R eal-World Analysis

No DOUBT YOU’VE HAD YOUR FILL of healthy, low-fat theory on packet dissec-
tion and header fields. How about bringing on some of the more interesting,
tasty, real-world traftfic? That is what we are about to embark on in this
chapter. For you to understand the analysis that will be shown here, it was
necessary to lay the groundwork in previous chapters first.

To refresh your memory of the intent of this section, we want to analyze traf-
fic from many different viewpoints. We’ve evolved from bits and fields in previ-
ous chapters to inspecting one or more packets for their intent and explaining
some actual events of interest that were captured by Shadow from sites.

The transition from understanding theory to actually explaining some traffic
that you see is not necessarily an easy or intuitive one. It takes time and expo-
sure to some interesting traffic before you gain the confidence and experience
to make this transition. The examples shown in this chapter should help you
get started.

186 Chapter 10 Real-World Analysis

You’ve Been Hacked!

The simplicity of this first real-world event belies its poignancy. In a former
lifetime, I worked for a local military Computer Emergency Response Team
(CERT). I worked an early shift beginning about 5:30 A.M. to avoid the
brunt of the rush hour traffic from the suburbs of one of the nation’s most
awful commuting cities, Washington, DC. I walked into the office one morn-
ing, and the phone was already ringing—not a good sign unless it is Ed
McMahon calling to tell me I'd won the Publisher’s Clearinghouse
Sweepstakes. Instead, the call was from one of our parent military CERTSs
informing us that we’d had a break-in over night.

As a bit of background, the parent CERT used a different set of tools to
monitor our site than we did, and would sometimes call when it had an
inquiry about traffic or to report something noteworthy, as in this case. The
CERT supplied the date, approximate time, and source and destination IPs
associated with the break-in, but could supply no more information than this
when queried.

The destination IP of the alleged victim host was a DNS server at the site.
This was probably one of the best maintained hosts on the site; it had the most
recent patches of BIND, it had all ports closed except for secure shell (SSH)
from specific source addresses and DNS queries, and it had been stripped of all
unnecessary user accounts. It was not as if this was some legacy system sitting
openly on a DMZ with no recent attention, superfluous ports open, and unre-
stricted access. Still, although my first reaction was skepticism, I wasn’t naive
enough to think that any host connected to the Internet was impervious to
attack. After all, this was a DNS server, and the venerable BIND software has
been plagued with a history of problems, including bufter overflow attacks that
allowed remote root access.

A rational way to approach this early morning report was to use TCPdump
records from Shadow to examine all traffic to and from our DNS server from
the alleged attacker’s IP address. Before showing you an excerpt of the results
of that, let’s just re-examine what an established TCP session looks like in
terms of TCPdump.

Three-Way Handshake:

boulder.myplace.com.38060 > aspen.myplace.com.telnet: S 3774957990:
3774957990(0) win 8760 <mss 1460> (DF)

aspen.myplace.com.telnet > boulder.myplace.com.38060: S 2009600000:
2009600000 (0) ack 3774957991 win 1024 <mss 1460>
boulder.myplace.com.38060 > aspen.myplace.com.telnet:. ack 1 win 8760 (DF)

You've Been Hacked! 187

Data Exchange:
boulder.myplace.com.38060 > aspen.myplace.com.telnet: P 1:28(27) ack 1 win
8760 (DF)
aspen.myplace.com.telnet > boulder.myplace.com.38060: P 1:14(13) ack 1 win
1024
aspen.myplace.com.telnet > boulder.myplace.com.38060: P 14:23(9) ack 28 win
1024

Session Termination:

aspen.myplace.com.telnet > boulder.myplace.com.38060: F 4289:4289(0) ack 92
win 1024

boulder.myplace.com.38060 > aspen.myplace.com.telnet: .ack 4290 win 8760 (DF)
boulder.myplace.com.38060 > aspen.myplace.com.telnet: F 92:92(0) ack 4290
win 8760 (DF)

aspen.myplace.com.telnet > boulder.myplace.com.38060: .ack 93 win 1024

First, for two hosts to exchange some kind of data, they have to complete
the three-way handshake. In this case, we have host boulder.myplace.com
requesting to connect to host aspen.myplace.com on port telnet. Host
aspen.myplace.com offers telnet service; and the two hosts synchronize
sequence numbers and the connection is established.

