client-side scripting languages such as JavaScript. If the user’s browser does
not support your code, you should plan ahead for how to handle interacting
with that user.

The Business Layer

As we continue to break out the layers or tiers of N-tier application architec-
tures, let’s pause for a moment to get a general understanding of the business
logic layer and the role it plays.

Just as every business is run on operating procedures or business rules,
every application operates under a similar set of criteria. These criteria are
what we call the business rules of the application. These business rules are
strung together in business process logic. These business processes enable
developers to create complete transactions that users will be guided through
during their interaction with the application.

The business layer should provide us with an area in which we can write
and store the code that interprets our business rules. It should also provide
tor a way to follow the logical flow of the business, or the business process
logic.

Business Rules

As stated earlier, every business runs on rules, and business rules in a
ColdFusion application define how the application enables users to interact
with your data. For example, if a business rule states that the user must pro-
vide a valid email address to log in to the application, the application must
enforce this rule. One way to enforce such a rule is to enable a user to regis-
ter by providing his or her email address. We then can generate a password
and email it to the email address that the user provided.

Application Layers 49

Because business rules are defined to help maintain the integrity of your
data, the business rules are not defined by the application architecture. Just
the opposite is true: The application architecture is defined to help support
the business rules, the business processes, and the process logic.

The example that we just mentioned might use one or more specialized
pieces of code to make the application adhere to the business rule that the
user must provide a valid email address. One piece of code might check
whether the email address provided is in the proper format. Because it is up
to you how and where you enforce these rules, you might choose to enforce
them using client-side scripting (using, for example, JavaScript or VBScript).
This can also be accomplished using a user-defined functions (UDF) or reg-
ular expression.

Business Process Logic

Compliance with business rules usually means that your application transac-
tions have to follow some sort of defined business-process logic. A process is
an action that the user might take that requires multiple steps. Business
processes enable users to move through complicated procedures in a way that
breaks the process into logical steps. The user continues interacting with the
application along the way until the application has gathered all the informa-
tion that it needs to complete the process.

Create Cart Create Order & Validate Payment
User User User User User User
Logs Adds Item| Selects Commits Logs Leaves
In to Cart Checkout Order Out Site
Authenticate Select User Details Log Out User &
& Create Session & Build Checkout Display Clear User Session

Figure 3.7 Step-by-step process logic.

Each step of a transaction should lead the user step-by-step through the
process and should enforce the defined business rules along the way.

For example, many shopping cart applications require new users to regis-
ter, providing personal information and ordering information along the way.
They often require users to not only provide their mailing address, but also
to provide billing and shipping addresses as well. A user would be over-
whelmed if he or she were presented with all these requirements on the
same screen.

50 Chapter 3 Before You Begin Coding—Application Planning

A business process would break these requirements into chunks that are
easy for the user to deal with and easy for the developer to manage. Not
only do you do a service to your users, but also you do a service to your
developers.

Data Interface Layer

The data interface layer provides access to the data in your backend database.
It does not include any business logic or constraints on how we interact with
the database. The data interface layer merely enables us to do things like
SELECT, INSERT, UPDATE, and DELETE data from our database. The data interface
tier should not contain code that defines any business rules or business
processes, nor should it contain any code that comprises any presentation-
level elements.

In your ColdFusion application, the data interface layer could be made up
of templates that contain the CFSTOREDPROC calls for the stored procedures
that you’ve written in the data layer. It could also contain CFQUERY tag calls
that you've separated into functional groups or individual templates.

If you think about it, it makes sense to keep the data requests separate
from the code that controls the presentation. The structure of the data itself
seldom changes. The presentation-layer code, however, changes more often
than anything else in the application. If you keep your CFQUERY tag calls in
the same template with your presentation code, you run the risk of inadver-
tently messing up that code. It is better to separate the database calls into
separate templates that are accessed much less frequently and that are less
prone to programmers’ fat fingers.

Data Layer

The data layer is responsible for the storage of your data. This is your data-
base. The data layer is where you can tune and optimize data storage and data
access and provide direct access to the data in your backend database. The
data layer exists whether you employ a two-tier or N-tier architecture with
the business logic layer as a buffer to ensure the integrity of your data
through the business rules that are enforced.

The data layer is where you create stored procedures to perform queries
against the data in the database. These might be very basic functions or might
consist of advanced filtering and joining techniques (to be discussed later).
Your stored procedures should not care about the business rules of the appli-
cation, only the input and output parameters that they’ll be handling. The
business rules serve as a bufter to make sure that the only values that get to
your stored procedures are the ones that are valid.

Resource Planning 51

It is within the data layer that you optimize the performance of your data-
base. Performance enhancements such as table indexes enable you to access
data faster within the database, which speeds the query process. In turn, this
improves the performance to the end user through the presentation layer.

Summary

The architectural model for any application is critical to the application’s
success. Whether the application is scalable, easy-to-maintain, and easy-to-
extend depends on the quality of its architecture. An application’s architec-
ture is intended to give a better picture of how the entire system works. It
shows how the parts work, and it enables us to see this picture from several
different perspectives.

Resource Planning

A major part of the “hard” work of making your application-development
efforts successful is ensuring that you’ve properly planned the environment in
which the application is going to live. The importance of resource planning
really can’t be understated. To use a simple, but familiar, example, imagine
that you went to work and that there was no desk for you to use, no lights
for you to turn on, and no computer for you to bang out code.You'd find it
pretty hard to work, wouldn’t you?

Similarly, for your application to function properly, it has to have a prop-
erly designed and thought-out working environment.

In many cases, achieving success with a project implementation depends as
much (if not more) on resource planning as it does on coding. How involved
you are in the initial stages of project planning likely determines the amount
of input that you personally have on the type and amount of hardware used.
Nonetheless, being as familiar as you can with the “best-case scenarios”
makes you an invaluable advisor should you find yourself in that role.

