
chapter ten

CSS in Action: A Hybrid
Layout (Part II)

235

I
n Chapter 8, “XHTML by Example: A Hybrid Layout (Part I),” we

created hybrid markup for the i3Forum site, combining structural

elements like <h1>, <h2>, and <p> with nonstructural components

(XHTML tables used to lay out the basic grid), and we used table

summaries, accesskey, and Skip Navigation to make the site more

accessible in nontraditional browsing environments.

In this chapter, we’ll complete our production task by using CSS to

achieve design effects that support the brand and make the site more

attractive without relying on GIF text, JavaScript rollovers, spacer

pixel GIF images, deeply nested table cell constructions, or other

staples of old-school web design.

Figure 10.1 shows the home page template as it appears after our

first pass at writing a style sheet. As with all design, using CSS is

an iterative process. In this chapter, we’ll complete our CSS in two

passes. The first pass handles 90% of what’s needed; the second

fixes errors and adds finishing touches.

2018 ch10 04.18.03 10:10 AM Page 235

236 chapter 10 > css in action: a hybrid layout (part ii)

10.1
The template as it appears
after our first pass at CSS.
Elements, sizes, fonts, and
colors are in place, but
backgrounds don’t quite
fill the right-side menu
“buttons.” A bit more
work is needed.

Preparing Images
Although the site was designed in Photoshop, it’s not your typical slice and dice

job. Figure 10.2 shows the six images used to create the entire site. Three are

for foreground use: the astronaut photo, the “best of breed” dog photo, and the

transparent logo GIF used at the top-left corner of the menu bar.

The remaining three images are backgrounds. Arrow.gif is a screened image

derived from the logo that will be placed in the background as a watermark.

Bgpat.gif [10.3], consisting of single-colored pixels alternating with single

transparent pixels, will be used to create background color effects in the menu

bar. Nopat.gif, a plain-white background, will replace bgpat.gif in CSS rollover

effects and might also be used to indicate the visitor’s position within the site’s

hierarchy via an embedded style added to each page at the end of the project

(see the following sidebar, “The Needless Image”).

2018 ch10 04.18.03 10:10 AM Page 236

237preparing images

10.2
Just six images were
used in this site, three of
them as backgrounds.
Photoshop’s/
ImageReady’s “slice and
dice” features are not
needed.

10.3
The alternating pixel
background GIF image
enlarged 800% and with
a black background,
inserted for this book’s
purposes, standing in for
the transparent pixels.

The Needless Image

Strictly speaking, one of our six images is not needed in this execution.

Nopat.gif, the plain-white background image [10.2], is superfluous. A CSS

rule specifying background: white would have the same effect (and later

in this chapter we’ll use a rule like that instead of nopat.gif).

For our nav bar, however, we’ve gone ahead and used this background

anyway, so you can see how a CSS background image swap is achieved. In

an execution involving swapped watermarked or textured backgrounds, you

need two images; therefore, you would need to write the kind of CSS rules

shown in this part of the chapter.

2018 ch10 04.18.03 10:10 AM Page 237

238 chapter 10 > css in action: a hybrid layout (part ii)

Establishing Basic Parameters
Our images are in place, and with our original comp to guide us, we can begin

using CSS to establish basic design parameters. We know that the site will be

white with a black background, that its text will be set in several sizes of Georgia

(or an alternative serif), that a screened watermark based on the logo will hug

the bottom of the content area, and that certain whitespace values must be

enforced without using spacer GIF images or additional table junk. Let’s make

it happen.

Overall Styles, More About Shorthand and Margins
In our first rule, we establish basic page colors and upper and lower margins:

body {

color: #000;

background: #fff;

margin: 25px 0;

padding: 0;

}

Per this rule, all text will be black (#000) on a white (#fff) background. The

colors are described in CSS shorthand, as explained in Chapter 9, “CSS Basics.”

(#000 is shorthand for #000000; #fff is the same as #ffffff.) Shorthand can

only be used to replace paired characters; #fc0 is the same as #ffcc00.

Shorthand cannot be used in the absence of paired characters. There is no

shorthand for a nonwebsafe color like #f93C7a, for example.