Next, typically a client connects to a host for the purpose of exchanging
some data. And in this case, we witness the exchange between both hosts as we
see 27,13, and 9 bytes of data sent respectively in the three PUSH packets dis-
played. More data was exchanged before the session was terminated, but that is
not shown because it really adds no new insight into this discussion.

Finally, the two hosts gracefully sever the connection by exchanging and
acknowledging FIN packets. That is what normal TCP sessions look like.

Now, examine some of the traffic from the alleged break-in:

whatsup.net.24997 > dns.myplace.com.sunrpc: S 2368718861:2368718861(0) win
512 <mss 1460>

whatsup.net.25002 > dns.myplace.com.139: S 4067302570:4067302570(0) win 512
<mss 1460>

whatsup.net.25075 > dns.myplace.com.ftp: S 1368714289:1368714289(0) win 512
<mss 1460>

dns.myplace.com.ftp > whatsup.net.25075: R 0:0(0) ack 1368714290 win @ (DF)
whatsup.net.25177 > dns.myplace.com.1114: S 3231175487:3231175487(0) win 512
<mss 1460>

whatsup.net.25189 > dns.myplace.com.tcpmux: S 368146356:368146356(0) win 512
<mss 1460>

whatsup.net.25118 > dns.myplace.com.22: S 2035824356:2035824356(0) win
512 <mss 1460>

The malicious host is whatsup.net and our DNS server is dns.myplace.com
We see a bunch of attempted SYN connections to various different ports star-
ing with port 111, also known as sunrpc or portmapper, port 139, NetBIOS
session manager, ftp, and so on. We see no response from the DNS server

188 Chapter 10 Real-World Analysis

except to return a RESET on the ftp query. We can surmise that the packet-
filtering device blocked the other ports we see, yet not ftp. When the DNS
server received the ftp SYN attempt, it responded with a RESET because it
didn’t listen at that port.

This is just an excerpt of the traffic seen, yet it all was similar except for the
different destination ports attempted. The point is that there were no successful
three-way handshakes, data exchange, or session terminations witnessed. Unless
there was some kind of unknown backdoor into our network that was not
monitored, it appears that this was a simple scan of the DNS server and not a
break-in.

After analyzing this traffic, I called the person who had reported the break-
in. I shared my results and asked what kind of evidence they had that there
was a break-in. The person replied that one of their parent CERT organiza-
tions had reported this and was just passing the information on to our site.
got the contact information for the original person who reported the incident
and called to inquire why he believed we had suffered an intrusion. The
response was that he had reported it as a scan, and it had been mistakenly
communicated to me as a break-in.

My mission had not been to determine culpability; it was to determine
what kind of solid evidence anyone had to refute my belief that we had only
had a scan. But, as it turned out, there really was no break-in after all. This
incident brought home the necessity for having an audit trail of activity into
and out of the network. Had we not had the TCPdump records of the scan,
we would have had no evidence to refute the intrusion claim. We would have
had to trust the caller and believe that we had an intrusion that none of our
NIDS had detected.

We could have logged on to the DNS server. Yet, there would be an
absence of any evidence, if we were lucky. There would be no changes in any
of the Tripwire logs that maintained integrity audits of important files, there
would be no rootkits, and there would be no changes to password files or
inetd startup files. It would be impossible to know for certain that there had
been no intrusion; there would be lingering doubt that we just were not
seeing the manifestations of the break-in, perhaps because of installed rootkits
and Trojaned software. In such a case where you are still uncertain about the
health of the host, there are not a lot of options. You have to rebuild the
system from the ground up—not a desirable task.

Prior to this event, I had been a proponent of Shadow and had been col-
lecting TCPdump activity at monitored sites. This converted me to a die-hard
Shadow user, and I now use Shadow for all sites that I monitor. Truthfully, it

Netbus Scan

doesn’t matter if you use TCPdump or any other collection mechanism. What
matters is that you have this historical capture of the traffic entering and leav-
ing your network. And, you don’t need to capture payload, just the header
portions of the records, to understand the nature of the activity as was demon-
strated in this incident. Indeed, it also can be helpful to capture payload if you
have enough space, even if only to keep it a couple of days before archiving it.

Netbus Scan

In the next incident, we examine a scan to destination port 12345, which is
typically associated with the netbus Trojan that affects Windows hosts. This
particular scan was launched against a Class B subnet so that it set oft all kinds
of alarms. The network that was scanned had some high-numbered port access
open through the packet-filtering devices.