The following section attempts to familiarize you with various processes
you can use to properly plan and utilize your resources while tailoring them
to suit your specific applications and make the most of your fiscal resources.

Environment Considerations

Obviously, there are many times when you are tasked with application build-
ing in situations in which the architecture and environment have already
been decided for you. In those cases, the best you can do as a developer is to

52 Chapter 3 Before You Begin Coding—Application Planning

make sure you write solid code, adhere to best practice standards, and make
yourself aware of the subtleties of each specific OS/database combination
where that code might be run.

Still, if you’re lucky, there are times when your advice as the expert is
sought in making the decisions about the platforms with which the applica-
tion will live. Developers often approach these situations with a “go with
what you know attitude.” Although there’s nothing wrong with that attitude
on the surface, you’ll find yourself of much more value to the client or cus-
tomer if you can identify pros and cons of each platform based on the
client’s specific situation.

As you read on, you should gain a better understanding of how you can
approach this “needs analysis” and determine the best choices for any given
situation.

OSs

We're hesitant to even begin writing this section because we can hear the
screams of each devoted faction ringing in our ears. Again, in many cases,
you might play no role in this decision. Still, if you were asked to make a
recommendation (and I’'m sure you hold your own strong opinions), it
would help if you were able to make that recommendation using logical
analysis of the situation instead of just your personal devotion to one choice
or the other.

When dealing with applications that make use of ColdFusion Server, you
have three major choices in the world of OSs. Currently, versions of
ColdFusion Server are available for Windows, Solaris, and Linux. Table 3.2
briefly outlines each choice and its benefits and drawbacks.

Table 3.2 Benefits and Drawbacks of OS/ColdFusion Combinations

Version Common Benefits Common Drawbacks

ColdFusion Windows Ease of administration; tight Slightly less overall
integration with Internet stability; not accepted in
Information Server (IIS); some enterprise
hardware components are environments

generally cheaper

ColdFusion Solaris Greater overall stability of the Increased complexity of
server; often the only choice in administration;
environments that have employees to manage
standardized on Solaris this type of equipment are

more expensive than their
‘Windows counterparts;

hardware components are
generally more expensive

Resource Planning 53

Version Common Benefits Common Drawbacks

ColdFusion Linux The cheapest of all three choices Short product history (the
from an OS standpoint, as many first version of ColdFusion
versions are free; can be run on for Linux wasn’t available
the same, less-expensive hardware until release 4.5); increased
as Windows versions; can prove complexity of administra-
to be slightly more stable under tion

certain conditions than running
ColdFusion on Windows

Of course, Table 3.1 makes some broad generalizations regarding the different
OS choices, and it’s very brief in its discussion of the benefits and drawbacks
of each choice. The intent, however, is to get you to think along those same
lines as you attempt to identify the best choice for your customer (even if
the customer is you!).

If you're a Linux guru already, you've eliminated one of the items I've
listed in the drawbacks column. Similarly, if you already have Solaris
machines that cannot be retooled to run Windows, youre on your way to
a choice there as well. The key is to identify all the benefits and drawbacks of
each choice, evaluate where you are and where you need to go, and then
make the most informed decision possible.

The differences in stability and performance between the three versions
are all pretty negligible, and the choice usually comes down to the hardware
and technical resources that you or the customers have in-house.

Choosing a Database

Just as you must decide which OS you want to use for your ColdFusion
Servers, you also must decide where your data is going to be stored. Just as
with the OS discussion, there are many cases (especially when dealing with
legacy applications) where the data is already in a database, thus eliminating
the need for you to make this choice.

There are still situations, however, where the application you are building is
gathering or creating the data. In those cases, it becomes necessary to decide
which database you’re going to use and how you want to implement it.

In general, there are two types of database systems: desktop database tools
and server databases. Table 3.3 illustrates the differences between the two.

54 Chapter 3 Before You Begin Coding—Application Planning

Table 3.3 Desktop Versus Server Databases

Characteristics

Desktop Database

Server Database

Processing of changes
to the data

Availability of data

Reliability of data

Network traffic

Qccurs on the client
machine, regardless of
where the source file is located.

Originally designed to be used
by one user at a time.

With multiple users accessing
what was originally intended
for one user, data integrity
failures can occur.

As most processing of the

data is done client-side, the
entire package must then be
returned to the source machine,
causing a tremendous amount
of unnecessary network traffic.

Occurs at the server,
where all the hard work is
done.

Designed with multiple
simultaneous requests for
data in mind.

Data stored in a database

built to utilize the client-
server model is extremely
reliable even while being
accessed and manipulated
by multiple users simulta-
neously.

Typically, the only things
sent over the network in
the client-server model are
instructions to the database
server and result sets,
resulting in much less
overall network traffic.

If you’re serious about application performance, and you want your site to be
highly available under all types of traffic load, you should ensure that you’re
not using a file-based database. Desktop databases were never really meant to

be web-connected, and it shows.
Aside from being less reliable than their server counterparts, desktop data-
bases are much, much slower and less secure. Because a large part of any
ColdFusion application’s processing time is spent waiting for result sets to
return from the database, this can have a huge performance impact on your
application as a whole.
You need to take a close look at the resources that are available to manage
the data after it’s there; in addition, make sure that you’re not trying to lever-
age an Oracle database administrator (DBA) for Sybase work, or vice-versa.
Believe it or not, the subtleties between different database management sys-
tems are often more complex than those between OSs. This makes it all the
more critical to know who is available to manage the data after it’s in the

database.

