
Now Let’s Start Digging

2

Chapter Roadmap
Now that we have presented a high-level concept of XML and Perl, it’s
time to see some of the tasks that we can accomplish when we combine these
two tools.As we mentioned earlier, we will show you how XML and Perl
complement each other and make tasks that initially seem to be difficult
almost simple (well, at least a lot easier).We’re going to discuss XML and Perl,
and how they are used together to create portable, powerful, and easily
extensible applications.

This chapter covers the concepts and basics of the most popular XML
technologies. Each of these technologies is utilized in Perl applications
throughout the book, and we provide a working example that clearly
illustrates the proper way to use the respective Perl module. Here are the
topics that we’ll discuss in this chapter:

n What is XML Processing?
n XML Parser Paradigms
n Parsing an XML Document and Extracting Statistics
n Generating XML Documents
n Searching XML Documents

2891 ch02 09.17.02 5:23 PM Page 15

16 Chapter 2 Now Let’s Start Digging

n Transforming XML Documents
n Our First Perl XML Programs
n The Problem: Generating and Parsing an XML Document
n What is XML Processing?

What Is XML Processing?
What is XML processing? That is an often-asked question today given the
popularity of XML. In the context of this book, I’ll define XML processing
as any task that involves XML data (for example, reading, writing, generating,
and transforming).

Examples of XML Processing
XML processing can mean different things to different people, depending
on what is important to them.What are some XML-related tasks? A few of
the more important XML-related topics that will be covered throughout the
book are XML generation, XML validation, XML parsing, and XML transfor-
mation. Each of these topics will be introduced in the next few sections and
then discussed in detail a little later in the book.

XML documents must be generated before they can be processed, so
generating XML documents is an important topic.There are several Perl
modules that are specifically designed to facilitate generating XML from a
variety of input sources.The input data source will usually determine the
best XML generating module for each situation. For example, if you are
converting an input CSV file to XML, you could use either the XML::Writer
or XML::SAXDriver::CSV Perl modules. If your input data is store in a
Microsoft Excel file, you could use the XML::SAXDriver::Excel Perl module
to help with the generation. Finally, if you need to convert the results of a
database query to XML, you could use the XML::Writer or the XML::
Generator::DBI modules.

As you can see, you have a number of options when it comes to support for
generating XML. I’ll discuss all of these modules in greater detail and present
examples a little later in the book.

2891 ch02 09.17.02 5:23 PM Page 16

17What Is XML Processing?

Validating XML

Once we’ve generated an XML document (or received one from another
source), there are Perl modules that will help you validate the XML docu-
ment.An XML document is considered valid if it complies with a Document
Type Definition (DTD) or XML schema.There are several Perl modules
that support XML validation (for example,Apache Xerces), and they will be
discussed later in the book.

Parsing XML

Parsing is a concept that goes back a long time (in programmer’s time, not
historical time). Parsing data, in simple terms, is to break the data down into
the fundamental components that mean something to the application or the
end user.An XML parser is a program that does exactly that—it parses an
XML document based on the XML rules and syntax defined in the XML
standard, and it provides that information to the requesting application.
Information usually comes in a data structure for each construct. If the
construct is queried by the application, it will give you information about
the construct. For example, for the open element construct (which is
recognized whenever the parser encounters a combination of characters
similar to <element_name>), the parser provides the element’s name and
other relevant information to the appropriate event handler.

Transforming XML

XML can be transformed to a number of different formats. For example, an
XML document can easily be converted to another XML document, HTML,
CSV, or any of a number of different formats.This feature of XML is very
important and allows a great deal of flexibility when presenting XML data.
There are a number of Perl modules that support XML transformation and
they’ll be discussed in detail throughout the book.

Note
Remember, there is a difference between data and information. The term data can be used to describe

an entire XML document (data = markup + information). Information, on the other hand, is the actual

information contained in the XML data.

2891 ch02 09.17.02 5:23 PM Page 17

18 Chapter 2 Now Let’s Start Digging

Note
A short XML primer is included in Appendix A, “What Is XML?” to help refresh your memory or give you

an abbreviated introduction to XML.

XML Parsers
Parsers come in many different forms. Some XML parsers don’t require

any programming, you just provide an input XML document, and the
parser generates the output data. Other XML parsers provide Application
Programming Interfaces (APIs) that allow the programmer to manipulate
its functionality from within the application code.APIs are usually highly
customizable and come with many different features. In Perl, a parser module
provides an API to an XML parser engine.This API hides most of the details
of the inner workings from the typical user, while providing a clean, easy-to-
use, and well-defined interface.

Parsing an XML document involves reading the XML data and navigating
through it while separating the contents of the XML document into meaning-
ful components. Remember, XML data can come from a file, input stream
(for example, a socket), a string, or just about any other possible data source.
The most popular methods of parsing XML follow either the push model
or the pull model. Each of these parsing methods is discussed in the
following sections.

Push Model of an XML Parser
The push model, as shown in Figure 2.1, is the core of the event-driven
parsers. In the push model, special subroutines called event handlers are defined
within your application.These event handlers are registered or tied to specific
events and are automatically called by the XML parser when a particular event
occurs.The push model was given its name because whenever a particular
event is encountered, it pushes the event (and some event-specific data)
to a predefined handler in the application. For example, you can define
subroutines that are called when a start tag is encountered, when an end tag
is encountered, and so forth. Using a little logic that we’ll demonstrate, it is
fairly straightforward to parse an XML document and extract its contents.

2891 ch02 09.17.02 5:23 PM Page 18

19What Is XML Processing?

As you can see, this is a passive approach to parsing because your application
waits for data to arrive. Basically, three steps are involved in this approach.

n Write the event handler subroutines.
n Parse the XML data.
n Wait for the event handlers to be called.

Of course, there is a little more to it, but that is basically what happens.
It’s important to understand the concept at a high level.This way, when we
present the examples and discuss the code that actually performs each of these
steps, you will have a good understanding of the process. Event-driven parsers
and their underlying concepts are discussed in detail in Chapter 3,“Event-
Driven Parser Modules.”