The following records provide a very brief excerpt of the detected traffic.
This scan attempted connections to more than 65,000 IPs in the target net-
work. It is important to note that this traffic was collected on a sensor located
behind (inside) the packet-filtering device. This is the traffic that actually got
inside the network. Scans happen! In fact, they happen all the time on this
particular network. It’s not that this network is any more inviting than others;
it 1s just a fact of life that scanning is inevitable and frequent. Knowing this,
you cannot get too worked up when you see scans. However, this is inside the
packet-filtering device making it more than a curiosity, as we will later see.
Here are the records:

bigscan.net.1737 > 192.168.7.0.12345: S 2299794832:2299794832(0) win 32120
<mss 1380, sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1739 > 192.168.7.2.12345: S 2299202490:2299202490(0) win 32120
<mss 1380, sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1741 > 192.168.7.4.12345: S 2293163750:2293163750(0) win 32120
<mss 1380, sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1743 > 192.168.7.6.12345: S 2298524651:2298524651(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1745 > 192.168.7.8.12345: S 2297131917:2297131917(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1747 > 192.168.7.10.12345: S 2291750743:2291750743(0) win 32120
<mss 1380, sackOK,timestamp 120377100[|tcp]> (DF)

bigscan.net.1749 > 192.168.7.12.12345: S 2287868521:2287868521(0) win 32120
<mss 1380,sackOK,timestamp 120377100[|tcp]> (DF

189

190 Chapter 10 Real-World Analysis

We see the scanning host bigscan.net methodically moving through the
192.168.7 subnet with a unique scan search pattern of looking at the .0
address and even final octets thereafter.

Netbus Hijinks

Netbus is a tool that allows remote access and control of a Windows host. After a host is compro-
mised, it behooves the attacker to have a means of future access to the host. Netbus is one of
many backdoor Trojans that can be run to provide stealthy access. It predates another, more famil-
iar backdoor Trojan, Back Orifice. Both Netbus and Back Orifice have user-friendly GUI interfaces to
easily control the remote compromised host.

Not All That Runs on Port 12345 Is Malicious

The OfficeScan virus eradication package for the corporate enterprise listens on TCP port 12345 on
the desktop host. The enterprise software accommodates central virus reporting, automatic update
(apparently via port 12345 on the updated host), and remote management for ease of use to assist
in monitoring and configuration.

If you ever see a host that listens on TCP port 12345, it is possible that it might be a helpful rather
than harmful process. Given the range of possible listening ports 1 through 65535, I'd much

prefer to see the white hats (good guys) select listening ports that don't share commonly used
hacker ports.

Let’s go for the jugular and see if there is any need to further investigate this
scan. We want to examine the hosts in the internal network and see if they
responded to the scan. The TCPdump filter to examine this would look for
traffic from the internal network of 192.168 with a source port of 12345 and
a TCP flag pair of SYN and ACK. This means that we have a listening host,
which can be potentially very dangerous. Our filter could have used the IP
number of the scanning host instead of or in conjunction with the internal
subnet address.

The TCPdump command used to extract response records associated with
the scan reads from the binary file of collected records for the site, and identi-
fies this scan as one that involved the internal 192.168 subnet and port 12345.
The TCPdump command is further refined by using a filter that looks at the
13th byte offset of the TCP header, where the TCP flag byte is located, and
looks for the ACK flag and the SYN flag set simultaneously. Here is the
TCPdump command and the output generated from it:

tcpdump -r tcpdumpfile 'net 192.168 and port 12345 and tcp[13] = 0x12'

mynet.edu.12345 > bhigscan.net.3698: S 2633608519:2633608519(0) ack 2346088305
win 49152 <mss 1380,nop,nop,timestamp 2662730[|tcp]> (DF)

Netbus Scan

The good news is that only one host responded. The bad news is that one host
responded! When it was discovered that there was a responding host, this inci-
dent was escalated to the highest priority because we believed we had a host
offering the netbus Trojan, a natural conclusion. The scan and subsequent
discovery that there was a responding host occurred by 7:00 A.M., meaning
that most of the staff had not yet arrived at work. In the interim, the network
group was contacted and told to disallow any inbound or outbound traffic to
or from the responding host by blocking it at the packet-filtering device. Also,
the local computer incident response team was mobilized to scan the host for
vulnerabilities and track down the owner.

