A User’s Look at the
Cocoon Architecture

IN CHAPTER 4, “PUTTING COCOON TO WORK,” you saw a simplified view of the
Cocoon architecture. You built a first version of a news portal in Chapter 5, “Cocoon
News Portal: Entry Version.” Now that we have gone over the basics, it is time to fill
in the missing pieces from a user perspective. This chapter presents additional Cocoon
components and concepts you can use to build more advanced applications than the
ones you have seen so far.

We will start by describing the architecture and further features of the sitemap in
detail. A Cocoon-based application can become quite large. The sitemap becomes
more complicated to manage as you add new pipelines. We will show you how to
organize an application’s structure so that it is easier to maintain. New components
allow you to connect your Cocoon-based application to a database and diagnose what
might be going wrong if something does not work as planned. We will also explain
how Cocoon can be used without running it in a servlet engine and give some practi-
cal tips on how to tune an installation for maximum performance.

140 Chapter 6 A User's Look at the Cocoon Architecture

The Cocoon Architecture in Detail

Before we begin, let’s look at a figure that gives an overview of the Cocoon architec-
ture. It might help you to refer to Figure 6.1 when reading about the individual
building blocks that make up Cocoon in the following sections. This figure is actually
a simplified view of the architecture, because the dependencies of the components
contained in Cocoon are more complicated than this figure shows. We will get into
more detail as we progress through this book. Imagine that each chapter is a layer of
Cocoon that you are slowly peeling away to see more and more of what is inside.

Cocoon is made up of several blocks of functionality. Starting at the top of Figure 6.1,
you see Cocoon integrated into a servlet engine. This can be a standalone servlet engine,
such as Apache Tomcat, or part of an application server, such as IBM WebSphere.

The Cocoon framework forms the envelope around the component-based archi-
tecture, including the different Cocoon components, such as generators and transform-
ers, that can be used to build document pipelines, the XML and XSLT components,
and any custom components built for a specific application.

As you can seen from the figure, each block in the Cocoon architecture has its own
configuration file. Until now, we have only talked about the central Cocoon configu-
ration file—the sitemap. The additional configuration files we will look at in this chap-
ter are also important, because they allow you to define and configure various aspects
of a Cocoon-based application, such as how a running Cocoon should react to
changes in the sitemap or whether Cocoon should cache pipelines. In general, you
will need to alter something in these configuration files only when development of
the application is finished and you are ready to put it into a production environment.

Operating Environment (Servlet Engine) (Configuration

web.xml

Configuration

Cocoon Framework Sitemap.xma

Components
Cocoon Components Standard Components Custom Components
-Generators -XML Parser
-Transformers -XSLT Processor
-Serializers -etc.
-etc.

Avalon Configuration

Logging | bostxcon Avalon Component Management Configuration

cocoon.xconf
I

Figure 6.1 The big picture of Cocoon.

The Cocoon Architecture in Detail

Cocoon is a component-based system. As such, it uses parts of Avalon, a major Apache
project for component-based Java architectures. Apart from Avalon component man-
agement, Cocoon also integrates the Avalon logging architecture, as shown at the
bottom of Figure 6.1.

Avalon Integrated into Cocoon

In addition to including actual software components that can be used in an applica-
tion, Avalon provides a set of rules and Java interfaces that are used in Cocoon to
configure components. For example, Avalon allows components to be reused via a
pooling mechanism. Therefore, Avalon provides components to manage these pools
and also defines how a component should be written so that it can be pooled.
Cocoon components then implement these interfaces.

The Avalon project is divided into several subprojects. However, not all the subpro-
jects are used in Cocoon. The following is a list of subprojects that are used:

= The Avalon LogKit. A Java-based logging API. This logging functionality is
used throughout all the Avalon-based projects and inside Cocoon. The logging
configuration is very flexible, as you will see.

= The Avalon Framework. The base of Avalon. It defines several concepts and
interfaces for component development in Java. It defines the basics of defining,
configuring, and managing software components and how to use them.

= The Avalon Excalibur project. Layered on top of the Avalon Framework. It
implements common reusable components and offers some component manage-
ment facilities to fine-tune your installation.

This chapter looks at the possibilities Avalon provides in the context of how they are
actually used inside Cocoon. For example, when we talk about logging, we give tips on
how to optimize the performance of a Cocoon application. Also, for a more detailed
overview of Avalon, see Chapter 8,“A Developer’s Look at the Cocoon Architecture.”

First, however, we’ll start our configuration tour of Cocoon with the configuration
file read by the servlet engine when Cocoon is started.

The Web Application Configuration

When Cocoon runs as a servlet, the servlet engine processes a configuration file during
the startup phase. The servlet engine reads the web application deployment descriptor
(which is located at WEB-INF/web.xml in your Cocoon context directory) and uses
the parameters in this file to perform the initial configuration of Cocoon.

The web.xml file contains the startup configuration that is required to get the sys-
tem running. The most important piece of information is the location of the configu-
ration file for the Avalon-based Cocoon components. In Listing 6.1, which is a snippet
from a web.xml file, the name and location of the configuration file are entered as
parameters inside the init-param tag.

141

142 Chapter 6 A User's Look at the Cocoon Architecture

Listing 6.1 The Avalon Configuration Location in web.xml

<l--

This parameter points to the main configuration file for Cocoon.
Note that the path is specified in absolute notation but it will be
resolved relative to the servlets webapp context path

- >

<init-param>
<param-name>configurations</param-name>
<param-value>/cocoon.xconf</param-value>

</init-param>

In a default installation of Cocoon, this file is called cocoon.xconf and is located in
the Cocoon context directory. You have probably already seen it when looking for the
sitemap, which is also located there by default. The cocoon.xconf file is an XML file
that contains a description of the used Avalon components for Cocoon and their con-
figuration. Configuring the name and location of this file inside web.xml allows you to
choose your own name and location for the file if you wish. However, we recommend
that you leave the defaults as is. From now on we will refer to this file simply as
cocoon.xconf, regardless of where you place it and what name you choose.

Although the sitemap components, such as transformers and generators, are also
Avalon-based components, they are not listed inside cocoon.xconf. They are listed inside
the sitemap, as you saw in Chapter 4. This means that a site administrator building a
Cocoon-based application does not need to know about cocoon.xconf. When design-
ing an application, it is easier to reference only one file instead of having to view several
files at once. cocoon.xconf will become important when you want to fine-tune the
installation or replace any of the default components, such as the XML parser.

Configuring Components in cocoon.xconf

One of Cocoon’s advantages is that it forms a flexible framework around other
components that come from different projects, such as those hosted by Apache. For
example, instead of being able to use only a specific XML parser, Cocoon allows
you to choose which actual implementation you might want to use by allowing
these components to be configured via cocoon.xconf. In addition, cocoon.xconf
can be used to pass parameters to the components so that different aspects can be
configured. Listing 6.2 is a brief excerpt from cocoon.xconf that shows the basics
of this configuration.

Listing 6.2 An Excerpt from cocoon.xconf

<?xml version="1.0"?>
<cocoon version="2.0">

<parser class="org.apache.cocoon.components.parser.XercesParser"/>

The Cocoon Architecture in Detail

<hsqldb-server class="org.apache.cocoon.components.hsqldb.ServerImpl"
pool-max="1" pool-min="1">
<parameter name="port" value="9002"/>
<parameter name="silent" value="true"/>
<parameter name="trace" value="false"/>
</hsqldb-server>

</cocoon>

Unlike the sitemap, cocoon.xconf does not use a namespace. Each component you
want to configure is defined inside the root element called cocoon using its own spe-
cific element. Listing 6.2 has two configured components: parser and hsqldb-server.
These are the logical names under which Cocoon looks for a concrete implementa-
tion. The actual Java class that then implements the expected functionality is config-
ured via the class attribute. As you can see from Listing 6.2, the default parser is the
Xerces Parser from Apache. Apart from allowing different implementations to be used,
cocoon.xconf allows the components to be configured using individual parameter
tags. Each parameter tag consists of a name and value attribute. This lets you pass
information such as the port number to the configured database. HSQLDB is an
open-source database that is included in the Cocoon distribution. It is used in the
practical database examples later in this chapter. We will also discuss the attributes
pool-max and pool-min when we look at ways to optimize Cocoon’s performance.

If you change something inside cocoon.xconf, these changes are not reflected auto-
matically. To apply the changes, you have to reinstantiate Cocoon. One way of doing
this is by restarting your servlet engine. However, this is not always an ideal solution,
because you will affect other servlets also currently running in the same servlet engine.
It might also take some time for the engine to restart.

Fortunately, Cocoon provides another way to force the reload of cocoon.xconf.
You can directly request the root node where Cocoon is mounted (such as
http://localhost:8080/cocoon) and then add the request parameter cocoon-reload
with the value true.The whole URL looks like this:

http://localhost:8080/cocoon?cocoon-reload=true

This restarts Cocoon with the changed cocoon.xconf.

Because restarting can be a time-consuming process, you should avoid it in a pro-
duction environment.You can turn off this feature by setting the parameter allow-
reload in the web application deployment descriptor (web.xml) to no.The default for
this setting is yes, as shown in Listing 6.3.

Listing 6.3 Allowing Cocoon Reloading in web.xml

<l--
Allow reinstantiating (reloading) of the cocoon instance. If this is
set to "yes" or "true", a new cocoon instance can be created using
the request parameter "cocoon-reload"

continues

143

144 Chapter 6 A User's Look at the Cocoon Architecture

Listing 6.3 Continued

<init-param>
<param-name>allow-reload</param-name>
<param-value>yes</param-value>
</init-param>

Remember, this parameter is not in cocoon.xconf. It is in the web.xml file used to
control certain settings for a servlet. This parameter should be set to no in a production
environment, because the default allows anyone to start the reloading of your Cocoon
installation by accessing the URL just listed. If someone were to abuse this, Cocoon
would spend all its time reloading the configuration files, which would prevent any
other activity.

In addition to component configuration, another important piece of information
contained in cocoon.xconf is the location of the sitemap. The last line of cocoon.xconf

looks like this:

<sitemap file="sitemap.xmap" reload-method="asynchron" check-reload="yes"/>

This definition tells Cocoon where to look for the main sitemap and how to handle
its reloading. Although you can change the file attribute by entering a different loca-
tion and name, we have never needed to change this setting. So we recommend that
you do not change it either.

Sitemap Reloading

As you might have noticed during your first steps with Cocoon, changes made to the
sitemap are automatically reflected after some time without a restart of your servlet
engine being necessary.

When configured appropriately, Cocoon occasionally checks the sitemap for
changes. Each time a change is detected, the old sitemap is discarded and the new one
is used. Cocoon detects this change using the last modification date, which is automat-
ically set by the operating system for a file when it is saved. So even if you do not
change the sitemap but save it unchanged, Cocoon assumes that it has changed and
reloads it.

As explained in Chapter 4, a servlet can act only on an incoming request. So
Cocoon can check for changes only when a request for a document is received. The
automatic reloading can be done in a synchronous or asynchronous manner.You can
set this reload method by specifying either synchron or asynchron in the attribute
reload-method in cocoon.xconf for the sitemap location. The default is asynchron.
(Note that this is the correct way to write these parameters—without ous on the end.)