Application

Initialize

Parser

Return each

component to

application as

itÕs encountered

Get XML Data

Parse

XML File

XML Parser

(Push)
<?xml version 1.0 ?>
<career_statistics>
 <player>
 <name>Mickey Mantle</name>
 <learn>NY Yankees</learn>
 <home_runs>530</home_runs>
<batting_average> 298</batting_aver
age>
 </player>
</career_statistics>

#!/usr/bin/perl
use XML::XPath:
print XML & Perl Book ,

Figure 2.1 Applications built using a push-based XML Parser play a passive role
and receive data that is pushed from the XML parser.

Pulling XML Parser Events to the Application
The pull model defines another parsing model. In this model, the application
controls the parser and pulls the information from the parser as the parser
iterates through the XML data. Figure 2.2 illustrates the pull XML
parser model.

As opposed to the push model, the pull model requires the application
to play a more active role in the parsing of the document.The pull model
basically parses the XML data and holds it in a tree structure. In order to
retrieve data, the application then must walk up and down through the tree
and extract the desired sections of the XML data.The pull model is discussed
in detail in Chapter 4,“Tree-Based Parser Modules.”

2891 ch02 09.17.02 5:23 PM Page 19

20 Chapter 2 Now Let’s Start Digging

Figure 2.2 Applications built using a pull-based XML parser play an active role in the
parsing by pulling data from the XML document.

Together, these two paradigms form the basis of most XML parsers.We’ll
discuss the advantages and disadvantages of the push and pull methods
throughout the book.

XML Parser Paradigms
Now that we have discussed the low-level parser models, push and pull, let’s
look at the more commonly discussed models that are built on top of the push
and pull concepts.The two major types of parsers are event-driven and tree-
based parsers.

Event-Driven XML Parsers
An event-driven parser is a model that can be closely associated with the push
model. Event-driven parsers enable an application to define events for each
recognized construct, and after that construct (event) is encountered, the parser
calls the correct function in the application associated with that event. For
example, we can define an event that is called whenever the opening tag
(for example, <name>) of an element is encountered. Simple API for XML
(SAX) is the most popular event-driven parser specification. It defines a
standard way to access and manipulate a SAX-compliant parser.This is a very
powerful model due to its speed and efficiency.We’ll discuss event-driven
modules in Chapter 3,“Event-Driven Parser Modules.”

Application

Initialize

Parser

Access

the Data

Structure

Get XML Data

Parse

XML File

XML Parser

(Pull)

Store Components in a

Data Structure

ProgramÕs

Memory

<?xml version 1.0 ?>
<career_statistics>
 <player>
 <name>Mickey Mantle</name>
 <learn>NY Yankees</learn>
 <home_runs>530</home_runs>
<batting_average> 298</batting_aver
age>
 </player>
</career_statistics>

#!/usr/bin/perl
use XML::XPath:
print XML & Perl Book ,

2891 ch02 09.17.02 5:23 PM Page 20

21XML Parser Paradigms

Tree-Based XML Parsers
When we memorize some information (for example, a friend’s telephone
number), it’s easier to remember it than it is to look it up in the telephone
book. Unless we have amnesia, our memory serves as the fastest and most
reliable source for retrieving data. If you look at the tree-based or pull parser
model shown in Figure 2.2, you’ll notice the parser has a brain of its own
and, therefore, stores the parsed information in a data structure.After the
information is stored in the memory of these data structures, it can be easily
accessed from the application. One of the most popular tree-based XML
parser models is called Document Object Model (DOM), which is a specifica-
tion that defines the behaviors and data structures of DOM-compliant XML
parsers.We’ll talk more about DOM and other tree-based XML parsers in
Chapter 4,“Tree-Based Parser Modules.”

XML Parsers Versus XML Processors
Try not to confuse XML parsers with XML processors. XML parsers are
different from processors in that an XML parser is only one of the compo-
nents of an XML processor.An XML processor may include several different
components required to accomplish its task.
A perfect example of an XML processor is the eXtensible Stylesheet Language
(XSL) Transformations (XSLT) processor.The XSLT processor is composed of
many components, one of which is the actual XML parser itself. It uses the
parsing component to decompose an XML document into meaningful parts
so that other XSLT components can operate on the individual components.
An XSLT processor converts requires two inputs: an XML document and an
XSLT stylesheet.The XSLT stylesheet is an XML document that contains
rules (called templates) that describe the format of the output document.
The XSLT processor then applies these rules to the input XML document
and generates the desired output. For example, we can start with an XML
document, use an XSLT processor, and the end product could be an
HTML document (for display on a web page), or even another XML docu-
ment that is a subset of the original XML document. XSLT and other related
topics will be discussed in Chapter 8,“XML Transformation and Filtering.”

2891 ch02 09.17.02 5:23 PM Page 21

22 Chapter 2 Now Let’s Start Digging

Parsing an XML Document and
Extracting Statistics
Now that you’ve got a good understanding of what it means to parse an XML
document, let’s take a look at a short example that uses one of the tools that
were just discussed. For this example, we’ll use the XML::Parser Perl module
to parse a small XML document. Listing 2.1 shows a small XML document
that contains statistics from two great baseball players.As you can see, the
XML document is very simple. It has two <player> elements, and each
<player> element has four child elements (<name>, <team>, <home_runs>, and
<batting_average>). Granted, this is a small and simple XML document, but it
is perfect for illustrating simple XML parsing. Our goal for this example is to
parse this document and extract the statistics for each player.