After some superficial probing, the incident response team discovered that
the host was a Silicon Graphics, Inc. (SGI) running an older version of Irix
(SGT’s version of UNIX). As a veteran of incident response teams, I remem-
bered that older versions of Irix used to come configured with an account of
lIp (line printer) with no password. Tragically, a telnet connection to the host
allowed me access to the host, using the lp account and no password. This
discovery pretty much ruled out that this was a netbus problem because the
responding host ran a version of UNIX, but we did have a rogue port answer-
ing and a host that had little, if any, security.

Concurrently, the search for the host’s system administrators continued.
Ownership records were dated and the host had been tossed from administra-
tor to administrator as people moved in and out of the organization and
assignments changed. This particular host had a rich history of neglect because
the user-administrators were scientists or engineers who were never really
trained in administration, let alone security. This is a common paradigm of
neglect because many research departments do not have the budget to hire
trained administrators. The users are usually overburdened workers who just
need to keep the host running.

The system administrators of the SGI hosts finally arrived at work. As
suspected, they had no idea what was listening on port 12345. It was also
quite apparent that they and their users had little concern or appreciation for
security. We told them it was necessary to disconnect the host from the net-
work and begin backups for forensic purposes. An argument ensued when
one of the users became indignant about needing to have the host up and
accessible on the network. The leader of the incident response team politely
told him that he had two options: first, to cooperate and willingly cede con-
trol, or second, to have the network connection unceremoniously severed by
wire cutters. It seems the light bulb went on at that point, and they agreed to
cooperate.

191

192 Chapter 10 Real-World Analysis

When we finally got access to the system, we wanted to make sure that the
host was listening on port 12345. The process of making backups on this host
was long and cumbersome, so we didn’t want to make them do anything
unnecessary. At the same time, we didn’t want to ruin any forensic evidence by
poking around too much. Only one command was attempted—the netstat —a
command to make sure that port 12345 was running.

Can you see the flaw of executing the netstat command? In hindsight, it
seems this was really not such a wise move. Had the netstat command
reported that port 12345 was not listening, this would have been extremely
suspicious and more indicative of a Trojaned or rootkit netstat program run-
ning on the host that was altered to not report that port 12345 was listening.
But, this was not the case; port 12345 was listening.

System backups were started to preserve any forensic evidence in case some
kind of prosecution ever had to be done. Finally, when the backups were com-
pleted, we had an opportunity to examine the system. We didn’t want to dis-
turb it in any way prior to the backups.

A very handy command in this situation is the fuser command. This is not
available for all UNIX operating systems, but it is available on Irix and Linux:

[root@irix]# fuser 12345/tcp
12345/tcp: 490

The command was issued to find the process number associated with port
12345 on TCP. By looking at the netstat output, you don’t know the process
that is running the service on port 12345.The fuser command returns the
process number of the software running on that port.

Next, you have to find what that particular process number is running. That
can be done using the ps command and then examining the output for the
process number, in this case 490:

[root@irix]# ps -ef | grep 490
root 490 483 0 Sep19 ? 00:02:17 /usr/local/bin/license_manager

You see that there is a license manager running. When this appeared on the
console with the system administrator watching, he remarked that he had
recently installed a license manager. He had no idea what port it listened on.
The mystery was solved! This was the best possible resolution considering the
alternatives. But, give me a break—what reputable license manager software
maker would use a default listening port of 123452

Before this host was allowed back on the network, it was cleaned up with
the assistance of a savvy UNIX administrator. An initial vulnerability scan of
the host produced about twenty pages of high- and medium-range security
problems. It was scanned again after the changes and upgrades to make sure
that no known vulnerabilities existed.