Resource Planning 55

Contrary to popular opinions, designing table layouts in SQL or Oracle
doesn’t make you a DBA. As you're application begins to become more
heavily trafficked, you inevitably discover that you have to do some tweak-
ing at the database level to keep things running smoothly. At this point, the
DBMS you've chosen and the folks you have around you to help you sup-
port it become extremely important to you—so choose carefully.

Assessing the Needs of Your Application

What a wonderful world it would be if we were able to peer into our crystal
balls and determine, well in advance, just what type of resource configuration
our applications would require to function at their very best. As it is, how-
ever, we are forced to try to deliver our best estimates.

During the discovery phase of any section of a project, the first thing you
usually want to do is a needs analysis. Determining an appropriate applica-
tion-environment configuration is no different. Based on the requirements
you've already received, as well as how you believe that the application
should work in its finished state, you should be able to determine roughly
how you need to configure your environment to suit your application.

Of course, to determine the actual hardware requirements of the applica-
tion servers themselves, you’ll want to conduct systematic load testing of the
finished code. This is an absolutely necessary step and one that is covered in
great detail in Chapter 26, “Performance Optimization and Scalability
Planning.” For now, we deal with planning the environment as a whole to
suit your application.

First and foremost, you need to determine the overall architecture that
you plan to implement. Depending on the needs of your application, this is
where you should begin to investigate DMZs, firewalls, Network Address
Translation (NAT) and Secure Socket Layer (SSL) hardware/software combi-
nations, and so on.

Ideally, you want to expose as little of your infrastructure as possible to the
outside world. The most traditional method of accomplishing this is by plac-
ing your public servers (such as the web server) on a protected subnetwork
that has no access to your internal network. In this way, you can keep the
public portion of your network accessible, without introducing undue secu-
rity risks.

Further, you might want to make use of a firewall of some sort to restrict
traffic between all computers on your network in accordance with the secu-
rity policies that you or your network administrators have defined. The fire-
wall can become an integral part of your overall design; it acts as the traffic
cop, pushing traftic meant for your public servers to your predefined subnet-
work and keeping unwanted intrusion from your internal systems. Figure 3.8
demonstrates this design.

56

Chapter 3 Before You Begin Coding—Application Planning

Workstations/
Internal Network

Firewall 1
Public T
Web Traffic :—:sf

[|
=
Web Traffic

Firewall 2

.-/4 (only SQL protocol permitted)

SQL Server
for Web Content

Figure 3.8 Example architecture.

After you've determined the overall design of the environment in which
your application will live, you should address (as much as is within your
power as the developer) the security of the public servers themselves.

Depending on the combination of OSs and web server software you have

chosen, the actual methods for securing these servers differ. Still, the key

things that you want to check are as follows:

Access to public content on the servers is read-only for web users.

The user designated as a pathway user for web clients (such as the
IUSR_LocalMachine account in Windows) has only the bare minimum
permissions required to gain access to material you want to make public.

Configure your servers to limit vulnerability from denial-of-service attacks
by using appropriate monitoring and filtering software, along with config-
uring appropriate timeouts.

Restrict the web server itself to only server files designated within your

defined web content tree.

Disable the capability to obtain directory listings. In this way, you can help
ensure that only the content you explicitly designate as public material
1s seen.

Resource Planning 57

Of course, this is by no means a complete list, but it should help you begin
to look in the right direction in thinking about securing your servers. If
security is a major concern for you and your organization, there are many
consultancies now offering full security audits of your architecture.

Another part of your initial security strategy should be checking vendor
sites to make sure that you've installed and configured all necessary security
patches. Most vendors maintain sites explicitly designed to keep their cus-
tomers updated with recent security releases. After you've decided which
software products you're going to use, it’s a good idea to visit the vendor sites
for these products and sign up for the various security alert mailing lists that
are offered. These mailings typically update you as new security issues are dis-
covered, and they tell you the actions that you need to take to protect your
configuration.

Depending on the type of application that you are designing, there might
be other pieces of your configuration that you need to snap in; but in almost
every case, you have to start by defining a configuration and security model.
After you've done the work up front, you can move on to the actual design
and implementation of your application with a good understanding of the
policies and limitations behind the scenes.

Planning Ahead for Scalability

When youre designing your architecture, leave yourself a path to upgrade
should your application suddenly get bombarded by traffic that is much
higher than you expected. When you are initially designing the architecture,
you are forced to make a best-guess estimate of the amount of traffic your
site will actually receive. Although this is fine as a starting point, you might
find that as you gain a larger user base, you need to reevaluate how your
environment is designed and expand your architecture to better suit the
needs of your growing user base.

One of the easiest ways to do this is through clustering and load balanc-
ing. Clustering and load balancing enable you to have multiple servers in
your environment that serve exactly the same purpose as their twins, thus
splitting the work between two or more partners.

In a typical architecture, there are three places that you can cluster: at the
web server, at the application server, and at the database server.

Unless you've implemented a three-tiered architecture with your applica-
tion server physically separated from your web server, you likely will be per-
forming clustering at the web/application server or at the database server.

58 Chapter 3 Before You Begin Coding—Application Planning

To cluster, you need to identify where your traftic bottlenecks exist. By
performing analysis on your traffic patterns and monitoring the resource
usage on your application and database machines, you should be able to
determine where you get the most bang for your buck.

Obviously, if your analysis shows you that your ColdFusion Servers are
spending the vast majority of their time in an idle state and your database
server is nearly never idle, you should consider clustering your database to
spread the load.

Conversely, if the database is idle nearly 100 percent of the time and
your ColdFusion Server’s resources are strained, you should cluster at the
ColdFusion layer.

Depending on the database that you’ve chosen, you should be able to find
a wealth of information on your clustering options at the vendor site.

If you’ve determined that you need to cluster at the application-server
layer, the first step in analyzing your traffic pattern is to define how many
servers are necessary to service all your concurrent requests during peak
load times.