In synchronous mode, the new sitemap is generated in memory from the configu-
ration file. After this process is finished, it is used and the request is served with this
new sitemap.

The Cocoon Architecture in Detail 145

In asynchronous mode, the new sitemap is generated in the background, and the
incoming request is served by the old sitemap. All further requests are then processed
by the old sitemap until the generation is finished. From that time on, all documents
are generated using the new sitemap.

Synchronous mode is very useful when you develop your application, because each
change to the sitemap is reflected immediately. Asynchronous mode is more useful for
a production environment in which the sitemap changes very rarely.

Although the automatic reloading of the sitemap seems to be a very useful feature,
it has potential dangers. Assume that you change the sitemap to an invalid state, either
by creating invalid XML or by making some other mistake that prevents Cocoon from
being able to create the sitemap. The next request enters Cocoon, and the sitemap
generation process is triggered.

In synchronous mode, the sitemap is generated immediately, but it fails due to
the error you made beforehand. So you get a Cocoon error page, because Cocoon
cannot process your request. The whole Cocoon installation is “dead” until you
correct the error.

In asynchronous mode, the situation is even worse. When the request comes in, the
sitemap generation process is started in the background. The current request and all
further requests are processed by the old sitemap. The generation of the new sitemap
fails because of the error. All further requests are then served using the old sitemap. If
the changes made to the sitemap were only slight, it might take a while before anyone
realizes that the old sitemap is still being used.

Cocoon provides a parameter that allows you to control whether the sitemap should
be checked and reloaded.You can prevent Cocoon from reloading the sitemap by set-
ting the attribute check-reload in cocoon.xconf to false. If you use the default, the
sitemap is checked for reloading.

But what if you really changed the sitemap and you made a mistake? The first thing
to do is check if your sitemap still contains well-formed XML, so load it into your
favorite XML editor and check this. If it is well-formed but still does not work, you
should use the logging facilities in Cocoon to find any error you perhaps made.

LogKit Configuration

Cocoon is based on the Avalon logging facilities, which are very flexible and powerful.
You can configure details about what should be logged and what should be done with
the log messages.

Cocoon has five log levels:

= DEBUG

= INFO

= WARNING

= ERROR

= FATAL_ERROR

146 Chapter 6 A User's Look at the Cocoon Architecture

Each component sends out log messages at one of these five levels. The LogKit then
decides what should be done with this message.

Using the configuration, you can decide that only certain levels should really be
logged to a file. For production sites, you will usually want to log only messages with a
level of ERROR or FATAL_ERROR. In contrast, when developing your application, you will
always want to see all levels. Because of the ordering of the different levels, each level
contains all the following levels. Therefore, setting the level to DEBUG results in all mes-
sages being logged. Setting the level to WARNING results in all messages with a level of
WARNING, ERROR, or FATAL_ERROR being logged.

The first thing you have to configure, however, is where Cocoon can find the
LogKit configuration. This is done by another parameter in the web application
deployment descriptor (web.xml), as shown in Listing 6.4.

Listing 6.4 The Location of the LogKit Configuration in the Web Application
Deployment Descriptor

<l--
This parameter indicates the configuration file of the LogKit management
-->
<init-param>
<param-name>logkit-config</param-name>
<param-value>/WEB-INF/logkit.xconf</param-value>
</init-param>

The standard place for the LogKit configuration is WEB-INF/logkit.xconf inside your
Cocoon context directory. This configuration file is an XML document that describes
the LogKit configuration. Listing 6.5 is a simple example.

Listing 6.5 An Excerpt from the LogKit Configuration

<logkit>

<factories>
<factory type="priority-filter" class=
=-"org.apache.avalon.excalibur.logger.factory.PriorityFilterTargetFactory"/>
<factory type="servlet" class=
="org.apache.avalon.excalibur.logger.factory.ServletTargetFactory"/>
<factory type="cocoon" class=
="org.apache.cocoon.util.log.CocoonTargetFactory"/>

</factories>

<targets>
<cocoon id="cocoon">
<filename>${context-root}/WEB-INF/logs/cocoon.log</filename>
<format type="cocoon">
%7.7{priority} %{time} [%8.8{category}] (%{uri})
=%{thread}/%{class:short}: %{message}\n%{throwable}
</format>
<append>true</append>

The Cocoon Architecture in Detail

<rotation type="revolving" init="1" max="4">
<or>
<size>100m</size>
<time>01:00:00</time>
</or>
</rotation>
</cocoon>

<priority-filter id="filter" log-level="ERROR">
<servlet>
<format type="extended">%7.7{priority} %5.5{time}:
=%{message}\n%{throwable}</format>
</servlet>
</priority-filter>
</targets>

<categories>
<category name="cocoon" log-level="DEBUG">
<log-target id-ref="cocoon"/>
<log-target id-ref="filter"/>
</category>
</categories>
</logkit>

The first part of the configuration file deals with factories for the logging targets.
Factories are used inside component-based architectures to allow the flexible creation
of components. They remove the need to “hard-wire” specific implementations into the
system. You can compare this part of the configuration file with the components section
of the sitemap, where you define the available generators, transformers, and so on.

These factories define components that are to receive the log events. In this exam-
ple, the cocoon factory writes log events to a file. The servlet factory logs into the
servlet log, and the priority-filter filters events.

These factories are then used in the targets section to instantiate real targets.
When the cocoon target is instantiated, it receives the location of the log file (the
filename tag) and in what format (the format tag) the log messages should be written.

The third part of the configuration is the categories section. Each component
inside Cocoon can log into different categories. Usually they all log into the root
category, which is also called cocoon.

So the LogKit configuration defines this category. A category gets a log level and a
set of targets. All log events with this log level (or above) are sent to all the targets. So,
in this example, all log events with DEBUG or higher are sent to a target called cocoon
(logging into a file) and a target called filter.

This “filter” uses the priority filter to filter the log events. In this configuration, the
filter discards all messages that do not have the level ERROR or FATAL_ERROR. Messages
with one of these two levels are sent to the servlet target. So they are logged into the
servlet log as well.

147

148 Chapter 6 A User's Look at the Cocoon Architecture

As you can see from this example, even a simple LogKit configuration can get very
complex (and therefore complicated). But in most cases, it is sufficient to change the
used log level. You can do this simply by changing the log-level attribute of the
cocoon category. When you use a file-based configuration like this, you also can add
new targets and categories without changing the code.

In case of a problem, you should have a look at the log file and see if you can find
any description of the problem in the file. If the log level is not DEBUG, you should
switch it. But be careful: A change to the log level (or any other change in the LogKit
configuration) is not reflected immediately. You need to reinstantiate Cocoon in order
for this to happen.You can force this by specifying the parameter cocoon-reload or by
changing cocoon.xconf.

Changing the level to DEBUG causes the log file to become very large. Logging is also
quite a time-consuming process, so you will want to set the level as low as possible (such
as to ERROR) in a production environment.

How Requests Are Processed Inside Cocoon

Whenever a request for a document is sent to Cocoon, the root sitemap is taken to
respond to the request. The pipelines section of the root sitemap is then processed top-
down. All map:pipeline sections marked as internal-only using the attribute internal-
only are skipped. The process follows the steps described next. For the moment, we
will neglect the views (they are explained in a separate section), because they would
only confuse this description:

= If'a match directive is found, the matcher tests a value against a given pattern. If
the value matches, the directives inside the matcher are executed next, and possi-
ble values from the matcher can be used by specific keys. If the value does not
match, the next directive on the same level is executed next.

= If an action directive is found, the action is executed immediately. If the action
returns keys for value substitution, the directives inside the action are executed
next. If no keys are provided, the directive on the same level is next.

= If a selector directive is found, the selector performs the various test cases from
top to bottom. When the value is equivalent to the first test case, the directives
inside this case are executed next, and all others are ignored. If no test case
matches, the default case (if it’s available) defines the next directives to execute.

= If a generator directive is found, it builds the starting point for the XML pro-
cessing pipeline. The next directive on the same level is executed. The generator
is not yet started.

= If a transformer directive is found, the transformer is added at the end of the
XML processing pipeline, but it is not executed yet. Then the next directive on
the same level is executed.

The Cocoon Architecture in Detail 149

= If a serializer directive is found, the serializer builds the end of the XML pro-
cessing pipeline, and the buildup pipeline is executed. The generator feeds its
XML through the various transformers. The serializer produces the document,
and the processing is finished.

= If a reader directive is found, the reader delivers the document, and the processing

is finished.

= If a redirect occurs, the processing is stopped. If the redirect points to a sitemap
resource, it is processed. If the redirect is an external link, the client is redirected
to it. If the link is internal, a new request is processed by Cocoon, starting at the
main sitemap.

= If a mount for a subsitemap is found, the processing is passed on to the subsitemap.
‘When the subsitemap processing is finished, the document is processed.

= If a content aggregation directive is found, this special generator is added as the
starting point of the XML processing pipeline.

= If an error occurs, the error handler of the current map:pipeline is called.

As you can see from this flow description, actions, matchers, and selectors are executed
immediately when the sitemap is processed. The same applies for a reader.

But generators, transformers, and serializers are not executed immediately. They are
chained to build the processing pipeline. Only when this pipeline is complete (when a
serializer 1s added) is the whole pipeline executed.

Because the XML is processed in this created pipeline, all other sitemap compo-
nents not chained in this pipeline have no access to the XML. Thus, an action,
matcher, or selector cannot be influenced by this XML, nor can they influence it.

Cocoon distinguishes between two pipeline types: the event pipeline and the stream
pipeline. As the name implies, the event pipeline deals with SAX events. It consists of
the usual XML processing pipeline (generator and transformers) without the serializer.
A stream pipeline streams the final document to the client. It consists of only a reader
or of an event pipeline in combination with a serializer.

For a Cocoon user, this information is important to know in order to understand
caching (which we will explain later) and the cocoon protocol.

The cocoon protocol invokes an internal request to the sitemap. The resulting docu-
ment can be used, for example, as the input for a generator or transformer or for con-
tent aggregation. All these components require XML. The generator reads produced
XML, the xslt transformer uses stylesheets, and the content aggregation aggregates
XML documents and generates from these documents one XML document.

But the cocoon protocol calls an arbitrary pipeline, which has a serializer at the
end. It could, in the best case, return XML as a stream of characters or, even worse,
HTML or any other format. How does this work? As you might guess, the answer is
the event pipeline.

150 Chapter 6 A User's Look at the Cocoon Architecture

Whenever the cocoon protocol is used, only the event pipeline is built. Remember,
the event pipeline 1s the XML processing pipeline without the serializer. So the event
pipeline directly outputs XML as SAX events. Therefore, all components requiring
XML can very easily use the cocoon protocol. Obviously, the cocoon protocol must
not point to a pipeline using a reader.

Now let’s get on with explaining these mysterious SAX events in detail.

SAX Event Handling

XML pipelines also work internally with the SAX model. Therefore, a generator sends
SAX events to the following component in the pipeline. This component sends SAX
events to the next one, and so on until the final serializer gets the final SAX events,
serializes them, and creates the output document.