Netbus Scan

Other Commands to Display Programs Associated with Ports

The UNIX command Isof can be used, as well, to list information about files opened by processes.
This comes with many UNIX operating systems, but can be downloaded and added if it is not avail-
able. To find the process ID associated with the service listening on port 901 using Isof, execute
the following:

1sof -i TCP:901

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
inetd 387 root 9u IPv4 369 TCP *:swat (LISTEN)

You see that port 901 is associated with the inetd process. This is the Internet daemon that starts
most of the listening services. Some additional information is displayed in the last column; port
901 is associated with Samba Web Administration Tool (swat). You should find this started in the
file etc/inetd.conf:

grep swat /etc/inetd.conf
swat stream tcp nowait.400 root /usr/sbhin/swat swat

A Windows tool known as fport (available with a tool search on www.securityfocus.com) can be
used to associate processes with ports on which they run. Here is a sample output from running
fport on a Windows 2000 host:

FPort v1.31 - TCP/IP Process to Port Mapper
Copyright 2000 by Foundstone, Inc.
http://www.foundstone.com

Securing the dot com world

Pid Process Port Proto Path

384 svchost -> 135 TCP C:\WINNT\system32\svchost.exe

8 System -> 445 TCP

496 MSTask -> 1025 TCP C:\WINNT\system32\MSTask.exe

8 System -> 1027 TCP

1692 SshClient -> 3705 TCP C:\Program Files\SSH Communications
Security\SSH Secure Shell\SshClient.exe

1892 OUTLOOK -> 4040 TCP C:\Program Files\Microsoft

Office\Office\OUTLOOK.EXE

384 svchost

8 System

220 services

916 iexplore
Explorer\iexplore.exe
1892 OUTLOOK -> 4024 UDP C:\Program Files\Microsoft
0ffice\Office\OUTLOOK.EXE

135 UDP C:\WINNT\system32\svchost.exe
445 UDP

1026 UDP C:\WINNT\system32\services.exe
1341 UDP C:\Program Files\Internet

V V. V Vv

Although this turned out to be a non-incident in terms of intrusions, it does
illustrate a very noteworthy point. It is extremely helpful to be able to do a
quick assessment of potential reconnaissance or potential damage from scan
activity of your network. Most NIDS report about scans, notifying you that

193

194 Chapter 10 Real-World Analysis

they have occurred. But, the more relevant knowledge is this: did any host
respond to the scans? That is where TCPdump recorded activity is once again
invaluable.

How Slow Can you Go?

This event concerns a remotely monitored site that had poor response time on
a good day. One day while attempting to examine activity, the response time
became painfully slow. It was so slow, you could type in one character and it
would take about 30 seconds to see it echoed back on the screen. This was
pretty annoying, but signaled that the site had some issues other than normal
poor response time.

Although this was occurring, we were collecting a copy of their Shadow
sensor data at our site. In an attempt to explain the poor response time, the
site’s Shadow events of interest were examined. It showed that they were
getting a lot of fragmented activity directed at their network address of
192.168.133.0 (this is a translated address for anonymity purposes). Upon
further examination, it was discovered that this had been going on for many
hours. Here is a sample of the records that they were getting:

12:01:12.150572 dos.com > 192.168.133.0: (frag 54050:1480@4440+)
12:01:17.560572 dos.com > 192.168.133.0: (frag 54050:1480@2960+)
12:01:17.570572 dos.com > 192.168.133.0: (frag 54050:1480@4440+)
12:01:22.200572 dos.com > 192.168.133.0: (frag 54050:1480@1480+)
12:01:22.210572 dos.com > 192.168.133.0: (frag 54050:1480@2960+)
12:01:22.220572 dos.com > 192.168.133.0: (frag 54050:1480@4440+)
12:01:22.230572 dos.com > 192.168.133.0: (frag 54050:1480@5920+)
12:01:27.240572 dos.com > 192.168.133.0: (frag 54050:1480@2960+)
12:01:27.250572 dos.com > 192.168.133.0: (frag 54050:1480@5920+)
12:01:37.230572 dos.com > 192.168.133.0: (frag 54050:1480@1480+)
12:01:37.240572 dos.com > 192.168.133.0: (frag 54050:1480@2960+)
12:01:37.240572 dos.com > 192.168.133.0: (frag 54050:1480@4440+)
12:01:37.250572 dos.com > 192.168.133.0: (frag 54050:1480@5920+)
12:01:42.300572 dos.com > 192.168.133.0: (frag 54050:1480@1480+)

You see dos.com sending fragmented packets to the network address. As men-
tioned, this activity had been happening for several hours. There are a couple
of problems with the traffic that need to be examined. See if you can find the
three problems associated with fragmentation in the previous TCPdump
output.

First, a normal fragmented packet train usually has two or more parts:

= There is an initial fragment that has an offset of 0 and the More
Fragments flag set (+):

frag 54050:14800+

How Slow Can you Go?