Clustering ColdFusion Servers in this sense refer to having a group of
web/application servers work together to service the entire site. When clus-
tering in this way, each member of the cluster typically hosts a complete
copy of the entire site so that any incoming request can be answered by any
node on the cluster.

Alternatively, you might choose to centralize all web content in a single
location, giving all cluster members access to this content. The content is
made available on a separate physical machine on the network, typically
referred to as a content or file server. The main problem with this type of
configuration is that although your application servers are still clustered, the
content server represents a single point of failure in that if it becomes
unavailable, none of the clustered application/web servers can service any
incoming requests.

One way to solve this problem is by partnering the content server and the
database server, and then making each one the other’ failover. In other
words, although the database server’s primary function in this setup is to han-
dle incoming database requests, it would also contain copies of the content
so that if the content server were to fail, the cluster nodes could look to the
database server for the content. Subsequently, should the database server go
offline, the content server will have a complete copy of the database that can
come online to answer database requests in the event of a failure. This type
of setup eliminates the need for redundant hardware, but continues to ensure
high availability of all components in the cluster. Figure 3.9 demonstrates
this model.

Resource Planning 59

ColdFusion/ MS Cluster Server
Web Server or
Cluster Sun Cluster

X File Server

Cold Fusion| | (CF/Web
Cluster

K mapped site

Cold Fusion root drive)

’T‘ I

\ Online App

Cold Fusion Database
N\ [_]

Cold Fusion
Figure 3.9 High-availability model.

Load balancing is the next major key in scalability planning. After you've
decided to cluster your application servers, you need to come up with a plan
for the distribution of incoming tratfic between each member of the cluster.

There are many ways that you can do this, but by far the most popular
choice today is through the introduction of a hardware layer. This hardware
layer, typically called a load balancer, sits on the network in front of all your
web-application servers. When any requests come in for your site, the load
balancer answers these requests by deciding to which server on the cluster it
wants to direct this traftic. The way in which it makes that decision can be
controlled by the way in which you configure the load balancer itself.

Typically, if your site is located at www.somesite.com, www.somesite.com
resolves to the Internet Protocol (IP) address of your load balancer. After traf-
fic hits the load balancer, the load balancer can decide to which member of
the server cluster it should translate that request. This can also give you an
additional layer of security because, in this model, the load balancer itself
really is the only piece of hardware that needs to have a public Internet
address. After traffic has been sent there, it can usually translate the request
to a private network address of a machine on the cluster for response.

After you've decided that you are going to need to cluster and implement
some sort of load-balancing strategy, the next step is defining how many
cluster members you actually need to handle the amount of traftic you are
experiencing during peak times.

There are many different strategies and methodologies available for deter-
mining this number. We will present one that we’ve used successfully in
the past.

60 Chapter 3 Before You Begin Coding—Application Planning

First, it helps to have a general understanding of how cluster size is deter-

mined. Generally, there are a few standard factors that you need to consider:

Expected peak requests per hour
Expected peak simultaneous requests

Maximum average response times that you feel are acceptable for your
user base

Specific characteristics of your application (database versus content-
intensive, state management needing to maintained or not, and so on)

Environmental characteristics (locations of firewalls, private networks,
routers, and so on)

After all items have been considered, testing is required to determine the
exact number of cluster members necessary to meet the expectations that
you have defined.

As with any other methodology, there are many testing methods available.

The one we’ve used successfully in the past is outlined here:

1.

Determine what you think is the maximum number of requests per hour
experienced by the site. You can use past data obtained from web access
logs or other monitoring utilities to give you some idea of the number
with which you might want to start. In addition, you need to define what
you have decided is the maximum tolerable response time for your site.

This is an important factor because it is used to determine exactly how
many cluster members you need to achieve this response time.

In addition, when you're determining your maximum tolerable response
time, be sure to keep in mind that you’re defining this as the “maximum
allowable response time during peak periods of load.”

Although it might be desirable for you to say, “I don’t want any page to
take more than three seconds to return to the user,” this would be a very
unrealistic response time to expect under peak periods of load. The lower
your maximum allowable response time, the more cluster members you
likely need to keep that time down.

Set up a controlled test (using an enterprise-load testing tool) that stresses
the site with the amount of load that you've defined in Step 1. Control-
led load testing is a science all its own, and if you’ve never been exposed

to it before, you might want to refer to Chapter 26, for more information
on how to go about load testing a site in this manner.

Resource Planning 61

3. Calculate the average response time of your site while you are placing
it under load from the load-testing tool.

4. If the response time you saw in Step 3 is greater than the maximum
tolerable response time that you defined in Step 1, you need to add
another member to the cluster and start the process again at Step 2.
Repeat this process until the response times you see under peak load
during your testing fall within the allowable range that you defined
in Step 1.

Again, you might find that you have a better way to determine your cluster
needs. There is nothing wrong with developing your own methodology for
determining these needs—just make sure that whatever method you use, you
have some quantifiable way to measure the improvement in performance as
you add members to the cluster.

Summary

In this section, we examined how to define the environment in which our
application runs, as well as how to determine the specific needs of our appli-
cation from an architectural standpoint. We also talked about how to expand
our environment for scalability after we determine the need.

To successtully build a web application with any technology and not just
ColdFusion, you have to make sure that you are properly planning and using
your resources.

Making proper use of the resources you have means that you're keeping
track of what they’re doing and how they are doing it. This keeps everything
running smoothly. The job of monitoring all components of your setup is
an ongoing task throughout the life of your application, and it’s a necessary
step in making sure that you can identify and deal with any potential prob-
lems early on.

In addition to the number of servers you have available to you and the
way that your network is architected, you also need to examine the type of
hardware that you have to make sure that it’s up-to-date and appropriate for
the task.