Shorthand and Clock Faces
The first rule also establishes a top and bottom margin of 25px and left and

right margins of 0. It is a shorthand version of this:

margin: 25px 0 25px 0;

The preceding, in turn, is a shorthand version of this:

margin-top: 25px;

margin-right: 0;

margin-bottom: 25px;

margin-left: 0;

In CSS, values are assigned in the order of the main numbers on a clock:

12 o’clock (the top margin), 3 o’clock (the right margin), 6 o’clock (the bottom

margin), and 9 o’clock (the left margin). If we wanted our page to have a top

2018 ch10 04.18.03 10:10 AM Page 238

239establishing basic parameters

margin of 25px, a right margin of 5px, a bottom margin of 10px, and a left

margin of 30% of the entire width, our rule would read like this:

margin: 25px 5px 10px 30%;

When the vertical margins are the same at the top and bottom (as they are in

this site—namely, 25px) and when the horizontal margins are the same at left

and right (as they are in this site—namely 0), we can save a few bytes of user

bandwidth by typing this:

margin: 25px 0;

As mentioned in Chapter 9, the 0 value does not require a unit of measurement.

0px is the same as 0cm, 0in, or 0bazillionmiles. (There is no “bazillion miles”

unit of measurement in CSS, but if there were, we wouldn’t need to use it when

the value is zero.)

Finally, our rule sets padding to 0 to accommodate Opera, which uses padding

rather than margins to enforce page gutters.

Hide and Block
In our next step, with two simple rules, we accomplish several useful things:

.hide {

display: none;

}

img {

display: block;

border: 0;

}

The first rule creates a class called hide that can be used to make elements or

objects invisible in CSS-capable browsers. As explained in Chapter 8, we’re

using this CSS feature to hide our Skip Navigation link in modern browsers

while making it readily available to users of text browsers, screen readers, and

PDA- and phone-based browsers that do not support CSS. (As of this writing,

some PDA-based browsers partially support CSS, but they do about as poor a

job as 3.0 and 4.0 desktop browsers did. Hopefully, many of these implementa-

tions will have improved by the time you read this book.)

2018 ch10 04.18.03 10:10 AM Page 239

240 chapter 10 > css in action: a hybrid layout (part ii)

The Image Rule
The second rule is more useful and less problematic. First, display: block;

states that every image on the page will be rendered as a block-level element

instead of inline. If you’re unfamiliar with these terms, here are two easy

examples. Paragraphs are block-level elements; the deprecated <i> (italic)

tag is an inline element. Block-level elements exist in their own “box” and are

followed by an implied carriage return. Inline elements are part of the flow,

with no carriage return and no clear-cut “box.”

By telling the browser to treat images as block-level elements, we avoid having

to write
 or <br clear="all"> or similar junk before and after our

images, and we also avoid having to stick those images in their own table cells

to preserve our layout’s spacing requirements. (You’ll learn more about that in

Chapter 11, “Working with Browsers Part I: DOCTYPE Switching and Standards

Mode.” If you can’t wait, you might also read “Images, Tables, and Mysterious

Gaps” at http://devedge.netscape.com/viewsource/2002/img-table/.)

This seems so simple that many of you will skip over it without thinking

about it, but explicitly assigning block or inline status to an element is an

incredibly powerful tool. Ordinary links, by being made block-level elements

via CSS, can turn into buttons, for example. In a later rule, using an additional

selector, we will be able to add specific vertical whitespace to images that live

in a particular part of the layout, thus achieving with a few lines of CSS what

would otherwise require a markup mess of slicing, dicing, table cell nesting,

and spacer GIF images.

Read it again. We’re telling you how to achieve layouts that look like 50 table

cells and a dozen sliced images but are just a few lines of markup and a few

CSS rules. Okay. Point made.

Next, the border: 0; declaration turns off image borders, so we don’t have

to write border="0" in our markup. (If we care about the way the site looks in

non-CSS browsers, we will have to write border="0" in our markup anyway.

We did so, and explained why we did so, back in Chapter 8.)

Coloring the Links (Introducing Pseudo-Classes)
In presentational HTML, we controlled link colors via attributes to the body

element such as vlink="#CC3300". In modern web design, we can leave our

body naked and unadorned and use CSS instead. To sweeten the deal, CSS adds

2018 ch10 04.18.03 10:10 AM Page 240

241establishing basic parameters

a “hover” state to the familiar link, visited, and active states we learned to love

in the 1990s. CSS also allows us to do more than merely change link colors.

CSS calls these anchor (link) states pseudo-class selectors. In the CSS way

of thinking, a “real” class is one that you specify explicitly with a class=

attribute. A pseudo-class is one that depends on user activity or browser state

(:hover, :visited). There are also pseudo-elements (:before and :after).