Listing 2.1 Career statistics for two Hall of Fame baseball players stored in an
XML document. (Filename: ch2_baseball_stats.xml)

<?xml version=”1.0”?>
<career_statistics>
<player>

<name>Mickey Mantle</name>
<team>NY Yankees</team>
<home_runs>536</home_runs>
<batting_average>.298</batting_average>

</player>
<player>

<name>Joe DiMaggio</name>
<team>NY Yankees</team>
<home_runs>361</home_runs>
<batting_average>.325</batting_average>

</player>
</career_statistics>

We wrote a small application to parse this XML document. Don’t worry about
the source code yet, we’ll start off slow and start showing Perl applications a
little later in this chapter. For now, just focus on how an XML parser works,
and don’t be too concerned with all of the small details yet.

We used the XML::Parser Perl module to build an application to parse the
XML document.The XML::Parser Perl module is an event based parser that
will be discussed in Chapter 3,“Event-Driven Parser Modules.”The output
generated by the Perl XML parsing application is shown in the following:

2891 ch02 09.17.02 5:23 PM Page 22

23Parsing an XML Document and Extracting Statistics

career_statistics =

player =

name = Mickey Mantle
team = NY Yankees
home_runs = 536
batting_average = .298

player =

name = Joe DiMaggio
team = NY Yankees
home_runs = 361
batting_average = .325

Note that in the output, each element is printed out in the same order as
the order that the opening tags appear in the XML document.As you look at
the output listing, you’re probably asking why the <career_statistics> and
<player> elements are empty, right? Well, take a look at the original XML
document in Listing 2.1 again. Notice that the original XML file really
contains a <career_statistics> element that is made up of two child elements
named <player>. Each <player> element is made up of four child elements:
<name>, <team>, <home_runs>, and <batting_average>. So, when parsing the XML
document, the <career_statistics> and <player> elements don’t contain any
character data themselves, but rather contain other elements—their child
elements.After the <name>, <team>, <home_runs>, and <batting average> elements
are encountered, the parser can extract the character data contained by each
element. Of course, more complex scenarios exist in which elements contain
attributes, character data, and child elements, but let’s go one step at a time.
You will have examples later that cover all these scenarios.

Now that we’ve given a quick introduction to parsing XML, the first
question is, how do we do it? That’s the easy part: use any number of Perl
XML modules. It’s only natural to try to use these two technologies together
to solve complex problems.A large number of Perl modules are available that
perform just about every conceivable task related to XML.As of this writing,
there are nearly 500 Perl modules related to XML.We’re going to explain the
most popular modules, show you how to use them, and demonstrate them
using real-world examples that can easily be extended to support more
complex applications.

2891 ch02 09.17.02 5:23 PM Page 23

24 Chapter 2 Now Let’s Start Digging

Generating XML Documents
Where do XML documents come from? It’s kind of like the famous question:
Which came first, the chicken or the egg? You can’t parse an XML document
until you build one.The source data for an XML document can come from
just about any imaginable source. For example, an XML document can be
generated from a CSV file, a tab-delimited text file, the results of a database
query, a Common Gateway Interface (CGI) web-based user input form
that collects data from a user,Web services, and many, many other sources.
You can see that there is an almost infinite number of data sources for
XML documents.

Let’s take a look at two methods of generating XML documents. First, an
XML document can be created in a standard text editor or an XML-specific
What You See Is What You Get (WYSIWYG) editor.This is called static
generation because the XML document is created by typing the document
into a text editor.The data in the file remains the same unless someone or
something (that is, an application) modifies it.There isn’t too much to it—you
basically just type the contents of the XML file as you would type any other
document.This is an option for very small XML files (for example, configura-
tion files); however, it isn’t practical for larger files.The larger and more
complicated an XML document is, the greater the chance of error if the
file is edited by hand.

XML documents can also be generated dynamically by an application.
Dynamically generating XML is more interesting and applicable than statically
generated documents, so let’s take a more detailed look at this topic in the
following section.

Dynamically Generating XML Documents
Another method of generating an XML document is to dynamically generate
the contents using an application (preferrably Perl based). Because XML is just
plain text, an entire XML document can be easily contained within a Perl
scalar. It also can be printed to any filehandle with a simple print command.
Of course, plenty of modules are available that generate XML, which takes
away some of complexities of doing everything yourself.We’ll discuss these
modules in Part III of this book,“Generating XML Documents Using Perl
Modules.” Some of the topics discussed include generating XML documents
from text files, databases, and even other XML documents.

2891 ch02 09.17.02 5:23 PM Page 24

25Generating XML Documents

A good example to demonstrate dynamic XML file generation is a web
form that is filled out by a user and then submitted to a Perl application
running on the web server.This is certainly dynamic because we don’t know
what the user will enter as data.Assume that the web form shown in Figure
2.3 allows the user to fill out certain information and then submit the
collected information to the server.The information provided by the user
will be processed by a Perl script and used as input or source information for
an XML document.An XML document will be generated containing the
information provided by the user.

We won’t get into too much detail here, but we will revisit this example in
Chapter 5,“Generating XML Documents from Text Files.”The purpose here
is to provide a few high-level examples to illustrate the concepts instead of
diving right into source code.

Figure 2.3 Web-based HTML submission form used to collect data for our XML document.

2891 ch02 09.17.02 5:23 PM Page 25

26 Chapter 2 Now Let’s Start Digging

When the Perl application receives the information from the form, it comes
in a certain format.The Perl application can then parse this format to separate
each field individually. Let’s say the user fills in the required information
and then submits the form. Now, inside our Perl application, we have the
following data:

First Name: John
Last Name: Smith
Address: 1155 Perl Drive
City: Los Angeles
State: California
Zip: 90102
Phone Number: 818-555-1212

The Perl script can now process and modify the data and then generate an
XML document containing this information. Listing 2.2 shows the submitted
data in an XML document.This file now can be processed as an XML
document. For example, now that the information submitted by the user is in
XML, you have a variety of options.The XML document can be transformed
to another format (using XSLT), searched (using Xpath), or sent to another
application as a document that is based on an agreed-to format.