It might seem unimportant to a Cocoon user that the SAX model is used, but it
has an impact on how pipelines must be built. SAX events have only one direction:
from top to bottom, if you think about how they are written in the sitemap. It is not
possible to send SAX events back up the pipeline.

A transformer transforms the incoming XML stream. There are two possible cate-
gories of transformers. In the first one, a transformer transforms the document as a
whole, like the xslt transformer does. The stylesheet for the xslt transformer contains
all the information for each node in the XML document.

The other category is a transformer that listens for specific XML elements that it
will transform. For example, the sql transformer waits for special elements that set the
SQL connection and the SQL query. All other elements surrounding the SQL state-
ments are ignored. By ignored, we mean that they are passed unchanged from the sql
transformer to the next component in the pipeline, as shown in Figure 6.2.

In order to get the sql transformer working, the incoming SAX events of the
previous component in the pipeline (perhaps the generator) must contain those
special elements for the sql transformer. So this is the first simple rule: If a compo-
nent is listening for specific information, that information must be provided by a
previous component in the pipeline.

There are more transformers that act like the sql transformer. The 1dap transformer
is another example of a transformer that reacts to special tags. It listens for some ele-
ments and then queries an LDAP system. If you want to build complex pipelines that
have more than one transformer of this category, you have to think carefully about
what you really want to do.

Imagine that you want to read an XML document from the local hard drive. This
XML document contains information for the sql transformer. The sql transformer
fetches data from the database that is then feed into the ldap transformer.

From these requirements, you should be able to build up your XML document. It
should look like Listing 6.6.

The Cocoon Architecture in Detail

Request Response

SAX Processing Pipeline inside Cocoon

Generator Transformer _

A

Transformer

Serializer

—_—

SAX Events SAX Events SAX Events

Figure 6.2 SAX event handling.

Listing 6.6 An Example of Dependent Components

<?xml version="1.0"7?>
<document>
<LDAP>
<LDAP - INFORMATION>
<SQL>
<SQL - INFORMATION/>
</sQL>
</LDAP - INFORMATION>
</LDAP>
</document>

The information for the sql transformer is surrounded by the elements for the 1dap
transformer. Because the fetched data is the input for the LDAP query, it must be
contained inside the LDAP elements.

In order to make the example work, you have to define your pipeline according
to your XML document. As the ldap transformer waits for information from the sql
transformer, the pipeline should look like Listing 6.7.

Listing 6.7 A Pipeline of Dependent Components

<map:generate src="document.xml"/>
<map:transform type="sql"/>
<map:transform type="ldap"/>
<map:serialize/>

151

152 Chapter 6 A User's Look at the Cocoon Architecture

The sql transformer needs to come before the ldap transformer. Why is this so? The
answer lies in the SAX events. As mentioned, SAX events are sent in only one direc-
tion. The ldap transformer needs information from the sql transformer, so the SQL
query must be done first.

If you put the sql transformer after the 1dap transformer, the statements and ele-
ments for the sql transformer would be directly used as the information for the ldap
transformer. This LDAP query would then fail, and the sql transformer would never
get its information.

So the second important rule is this: When building pipelines, you need to be aware
of the events or data flow. In other words, you need to know the dependencies between
your transformation steps. For example, if transformer A needs information from trans-
former B, you have to put transformer B before transformer A in the pipeline, and the
elements for transformer B must be nested inside those for transformer A.

Of course, you need not stick to this simple rule. In some cases, the information
delivered from one transformer cannot be used directly by another transformer. Then
you should use intermediate stylesheet transformation, which converts the data of the
first transformer to usable input for the second transformer.

In the preceding example, the order of the components in the pipeline would still
be the same, but you could then add a stylesheet transformation between the sql trans-
former and the ldap transformer stage. This stylesheet would convert the response from
the sqgl transformer into a suitable request for the ldap transformer.

Using an intermediate stylesheet is very important if you have circular dependen-
cies. Imagine a pipeline in which you first have a SQL query, and then a dependent
LDAP query, and after that a second SQL query that needs information from the
LDAP transformation.

The simple approach shown in Figure 6.3 will not work. If you follow the rule we
set up, you would build the structure of the commands as set out in the first block at
the beginning of the chain in the figure—first the outer tags for the last sql trans-
former, and then the tags for the ldap transformer, and inside them the tags for the
first sql transformer. However, because a sql transformer is in front of the ldap trans-
former, the last sql transformer never receives any of its commands, because the first
sql transformer will have already processed them. There is no way to tell each sql
transformer which SQL tags are for the first transformer and which are for the second.

The only solution that works in a case like this is to use an intermediate stylesheet,
as shown in Figure 6.4.

The starting document containing the commands must then contain only the
LDAP query with the nested SQL query for the first sql transformer. After the Idap
transformer in the pipeline, you need a stylesheet transformation, which adds the SQL
statement for the last sql transformer around the data fetched from the LDAP query.
This can then be processed by the following sql transformer.

The Cocoon Architecture in Detail

Request Response

SAX Processing Pipeline inside Cocoon
with dependent transformers

File Generator T é}L Transformer Idap Transformer SQL Transformer Serializer

SAX Events SAX Events SAX Events SAX Events
<document> <document> <document> <document>

<SQL> <LDAP> <LDAP-DATA> <LDAP-DATA>

Will not 7 <LDAP> <SQL-DATA> </document> — </document>
o saLs| T <lDAP> | ——
<LDAP> </document>

</SQL>

</document>

Figure 6.3 Incorrect chaining of dependent transformers.

SAX Processing Pipeline inside Cocoon
with dependent transformers and
internediate stylesheet

Response

Request

—> | SQL Transformer —> [Idap Transformer| ——> | xslt Transformer SQL Transformer Serializer

File Generator | —

SAX Events SAX Events SAX Events SAX Events SAX Events
<document> <document> <document> Tt
<SQL-DATA>
<LDAP> <LDAP> <LDAP-DATA/> <SQL> | </document>
<SQLs f—| <SQL-DATA/> <LDAP-DATA>
</LDAP> </LDAP> || </document> [</sQL>
</document> </document> </document>

Figure 6.4 Using an intermediate stylesheet.

As you can see from the example that uses transformers and intermediate stylesheets,
pipelines can get quite complicated. You need to be aware of how things work in order
to build your pipeline. However, in our experience with Cocoon, we have very rarely
had such complex dependencies. It is more often the case that you need more than
two transformers, but they are not dependent, so you do not need an intermediate
stylesheet transformation.

153

154 Chapter 6 A User's Look at the Cocoon Architecture

This section introduced the additional files that control how Cocoon is configured.
It also showed you how components in Cocoon can receive parameters through these
configuration files. Cocoon components are based on design principles set out by the
Apache project Avalon. Cocoon also uses the Avalon logging mechanism. We also
looked at how a request is processed inside Cocoon and how the XML tags are sent
through a pipeline as SAX events. After taking a user’s look at the various configuration
files, we can now return to the sitemap, which is the most important configuration file
from a user perspective. We will look at the features not already explained in Chapter 4.

Advanced Sitemap Features

If you are already somewhat familiar with Cocoon, you will have noticed that we left out
some features when we first introduced it. The main reason for this was to make it easier
for first-time users to get started with Cocoon. Now that we have expanded on the first
block of information with examples and the first version of the news portal application,
we can complete the description of the sitemap features from a user perspective.

One of the most important functions in Cocoon is its ability to obtain data from
various sources. This is done through different protocols. This section introduces some
Cocoon-specific protocols. We will also explain some new sitemap component types
and the views and resources sections of the sitemap. However, before we dive into the
details, let’s begin our look at the sitemap with a slightly different type of component—
the action-set.

Action-Sets

Chapter 4 introduced the component type action, which can be used in any pipeline
to fulfill a defined task. Cocoon also ofters a more flexible approach to using actions:
action-sets.

In contrast to other sitemap component types, an action-set is a combination of for-
merly defined actions that can be used in a pipeline as though it were a single compo-
nent. Defining an action-set is like defining a pipeline, which is a combination of
sitemap components. An action-set is also defined inside its own sitemap section, the
map:action-sets section.

Each action-set is introduced with the map:action-set element, which receives a
unique name via the attribute name. Inside this element you can enter as many actions
as you like, as shown in Listing 6.8.You arrange a set of actions to form a group.

Listing 6.8 An Example of an Action-Set

<map:action-sets>
<map:action-set name="myactionset">
<map:act type="log-start-action"/>
<map:act type="add-action" action="add"/>
<map:act type="del-action" action="delete"/>
<map:act type="log-end-action"/>
</map:action-set>

</map:action-sets>

Advanced Sitemap Features

A defined action-set can be used in the pipeline just like a normal action via the
tag <map:act set="myactionset"/>.The difference is that the attribute set is used
instead of type.

If you use an action-set, all actions of this set are called in the order they are defined.
In addition, it is possible to selectively call an action inside an action-set. To do this, you
can define each action in the action-set to have an attribute action. If the current request
being processed by the pipeline contains a request parameter called cocoon-action, the
action with the corresponding action attribute in the action-set is called.

In Listing 6.8, if the action-set myactionset is used, log-start-action is invoked.
If the request currently being processed contains a cocoon-action parameter with the
value add, the action add-action is invoked. If instead the cocoon-action parameter
has the value delete, del-action is invoked. Finally, log-end-action is always invoked.
The cocoon-action parameter can contain only one value, so either add-action or
del-action or neither is invoked, but never both at the same time.

Do you remember value substitution, discussed in Chapter 4? An action can provide
key-value pairs for other sitemap components. All components nested inside the action
have access if they know the key’s name.

Value substitution for action-sets is very similar, as shown in Figure 6.5. Whereas all
values of an action are accessible using the key for nested components, all values of all
called actions of the action-set are available inside the action-set element. Therefore,
the value substitution algorithm collects all values from all actions. However, if two
actions use the same key inside an action-set, only the value of the last action is avail-
able. It overrides the previous one.

<map:action-sethame="myactionset">| Key: 1
<map:acttype="log—start-action"/> | ars "
Value: Start
Key:2
<map:act type="log—end-action"’> — \éae';‘% Book
</map:action-set> Value: End

<map:act set=,myactionset">

Key:1 <map:generate src="{1}.xml"/>

Value: Cocoon

Key: 2 <map:transform src="{2}.xsl"/>
Value: Book

Key: 3 .
Value: End <map:serialize/>

</map:act>

Figure 6.5 Value substitution for action-sets.

155

156 Chapter 6 A User's Look at the Cocoon Architecture

Using action-sets allows you to build modular components that can be used flexibly
in pipelines. Often, actions are used to control the flow inside a pipeline and to deter-
mine such things as which data source needs to be accessed for the current request.
Using the various protocols available in Cocoon allows a variety of different possibili-
ties when it comes to retrieving data or calling internal functions as part of processing.

Protocols

A concept widely used inside sitemaps is the definition of URIs. On the one hand,
you define the sitemap to spawn a virtual URI space, which is served by Cocoon, but
more obviously, you use URIs to specify which resources are to be read by the various
sitemap components. For example, the file generator needs an XML document as
input; the xslt transformer processes a stylesheet, and so on.