Recall that the fragment format is as follows:
frag FRAG-ID:BYTES-IN-CURRENT-FRAGMENT@OFFSET-INTO-FRAGMENT -DATA [+]

= There might be intermediate fragments that are neither the first nor last
fragments. An intermediate fragment has a non-zero offset and the More
Fragments flag set. The + flag indicates that the more fragments bit is set
or there is another fragment following the one being sent. The More
Fragments flag is set in the first and intermediate fragments.

= There is a final fragment, one in which the more fragments bit is not set:
no + flag.

This activity appeared on Shadow’s hourly wrap-up from the default because
both the fragmentation and the destination address having a final octet of 0

(the network address 192.168.133.0).
The fragmentation that is seen in this log has some definite problems:

1. There is no first fragment—one that has an offset of 0.

2. You see repeated offsets for fragments that are in the same fragment train
with the fragment ID of 54050. For instance, the fragment offset 4440 is
repeated several times.

3. There is no final fragment—one that doesn’t have the More Fragments
flag (+) set.

It is possible that the offset values are not chronological because the fragments
don’t necessarily arrive in the order in which they were sent.

After doing some research about the topology of the remote site, we dis-
covered that our sensor was located behind (inside) a packet-filtering device
that blocked inbound ICMP echo requests. That is the reason we believe that
the initial fragment was never seen. Keep in mind that only the first fragment
in the fragment train carries the embedded protocol header, such as the infor-
mation to say that these packets were associated with ICMP echo requests. We
can only surmise that the fragmented activity was associated with the dropped
ICMP echo requests.

The packet-filtering device that blocked this activity was a router that did
not keep track of state. Therefore, it blocked the first fragment of the fragment
train because it was the one that contained the information that this was an
ICMP echo request. The router had no means of associating the first fragment
with subsequent ones. It appears obvious to us that the subsequent packets all
share the same fragment ID and are assumed to be associated with the blocked
one.Yet, this router did not maintain that information and allowed the subse-
quent fragments into the network.

195

196 Chapter 10 Real-World Analysis

However, this doesn’t explain why no final fragment was observed. This
should have nothing to do with a router that is incapable of keeping track of
state. The only explanation for not receiving a final fragment is that is was
intentionally omitted.

Normally, fragments are reassembled by the destination host only and not by
intermediate routers through which they travel. However, in this case, the
router attempts to reassemble the fragmented packets because they are sent to
the network address 192.168.133.0 on which the router resides. This particular
router has an old Berkeley Software Distribution (BSD) TCP/IPstyle stack that
responds to this “broadcast” so that it attempts to reassemble the fragments.

The router has limited cache for reassembly. The combination of the repeti-
tion of the same fragment ID, the more fragments bit set in every fragment,
and the missing first and last fragments severely encumbered the router so that
it couldn’t do routing work. The router would never time out on reassembly
of these packets because it kept seeing evidence that more fragments were
coming. This was a successful denial of service (DoS) against the router. When
the hostile IP was blocked on an external router, the response time returned to
normal.

Why didn’t this router expire the incomplete set of fragments with an
ICMP “IP reassembly time exceeded” message? After all, isn’t this a prime can-
didate for resource exhaustion, waiting for a fragment or fragments that are
never sent? The problem is that for the “IP reassembly time exceeded” message
to be delivered and for the receiving host to expire the fragments, the first
fragment must be received. Because the outermost router blocked these, the
first fragment never arrived, and others could not be expired.

Although some routers block incoming ICMP echo requests, denial of ser-
vice attacks against the router should not occur for “normal” traffic. The DoS
attack succeeded against this particular router because of the broadcast address,
the repeated fragment ID, and the missing fragments. After the problem was
discovered, the activity was blocked from the hostile source IP address. This
blocked all inbound traffic including fragments because the IP address is
repeated in each of the IP headers of every fragment.

This was successful, and the response time returned to its normal slow (but
not painful) state. The attackers must have sensed this; chances are that the
monitored site must have foolishly sent ICMP errors that indicated that their
activity was blocked. The attackers responded by attempting the same attack
with a different source IP address on the same subnet.