Listing 2.2 Sample XML file generated from the web-based form input.
(Filename: ch2_webform_input.xml)

<?xml version=”1.0”?>
<submission>
<first_name>John</first_name>
<last_name>Smith</last_name>
<address>1155 Perl Drive.</address>
<city>Los Angeles</city>
<state>CA</state>
<zip>90102</zip>
<phone_number>818-555-1212</phone_number>

</submission>

This wasn’t a very complicated example.As you can see, we’ve mapped the
web form names (for example, first name, last name, and so forth) to element
names inside the XML document for consistency.This is a good example of
when you would dynamically generate XML.

Now that we have discussed XML file generation, we can proceed to more
complex issues, such as searching XML data and transforming XML into other
data formats.

2891 ch02 09.17.02 5:23 PM Page 26

27Searching XML Documents

Searching XML Documents
Information storage is only useful if the information can be easily retrieved.
Usually, information is retrieved from a relational database by sending
commands (for example, Structured Query Language [SQL]) to the server.
An XML document can be considered a facility for data storage, and therefore,
can also be considered a rudimentary database. Just as SQL is the standard
language for relational databases, the XML community has developed their
own set of standards for retrieving information from an XML document.
XPath is a standard that defines the syntax for addressing and fetching parts
of an XML document.

Note
XPath and many other XML-related standards can be found on the web at http://www.w3.org.

Other XML standards exist, such as XML Query and XML Query Language
(XQL), for querying XML documents. Each of these standards for querying
XML documents uses its own syntax (though it might be similar) on top of
the query engine.

Being able to extract data from an XML document can be very convenient.
You can easily retrieve information from a certain part of the document by
writing a query using XPath, XML Query, or XQL. Let’s take a look at Figure
2.4, which shows (at a high level) just how XPath’s query engine works.

As you can see in Figure 2.4, the application starts the query engine,
initializes the query, and submits it to the engine for processing.The query
engine then determines what is requested and goes to work to retrieve the
requested information.After the data is located, it is returned to the applica-
tion, which can proceed to process it.As you can see, the concept of the
process is very simple and straightforward.

One area of XML processing that uses XPath quite extensively is XSLT.
XPath is used to find portions of the XML document that match the criteria
defined in the eXtensible Stylesheet Language (XSL) files (that is, which
elements in the XML document will be extracted to create the output file).

Application

Submit Query

Return results

Search for data

Data found

XML FileXPath Query Engine
<?xml version 1.0 ?>
<career_statistics>
 <player>
 <name>Mickey Mantle</name>
 <learn>NY Yankees</learn>
 <home_runs>530</home_runs>
<batting_average> 298</batting_aver
age>
 </player>
</career_statistics>

#!/usr/bin/perl
use XML::XPath:
print XML & Perl Book ,

Figure 2.4 XML XPath Query Engine.

2891 ch02 09.17.02 5:23 PM Page 27

28 Chapter 2 Now Let’s Start Digging

Transforming XML Documents
Now that we’ve covered parsing, generating, and searching an XML docu-
ment, we get into another very important part of XML processing—XML
transformation.You can transform, or in other words convert, an XML
document to another format by applying various transformation techniques.
You can transform the XML document to either another XML document,
which might be a subset of the original document by filtering certain info,
or you can transform to a whole different data format, like HTML, eXtensible
HyperText Markup Language (XHTML),Wireless Markup Language (WML),
CSV, and so forth.

Why would you want to convert our neatly formatted XML document to
another format? We can read and understand the data as-is.Well the answer is,
although as a technically savvy individual you took the time to learn XML
and are now able to read it, most people would prefer their data represented
in a user-friendly format.

One of the most popular methods of transforming XML to another format
is to use the eXtensible Stylesheet Language for Transformations (XSLT)
standard.An XSLT processor provides the interface needed to transform XML
data. One of the processor’s components is the XML parser itself, which is
needed for the XSLT processor to understand and interact with XML.This
makes sense if you think about it—the XSLT processor needs to parse the
document to extract the information contained in the XML before it can
format the contents.The processor requires an XSLT stylesheet to perform the
transformation.An XSLT stylesheet is itself an XML document that contains
embedded rules used to perform the transformation.An XSLT processor uses
XPath and the rules contained in the XSLT stylesheet to transform the docu-
ment. It searches through the XML data using XPath and tries to find the
desired elements.

Note
We will come back to XML transformations and cover them in greater detail in Chapter 8,

“XML Transformation and Filtering.”

One of the most common (and easily demonstrated) transformations in use
today is from XML to HTML.While the data is transferred and processed in a
nicely formatted XML document, the XML document must be transformed
into HTML to display in the browser with any type of formatting.

2891 ch02 09.17.02 5:23 PM Page 28

29Transforming XML Documents

We don’t want you to have to wait until Chapter 8 to see an example using
an XSLT processor, so let’s take a look at a simple example of transforming an
XML document to HTML.To provide a common starting point, we’ll reuse
the XML document we discussed earlier, and it is presented here again as
Listing 2.3 for your convenience. For this example, let’s say that your task is
to convert an XML report into HTML, so it can be displayed on a web page.
Listing 2.3 shows the XML document we would like to convert and display
in HTML.

Listing 2.3 Career statistics for two Hall of Fame baseball players stored in an
XML document. (Filename: ch2_baseball__stats.xml)

<?xml version=”1.0”?>
<career_statistics>
<player>

<name>Mickey Mantle</name>
<team>NY Yankees</team>
<home_runs>536</home_runs>
<batting_average>.298</batting_average>

</player>
<player>

<name>Joe DiMaggio</name>
<team>NY Yankees</team>
<home_runs>361</home_runs>
<batting_average>.325</batting_average>

</player>
</career_statistics>

If you recall, the previous XML file contains career statistics for two of the
greatest baseball players ever to play the game.The data for each player
includes the following elements: <name>, <team>, number of <home runs>,
and career <batting average>.

As mentioned earlier, to perform the transformation, the XSLT processor
requires two inputs: the XML document and an XSLT stylesheet.The XSLT
stylesheet contains formatting information that determines both the content
and format of the output HTML file. For example, if you wanted the text to
be in a certain color or font, or if you want the information to be displayed in
a table with particular column headings, this information would appear in the
stylesheet.A sample XSLT stylesheet is shown in Listing 2.4.