As we discussed in Chapter 4, you can use any protocol supported by Cocoon to
define your URIs and to access resources. For example, you can use an HTTP con-
nection to retrieve an XML document from a remote server, an FTP connection to
read a stylesheet, or the file protocol to read a file from the local hard drive.

In addition to these standard protocols, Cocoon offers additional protocols that
can also be used inside the source definition of a generator, a transformer, or any
other component. All these protocols follow the general pattern for building URIs:
protocolname://path to the resource. Cocoon supports a resource protocol, a
context protocol, a cocoon protocol, and a protocol that is used implicitly.

The Implicit Protocol

The most important protocol is the implicit protocol, which you have already used
without noticing. As the name suggests, this protocol is used implicitly whenever a
protocol definition is missing. For example, if you write something like <map:generate
src="mydocument.xml" />, Cocoon can handle it even though the protocol is missing.

How Cocoon handles this depends on how you deployed the web application. There
are two ways of doing this.You can bundle everything into a web archive (WAR) file, or
you can deploy everything as individual files. If your web application is not a WAR file,
Cocoon implicitly adds the file protocol. All the references are then resolved relative
to the location of the current sitemap using the file protocol. If you have a WAR file,
Cocoon implicitly adds the protocol provided by the servlet engine to access these files,
again relative to the location of the current sitemap.

This means that you don’t need to worry about explicitly using a protocol when
you define your pipelines and the resources they are to access. However, it is always
better to add the protocol explicitly, because this makes your sitemap entries more
readable to someone who is not as familiar with the inner workings of Cocoon.

Advanced Sitemap Features

The Context Protocol

The context protocol is used to access any resource belonging to the Cocoon web
application. If you deployed the Web application from a directory on your hard drive,

the context protocol is directly mapped to the filesystem. So the resource definition
context://mydocument.xml is translated to a file URI pointing to the Cocoon web appli-
cation directory—more precisely, to a file called mydocument.xml inside this directory.

If you have deployed your Cocoon web application as a WAR file, you access the
resources inside the WAR file using the context protocol. The argument following
the protocol is a path relative to the root of the WAR file. So again, context://
mydocument.xml references a file named mydocument.xml stored at the root of the
WAR file.

So, if you use the context protocol, you can abstract from how you deployed your
Cocoon web application. Cocoon can determine whether to use the filesystem or the
WAR file to resolve the resource you might want to load.

‘Whereas the context protocol can be used to access resources inside a WAR file or in
a filesystem, the resource protocol can locate resources inside Java archives (JAR files).

The Resource Protocol

Because Cocoon is implemented using Java, it consists of several JAR files that con-
tain the various parts. A JAR file can contain more than Java code. It can hold any
resource, such as images, XML documents, or stylesheets. All these JAR files are
located in the WEB-INF/lib directory of your Cocoon context and are loaded
automatically at startup by your servlet engine.

If you want to read such a resource, you can simply use the resource protocol
followed by a path specifying the resource precisely. Cocoon then searches all loaded
JAR files for this resource. For example, resource://org/apache/cocoon/components/
language/markup/xsp/java/xsp.xsl specifies a file named xsp.xsl. This file is in one of
the JAR files in the directory structure org/apache/cocoon/components/language/
markup/xsp/java. So one JAR file has a root directory called org, which has a subdirec-
tory named apache, and so on.

So far, we have looked at protocols that allow you to access static resources. But
what if you want to access resources that are not available as a unit but must be built
by a process?

The Cocoon Protocol

Because Cocoon is a processing framework that can build documents using processing
pipelines, sooner or later you might want to use a Cocoon resource as the input for a
generator in another resource. Doing this lets you use the result of a resource as the
starting point for a pipeline or as the input for any other component. So what you
need is a way to access the result of one pipeline from another pipeline.

157

158 Chapter 6 A User's Look at the Cocoon Architecture

The cocoon protocol allows you to do exactly this. It accesses pipelines inside the
sitemap. For example, <map:generate src="cocoon:/helloworld"/> uses the file
generator that reads an XML document created by a request for the document
helloworld against the sitemap.

Whenever you use the cocoon protocol, Cocoon internally processes a new
request for the specified document and uses this result for the ongoing processing
of the original request.

The main use of this protocol is content aggregation, in which you can build a
document from more than one source, as you will see in the next section. But you
can, of course, use this protocol everywhere in the sitemap—for example, as an input
to the xslt transformer.

All in all, the different protocols allow a very flexible mechanism for accessing data
sources. You can also add your own new protocol if you like. We will show you how
to do this in Chapter 9, “Developing Components for Cocoon.” As soon as you have
set up pipelines to access the various data sources, content aggregation allows you to
combine them inside the sitemap.

Content Aggregation

When designing web applications, such as a portal, you often need to build complex
documents consisting of several parts. Consider a typical information web site. The
document consists of a header displaying, for example, the name of the company, a
navigation bar, a block of content that was chosen from the navigation bar, and per-
haps a footer displaying some static information.

Although this is a single document, it consists of four parts: header, navigation bar,
content, and footer. Many documents follow this scheme. For each piece of content you
display on your web site, you have exactly one document consisting of three static parts—
header, navigation bar, and footer—and the content. How can documents like this be
created easily?

One solution is to define a separate pipeline for each document. Each pipeline then
reads an XML document containing not only the content but also XML information
for the header, footer, and navigation bar. The XML information is then formatted by
a stylesheet to present the complete page.

The problem with this solution is that you cannot access just the content.You
would need to do this if you wanted to format the data into a PDF document, where
you do not need the additional information on a header or footer.

Even worse, defining separate pipelines mixes concerns. The content should not
need to know about the other parts, and vice versa. So the ideal solution would be
to create the parts as separate documents and then be able to combine them.

Advanced Sitemap Features

That’s where content aggregation comes in handy.You can define a document that is a
combination or aggregation of other documents. To do this, you need to define a pipeline
in the sitemap and use some tags specific to content aggregation, as shown in Listing 6.9.

Listing 6.9 An Example of Content Aggregation

<map:pipeline internal-only="true">
<map:match pattern="header">
<map:generate src="header.xml"/>
<map:serialize type="xml"/>
</map:match>
<map:match pattern="footer">
<map:generate src="footer.xml"/>
<map:serialize type="xml"/>
</map:match>
<map:match pattern="navigation">
<map:generate src="footer.xml"/>
<map:serialize type="xml"/>
</map:match>
<map:match pattern="*">
<map:generate src="docs/{1}.xml"/>
<map:serialize type="xml"/>
</map:match>
</map:pipeline>
<map:pipeline>
<map:match pattern="docs/*">
<map:aggregate element="document">

<map:part src="cocoon:/header" element="header"/>
<map:part src="cocoon:/navigation" element="navigation"/>
<map:part src="cocoon:/{1}" element="content"/>
<map:part src="cocoon:/footer" element="footer"/>

</map:aggregate>
<map:transform src="all2html.xsl"/>
<map:serialize type="html"/>
</map:match>
</map:pipeline>

Listing 6.9 has some new elements we need to define before proceeding with our dis-
cussion. The most obvious one is the map:aggregate command. It is used inside an
XML processing pipeline as a replacement for the map:generate instruction you
would have in a normal pipeline. It defines a content aggregation of the parts, which
are defined as nested map:part elements. In our example, we are building a complete
document containing a header, a footer, navigation, and content. The attribute element
of map:aggregate defines the root element of the generated XML document. Each
part can have an element, under which you can find this part in the aggregated con-
tent. See Listing 6.10.

159

160 Chapter 6 A User's Look at the Cocoon Architecture

Listing 6.10 Aggregated Content

<?xml version="1.0"?>
<document>
<header>
<!-- here is the content of the header document -->
</header>
<navigation>
<!-- here is the content of the navigation document -->
</navigation>
<content>
<!-- here is the content of the content document -->
</content>
<footer>
<!-- here is the content of the footer document -->
</footer>
</document>

As you can see from Listing 6.10, the content is aggregated by the various parts. The
tollowing components in the pipeline, such as the xslt transformer, can transform this
aggregated document into HTML or whatever format is required.

You do not need to define an element attribute for a part. If it is omitted, the part’s
content is directly included under the document’s root node.

The cocoon protocol is used for each part. Therefore, each part is defined by
another pipeline somewhere in the sitemap. In this example, these pipelines are all
inside their own map:pipeline section in the sitemap.

Normally, because the separate parts are pipelines in the sitemap, you would be able
to access them individually using a browser. This is not what you want, however,
because it would result in your receiving only part of a document.

Because you do not want to be able to receive only the document header or navi-
gation or footer or the content itself without the surrounding parts, this map:pipeline
section is protected with the attribute internal-only set to true. With this attribute
set, all marked map:pipeline sections are skipped when Cocoon processes a request.
These pipelines can only be invoked “internally” by using the cocoon protocol from
within another pipeline.

You can control content aggregation using three more attributes for an aggregated
part: prefix, ns, and strip-root. So, a full-featured part might look like this:

<map:part src="cocoon:/header" strip-root="true" prefix="header"

ns="header://version/1.0" element="header"/>

The top-level element for the header part is called header. It gets the namespace
defined by the attribute ns. The attribute prefix is used to define the prefix. So the
top-level element looks like this:

<header:header xmlns:header="header://version/1.0"/>

You can leave out the attribute prefix.

Advanced Sitemap Features

In addition, you can use the attribute strip-root with a Boolean value. If it is set
to true, the root element of the aggregated part is stripped off. So if the pipeline for
the document header has the root element myheader, it is not included. All children of
the myheader element are included under the root element of the part.

Although you might get the impression that you must use the cocoon protocol to
aggregate parts, this is not true.You can use any protocol available. The simplest case is
aggregating XML files.

Later you will see practical examples and tips and a real-world example of content
aggregation. This example—the Cocoon online documentation—also uses some other
features not explained yet. One of them is the concept of subsitemaps.

Subsitemaps

When you develop large web applications, or when more than one person is editing the
sitemap, it can be very difficult to maintain, because it is a single big XML document.

To simplify sitemap editing and maintenance, Cocoon offers the concept of sub-
sitemaps (see Figure 6.6). A subsitemap looks like a normal sitemap, but it is mounted
into the main sitemap. By mounting, we mean that you usually define a URI prefix
for a subsitemap. All incoming requests starting with this prefix are then handled by
the subsitemap.

Sub
Sitemap

Mounted at /faq

FAQs
/4

Sub
Request . Sit

Sitemap ‘Mounted at /docs=

- Documentation
Response)

Sub
Sitemap

Mounted at /shop

Shop

/4

Figure 6.6 Subsitemaps.

161

162 Chapter 6 A User's Look at the Cocoon Architecture

The mount points allow you to cascade your sitemaps. This ensures more readabil-
ity and supports sitemap editors managing the web application. Each subsitemap can
then be maintained by a different person. After mounting, you can imagine the whole
construction as a tree, with the main sitemap being the root.

When a request for a document enters Cocoon, it is always processed by the main
sitemap first. If a mount point for a subsitemap is reached, the processing is passed to
the subsitemap (see Listing 6.11).