You really can’t over-plan your resources. It’s better to have too much
hardware available to you than to come up short after it’s too late.

There’s an old adage that the prepared companies determine the maxi-
mum amount of hardware they need for peak load and then double it just to
be safe. Although that’s unrealistic to expect, the core message is true. It’s bet-
ter to be prepared for the worst than it is to get left wishing you had.

62 Chapter 3 Before You Begin Coding—Application Planning

Depending on how involved you are in the predevelopment stages of the
project, you might find that most or all architecture and environment plan-
ning work has been done for you. Nevertheless, as a developer, it’s important
that you keep yourself well-versed in the different ways in which an applica-
tion environment is planned and deployed so that you can offer expert advice
based on your experiences when you are inevitably called upon to do so.

After you've completed the planning of your architecture and hardware,
you then can begin thinking about how you'’re actually going to build the
core application. Just as the architecture and hardware layer requires proper
planning to ensure success, so too does the application-building process.

In the next section, we dive right into one of the first steps of this plan-
ning by beginning a discussion of the various development methodologies
that are available for you to use when designing your application.

Development Methodologies

Development methodology in relation to ColdFusion application design
refers to the existence of a defined set of conventions or procedures to guide
you through a development project. A development methodology might
define your application’s physical file structure and might dictate what type
of template goes into what folder. It might define naming conventions for
your code templates and how those templates interact with each other.

There are many popular development methodologies floating around the
ColdFusion development community. Any one of them might meet your
needs and help you to design more scalable and easier-to-maintain applica-
tions. Understanding the approach of these development methodologies
might even help you to define your own practice.

It is not our intention here to explain all intricacies of any development
methodology. We want to help you understand the use and importance of
utilizing a development methodology in your projects.

Fusebox

One of the most popular, widely known, and widely accepted development
methodologies is Fusebox. Fusebox has successfully been adapted to serve as
an application-development methodology for Active Server Pages (ASP),
PHP, and Java Server Pages (JSP) applications. This discussion focuses on
Fusebox 3, which is the latest specification. Although some of the fundamen-
tal concepts are the same, Fusebox 3 bears little resemblance to Fusebox 2.
Fusebox 3 is built around the following key features:

Development Methodologies 63

A nested model that supports communication between circuits. Circuits
now can have a parent/child relationship, leveraging the power of inheri-
tance. This is a departure from Fusebox 2, where circuits were indepen-
dent of each other.

A nested layout model

Fusedocs, which provide a Program Definition Language and documenta-
tion in an eXtensible Markup Language (XML) format

A defined set of key or core files
Exit fuseactions (XFAs)
A public application program interface (API)

Core Files

Fusebox 3 introduces different core files, each prefixed with FBX_:

FBX_Fusebox_CFxx.cfm. The xx is dependent on the version of ColdFusion
supported. Your Fusebox application has a separate file for each version of
ColdFusion supported. The FBX_Fusebox_CFxx.cfm file replaces many of
the custom tags from Fusebox 2 and should be called by the default file of
your application’s home circuit.

FBX_Settings.cfm. This is an option file that is used to set variables. The job
of the FBX_Settings.ctm file is to set up the environment in which the
application runs. This replaces app_Globals.cfim, and variables specific to a
circuit application are set in the app_Locals.cfm files used in Fusebox 2.

FBX_Circuits.cfm. This is required in the home circuit and provides map-
pings of circuit aliases to physical directory paths. The circuit aliases are
not required to be the same as the directory names.

FBX_Switch.cfm. This is a CFSWITCH statement that contains a CFCASE for
every fuseaction that the circuit handles.

FBX_Layouts.cfm. This is an optional file, used to set the variable
Fusebox.layoutDir, which points to the directory where layout files are
kept. It also sets Fusebox.layoutFiles, which points to the layout file to
be used.

Fusedocs

Unlike Fusebox 2, which used a proprietary format developed by Hal Helms, Fusebox
3 uses XML to document what a fuse does and the required input/output.
The fusedoc has three elements. Responsibilities is the first and it is required.

64 Chapter 3 Before You Begin Coding—Application Planning

The other two elements are properties and io. Responsibilities provide an
explanation of what the fuse will do. Properties contain a number of’
subelements that provide information, such as history, related to the fuse.
The last element, 1o, defines the input and output of the fuse. A more
detailed explanation of these elements and their attributes can be found in
the Fusebox 3 documentation.

Fusebox Basics

Fusebox helps developers build robust and scalable web applications easily,
surely, and quickly—and it’s surprisingly simple. A Fusebox application works
by responding to requests to do something—a fuseaction, in Fusebox par-
lance. This request might come about as a result of a user action (a user sub-
mitting a form, for example, or clicking a link), or it might occur as a result
of a system request.

When you submit the form, index.cfm is called. In fact, everything an
application can do is done by sending a fuseaction request to index.cfm. This
file, so central to the methodology, is called the fusebox. When a fusebox is
called, a variable called fuseaction is also sent.

The fusebox’s main job is to route a fuseaction request to one or more
code files called fuses. These files are typically small and have well-defined
roles.

The routing begins with a CFSWITCH statement, located in the
FBX_Switch.cfm, that examines the value of the fuseaction. After it finds a
matching value in one of the CFCASE statements, the code between those par-
ticular CFCASE tags is executed. In the Fusebox methodology, the CFCASE code
is used to set up an environment in which one or more fuses can be called
to perform whatever actions are needed to do the work requested by the
variable fuseaction.

A fuse can be used to display a form, check whether a user’s password and
username match those found in a database, and show a menu of user options.
In short, anything a web application can do can be done through the use
of fuses.

Well-written fuses are very short and restrict themselves to doing only
one or two things. They are easier to write (and maintain), are less buggy, and
are easier to debug. They also facilitate code reuse.You seldom need a catch-
all type of fuse, but you often will need fuses that handle a specific task.