2891 ch02 09.17.02 5:23 PM Page 29

30 Chapter 2 Now Let’s Start Digging

Listing 2.4 XSLT stylesheet used to generate an output HTML file.
(Filename: ch2_baseball_stats.xslt)

<?xml version=”1.0”?>
<xsl:stylesheet xmlns:xsl=http://www.w3.org/1999/XSL/Transform
version=”1.0”>
<xsl:output omit-xml-declaration=”yes”/>
<xsl:template match=”career_statistics”>
<html>
<body>
<h2>Baseball Players</h2>

<table border=”1”>
<xsl:for-each select=”player”>
<tr>

<td><xsl:value-of select=”name”/></td>
<td><xsl:value-of select=”team”/></td>
<td><xsl:value-of select=”home_runs”/></td>
<td><xsl:value-of select=”batting_average”/></td>

</tr>
</xsl:for-each>

</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

When we apply our custom XSLT stylesheet to the original XML document,
an HTML file is generated that contains the data from the XML file, presented
in a customized view. Remember, XML contains only data with no informa-
tion about the formatting, so we’re free to format it as we see fit.That’s one
of the best features of XML—you can use several XSLT stylesheets to trans-
form the same XML source document into different output HTML files. For
example, let’s say that your company’s annual report is stored in XML and that
you are responsible for generating different HTML versions of it. One version
of the report would be used for internal purposes, and the other version
would appear on the public web site.The internal version may contain
proprietary information that shouldn’t be displayed on the public web site.
In order to generate different HTML versions of the annual report from a
single XML document, just define one stylesheet for each target report.The
XSLT stylesheet that generates the public version can easily filter out any
proprietary information.

After applying the stylesheet in Listing 2.4 to the XML file, the XSLT
processor generated the HTML output shown in Listing 2.5. Don’t worry
about the underlying transformation technology at this point; we just wanted
to illustrate the capability of transforming XML into other formats.This is
covered in detail in Chapter 8,“XML Transformation and Filtering.”

2891 ch02 09.17.02 5:23 PM Page 30

31Transforming XML Documents

Listing 2.5 HTML document generated by using Perl and XSLT.
(Filename: ch2_baseball_stats.html)

<html>
<body>
<h2>Baseball Players</h2>
<table border=”1”>
<tr>
<td>Name</td>
<td>Teams</td>
<td>Home Runs</td>
<td>Batting Average</td>

</tr>
<tr>
<td>Mickey Mantle</td>
<td>NY Yankees</td>
<td>536</td>
<td>.298</td>

</tr>
<tr>
<td>Joe DiMaggio</td>
<td>NY Yankees</td>
<td>361</td>
<td>.325</td>

</tr>
</table>

</body>
</html>

Now that we have transformed the original file to HTML, it can easily be
displayed in a web browser as shown in Figure 2.5.As you can see, the end
result is a nicely formatted HTML table.

Figure 2.5 HTML document generated by an XSLT transformation.

2891 ch02 09.17.02 5:23 PM Page 31

32 Chapter 2 Now Let’s Start Digging

Our First Perl XML Programs
This section presents two Perl programs (including source code) using several
Perl XML modules.We will demonstrate some of the topics previously
discussed (XML generation, parsing, and transformation) in Chapter 1,“Basics
of XML Processing in Perl,” and apply them to a simple, real-life application.
We know that you’ve been patiently waiting for this moment.After all, you
purchased this book to learn how to develop programs with Perl and XML,
right? Well, since you asked for it, here it is.

Note
To run the programs discussed in this section, you need to install the following Perl modules:

n XML::Simple

n Data::Dumper

For Perl module installation instructions please see Appendix B, “Perl Essentials.”

The Problem: Generating and Parsing an
XML Document
The two most common XML programming tasks are XML document
generation and XML document parsing. In this section, we will present two
applications that demonstrate how to perform these tasks. Both of these tasks
are commonly performed during XML processing and form the basis for more
advanced applications throughout the book.

The first program reads a CSV file that contains user information and
transforms it into XML.The second program parses the XML file that was
generated by the first program, retrieves the user information, and transforms
it into HTML for display in a web browser.

Generating an XML Document
Let’s assume you are given the task of converting the information in an
electronic mailing list from CSV to XML because a new email application
supports only XML input.The fields in the CSV file will be formatted as
follows, with each user record on a separate line:

First Name, Last Name, Email Address

2891 ch02 09.17.02 5:23 PM Page 32

33The Problem: Generating and Parsing an XML Document

Simple enough? That’s why we decided to use the Perl XML::Simple module.
It’s designed especially for simple tasks, although it can be used for more
complex tasks.The rest of the book focuses on other Perl XML modules that
are better suited for more difficult tasks.After you become familiar with the
other XML modules, you’ll be able to make a sound judgment and pick
the right tool for the task at hand.

Note
Additional information about the XML::Simple Perl module can be found by typing perldoc XML::Simple.

Also, XML::Simple will be discussed in greater detail in Chapter 4, “Tree-Based Parser Modules.”

Now that you have an understanding of the program’s requirements, you
can really get your hands dirty.The CSV is a simple file with only three fields:
first name, last name, and email address.The input CSV file is shown in
Listing 2.6.

Listing 2.6 The Input CSV file containing source data for XML document.
(Filename: ch2_user_email.csv)

Ilya,Sterin,isterin@cpan.org
Mark,Riehl,mark_riehl@hotmail.com
John,Smith,j.smith@xmlproj.com

Granted, this is a very small input file because it only has three records.
However, the techniques used in this example can be applied to input data
files with 3,000 or 30,000,000 records.

Now that we have the format of the input information, let’s take a quick
look at the required format of the output XML file. Let’s assume that the
output file is required to have the following format:

<users>
<user>

<first_name> </first_name>
<last_name> </last_name>
<email_address> </email_address>

</user>
...