RingZero Worm

Explanation Acknowledgement and Additional Reference
Many thanks and much credit to Vicki Irwin of the SANS Institute for her assistance in figuring out
the router DoS. She referenced the following for a discussion of this and similar exploits:

www.cisco.com/warp/public/770/nifrag.shtml

RingZero Worm

Let’s wrap up our foray into real-world analysis by examining the RingZero
Worm. This worm would probably be considered ancient in Internet time
because it was discovered in the latter part of 1999. Plenty has transpired con-
cerning malicious code since that time, yet some of the concepts that can be
learned from examination of the worm activity are timeless. This presents a
good transition into the next and final chapter of this section that delves more
deeply into forensics.

The first indication that the monitored site had some new and unusual
activity was that Shadow reported many different attempts to connect to TCP
port 3128, the squid web proxy server. These attempted connections occurred
many times an hour and were from source hosts from all over the world.
Although it has become rather commonplace today with malicious code such
as Code Red and nimda to see many different source IPs scanning many dif-
ferent destination IPs, in late 1999, it was a rarity. Here is an excerpt of the
kind of activity seen for one hour at the monitored site:

12:29:48.230000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697 (0) win
8192 <mss 1460> (DF)
12:29:58.070000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697 (0) win
8192 <mss 1460> (DF)
12:30:10.960000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697 (0) win
8192 <mss 1460> (DF)

12:44:54.960000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF)
12:44:57.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF)
12:45:03.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF)
12:45:15.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF)

12:46:13.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF)
12:46:16.080000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF)
12:46:22.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF)

197

198 Chapter 10 Real-World Analysis

Three difterent source IPs—4.3.2.1, 1.2.3.4, and 1.1.1.1—are attempting con-
nections to three different internal destination IP addresses. Because many of
the scanned destination IPs in our network were not active, there appeared to
be no prior reconnaissance that would target live hosts only. Each source host
retries (source ports and TCP sequence numbers do not change) the connec-
tion several times because the destination hosts do not respond, and no ICMP
error message is returned to indicate that the destination hosts are unreachable.
Looking at the timestamps, you can see that these connection attempts
occurred at different times during the 12:00 hour.

Our site was not the only one that witnessed this activity; the Naval Surface
Warfare Center was also seeing these scans as well as ones to destination port
80 and 8080. Other sites witnessed this activity, and soon, it became apparent
that this activity was very widespread.

The initial assessment of the activity was someone attempting to find open
web proxy servers. Open proxy servers sometimes ofter a “tunnel” through
which a hacker can gain access and assume the source IP of the proxy to hide
his tracks. At this point, because the traftic was coming from all over the
world, one theory was that the source IPs had been spoofed and it was just a
handful of hosts involved. Again, this attack pre-dates the notion of distributed
denial of service (DDoS) attacks, so we were unaccustomed to dealing with
many source hosts to many destination host attacks.

The verbose option (-vv) of TCPdump might provide some assistance in
determining whether or not the source IPs were spoofed. The same TCPdump
records are examined again, but this time using the verbose option:

12:29:48.230000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697 (0) win
8192 <mss 1460> (DF) (ttl 19, id 9072)
12:29:58.070000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697 (0) win
8192 <mss 1460> (DF) (ttl 19, id 29552)
12:30:10.960000 4.3.2.1.1049 > 172.16.54.171.3128: S 9779697:9779697 (0) win
8192 <mss 1460> (DF) (ttl 19, id 39792)

12:44:54.960000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF) (ttl 19, id 962)

12:44:57.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF) (ttl 19, id 11714)

12:45:03.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF) (ttl 19, id 22466)

12:45:15.930000 1.2.3.4.3243 > 172.16.187.212.3128: S 356330349:356330349(0)
win 8192 <mss 1460> (DF) (ttl 19, id 33218)

12:46:13.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 35676)
12:46:16.080000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 46428)

RingZero Worm

12:46:22.070000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 57180)
12:46:34.080000 1.1.1.1.2262 > 172.16.99.110.3128: S 20315949:20315949(0) win
8192 <mss 1460,nop,nop,sackOK> (DF) (ttl 116, id 2397)

Let’s scrutinize these records, but this time in terms of source IP spoofing. The
salient advice to remember when looking for spoofed source IPs is to look for
similarities in the fields or characteristics of packets. More likely than not, an
attacker will not take time to “craft” in differences in the packets, and there
will be some traces of unlikely similarities. Conversely, when distinct source
IPs truly represent different source hosts, differences in packet characteristics
should be apparent. Given this knowledge, what differences can you find
among the three different source IPs of the previously shown traftic?