Fuses have one or more exift points, which are areas where the action
returns to the fusebox. Every link on a user menu is an exit point, just as
each drill-down action to get more information is an exit point. Some exit
points are visible and require user interaction, such as submitting a form or

Development Methodologies 65

clicking a link. Other exit points are not visible. An example of an invisible
exit point is a call to a CFLOCATION tag within a user-authentication template.
Whether generated by user interaction or by the application itself, exit points
in fuses always return to the fusebox with a fuseaction.

This is a great place to discuss the feature of XFAs. XFAs are the exit
points of a fuse. In Fusebox 2, fuseactions were hard-coded into exit points:

<form action="index.cfm?fuseaction=verifyUser">

However, this impairs code reusability. If you want to reuse a fuse—whether
in another application or in a different point in the same one—you now
must deal with the fact that your exit fuseactions might not be the same.
They might vary according to the context in which they are used. This
means that you must begin introducing conditional statements in your code.
Now, each time you want to reuse the fuse, you must open up the file, alter
the existing code, and then save it. This introduces the very real possibility
that you will introduce a bug into the code. Further, it reduces readability
(and maintainability) of the code, making it just plain ugly.

Fusebox 3 enables you to use XFAs to replace the hard-coded references.
This lets you create fuses that can be used anywhere, without worrying
about where a form should be submitted or a link should be pointed.

<form action="index.cfm?fuseaction=#XFA.submitForm">

The value of the fuseaction is set in the FXB_Switch.cfm file:

<cfswitch expression="#Fusebox.fuseaction#">
<cfcase value="verifyUser">
<cfset XFA.submitForm="verifyUser">
<cfinclude template="qry_verifylLogin">
</cfcase>
<cfcase ...
</cfswitch>

Fusebox Conventions

It’s helpful to categorize fuses into different types. For example, some fuses
display information, forms, and so on to users; others work behind the scenes
to do things such as process credit cards; and still others are responsible for
querying databases. Many Fusebox developers find it helpful to use a prefix
when naming a fuse. Such a prefix conveys the fuse type. Examples of these
are shown in Table 3.4.

66 Chapter 3 Before You Begin Coding—Application Planning

Table 3.4 Fusebox 3 Prefixes

Fuse Name with Prefix Explanation

dsp_ShowProductInfo.cfm A display type fuse used to show or request information
from a user

act_SaveUserInfo.cfm An action type fuse used to perform an action without
displaying information to a user

qry_GetUserInfo.cfm A query type fuse used to interact with data-sources
without displaying information to a user

url_ProcessOrder.cfm An action type fuse used to redirect an action

These naming conventions are best thought of as suggestions. You can use
the naming conventions outlined here—or not, depending on what suits you
best.

If you do use them, will you use an underscore to separate the prefix from
the fusename, or will you use the mixed-case spelling that many developers
prefer? Personally, I like the mixed-case usage, but you might prefer some-
thing else. Whatever you choose, don’t get bogged down in disputes over
naming conventions; Fusebox is primarily about developing successful
applications, not about naming schemes.

Encapsulation

You have seen how fuseactions are returned to the fusebox, and you have
had a glimpse of the mechanism the fusebox uses to call helper fuses (a
CFSWITCH statement). Fuses really do all the work in a Fusebox application.
The fusebox itself acts like a manager, delegating work to one or more of
these fuses.

One of the principles of modern programming is encapsulation, which
states that, as much as is possible and reasonable, applications should be
divided into areas of related functionality. We do this constantly in many
aspects of our lives.

One of the great things about Fusebox is the flexibility it gives you as the
developer. This not only lets you decide on things such as naming conven-
tions, but also it enables Fusebox developers to experiment with new ideas
without fear of running afoul of any Fusebox police. This, in turn, lets
Fusebox evolve, whether to stay abreast of technology developments or sim-
ply to incorporate good ideas that weren'’t originally envisioned. Different
developers have different goals and bring with them different techniques.
Such creative diversity can only be good for the methodology.

Development Methodologies 67

One idea that has proven very successful in the object-oriented world is
that of inheritance, a mechanism for reusing code (and surely the Holy Grail
of many programmers). Having written a perfectly good circuit application,
such as a user module, for one application, we surely want to use it in others
and to do so without having to make wholesale changes to the code.

The original Fusebox specification doesn’t make this particularly easy, so
you had to muck about, changing app_Locals.cfm and app_Globals.cfm. The
idea of inheritance made this process both easier and safer. Many developers
welcomed the idea of nesting in Fusebox 3, which was a departure from the
Fusebox 2 concept of treating each fuse or circuit as independent. Although
Fusebox 3 supports a concept of inheritance that enables child circuits to be
inherited from their parent circuit, circuits should have the same properties
or functionalities associated with inheritance in object-oriented languages.

Summarizing Fusebox

Although we could spend all day delving deeper into the Fusebox method-
ology, let’s wrap this discussion up by recapping what we’ve just discussed.

Fusebox is an application-development methodology that enables develop-
ers to create highly reusable and scalable applications by providing a frame-
work for the application. This framework employs the use of a template that
is central to the application that serves as a fusebox. It routes requests, calls
includes, and sets variables.

Fusebox enables applications to be clustered or nested off the main fusebox
to ensure that your application can be easily extended and enhanced. Fusebox
enables developers to write code that is reusable and easy to maintain.

To learn more about Fusebox 3, visit www.fusebox.org/. This site contains
the latest Fusebox specification and a number of excellent articles, presenta-
tions, and tutorials on Fusebox.

cfObjects

cfObjects is another popular development methodology available to
ColdFusion developers. cfObjects purports to be a simple and efficient
framework for building applications that can take advantage of object-
oriented programming principles, including inheritance, polymorphism,
and encapsulation.