</users>

Note that we have a <users> element at the root of the document that is made
up of multiple <user> elements. Each <user> element has one <first_name>,
<last_name>, and <email_address> element.

2891 ch02 09.17.02 5:23 PM Page 33

34 Chapter 2 Now Let’s Start Digging

The data for each user is stored in a predefined order: <first_name>,
<last_name>, <email address>. Let’s take a minute and list the steps that we
would need to perform if we were doing this conversion by hand.

1. Read each line of the input file.

2. Parse the line into columns based on location of the delimiters.

3. Print each column surrounded by the proper start and end tags.

Because this is such a simple example, this is exactly how our program will
work. Listing 2.7 shows the Perl program used to parse the CSV file and
generate the desired output XML document.This example doesn’t use any
XML modules, it just parses the input file and then creates an XML document
using the Perl print function.The example is explained in detail in the
following sections.

Listing 2.7 Perl application that converts the CSV input file to XML.
(Filename: ch2_csv_to_xml_app.pl)

1. use strict;
2.
3. # Open the ch2_xml_users.csv file for input
4. open(CSV_FILE, “ch2_xmlusers.csv”) ||
5. die “Can’t open file: $!”;
6.
7. # Open the ch2_xmlusers.xml file for output
8. open(XML_FILE, “>ch2_xmlusers.xml”) ||
9. die “Can’t open file: $!”;
10.
11. # Print the initial XML header and the root element
12. print XML_FILE “<?xml version=\”1.0\”?>\n”;
13. print XML_FILE “<users>\n”;
14.
15. # The while loop to traverse through each line in users.csv
16. while(<CSV_FILE>) {
17. chomp; # Delete the new line char for each line
18.
19. # Split each field, on the comma delimiter, into an array
20. my @fields = split(/,/, $_);
21.
22. print XML_FILE<<”EOF”;
23. <user>
24. <first_name>$fields[0]</first_name>
25. <last_name>$fields[1]</last_name>
26. <email_address>$fields[2]</email_address>
27. </user>
28. EOF
29. }
30.

2891 ch02 09.17.02 5:23 PM Page 34

35The Problem: Generating and Parsing an XML Document

31. # Close the root element
32. print XML_FILE “</users>”;
33.
34. # Close all open files
35. close CSV_FILE;
36. close XML_FILE;

1–9 The opening section of the program starts with the use strict
pragma.This is a good practice in all Perl programs.The file
ch2_xmlusers_csv is opened for input and ch2_xmlusers.xml is opened
for output.After both files have been opened, we print the XML
declaration and the opening tag for the <users> elements to the output
file by using the XML_FILE filehandle.

1. use strict;
2.
3. # Open the ch2_xml_users.csv file for input
4. open(CSV_FILE, “ch2_xmlusers.csv”) ||
5. die “Can’t open file: $!”;
6.
7. # Open the ch2_xmlusers.xml file for output
8. open(XML_FILE, “>ch2_xmlusers.xml”) ||
9. die “Can’t open file: $!”;10.
11. # Print the initial XML header and the root element
12. print XML_FILE “<?xml version=\”1.0\”?>\n”;
13. print XML_FILE “<users>\n”;

Note
In your program, use strict enforces error checking, and use diagnostics expands the diagnostics

if the Perl compiler encounters an error or any questionable constructs.

15–29 This portion of the program performs a majority of the work in
this example.The input file (ch2_xmlusers.csv) is read line by line within
the while loop, and each line is broken up into columns by the delimiter,
which in our case is a comma.The columns are then printed to
ch2_xmlusers.xml, surrounded by the appropriate tags.To print this
example, we’re using a Perl “Here” document, which allows us to print a
block of text without having to use a print statement for each line. In this
case, we’re printing everything between print XML_FILE<<”EOF” and EOF.
Note that variables are being evaluated inside this block. For additional
information on Perl “Here” documents, please see perldoc perldata.

Because we know the order of the input columns (first_name, last_name,
email_address), we can print the input contents directly to the output XML
file.This procedure is repeated for each line (user) in the ch2_xmlusers.csv file,
and a <user> element is created each time through the while loop.

2891 ch02 09.17.02 5:23 PM Page 35

36 Chapter 2 Now Let’s Start Digging

15. # The while loop to traverse through each line in users.csv
16. while(<CSV_FILE>) {
17. chomp; # Delete the new line char for each line
18.
19. # Split each field, on the comma delimiter, into an array
20. my @fields = split(/,/, $_);
21.
22. print XML_FILE<<”EOF”;
23. <user>
24. <first_name>$fields[0]</first_name>
25. <last_name>$fields[1]</last_name>
26. <email_address>$fields[2]</email_address>
27. </user>
28. EOF
29. }

31–36 The final section of our Perl application just prints the closing root
</users> tag to the output file. Note that the opening and closing <user>
element tags were outside the while loop.The code inside the while loop
creates each <user> element.
31. # Close the root element
32. print XML_FILE “</users>”;
33.
34. # Close all open files
35. close CSV_FILE;
36. close XML_FILE;

The Perl application will generate the output that is shown in Listing 2.8.

Listing 2.8 Generated XML file containing the data from the input CSV file.
(Filename: ch2_xmlusers.xml)

<?xml version=”1.0”?>
<users>

<user>
<first_name>Ilya</first_name>
<last_name>Sterin</last_name>
<email_address>isterin@cpan.org</email_address>

</user>
<user>

<first_name>Mark</first_name>
<last_name>Riehl</last_name>
<email_address>mark_riehl@hotmail.com</email_address>

</user>
<user>

<first_name>John</first_name>
<last_name>Smith</last_name>
<email_address>j.smith@xmlproj.com</email_address>

</user>
</users>

2891 ch02 09.17.02 5:23 PM Page 36

37The Problem: Generating and Parsing an XML Document

As you can see in Listing 2.9, the XML file that was generated by our program
matches the required output file format. Don’t worry, there are better ways
to generate an XML file.We won’t always be using the Perl print function to
generate XML files.The goal was to illustrate the concept of generating an
XML document using another file (in this case, CSV) as the input data source.