For starters, you pretty much have to do fourth-down-and-punt with the IP
identification numbers. The time gaps between when each set of initial con-
nections received is too great to see real trends in IP identification numbers.
Ten minutes pass between the first and second set of connections, which is
enough time for the IP identification numbers of a busy host to go through all
65,535 numbers and wrap. You would ordinarily look for a chronology of very
close IP identification numbers, which would indicate source IP spoofing. But,
this can only be done if the time changes are insignificant.

‘What about the arriving TTL values? They look promising for spoofing
because both the first two sets of connections involving source IPs of 1.2.3.4
and 4.3.2.1 have an arriving TTL value of 19. However, the third set from
1.1.1.1 has an arriving TTL value of 116.

Are there any other differences? Look at the TCP options for the connec-
tions. The first two source IPs share the same TCP options, a maximum
segment size (mss) of 1460.Yet, the third source IP also has a selective
acknowledgement (sackOK) that must be padded with two noop’s to fall
on a 4-byte boundary.

Finally, look at the number of retries per attempted connection and the
backoff time between initial tries and retries and between subsequent retries.
The first source IP 4.3.2.1 has an initial try and two retries. The backoft time
between retries is approximately 10 seconds. Next, IP 1.2.3.4 has one initial
try and three retries with the retry attempts doubling in the amount of time
before subsequent ones. Finally, the source IP 1.1.1.1 behaves much like
1.2.3.4 as far as retries in that it has three retries with a doubling of the back-
oft time. From all the forensics from the preceding dump, we can pretty much
conclude that these are actual separate source IPs.

When the traffic was observed, we took the TTL values, estimated the ini-
tial TTL values, and subtracted the arriving from the initial values. This gave us

199

200 Chapter 10 Real-World Analysis

the number of hop counts that the datagram took to arrive on the sensor net-
work. Then, we executed a traceroute back to the source IP to see if the
expected hop count was close to the actual hop count.

About a dozen traceroutes were attempted; most had a hop count credibly
close to the actual hop count. Also, all the targeted IPs were alive, which might
not be the case had random IPs been chosen for spoofing. It would be rare if
someone were doing mass amounts of spoofing using hand picked live IP
numbers only. Usually, it is a far more random selection of spooted source IP
numbers.

This kind of widespread scan was difficult to explain examining one site.
Before the days of www.incidents.org, Stephen Northcutt asked SANS mem-
bers to look at traffic at their individual sites and see if they could provide any
explanations about the activity. Hundreds of sites reported similar activity.

A couple of sites were able to see the HTTP request that was executed, and
it appeared to implicate a host www.rusftpsearch.net.The site was available for
a few days and it appeared to be collecting IPs of any open proxy servers
found.

Ron Marcum of Vanderbilt University discovered a PC on his network that
was scanning hosts on other networks looking for ports 80, 8080, and 3128.
He discovered a Trojan called RingZero that appeared to be the culprit. At a
SANS conference in 1999, conference members and instructors installed the
program that was discovered on the Vanderbilt host and examined what it did.
They were able to recreate that this Trojan would scan other hosts on web
ports.

The suspected infection means is via email or mp3 sharing. But, this semi-
nal malicious code is one of the first that infected hosts and gathered some
valuable information from the hosts, and then used the infected hosts to scan
other hosts. This is the same model used for scans and attacks today, albeit
quite a bit more sophisticated.

Summary

Without unnecessarily belaboring the point, the events described in this
chapter have demonstrated the added value of having TCPdump or Shadow
running at a site to capture the background traffic. The first incident of a non-
intrusion showed how TCPdump can be invaluable because its purpose is not
exclusively to show alerts of events of interest, but to capture all traffic. It can
provide an audit trail of activity that occurred, or more descriptively in this
case, of activity that did not occur.

Summary 201

In addition, TCPdump was used in the scan incident to assess the reaction
of hosts on the monitored network to the scan. Scans can be harmless distrac-
tions when there is no response by the scanned hosts, or in this case, they can
be a reason for concern. Although most NIDS will inform you of scans, none
will automatically alert you of responding hosts.

In the third and final events, TCPdump was used to get very specific
information about the fragments or packets in order to make more accurate
evaluations of the nature of the attack.You can even begin to do forensic
investigation about the type of hosts that are conducting the hostile activity.
You will see a more thorough discussion of passive analysis of hostile traffic in
the next chapter.