In any case, with the four rules that follow, we control link colors and more

[10.4, 10.5].

a:link {
font-weight : bold;
text-decoration : none;
color: #c30;
background: transparent;
}

a:visited {
font-weight : bold;
text-decoration : none;
color: #c30;
background: transparent;
}

a:hover {
font-weight : bold;
text-decoration : underline;
color: #f60;
background: transparent;
}

a:active {
font-weight : bold;
text-decoration : none;
color: #f90;
background: transparent;
}

10.4
The link color is dark red,
bold, and without an
underline, per the CSS
a:link rule.

10.5
When the visitor’s mouse
hovers over the link, its
text color “lights up” in
orange, and an underline
appears, per the CSS
a:hover rule.

2018 ch10 04.18.03 10:10 AM Page 241

242 chapter 10 > css in action: a hybrid layout (part ii)

More About Links and Pseudo-Class Selectors
In the previous four rules, the only thing that might be new to you is the text-

decoration property. When its value is none, there is no underline. When its

value is underline—you guessed it—the link is underlined, just like all links

were back in the mid-1990s. When its value is overline, a line appears over

the text instead of under it. You can combine overline and underline like so:

text-decoration: underline overline;

What would that look like? It would look like the linked text was in a box with a

top and bottom but no sides. We know two web designers—one of them being

us—who have used that effect at least once. Two additional points are worth

noting before we leave the land of lovely links.

Use LVHA or Be SOL
Mark you this, oh brothers and sisters: Some browsers will ignore one or more

anchor element pseudo-class rules unless they are listed in the order shown

earlier, namely link, visited, hover, active (LVHA). Change that order at your

peril. A popular mnemonic to remember the order is “LoVe—HA!” (There are

some bitter people out there.) If you want to understand why the order matters,

http://www.meyerweb.com/eric/css/link-specificity.html explains it

in some detail.

Pseudo-Shenanigans in IE/Windows
Note that even in its latest, greatest incarnation (at least as of this writing)

Internet Explorer for Windows has trouble with the hover and active pseudo-

classes. Hover states tend to get stuck. Use your Back button in IE/Windows,

and you will very likely find that the last link you moused over is still in its

hover state. For that matter, you will very likely find that the link you clicked to

move forward is still in its active state. You will probably not like this one bit.

Because the active color also gets stuck, if you apply background images to

the a:active pseudo-class, IE/Windows will get them wrong. If your audience

includes IE/Windows users (and whose audience does not?) you might decide

to avoid a:active altogether. Or you might choose, as we have, not to do any-

thing especially creative or challenging with it.

Whether this freezing of link states is a bug or a useful feature depends

on whom you ask. Two hundred million IE/Windows users are probably

accustomed to it by now, and many might believe the web is supposed to work

this way.

2018 ch10 04.18.03 10:10 AM Page 242

243establishing basic parameters

Sketching in Other Common Elements
In the code block that follows, we see our good friend, the “Be Kind to

Netscape 4” rule (Chapter 9) being used to tell the browser that the entire site

should use Georgia or an alternative serif face [10.6].

p, td, li, ul, ol, h1, h2, h3, h4, h5, h6 {

font-family: Georgia, "New Century Schoolbook",

Times, serif;

}

10.6
Fonts are specified by
a single rule applied to
multiple selectors (p, td,
li, ul, ol, h1, h2, h3, h4,
h5, h6). Sizes and white-
space are controlled by
means of additional rules
and selectors.

Georgia, a Microsoft screen font designed by Type Directors Club (TDC) Medal

winner Matthew Carter to be legible even at small sizes, is found on nearly all

Windows and Macintosh systems. New Century Schoolbook is found on most

UNIX systems; Times has been found on Paleolithic computing systems; and

when all else fails, there’s our other good friend, the generic serif.

In the following rule, we let the browser know that headlines should be slightly

larger than the user’s default font size. When no base font size has been speci-

fied, the browser will consider the user’s default font size to be 1em. (It doesn’t

matter if the user’s default font size is 12px or 48px. It’s still 1em.) To make the

headline a bit larger than the user’s default, we’ll set it at 1.15em. We’ll also

insist that the headline be of normal (not bold) weight:

h1 {

font-size: 1.15em;

font-weight: normal;

}

There is no need to tell the browser that h1 should be set in Georgia. We did

that in the previous rule.

2018 ch10 04.18.03 10:10 AM Page 243

244 chapter 10 > css in action: a hybrid layout (part ii)

Now we use the html selector to add more detail to our p style. All elements on

the page except html itself are children of html. We could as easily have written

p instead of html p, but we wanted you to feel your money was well spent on

this book. Here is the rule, followed by explanations:

html p {

margin-top: 0;

margin-bottom: 1em;

text-align: left;

font-size: 0.85em;

line-height: 1.5;

}

In the preceding rule, we establish that paragraphs have no whitespace at the

top (thus enabling them to snugly hug the bottoms of headlines and subheads),

1em of whitespace at their bottoms (thus preventing them from bumping

into each other), and are somewhat smaller (0.85em) than the user’s default

font size (using the same reasoning applied to the h1 earlier, but in the

opposite direction).