Now that we’ve generated our first XML file, how do we parse it? That is
discussed in the next section.

Parsing an XML Document
We’ve accomplished the first part of the application that showed the basics
of generating a simple XML document. Now we can move on to the next
task in which we transform the ch2_xmlusers.xml file in Listing 2.9 into
an HTML file, so we can display the contents of the XML document in
a browser.

Note
This chapter demonstrates the very basic concepts of XML generation, parsing, and transformation. Quite

a few XML-related Perl modules are available to deal with each of these tasks. You’ll see the benefits of

the XML-related modules and when to use them (as well as when not to) as we move ahead and discuss

more complicated examples.

Converting the input file from CSV to XML provides us with a document
that is in a structured, clear, and easy-to-read format. Because XML is self-
describing (because of the element names), anyone can look at the contents
of an XML document and instantly see the layout of the data as well as the
relationships between different elements.To display this information to some-
one not familiar with XML (or just for nicer formatting into tables), we need
to convert it to another format. For this example, we have decided that we
want this XML document to be displayed in a browser, so we must convert
the XML document to HTML.

Note
A majority of the web browsers available today are able to display HTML in a consistent way. However,

XML support among browsers isn’t consistent and varies greatly among the most portable browsers (for

example, some browsers will display XML whereas others require stylesheets). At the time of this writing,

the most portable way to display an XML document with a browser is to convert the XML document

to HTML.

2891 ch02 09.17.02 5:23 PM Page 37

38 Chapter 2 Now Let’s Start Digging

To transform the XML document from XML to HTML, we need to parse it
first. Using the XML::Simple module, this task is easily accomplished with its
XMLin function, which reads XML from a file (string or an IO object), parses it,
and returns a Perl data structure containing the information that was stored in
XML.We can then traverse through the data structure, retrieve the required
values, and print out the HTML file.

Additional XML::Simple Information
Note that there is also an XMLout function provided by XML::Simple. This function performs the reverse

function of XMLin and returns XML based on the provided Perl data structure. Therefore, if XMLout is

fed the same, unmodified data structure returned by XMLin, it will generate the original XML document.

One potential issue is that the returned XML will be semantically alike, but not necessarily the same.

This is due to the way Perl stores hashes, which is in no particular order. It’s not necessarily a problem

because many applications retrieve the data randomly and have no particular use for the element order,

but it might pose a problem to applications that require a particular sequential order of elements

(for example, sorted by a particular element). For additional information on XML::Simple, please see

perldoc XML::Simple.

A number of attributes can be set to control XML::Simple’s behavior. For
example, we will use the forcearray attribute, which forces nested elements to
be output as arrays, even if there is only one instance present.Also, we’ll use
the keeproot attribute, which causes the root element to be retained by
XML::Simple (it is usually discarded).

Now that we have a high-level understanding of the XML::Simple module,
let’s take a detailed look at the program shown in Listing 2.9 that converts the
input XML file to HTML.

Listing 2.9 Program that converts an input XML file to HTML.
(Filename: ch2_xml_to_html_app.pl)

1. use strict;
2.
3. # Load the XML::Simple module
4. use XML::Simple;
5.
6. # Call XML::Simple’s new constructor function to create an
7. # XML::Simple object and get the reference.
8. my $simple = XML::Simple->new();
9.
10. # Read in ch2_xmlusers.xml and return a data structure.
11. # Note that forcearray and keeproot are both turned on
12. my $struct = $simple->XMLin(“./ch2_xmlusers.xml”, forcearray => 1,

➥keeproot => 1);
13.
14. # Open ch2_xmlusers.html file for output

2891 ch02 09.17.02 5:23 PM Page 38

39The Problem: Generating and Parsing an XML Document

15. # It will create it if it doesn’t exist
16. open(HTML_FILE, “>ch2_xmlusers.html”) ||
17. die “Can’t open file: $!\n”;
18.
19. # Print the initial HTML tags
20. print HTML_FILE “<html>\n<body>\n”;
21.
22. # The for loop traverses over each user.
23. # $_ points to the user
24. for (@{$struct->{users}->[0]->{user}}) {
25. # Print the each field in the user structure
26. print HTML_FILE <<”EOF”;
27. First Name: $_->{first_name}->[0]

28. Last Name: $_->{last_name}->[0]

29. Email Address: $_->{email_address}->[0]

30. --

31. EOF
32. }
33.
34. # Print the ending HTML tags
35. print HTML_FILE “</body>
</html>”;
36.
37. # Close ch2_xmlusers.html
38. close (HTML_FILE);

1–12 This initial block of the program starts with the standard use strict
pragma. Because we’re using the XML::Simple module, we must also
include the use XML::Simple statement to load the XML::Simple module.
After these initialization calls, we create a new XML::Simple object and
then parse the XML file by calling the XMLIn function.The scalar $struct
contains a reference to a data structure that contains the information from
the XML file.

1. use strict;
2.
3. # Load the XML::Simple module
4. use XML::Simple;
5.
6. # Call XML::Simple’s new constructor function to create an
7. # XML::Simple object and get the reference.
8. my $simple = XML::Simple->new();
9.
10. # Read in ch2_xmlusers.xml and return a data structure.
11. # Note that forcearray and keeproot are both turned on
12. my $struct = $simple->XMLin(“./ch2_xmlusers.xml”, forcearray => 1,

➥keeproot => 1);

2891 ch02 09.17.02 5:23 PM Page 39

40 Chapter 2 Now Let’s Start Digging

19–38 The second half of the program actually performs all the work.
First, we open the output HTML file and print the initial required HTML
tags.Then, we loop through an array of references to data structures that
contain the information from the XML file.The information from the
XML file is then printed to the HTML file in the proper order.