Listing 6.11 A Basic Example of Mounting a Subsitemap

<map:match pattern="faq/*">
<map:mount check-reload="yes" src="faq/sitemap.xmap" reload-method="synchron"/>
</map:match>

The src attribute defines the location of the subsitemap. If it ends in a slash,
sitemap.xmap is automatically appended to find the sitemap. Otherwise, Cocoon
assumes that the src attribute directly defines a file containing the subsitemap.

Like the root sitemap, subsitemaps can be configured with respect to reloading. The
configuration is similar to that of the root sitemap in cocoon.xconf. The check-reload
attribute, which defaults to true, defines whether changes to the subsitemap should
be reflected.

If this reload checking is activated, reload-method specifies whether the subsitemap
regeneration should be synchronous or asynchronous. Here the same rules apply as
those explained for sitemap reloading at the beginning of this chapter.

The fourth attribute for map:mount is the uri-prefix attribute. As explained, when
a request enters Cocoon, the root sitemap is processed with the incoming URI. Now,
if a mount point for a subsitemap is reached and Cocoon processes this subsitemap, the
same URI is passed in.

For example, if you requested for a document called faq/installation, and the mount
defined in Listing 6.11 is reached, this URI is passed on to the subsitemap unchanged.
Even though you mounted the sitemap under the path faq, you still have to match this
prefix inside the subsitemap. If you want to mount your subsitemap under a different
path, such as old-example, you have to update the root sitemap to add a prefix and
also all matches inside your subsitemap to reflect this new location (see Listing 6.12).

Listing 6.12 Mounting a Subsitemap with Prefix

<map:match pattern="faq/*">
<map:mount uri-prefix="faq/" check-reload="yes" src="faq/sitemap.xmap"
= reload-method="synchron"/>

</map:match>

Advanced Sitemap Features

To avoid these problems and to make the subsitemap more independent from the root
sitemap, you can use the uri-prefix attribute to pass only the important part into the
subsitemap. In the example, you want to pass only installation into the subsitemap.

Because the subsitemap is mounted using the path faq/, you have to remove it from
the URI that is passed to the subsitemap. And that’s exactly what you do with the
uri-prefix attribute.You define a string starting on the left side of the URI. It is
removed from the original when processing is passed to the subsitemap. In the example,
you want to remove faq/ and therefore give this value to the uri-prefix attribute.
Cocoon automatically checks for a trailing slash, so writing either faq or fag/ is equiv-
alent. However, we suggest that you add the slash to make it easier to read your entry.

A subsitemap can look the same as the main sitemap. It can have the same sections,
starting with a components section and ending with a pipelines section.

In fact, these two sections are the ones required to make a subsitemap work, as you
can see from Listing 6.13. But you can, of course, have all the other sections as well.

Listing 6.13 An Example Subsitemap

<map:sitemap xmlns:map="http://apache.org/cocoon/sitemap/1.0">
<map:components>
<map:generators default="file"/>
<map:transformers default="xslt"/>
<map:readers default="resource"/>
<map:serializers default="html"/>
<map:selectors default="browser"/>
<map:matchers default="wildcard"/>
</map:components>
<map:pipelines>
<map:pipeline>
<map:match pattern="*">
<map:generate src="{1}.xml"/>
<map:transform src="faq2html.xsl"/>
<map:serialize/>
</map:match>
</map:pipeline>
</map:pipelines>

</map:sitemap>

All requests entering the main sitemap that start with the prefix faq/ are passed to the
subsitemap. The prefix is removed from the URI, and the subsitemap receives only the
part of the URI that comes after this prefix.

So a request for faq/installing is passed as a request for installing to the
subsitemap. As defined in the subsitemap in Listing 6.13, the request reads an XML
document named installing.xml, transforms it, and serializes it as HTML.

163

164 Chapter 6 A User's Look at the Cocoon Architecture

As you can see from this example, you can use all the sitemap components from
the main sitemap without declaring them again, but in order to make the subsitemap
work, you have to declare the default component for each component type.

However, in order to separate concerns, you can define specific sitemap compo-
nents in the components section of your subsitemap. These components are then
accessible only in this subsitemap, not in the parent sitemap.You can also redefine a
component inherited from the parent sitemap but with another configuration. Again,
this configuration is used only in the subsitemap.

Using subsitemaps helps you manage your web site. Each sitemap editor has his
own separate sitemap that cannot interfere with the other sitemaps. Even if a sub-
sitemap stops working due to a mistake made in the subsitemap, the main sitemap and
all other subsitemaps still work.

The hierarchical structure of sitemaps is not limited to two levels (one main sitemap
with several subsitemaps). Because a subsitemap 1s a full-featured sitemap that inherits
from the parent (or main) sitemap, it can have its own subsitemaps. So you can build a
big tree of sitemaps using this concept.

Each subsitemap can have its own directory to store resources such as XML docu-
ments and stylesheets. All URIs that do not have an explicit protocol are resolved
according to the sitemap’s directory. In the example, the subsitemap is stored in the
directory faq. The pipeline for a document reads an XML document that is resolved
relative to this directory faq.

Apart from using the concept of subsitemaps to maintain your web site, you can
also use views to organize what you send to the client application.

Views

Chapter 4 glossed over the explanation of the map:views and map:resources sections
in the sitemap. Let’s now fill in this gap, starting with views.

A request you send to Cocoon is mapped to a pipeline in the sitemap. That pipeline
uses a combination of components to generate an end result, a document that is
returned to you as a result of your request. You can think of the end result as being the
default view of the document generated by that particular pipeline. However, Cocoon
also lets you configure and request other views of a particular document.

Cocoon offers a wide variety of configurable views for its documents.You can
request a document’s content view, and you will get the content in that document’s
XML format. Or you can ask for a document’s link view and get all the links to other
documents contained in this document.

The views concept is complex. So we’ll start our discussion of views by looking at
some simple examples and examining some use-cases. The first thing you need to
know is how to specify which view of the document you want when sending the
request to Cocoon.You do so using the request parameter cocoon-view with the value

Advanced Sitemap Features

of the view name you ask for. So if you ask for http://localhost:8080/cocoon/
helloworld?cocoon-view=content, you receive that document’s content view.

The more complex question is how Cocoon knows what to do when a view is
requested. Generally speaking, a view is an alternative pipeline for a document. It starts
like the original pipeline for the document, but it has a different ending.

Assume that you have a standard pipeline consisting of a file generator, an xslt
transformer, and an html serializer. You can then define a different view using the
same file generator but a different transformer and serializer.

A view definition consists of two parts, as shown in Listing 6.14. The first part
specifies which parts or beginning of the original pipeline should be used for the
view. The second part defines the alternative ending. The ending is defined in
the map:views section of the sitemap.

Listing 6.14 Views

<map:views>
<map:view name="content" from-label="content">
<map:serialize type="xml"/>
</map:view>
<map:view name="links" from-position="last">
<map:serialize type="links"/>
</map:view>
</map:views>

For each possible view, you create a map:view element with the attribute name specify-
ing the view’s unique name. Inside this element, you define the pipeline’s ending.
Because this is only the ending, you must not define a generator. However, you can
use transformers, and you must provide a serializer.

Listing 6.14 shows two defined views: the content view and the links view. Each
new view contains only a serializer. Looking at the links view, you can see that the
attribute from-position has the value last. This tells Cocoon where the new pipeline
should take over from the original when the links view is requested. In this case, the
alternative ending for this view starts at the last position of the original pipeline.

In other words, the serializer of the original pipeline is ignored, and instead, all
sitemap components enclosed in this view are appended. So the links view difters
from the original document in that it uses the links serializer (see Listing 6.15).

Listing 6.15 The Link Serializer

<map:serializers>

<map:serializer name="links"

= src="org.apache.cocoon.serialization.LinkSerializer"/>
</map:serializers>

165

166 Chapter 6 A User's Look at the Cocoon Architecture

The link serializer 1s a special serializer that outputs plain text. It extracts all links and
references from a document and puts each link in a separate line of the output text.
These links and references are searched for in the original document by searching for
the attributes src and href.

Another possibility is to define the value first for the view’s from-position
attribute. Then the alternative pipeline starts immediately after the original generator.

But Cocoon wouldn’t be Cocoon if these were the only possibilities for defining
views! You can define more fine-grained views by using the attribute from-label on
the view. The value of this attribute marks a label that can be used in the original
pipeline for the sitemap components.

With this label attached to sitemap components such as generators and transform-
ers, you define which components of the original pipeline should be used for the
view. Listing 6.16 shows an example.

Listing 6.16 An Example of Labeled Views

<map:generators default="file">
<map:generator name="file" label="content"
=src="org.apache.cocoon.generation.FileGenerator" />
<map:generator name="html" src="org.apache.cocoon.generation.HTMLGenerator"/>

</map:generators>

<map:pipeline>
<map:match pattern="document_one">
<map:generate src="document.xml"/>
<map:transform src="document2html.xsl"/>
<map:serialize/>
</map:match>
<map:match pattern="document_two">
<map:generate src="page.html" type="html"/>
<map:transform label="content" src="restructure.xsl"/>
<map:transform src="document2html.xsl"/>
<map:serialize/>
</map:match>
</map:pipeline>

The component definition of the file generator is labeled with a label called
content. This indicates that whenever a view is requested and this view uses the
label content, the generator is included in the pipeline for this view. Similarly, you
can mark other generators and transformers in the components section as well.

The pipeline for the first document, called document_one (see Figure 6.7), is
assembled by the file generator, an xslt transformer, and the html serializer. When
the content view is requested, Cocoon looks at the map:views section and finds the
definition for this view. This view indicates that the label content is used. During
the pipeline assembly, the components for this pipeline are checked for the label.

Advanced Sitemap Features

Pipelines Section

matching document_one Component
labelled

A file generator reading document.xml
-

document_one?cocoon_view=content

| xslt transformer using document2html.xsl |

| file generator reading document.xml .
html serializer
xml serializer

View Section — Content View

Figure 6.7 A simple example of using views.

The file generator is labeled, so it is used. If a component is labeled, it is added to the
pipeline for the view, and the usual pipeline processing is passed to the views section.
All other sitemap components of the original pipeline are ignored, and the compo-
nents of the views section are appended.

The pipeline for the second example (document_two), shown in Figure 6.8, is
assembled by the html generator, two xslt transformers, and the html serializer. Note
that neither the html generator nor the xslt transformer is labeled in the components
section. When the content view of this document is requested, the original pipeline is

searched for the label.

Pipelines Section

matching document_two

document_two?cocoon_view=content /

M P e e
| htmi generator reading page-html / | xslt transformer using document2html.xsl |
| xslt transformer using restructure.xsl |/ html serializer

View Section — Content View
] | xml serializer

Figure 6.8 An advanced example of using views.

167

168 Chapter 6 A User's Look at the Cocoon Architecture

In general, the xslt transformer is not labeled, so it usually isn’t added to the pipeline
for the view. But for this special pipeline, you can indicate that the transformer should be
added by giving it an attribute label with the value content.The first xslt transformer is
labeled using the attribute label with the given value.