Object-oriented programming enables us to better model the problem
domains within our systems and designs. With an OOP methodology and
framework, we can tackle very complex applications using an approach that
is natural because it is similar to the way a human solves daily problems.

68 Chapter 3 Before You Begin Coding—Application Planning

By combining the power and flexibility of ColdFusion with an object-
oriented methodology, ColdFusion developers gain the capability to develop,
share, and extend reusable class hierarchies that solve the common problems
that occur in web-application design.

By making use of ColdFusion features such as exception handling, verity
collections, and the request scope, you can implement OOP constructs and
class libraries.

cfObjects is a collection of highly specialized custom tags, Visual Tag
Markup Language (VTML) files, and Studio Wizards. At the core of the
framework are different custom tags:

= CREATEOBJECT

= INVOKEMETHOD

= DECLAREMETHOD
= COLLECTGARBAGE
= CACHECLASS

= DUMPALL

These custom tags enable developers to create object-oriented class libraries
or object collections. The value or the framework is in the depth of the class
libraries, not the framework components. cfObjects was designed to enable
any company, organization, or individual to create specialized class libraries
that plug into the framework. That is, cfObjects is not a class library—it is a
framework for implementing and using class libraries.

Classes

Classes are implemented as a collection of ColdFusion templates residing
under a class subdirectory (one per class). The class subdirectory must exist
under a directory named by a ColdFusion mapping. Within each class subdi-
rectory, there must exist a special file named class.cfm. This file defines the
class and superclass name. Class.cfm is loaded by CREATEOBJECT.

Methods

Methods are implemented as specialized custom tags that exist within the
class subdirectory. Each method should contain a call to DeclareMethod as
the first line within the CEML file.

When a method is invoked, the cfObjects framework makes all passed
attributes available to the method, including the special attribute named
“self,” which is a reference to the object instance. This is useful for accessing
the instance variables of the object.

Development Methodologies 69

You can download the framework for cfObjects along with all the custom
tags. Remember, however, that cfObjects is not a product. It provides a
framework and a development methodology for ColdFusion developers to
tollow. You can learn more about cfObjects at www.cfobjects.com.

SmartObjects

Other

SmartObjects is a freely available, open-source framework that enables devel-
opers to convert a directory of CFML templates into a customizable,
reusable, object-oriented component, or class. This is done by placing a class
definition file, called public.cfm, in the directory. This template uses the
CF_CLASS custom tag to define the directory as a class, and it makes it avail-
able to be used by other applications.

After it is defined, SmartObjects classes are not accessed directly through a
web browser, but are called by—and embedded in—other templates. This is
called creating an instance of, or instantiating, the class using the CF_0OBJECT
custom tag. Each instance of the class is called an object, and it is represented
by a structure variable type.

Every CEML file in the class directory is called a method, and it repre-
sents any executable function such as add, edit, delete, or find. The calling
application uses the CF_CALL custom tag to execute any of the methods that
the object supports.

Classes can inherit methods from other classes, which means that they do
not have to define all their own functions by themselves. Base classes provide
functions that subclasses can override or extend. Using inheritance, you can
simplify your applications by maximizing the amount of reusable code that
you can access. You can add new methods to a class, or you can replace exist-
ing methods with new functionality. You can learn more about SmartObjects
at www.smart-objects.com.

Established Methodologies

There’s no one methodology that we can recommend that you use. We do
think, however, that understanding several development methodologies helps
you to better understand the application-development process. 'm sure no
one has thought of every possible complication that can arise in application
development. Let’s take a look at a few more development methodologies.

70 Chapter 3 Before You Begin Coding—Application Planning

Switch_box

Switch_box is a methodology that has definitely been influenced by other
popular development methodologies. The use of the word “box” in
“Switch_box” is really more coincidental to “box” in “BlackBox” or
“Fusebox” than a variation on these techniques. In fact, some of the conven-
tions of the Fusebox methodology are used in Switch_box.

The idea of classification and organization of information is as old as the
human mind. It is how we understand ideas and hold on to them. It is
intrinsic to our human nature. Thus, the idea for boxes and nesting of boxes
is a really great way for our minds to understand the problem paradigm.

Switch_box introduced the notion of a message vector as means for
directing program execution from a uniform resource locator (URL). It
builds on the traditional dotted-object syntax with two important distinc-
tions. First, it is designed to be a Hypertext Transfer Protocol (HTTP)
attribute. Second, it is intended to show the clear separation of a method
name from the object name.

The word “vector” means direction, and directions are calculated from
coordinates. In the case of Switch_box, the axes for coordinates are the
object list and the method list.

In traditional object-oriented syntax, sometimes discerning the method
from the object can be a guessing game and requires beforehand-knowledge
of objects and their methods. In Switch_box, the objective was to make the
separation clear and unambiguous. This is the reason for putting the colon
between the object tree and method tree. In Switch_box, the rule for a mes-
sage vector is that any message without a colon is a method for the current
box; otherwise, all message vectors must be properly formed with the object
tree and method tree. In addition, in the method axis, Switch_box enables
the use of a compound method tree. This feature is necessary for handling
predicate noun actions and makes the process of writing program code more
efficient.

Along with a message vector, the notion of a “switch operator” has also
been introduced. The switch operator is merely a means to calculate the
message vector path. The standard object-oriented example
Books.Catalog. Adults.Inventory.Display would be in the message vector
format of Books.Catalog.Adults.Inventory:Display would read as “Books
switch Catalog switch Adults switch Inventory switch Display.” The
CF_SWITCHBOX custom tag handles the message-vector switch operators. To
find out more about this methodology, check out Switch_box online at
www.switch-box.org.