We’re taking advantage of the “Here” document construct again.This way,
we don’t need multiple print statements. Note that each time through the
for() loop corresponds to one row in the CSV file and one <user> element
in the XML document.After looping through the array, we print the
required closing tags to the HTML file.The resulting HTML file is shown
in Listing 2.10.

Listing 2.10 Contents of the dynamically generated HTML file.
(Filename: ch2_xmlusers.html)

<html>
<body>
First Name: Ilya

Last Name: Sterin

Email Address: isterin@cpan.org

--

First Name: Mark

Last Name: Riehl

Email Address: mark_riehl@hotmail.com

--

First Name: John

Last Name: Smith

Email Address: j.smith@xmlproj.com

--

</body>
</html>

This HTML document is shown in a browser in Figure 2.6.As you can see,
we didn’t apply any formatting to this document, just the required headers and
footers so that it displays properly. Examples later in the book will demonstrate
how to dynamically generate HTML documents containing tables of data.

2891 ch02 09.17.02 5:23 PM Page 40

41The Problem: Generating and Parsing an XML Document

Figure 2.6 The ch2_xmlusers.html file displayed in a browser.

Viewing the Contents of Data Structures
This section discusses a Perl module that allows us to visualize the data
structure that is returned by the XML::Simple function XMLin.All we need
is a simple script and the Perl Data::Dumper module.The Perl Data::Dumper
module is very useful in situations like this, when we want to verify that we
understand a particular data structure. It prints out the contents of a particular
data structure in such a way that it enables us to see the hierarchy and
relationships inside the data structure.

What we’re going to do is follow the same steps of the last example: instan-
tiate an XML::Simple object and then pass it the name of the input XML
document (ch2_xmlusers.xml).The XML document will be parsed by the
XML::Simple module and stored in a Perl data structure.At this point,
we’ll take a look at the contents of the Perl data structure by using the Perl
Data::Dumper module.The Perl application that performs these steps is shown
in Listing 2.11.

Note
For additional information the Perl Data::Dumper module, look at perldoc Data::Dumper.

2891 ch02 09.17.02 5:23 PM Page 41

42 Chapter 2 Now Let’s Start Digging

Listing 2.11 Perl application that uses the Data::Dumper module to visual a
complex data structure. (Filename: ch2_data_dumper_app.pl)

1. use strict;
2. use XML::Simple;
3. use Data::Dumper;
4.
5. my $simple = XML::Simple->new();
6. my $struct = $simple->XMLin(“./ch2_xmlusers.xml”, forcearray => 1, keeproot

➥=> 1);
7.
8. # Use Data::Dumper Dumper function to return a nicely
9. # formatted stringified structure
10. print Dumper($struct);

1–10 This program is basically the same as the last example with a few
exceptions. Note that we need the use Data::Dumper pragma to load the
Data::Dumper module.After creating a new XML::Simple object, we parse
the XML document using the XMLin function.A Perl data structure that
contains the parsed XML document stored in a Perl data structure and that
is named $struct is returned.

All we need to do is pass the Perl data structure to the Dumper function
that is provided by the Perl Data::Dumper module.That’s all there is to it.
The output is a nicely formatted report that can be used to study the
data structure.The output from the Data::Dumper module is shown in
Listing 2.12. Notice that the output from Data::Dumper is a mirror of the
input XML file.

Listing 2.12 Output from the Data::Dumper module showing the hierarchy of the
parsed XML file from XML::Simple. (Filename: ch2_data_dumper_output.txt)

$VAR1 = {
‘users’ => [

{
‘user’ => [

{
‘first_name’ => [

‘Ilya’
],

‘email_address’ => [
‘isterin@cpan.org’

],
‘last_name’ => [

‘Sterin’
]

},
{
‘first_name’ => [

‘Mark’

2891 ch02 09.17.02 5:23 PM Page 42

43Summary

],
‘email_address’ => [

‘mark_riehl@hotmail.com’
],

‘last_name’ => [
‘Riehl’

]
},
{
‘first_name’ => [

‘John’
],

‘email_address’ => [
‘j.smith@xmlproj.com’

],
‘last_name’ => [

‘Smith’
]

}
]

}
]

};

As you can see, the Perl data structure follows the same structure as original
XML document (which we would expect).We recommend using the
Data::Dumper module often. It is useful in situations where you need to access
data that is stored in a complex Perl data structure. By looking at the output
from the Perl Data::Dumper module, it will be easier to write the code to
access different parts of the data structure and extract the desired information.

Summary
This chapter introduced XML processing and illustrated the many facets of
XML processing—parsing, generation, and transformation.A brief introduc-
tion to each of these topics was presented in addition to several high-level
examples.The examples were purposely made almost trivial to illustrate XML
processing at a high level. Don’t worry, the examples in the upcoming chapters
become increasingly more difficult as we move on to more advanced topics.

For example, the next chapter, Chapter 3,“Event-Driven Parser Modules,”
focuses solely on event-driven parsers. Detailed examples for several of the
more popular event driven parsers are provided.

2891 ch02 09.17.02 5:23 PM Page 43

44 Chapter 2 Now Let’s Start Digging

Exercise
1. Create a program using XML::Simple that will parse the following

XML document shown below and convert it to a CSV formatted file.
Using the same structure, change all first names to reflect only a first
capitalized initial (for example, Ilya to I), then output this file to a new
XML document.

<?xml version=”1.0” ?>
- <users>
- <user>

<first_name>Ilya</first_name>
<last_name>Sterin</last_name>
<email_address>isterin@cpan.org</email_address>

</user>
- <user>

<first_name>Mark</first_name>
<last_name>Riehl</last_name>
<email_address>mark_riehl@hotmail.com</email_address>

</user>
- <user>

<first_name>John</first_name>
<last_name>Smith</last_name>
<email_address>j.smith@xmlproj.com</email_address>

</user>
</users>

For suggested solutions to this exercise, be sure to check out the web site:
http://www.xmlproj.com/book/chapter02.

2891 ch02 09.17.02 5:23 PM Page 44