The process here is the same as in the first example. All sitemap components are
added to the pipeline until one component is labeled. This component is added as
well, but the following ones are skipped. Then the view’s sitemap components are
appended. For this example, the view is assembled from the html generator, the first
xslt transformer, and the xml serializer from the content view.

Regardless of whether the label is defined in the components or pipelines section
of the sitemap, the original sitemap is left immediately after the first component con-
taining the label. Even if you have more than one component in the pipeline marked
with the required label, only the first component containing it is used.

As you will see at the end of this chapter, the links view is important for the offline
generation of documents using Cocoon’s command-line interface.

Now that you know about Cocoon’s views, you know about nearly all of a
sitemap’s sections. So, let’s discuss the last one.

Sitemap Resources

The last section we have yet to explain is the map:resources section (see Listing 6.17).
This section is very similar to the map:pipeline section.You can define XML process-
ing pipelines containing a generator, transformers, and a serializer and give this pipeline
a name for further use in the map:pipelines section of the sitemap.

Listing 6.17 An Example of a Sitemap Resource

<map:resources>
<map:resource name="Not authorized">
<map:generate src="notauthorized.xml"/>
<map:transform src="tohtml.xsl"/>
<map:serialize/>
</map:resource>
</map:resources>

You can refer to this resource from the map:pipelines section using the unique
name for these sitemap resources. So a sitemap resource can be compared to a
macro or a placeholder.

Currently, the only place in Cocoon where you can use sitemap resources is
for redirects.

Advanced Sitemap Features

Redirects

Basically, a redirect allows you to jump from one pipeline to another.You can redirect
to a totally different URI or to a previously defined sitemap resource. Listing 6.18
shows two examples.

Listing 6.18 Examples of Redirects

<map:redirect-to uri="helloworld"/>
<map:redirect-to resource="Not authorized"/>

Unfortunately, the semantics of the map:redirect statement differ a bit from the
semantics of the other sitemap components. Usually if you specify a source, such as
for a generator, and you do not specify a protocol for the URI, Cocoon automati-
cally adds the context protocol.

However, for a redirect to a relative URI, this is not the case. Cocoon implicitly adds
the same protocol used to request the original document. For example, if you request a
document with http://localhost:8080/cocoon/original_document, and this results
in the execution of the previous redirect to helloworld as shown in Listing 6.18,
Cocoon generates a new URI using the old one as a base. The redirect then references
http://localhost:8080/cocoon/helloworld. So a relative URI is translated into an
absolute URI.

Cocoon does not directly process redirects. Instead, an HTTP response to the client
is generated. This response contains the information to process a redirect in addition to
the redirect URI as content. The client itself recognizes this redirect and starts a new
request with the new URI. Whenever you use a redirect, this results in at least two
requests to your server. The first one identifies the redirect, and the second requests the
redirected document.

If you redirect to a sitemap resource, the processing flow is continued in the new
sitemap resource. Thus, the sitemap components defined in this resource are executed.
Now that you know about all the additional sitemap features and some Cocoon
configuration points, it is time to bring in two new components and show you some

examples that use them and the concepts described in this chapter.

Connecting to a Database

You can use the sql transformer in a pipeline to integrate a database as one of the data
sources in a Cocoon application. Using this transformer, you can send any SQL com-
mand to a database. The transformer is controlled by commands contained in the
XML stream processed by the transformer. If the SQL command fetches data from the
database, the data is converted into XML.

169

170 Chapter 6 A User's Look at the Cocoon Architecture

You might wonder why this is a transformer and not a generator. The key point is
usability. In general, SQL statements can have many options and parameters. This starts
with specifying the database to use, the tables, and the rows, and it ends with complex
information such as search phrases. If you want to use a generator, you have to specify
all this in the sitemap as parameters for the generator. Changing a simple value would
then require changing the sitemap.

Using a transformer allows you to build more-complex pipelines in which the
information on what to fetch from the database is determined at runtime using the file
generator, for example. When the request 1s processed, the file generator reads an XML
file that contains the actual parameters for the transformer. Because the file generator
can request the XML file via a protocol such as HTTP, this allows the dynamic genera-
tion of those commands.

Listing 6.19 shows the configuration of the sql transformer in the sitemap and how
to use it in a pipeline.

Listing 6.19 SQL Transformer

<map:transformers>
<map:transformer name="sql"
src="org.apache.cocoon.transformation.SQLTransformer" />
</map:transformers/>

<map:pipeline>
<map:match pattern="test">
<map:generate src="document.xml"/>
<map:transform type="sql"/>
<map:transform src="tohtml.xsl"/>
<map:serialize/>
</map:match>
</map:transform>

You can send any valid SQL command to the database. This is triggered by your XML
document. Listing 6.20 shows an XML document that is read by the file generator and
then is transformed by the sql transformer.

Listing 6.20 A Simple SQL Example

<document>
<sql:execute-query xmlns:sql="http://apache.org/cocoon/SQL/2.0">
<sql:use-connection>personnel</sql:use-connection>
<sql:query>
select id,name from department_table
</sql:query>
</sql:execute-query>
</document>

Advanced Sitemap Features

The sql transformer is triggered by XML elements that have the transformer’s name-
space, http://apache.org/cocoon/SQL/2.0. Each command is started by the element
execute-query. Nested inside this element is all the information for the sql trans-
former, a combination of elements and text information.

The element use-connection defines which connection (or database) should be
used for the SQL command. The following example will show you how you can con-
figure database connections. For now, just assume you have defined a database connec-
tion named personnel.

Inside the query element, you can see the actual SQL command to be sent to the
database. When the sql transformer receives such an XML block, it removes it from
the XML document. If the SQL command fetches some data, this data is converted
to XML and is inserted instead of the XML block controlling the sql transformer.

How is this data converted? An element rowset is created. Inside this element for
each fetched row, an element named row is created. Inside this element, for each
fetched column of this row, an element is created and is named the same as the col-
umn name. Inside this element is a text node with the value of that column from the
database. All these elements get the namespace of the sql transformer.

You could then simply add a stylesheet to the XML processing pipeline, converting
the rowset to an HTML table or whatever you like. The output displayed in Listing
6.21 is an intermediate XML document that is created during the pipeline processing.
Because you will receive HTML in your browser, you will never notice this docu-
ment; you will see only the starting XML document and the final output.

Listing 6.21 The Document after a SQL Transformer Run

<document xmlns:sql="http://apache.org/cocoon/SQL/2.0">
<sql:rowset>
<sgl:row>
<sql:name>Matthew</sql:name>
<sql:id>1</sql:id>
</sql:row>
<sql:row>
<sql:name>Carsten</sql:name>
<sql:id>2</sql:id>
</sql:row>
</sql:rowset>
</document>

But what if your resulting document does not display the data you wanted? You need
to know what the sql transformer has output in order to see if your SQL statement is
working.You can, of course, change your document’s pipeline definition. Instead of
using a stylesheet to produce HTML and the html serializer, you can simplify the
pipeline by removing the stylesheet and using the xml serializer. This shows you the
data delivered by the sql transformer directly in your browser.

171

172 Chapter 6 A User's Look at the Cocoon Architecture

Another answer to this problem is to use the log transformer to see what is hap-
pening in the pipeline.

Logging

Usually pipelines consist of three or more sitemap components, starting with a genera-
tor, going to some transformers, and ending with a serializer. In the case of the file
generator, you can see the starting XML document that is read by this component and
the end result of the pipeline processing.

But what can you do if your output document doesn’t look as you expected? One
simple solution is to change your pipeline. Just remove all transformers after the com-
ponent you want to test, and add the xml serializer. You will get the output of the
transformer you want to test directly in XML.

If this stage of your pipeline looks right, you can then remove the next transformer
in the chain and look at that output, and so on until you know where the fault is.

Another possibility is the log transformer (see Listing 6.22), which can be chained
between two sitemap components. As the name suggests, this transformer logs the out-
put of the sitemap component before the log transformer.

Listing 6.22 The Log Transformer

<map:transformers>
<map:transformer name="log"
src="org.apache.cocoon.transformation.LogTransformer" />
</map:transformers/>

<map:pipeline>
<map:match pattern="test">
<map:generate src="document.xml"/>
<map:transform type="sql"/>
<map:transform type="log">
<map:parameter name="logfile" value="logfile.log"/>
<map:parameter name="append" value="no"/>
</map:transform>
<map:transform src="tohtml.xsl"/>
<map:serialize/>
</map:match>
</map:transform>

In Listing 6.22, the output of the sql transformer is logged. When no parameter is set
to the log transformer, it outputs everything to the servlet log of your servlet engine.
But you can, of course, redirect the output to a file on your local hard drive. The
sitemap parameter logfile defines the location of that file. With the parameter append,
you can specify whether a new log file should always be written, or if the output
should be appended to an existing file.

Using the Command-Line Interface

But be careful with using the log transformer in a servlet environment. It is not safe
for concurrent requests. So if more than one client requests a document containing
the log transformer, the output is mixed by these two pipelines. So for debugging, you
should be sure that only one client invokes the request at a time.

This section covered the advanced features of the sitemap.You saw that a Cocoon
application is not limited to just one sitemap, but that sitemaps can be cascaded. This
feature is particularly useful when the application consists of separate parts. Using the
available protocols and components such as the sql transformer, you can integrate
existing data sources into your application. Content aggregation allows configured
information sources to be flexibly combined into a single document. The document
you receive as a pipeline’s output is only one of the views Cocoon can provide. Using
the views concept, you can define alternative pipelines that can return, for example,
only the content or the links of a particular document.You can use the logging mech-
anism to check on what is happening in your pipeline, which is important if things do
not work as expected.

Although the most common form of running Cocoon is as a servlet, this is only
one way of using the framework. In fact, it is only a very small part of Cocoon that is
servlet specific. This part is only one of the interfaces Cocoon provides to the outside
world. Another important interface that allows Cocoon to be used in different envi-
ronments is the Command-Line Interface.

Using the Command-Line Interface

We previously mentioned one challenge when building web applications: the offline
generation of web sites. You start a process, and this process builds the whole web site
into a directory.You can then put it on your web server or on a CD.

This generated web site then does not need sophisticated software components on
the server to run. It only needs a simple web server that can serve static files from the
filesystem. All the real work is already done in the generation process.

That’s where Cocoon’s Command-Line Interface (CLI) comes into play. You can
utilize it to generate a whole web site. This might seem like a great idea, but there
are limitations. You can generate an offline version only if the content conforms to
certain rules.

All the documents need to be static, which means that each time a document is
requested, the content should be the same. For example, if you want to create a doc-
ument that always displays the current stock account, this cannot be generated for
offline viewing. If your documents are personalized, this is not possible with offline
generation either.

So if you look at the challenges for current web applications, there seem to be only
rare cases in which offline generation is really useful.

The Cocoon CLI can be used for other purposes as well. Invoking the CLI is
nearly the same as requesting a document from Cocoon using the servlet engine. For

173

174 Chapter 6 A User's Look at the Cocoon Architecture

example, it could be used to generate invoices offline as PDF files. Rather than having
someone invoke a web page that generates bills, save them to disk, and then mail them
to the customers, you can write a script that is invoked periodically to fulfill the same
task using the CLIL

We have shown you how the Cocoon documentation is built using Cocoon itself.
In addition, the Cocoon developers use the CLI to generate this documentation and
put it on the Apache web server. All the offline generated images and HTML files
must be put on the server, because it currently does not run a servlet engine where
Cocoon could be installed. Listing 6.23 shows the Cocoon CLI.