Development Methodologies 71

BlackBox

The BlackBox style of developing ColdFusion applications is based on the
premise that developers like to have control over their pages. Its strengths

enable developers to access the brains of an application without worrying
about the predefined presentation tier.

BlackBox enables the same functionality to be used in several sections of
the application, but in very different ways. It is designed so that employing
this functionality creates the illusion of functions. It enables developers to
easily nest applications and to create attractive URLs. BlackBox also enables
developers to easily integrate multiple applications within the same web site.

BlackBox is a very simple methodology. It employs a few custom tags and
functions to access individual templates and to access integrated applications.
You can find out more about the BlackBox methodology by visiting
www.black-box.org.

Developing a Personal Methodology

In the last several pages, we’ve looked at several development methodologies.
Some of them are popular, well-publicized, and quite successful; others con-
tinue to struggle to gain acceptance in the ColdFusion development com-
munity.

I’'m not going to stand up and tell you to use one or the other. 'm not
going to try to point out the strongest attributes of one or the cracks in oth-
ers. What I will tell you is that having a development methodology is impor-
tant and that creating an established set of development guidelines helps you
to maintain a minimum level of standardization in your application code.

Here are a few things to consider when you start to develop your own
ideas about development methodology:

» Coding standards. Every application needs to have some coding stan-
dards in place. Coding standards include everything from tag case to the
proper scoping of variables. Presentation-tier code calls for the combina-
tion of HTML and CFML. The presentation of your HTML and CFML
code should be standardized so that it is easy for one developer to read
another developer’s code or to extend the application for any given point.

= Code commenting. I know that this could be wrapped up in a bit of
information regarding coding standards. However, I'm isolating this topic
because of its importance. Too many times ['ve seen developers write
code that makes total sense to them but to anyone else, it’s like reading
Klingon.

72 Chapter 3 Before You Begin Coding—Application Planning

Commenting should be part of your standard template. A usage comment
should be included at the top of the template to provide information on
the purpose of the template, its creation date, and its author. At the bot-
tom of the template, I like to include a revision log so that developers
understand the iterations that the template and the embedded presentation
or functionality have gone through and the reasons that the code was
added or removed.

» Naming conventions. The names that you give to files, links, and
processes are as important as the accuracy and organization of the code
that you write. It is important to employ a naming convention in your
application that is easy to understand. The naming convention should help
to avoid confusion in relating the process call, the template name, or the
link to their functions or purposes within the application.

= Application framework. Of course, ColdFusion developers can take
advantage of the application framework provided by the Application.cfm
and OnRequestEnd.cfm templates. Remember to use these templates prop-
erly and not to call query code or employ presentation elements within
these templates. They are best used for the evaluation and creation of
global variables and application-level variable.

» Business logic calls. Business logic calls can usually be divided into
functions and actions. Think of functions as specific tasks that the applica-
tion processes perform.You can use a business logic template to handle the
variable values that are created in a multistep process in a particular appli-
cation transaction.

» Data interface transactions. The handling of data interface transaction
should have some type of organized approach. By data interface transac-
tions, we are referring to the templates that invoke the calls to stored pro-
cedures or that make query calls. By defining each template by its purpose
and function within the application, developers can easily find and update
code. This area also gives a perfect location to employ commit and roll-
back strategies and query caching strategies.

» Variable standardization. Web-based applications handle variables by
passing them from template to template along the URL string or by pass-
ing them from form template to action template. The standardization of
variable scopes is one of the issues that arises in any application and that
gets more and more difficult to manage as your application gets more
complex.

Development Methodologies 73

There are several custom tags out there that can help with this issue. They
simplify variable testing and evaluation by converting all variables to the
same scope.You can convert them to a local scope, but I suggest the request
scope to avoid any conflicts with variables of the same name that are created
within the template that calls the standardization implementation.

= Exception and error handling. ColdFusion give us the power to use
its built-in, error-handling features. We have the capability to use tags,
such as CFERROR, CFTRY, CFCATCH, CFTHROW, and CFRETHROW. These are error-
handling methods that we can employ within our code. We can also take
advantage of ColdFusion’s site-wide error handling. These types of errors
are things that happen while the template is being processed by
ColdFusion. They are pretty predictable and enable us to define custom
error-handling templates for a more user-friendly, error-message display.

Exceptions might occur within our application at runtime. Validation and
client-side scripting should take care of most of these, if not all. On the oft
chance that you've left out some validation or some validation does not
work properly, you should have a catch-all in place to handle situations
where the user supplies invalid values to the application.

Well, hopefully this gives you a good starting point and a heads-up on the
things you need to consider when planning your application-development
methodology. As we mentioned earlier, it helps to study the existing and
established methodologies so that you can glean their strengths from them
and adapt them to your needs.You also should make sure to learn from the
mistakes that other developers have made in the past. Many of the existing
methodologies have been refined as a result of those mistakes and are much
more thorough today.

Summary

Understanding your application requirements is crucial to the planning of
the infrastructure on which your application runs and to the development of
an architectural plan for your application. The definition of a development
methodology for your project is also important. We’ve seen how a methodol-
ogy can simplify the interaction between logical chunks of code and can
make the reuse of code easier to implement . We've also discussed a few
established methodologies and some that are on the brink. Whether you
choose one of these methodologies or come up with one of your own mak-
ing, remember these tips:

= A methodology should serve as a framework for the development of your
application.

74 Chapter 3 Before You Begin Coding—Application Planning

» Your methodology should be well-defined.
» Your methodology should be well-documented.
= Your methodology should be adhered to throughout your application.

» Your methodology should be understood and employed by all developers
on your project.

Summary

With a better understanding of application planning, application architecture,
and development methodologies, you're ready to get into the code. The next
several chapters walk you through some basic and not-so-basic aspects of
CFML. Have fun!