Listing 6.23 Cocoon’s Command-Line Interface

Usage: java org.apache.cocoon.Main [options] [targets]

Options:

-h, --help
print this message and exit

-u, --loglLevel <argument>
choose the minimum log level for logging (DEBUG, INFO, WARN,
ERROR, FATAL_ERROR) for startup logging

-c, --contextDir <argument>
use given dir as context, this defaults to ./webapp

-d, --destDir <argument>
use given dir as destination

-w, --workDir <argument>
use given dir as working directory

-r, --followLinks <argument>
process pages linked from starting page or not (boolean
argument is expected, default is true)

The CLI is implemented by a Java class (org.apache.cocoon.Main). So the CLI is
started by starting this Java class. Because this class is contained in a JAR file, the com-
mand looks like this if you are inside the directory where all JAR files for Cocoon are
stored: java -jar cocoon.jar followed by the options.

The most important option is -c. It defines where the Cocoon context directory
can be found. This directory must contain cocoon.xconf. With the option -u, you set
the log level. The destination directory (option -d) defines the location where the gen-
erated documents are stored. The work directory holds temporary files (option -w).

After the options, you define the documents you want to generate. Cocoon then
processes these documents one after the other and saves them to the destination directory.

If followLinks is turned on (which is the default), Cocoon processes not only the
documents you gave as input but also all documents referred by this one. So it crawls
the whole web site. This is in fact used for the Cocoon Documentation System. Only
the starting URL is specified (index.html). Because this document includes the naviga-
tion bar, all other documents are referenced by this document.

Practical Examples and Tips

The crawling is done using views. The CLI first gets the link view of a document.
This returns all the document’s links and references (including images). Then the doc-
ument is processed and saved to the destination directory. Afterwards, all collected links
are processed, one after the other. Of course, the CLI makes sure that each document
is processed only once and that no infinite recursion occurs.

After the CLI is finished, you have the whole web site in your destination directory.
This includes all HTML documents, all images, all rendered SVG graphics, and so on.
You could then copy this directory to a CD or to a web server for publishing.

For your first steps with Cocoon, the CLI might not be that important, but as you
learn more and more about Cocoon, sooner or later you might need it. But you don’t
have to worry. Just start creating your own web site, documents, and so on and learn
the Cocoon way. The following practical examples and tips will help you build more-
advanced applications with Cocoon.

Practical Examples and Tips

This chapter has covered a lot of topics so far. Hopefully you have been able to use
some of these new features to extend an application you already have built. We will
now look at some examples and give you a few tips on getting the most out of
Cocoon when you use it to build applications that other people might also use.

The two following examples help you understand the components and concepts
presented so far. The first one is a small example showing you how to use the sql
transformer to fetch data from a database. You might need to use the log transformer
in this example if you have any problems connecting to the database. The second
example is a bigger real-world example: the Cocoon Documentation System. This
system uses nearly all the concepts explained so far.

We will then look at how you can make sure that your Cocoon application
is set up to handle all the requests it might receive when you release it into a
production environment.

A SQL Example

The following example requires a database that can be used from Java, so you need a
JDBC driver. Instead of using your own database, you can use the included HSQLDB
shipped with the Cocoon distribution. This database is completely written in Java and
can be started automatically when Cocoon is run.

However, if you want to use your own database, you have to include a suitable dri-
ver. Put this driver class either in a JAR file in Cocoon’s WEB-INF/Ilib directory or as
a class file in the WEB-INF/classes directory. In order to make the driver available, you
have to add it to the list of loaded classes in the web application deployment descrip-
tor (web.xml), as shown in Listing 6.24. The parameter load-class gets a list of classes
that are automatically loaded at startup.

175

176 Chapter 6 A User's Look at the Cocoon Architecture

Listing 6.24 Adding Drivers

<l--
This parameter is used to list classes that should be loaded
at initialization time of the servlet.
Usually these classes are JDBC Drivers used

<init-param>
<param-name>load-class</param-name>
<param-value>
<!-- For HSQLDB: -->
org.hsqldb. jdbcDriver
<!-- 0DBC -->
sun. jdbc.odbc.JdbcOdbcDriver
</param-value>
</init-param>

Next you have to add a connection to your database in cocoon.xconf. Listing 6.25 is
an excerpt from cocoon.xconf that shows a custom connection called personnel.

Listing 6.25 Configuring Data Sources

<datasources>
<jdbc name="personnel">
<dburl>jdbc:hsqldb:hsql://localhost:9002</dburl>
<user>sa</user>
<password></password>
</jdbc>
</datasources>

For this connection, you can define the URL to the database, the username, and the
password. These three settings depend on which database you use. The user and pass-
word might be optional. If you want to use the HSQLDB, the values shown here
should work right out of the box.

After you have defined your database connection, you can use it in the sql
transformer by specifying the use-connection element for the transformer. Save
the XML document shown in Listing 6.26 to the Cocoon context directory, and
name it sqlexample.xml.

Listing 6.26 A Simple SQL Example

<document>
<sql:execute-query xmlns:sql="http://apache.org/cocoon/SQL/2.0">
<sql:use-connection>personnel</sql:use-connection>
<sql:query>
select id,name from department
</sql:query>
</sql:execute-query>
</document>

Practical Examples and Tips

If you are using your own database, you might need to adjust the select statement. A
stylesheet for the SQL data, transforming it to a simple HTML table, could look like
Listing 6.27. Save this stylesheet, and name it sqlexample.xsl.

Listing 6.27 A Simple SQL Stylesheet

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:sql="http://apache.org/cocoon/SQL/2.0">

<xsl:template match="document">
<html><body><table>
<xsl:apply-templates select="sql:rowset/sql:row"/>
</table></body></html>
</xsl:template>

<xsl:template match="sql:row">
<tr>
<xsl:apply-templates/>
</tr>
</xsl:template>

<xsl:template match="sql:id|sql:name">
<td>
<xsl:value-of select="."/>
</td>
</xsl:template>

</xsl:stylesheet>

Again, if you use a custom database and table, you might have to adjust the stylesheet
to reflect different column names. The pipeline for this example is very simple. It is
shown in Listing 6.28.

Listing 6.28 A Sample SQL Pipeline

<map:pipeline>
<map:match pattern="sqldocument">
<map:generate src="sqlexample.xml"/>
<map:transform type="sql"/>
<map:transform src="sqlexample.xsl"/>
<map:serialize/>
</map:match>
</map:pipeline>

177

178 Chapter 6 A User's Look at the Cocoon Architecture

Start your browser, and request http://localhost:8080/cocoon/sqldocument.You will
get the XML data from the database displayed as an HTML table. If you are using
your custom database and you face any problems, add the log transformer after the sql
transformer to see what data is coming from your database.

Using databases with Cocoon is very easy, as you can see from this example. To
demonstrate more of the features introduced in this chapter, we will now look at a
larger working example.

The Cocoon Documentation System

One of the best sample applications using many of the features we have described in this
and the previous chapters is the Cocoon Documentation System. Because Cocoon itself
is an XML publishing framework, the documentation is, of course, generated by Cocoon.
Some of the features the documentation system uses include content aggregation, sub-
sitemaps, the cocoon protocol, and image generation using SVG. All these features allow
the documentation to be written in a fashion that separates the content from the layout.

Because this example is rather complex and uses many resources, we will examine
only the basic idea behind this system. In addition, we will look at some excerpts from
each of the files. If you’re interested in seeing more than what'’s presented here, the
whole system can be found inside the Cocoon distribution.

The Cocoon documentation (see Figure 6.9) is served by a subsitemap that is inde-
pendent of the main sitemap. (You will find the subsitemap and all other resources in
the documentation directory of your Cocoon context directory.)

[B Apache Cocoon - Netscape 6 [_ O] %]
. Datei Bestbeiten Anzeigen Suchen Gehe Lesezeichen Aufgaben Hife

i &. \3 e i Drucken

Zuriick) Wellerliten s Taden Antaien L) httpiffxml.apache.orgfcocaon] =/ Suchen Q

43 Anfang [ulietscape ClSearch (B)Shop Lesezsichen “y Net2Phone 4 Instant Message “ WebMal “yRadio i People " Yellow Pages |

“Heacke xme Apache Cocoon |f

e e XHLAPACHEORG WWW.APACHE.ORG WWW W.ORG .-

[
Apache Cocoonis an XML publishing framework that raises the usage of XML and XSLT
technologies for server applications to a new level. Designed for performance and
scalability around pipelined SAX processing, Cocoon offers a flexible environment based
on the separation of concerns between content, logic and style. A centralized configuration

system and sophisticated caching top this all off and help you to create, deploy and
maintain rock-salid XML server applications

Cocoon interacts with most data sources, including: filesystems, RDBMS, LDAP, native
XML databases, and network-based data sources. It adapts content delivery to the
capabilities of different devices like HTML, WL, PDF, SVG, RTF just to name a few
Cocoon currently runs as a Servlet or from a powerful commandline interface. The chosen
design of an abstracted environment gives you the freedom to implement your own
cancrete environment to suit your required functionality.

Apache Cocoon 2.0 is the latest release of the XML publishing framewoark. If you are
looking for Cocoon 1 go here

R o oo

not complete because documentation is nes
L omln o im bl Al b A e mon i
E ©F | pokument ferti (5.3

el i

[=

r complete amyway o

R PV Sy gty

Figure 6.9 The Cocoon documentation.

Practical Examples and Tips

The documentation is currently available in HTML. Each HTML page consists of a
static header, a navigation bar on the left side, and the content for the current docu-
ment on the right.

The navigation bar is created by an index, which is called a book in Cocoon.The
documentation is arranged in several hierarchically nested books. There is one main
book, and it contains documents and subbooks.You can compare this to a directory
structure such as your filesystem. A book is similar to a directory: It has a name, and it
contains documents (files) or other books (directories).

As you might have already guessed, each HTML document is created using content
aggregation and the cocoon protocol. Let’s have a look at the sitemap entries, shown in
Listing 6.29.

Listing 6.29 An Excerpt from the Cocoon Documentation Sitemap

<map:pipeline>

<map:match pattern="*.html">
<map:aggregate element="site">
<map:part src="cocoon:/book-{1}.xml"/>
<map:part src="cocoon:/body-{1}.xml"/>
</map:aggregate>
<map:transform src="stylesheets/site2xhtml.xsl">
<map:parameter name="use-request-parameters" value="true"/>
<map:parameter name="header" value="graphics/{1}-header.jpg"/>
</map:transform>
<map:serialize/>
</map:match>

<map:match pattern="**book-**.xml">
<map:generate src="xdocs/{1}book.xml"/>
<map:transform src="stylesheets/book2menu.xsl">
<map:parameter name="use-request-parameters" value="true"/>
<map:parameter name="resource" value="{2}.html"/>
</map:transform>
<map:serialize type="xml"/>
</map:match>

<map:match pattern="body-**.xml">
<map:generate src="xdocs/{1}.xml"/>
<map:transform src="stylesheets/document2html.xsl"/>
<map:serialize/>

</map:match>

</map:pipeline>

The document names available from these pipelines do not follow our recommenda-
tion: They use explicit endings such as .xml and .html. The HTML document is

179

180 Chapter 6 A User's Look at the Cocoon Architecture

aggregated by two parts—a part called book, and a part called body. The book part
reads the current book and creates the navigation bar from it. This navigation bar is
transformed by a stylesheet to partial XHTML.

The body part reads the real content from the XML document and transforms it
into partial XHTML as well. The main pipeline for the document aggregates these
two parts and combines the XHTML fragments using a stylesheet. It also adds the
constant header.

The navigation bar and title displayed in the document’s header are actually images.
These images are rendered using SVG. We left out the pipelines for the images, but
they are specified in the installed Cocoon application. Inside the Cocoon context
directory is a directory called documentation. This directory contains a subsitemap
named sitemap.xmap that contains all pipelines for the whole documentation system.

This example of a real application shows how a web site can be built very easily
with Cocoon. By using content aggregation, you separate the different parts of one
document and can maintain them more easily. Just take your time and have a look at
this application and how it works. It will help you understand the concepts you have
learned so far. You will also get a look behind the scenes of Cocoon’s documentation
system. Of course, one of the most important features of any Internet application, such
as the documentation system or a portal built with Cocoon, is how fast the required
information is returned. After all, no one wants to wait around for minutes until the
browser displays the requested document. Cocoon provides two methods of speeding
up the application: pipeline caching and component pooling.

The Cocoon Caching Mechanism

As you have seen, Cocoon generates documents using pipelines that contain a variety
of components. You have seen that each time a request reaches a pipeline, the required
document is generated and returned to the calling application. Using Cocoon’s
caching mechanism, you can control whether the document is actually generated or
whether it can be returned from a cache. This speeds up the time it takes to return the
document, because the pipeline does not have to be processed completely. Cocoon’s
caching algorithm is very flexible, but fortunately it is also very easy to handle. Let’s
start with a description of the caching algorithm.

Cocoon generates a stream pipeline for each request. This stream pipeline either is
a reader or consists of an event pipeline and a serializer. The event pipeline in turn
is assembled by a generator and the used transformers (if any).

Cocoon’s caching algorithm can cache the result of a stream pipeline and/or an
event pipeline. The caching for such a pipeline is turned on or off in cocoon.xconf
(see Listing 6.30). Because everything in Cocoon is implemented using Avalon com-
ponents, you simply specify which implementation for an event or stream pipeline
should be used: the caching or the noncaching one.You will learn more about these
components when we explain Cocoon from the developer perspective in Chapter 8.

Practical Examples and Tips

Listing 6.30 Turning on Caching in cocoon.xconf

<event-pipeline class=
="org.apache.cocoon.components.pipeline.CachingEventPipeline" />
<stream-pipeline class=
="org.apache.cocoon.components.pipeline.CachingStreamPipeline" />

These lines turn on caching for both pipelines. The code shown in Listing 6.31 turns it
oft. Of course, you can mix it and turn on caching for event pipelines but not for stream
pipelines. If you want to change your setting, locate the lines for event-pipeline and
stream-pipeline in your cocoon.xconf and change the class attribute.

Listing 6.31 Turning off Caching

<event-pipeline class=
="org.apache.cocoon.components.pipeline.NonCachingEventPipeline" />
<stream-pipeline class=
="org.apache.cocoon.components.pipeline.NonCachingStreamPipeline" />

But what does it mean if caching is turned on? The following explanation is simplified
for the user perspective. We will look at the full power of the caching algorithm in
Chapter 8.

But for now, let’s start with the stream pipelines. The result of a stream pipeline, for
example, can be cached if it 1s a reader, which can cache. So we can redefine the ques-
tion: When can a reader cache?

A reader (and this is also true for the other sitemap components, as you will soon
see) can cache if it can detect that the content has changed since it was last read. For
example, the resource reader reads a file. It can detect whether the file has changed by
looking at what time the file was last changed.

So the first time the resource reader reads a document, the caching algorithm
stores this document, along with the current time. The next time this document is
requested, the caching algorithm provides this time to the reader, which simply
checks whether the cached content is still valid. If it is, the cache serves the docu-
ment. If it is not valid, the cached content is discarded, the reader reads the file again,
and the cache stores this along with the current time.

But there are cases in which the reader cannot detect content changes, such as if it
gets the read file via HTTP or any other connection. In this case, the reader can’t sup-
port caching, so nothing is cached. This means that even though Cocoon provides a
means of caching pipelines, it is still dependent on the data source to provide a means
of determining whether the content has changed since it was last accessed.

If the stream pipeline consists of an event pipeline and a serializer, both parts must
support caching. Most serializers in Cocoon support caching, because they are only
dependent on the XML they receive from the event pipeline.

181

182 Chapter 6 A User's Look at the Cocoon Architecture

The question of whether an event pipeline can be cached is more complex,
because the pipeline consists of several components. It is cacheable only if all the
components are themselves cacheable. In the event pipeline, the caching algorithm
asks each component if it supports caching, starting with the generator. For each
component that supports it, a unique key is generated. Then the next pipeline com-
ponent is queried. This process continues until either all components are queried
or one component is not cacheable.

The keys of all cacheable components are chained, and together they build the
cache key. The request is processed, and the document is built. The cache stores the
result of the last component, indicating cacheability. The next time this document is
requested, the key is built, and the cached content is fetched from the cache.

Next, the cache asks all components of the event pipeline if their input has changed
since the time the content was cached. For example, the generator checks this by looking
at the last modification date of the XML document, the xslt transformer checks the date
of the stylesheet, and so on. Only if all state that the content is still valid is it used from
the cache. Otherwise, the document is generated from scratch. So the event pipeline tries
to cache as much of the XML processing pipeline as possible.

Caching the pipeline results and being able to return them as fast as possible is
perhaps the key factor to whether an Internet application built with Cocoon will
be successful and whether people will like using it. Cocoon’s built-in caching already
provides a powerful mechanism for doing this and should be used whenever possible.
Another important factor in any component-based system is the performance at
which new components are created when they are needed.

Pooling Your Components

Nearly everything inside Cocoon is an Avalon component. Without going into too
much detail about the Avalon component model and the life cycle of components,
we’ll explain how you can fine-tune your application in this area.

For each request received by Cocoon, a lot of Avalon components are generated—
one event pipeline, one stream pipeline, one generator, one or more transformers, and
a serializer. (In fact, there are more, but these will do for the moment.)

If several documents are requested at the same time, this set of components is cre-
ated for each request. For example, if 50 documents are requested simultaneously, you
end up with 50 event pipelines, 50 stream pipelines, 50 generators, and so on.

One of the most time-consuming operations in Java is the creation and destruction
of new objects. Therefore, the Avalon component model supports the pooling of
objects. This means that a component is created once, locked when used inside a
request processing, and released for further use after the request is processed. It is not
destroyed and can be reused for the next request.

If only one request at a time is processed, such a pooled component is created
once, locked for this request, used for this request, and released afterwards. When the
next request arrives, the same process starts again.

Practical Examples and Tips

If more than one request is processed at the same time, a pooled component must
be created for each request. If 50 requests arrive simultaneously, 50 components must
be created. If they all can be pooled, the pool grows to 50 components. At first glance,
this seems desirable, but imagine that one day 1000 requests are processed simultane-
ously. You end up having 1000 components in your pool, although the average of
simultaneous requests is less.

In order to adjust your application to the load you might have, you can control the
pooling of the Avalon components.You can define how many components are to be
stored inside the pool by specifying a minimum and maximum number, as well as how
the pool should grow if no free component is available from the pool. If your pool
reaches the maximum, but there are more requests to serve, Avalon creates new com-
ponents to process the request, but these components are discarded afterwards and are
not added to the pool.

The configuration of this pooling is on a per-component basis. So you set the val-
ues separately for each component—for the stream pipeline, for the event pipeline, for
the file generator, and so on. Listing 6.32 shows a sample pooling configuration.

Listing 6.32 An Example of a Pooling Configuration

<stream-pipeline class=
="org.apache.cocoon.components.pipeline.CachingStreamPipeline"
pool-max="32" pool-min="16" pool-grow="4"/>

<generator name="file" src="org.apache.cocoon.generation.FileGenerator"
pool-max="64" pool-min="16" pool-grow="4"/>

In Listing 6.32, you see the configuration for the stream pipeline, which is done in
cocoon.xconf, and for the file generator, taken from the sitemap. Remember that both
the sitemap and cocoon.xconf contain components that are based on Avalon and
therefore can be pooled.

Both configurations are similar in that they use three special attributes. pool-min
defines the minimum number of components in the pool. When the pool is instanti-
ated, this number of components is created at startup. pool-max defines the maximum
number of components to hold in the pool. pool-grow gives the number by which the
pool increases each time no free component is available.

If you set the log level to DEBUG, you can see if your pools are too small by search-
ing for a message containing the phrase “decommissioning instance of.” This message is
output each time a poolable instance is created when the pool has reached maximum
capacity. The component’s class name follows the phrase, so it is possible to adjust the
setting for exactly this component.

With the tips on caching and component pooling, we have covered the two most
important ways to make a Cocoon application as fast as possible. These features are
provided by Cocoon and can be used in difterent application scenarios. Depending on

183

184 Chapter 6 A User's Look at the Cocoon Architecture

the type of application being built, other factors can influence the application’s perfor-
mance. We will cover some further aspects when we talk about different types of
applications in Chapter 11, “Designing Cocoon Applications.”

Wrapping Up the User Perspective

‘We have reached the end of our tour through Cocoon from the user perspective. All
the Cocoon features we have discussed up to this point are available without your
having to write any Java code to use them.You learned about the additional ways to
configure Cocoon and, in particular, which configuration parameters exist to allow a
Cocoon-based application to return the requested documents as quickly as possible.

Apart from the more common components, such as transformers and generators,
Cocoon also provides additional components such as action-sets, and it allows different
pipelines to be combined using content aggregation. We completed the explanation of
the different sitemap sections, especially views and sitemap resources. We also looked at
some examples, such as connecting Cocoon to a database.

Building applications using these concepts can get quite complicated, but luckily
Cocoon provides ways of staying on top of what you are doing. Splitting the separate
areas of an application into different subsitemaps is one way of making sure the solu-
tion is modular. Using the log transformer inside a pipeline allows potential errors to
be found quickly and also shows you how the different components can be plugged
in to a pipeline to extend the functionality.

We realize that this is a lot of information to take in. We suggest that you try and
adapt the examples we have presented to do something different. Perhaps you could
integrate a different data source into your application or provide a different output
format for your data. Play around with the components and see what types of
pipelines you can build. Add the log transformer to a pipeline and look at what goes
on between the different components.

You might also find some ideas for your own applications in the next chapter, where
you will expand the news portal you built in the last chapter and add some of the things
you have just learned.