More About Font Sizes
It is tricky to specify relative font sizes as we’ve done in the previous rule.

Specifically, it is tricky to specify that fonts should be slightly smaller than

the user’s default because the user might have set a small default. If he has

set a small default, your small text might be too small for his liking.

For example, if the user has specified 11px Verdana as his default font, your

small text might be 9px or 10px tall—hardly a comfortable size for reading long

passages of text. The user so afflicted can easily adjust the layout by using his

browser’s font size widget, but some users might find it annoying to do so,

and a few might not know they can resize text.

In most systems as they come from the factory, default font sizes are as huge as

the least attractive part of a horse, and a size like 0.85em should look darn

good. If the user is visually impaired and has set her size much larger than the

default, the font will still look good to her, and she will see that it is slightly

smaller than normal. But if a Windows user chooses “small” as his default

browsing size, or if a Mac user sets her browser to 12px/72ppi, our text might

look too small, causing the user to weep piteously or (more likely) exit the site

in frustration and haste.

2018 ch10 04.18.03 10:10 AM Page 244

245establishing basic parameters

Alternatively, we might have chosen a pixel value for our text size:

font-size: 13px;

We could have done this and created the leading as well using CSS shorthand:

font: 13px/1.5 Georgia,"New Century Schoolbook", Times, serif;

Unlike relative sizes based on em, pixel-based sizes are 99.9% dependable

across all browsers and platforms. And if a pixel-based size is too small for a

given user, he or she can adjust it via Text Zoom or Page Zoom in every modern

browser on earth but one. Unfortunately that one browser is IE/Windows,

currently the web’s most used browser.

It’s especially ironic because Text Zoom was invented in a Microsoft browser

(IE5/Mac) in early 2000. But this incredibly useful feature still has not made its

way to the Windows side.

This means that if you use pixels to safely control font sizes, you risk making

your text inaccessible to visually impaired IE/Windows users. But if you try to

avoid that problem by using ems, as we’ve done on the site we’re building in

this chapter, you will frustrate visitors who’ve shrunk their default font size

preference to compensate for the fact that the factory-installed default is way

too big for most humans.

In short, no matter what you do, you are going to frustrate somebody. We once

designed a site setting no font sizes at all. We figured all users would finally be

happy. Instead, that site provoked hundreds of angry letters complaining that

the text was “too big.” For more about the joys and sorrows of font size, see

Chapter 13, “Working with Browsers Part III: Typography.”

The Wonder of Line-Height
Look again at the line-height declaration in the rule currently being discussed:

line-height: 1.5;

Line-height is CSS-speak for leading. Line-height of 1.5 is the same as leading of

150%. The line-height could be marked 1.5em, but that is not necessary.

Before CSS, we could only simulate leading by making nonstructural use

of the paragraph tag (see the discussion of Suck.com in Chapter 1, “99.9% of

Websites Are Obsolete”); by using <pre>; or by sticking spacer pixel GIF images

2018 ch10 04.18.03 10:10 AM Page 245

246 chapter 10 > css in action: a hybrid layout (part ii)

between every line of text, forcing that text into table cells of absolute widths,

and praying that the invisible spacer pixel images downloaded seamlessly.

If they didn’t, the visitor would see broken GIF placeholder images instead

of lovely leading.

But why even think about it? CSS solves this problem forever.

The Heartache of Left-Align
Finally, if you can find your way back to the previous rule, you might wonder

why we’ve specified text-align: left. The answer is simple. If we don’t do that,

IE6/Windows might center the text due to a bug. IE5/Windows did not suffer

from this defect, nor do any other browsers. The behavior appears to be

random. Many elements not overtly left-aligned in CSS will correctly show

up left-aligned anyway in IE6/Windows. But some won’t. And you never know

which ones will do what. Use left-align and you avoid this bug.

Setting Up the Footer
By now, you’re hip to the CSS lingo and will be able to understand the little rule

that follows…

#footer p {

font-size: 11px;

margin-top: 25px;

}

…without our having to tell you that it uses the unique id of footer as a

selector and that any paragraph inside footer will be set in a font size of 11px

and graced with 25px of whitespace at its top.

We also don’t have to remind you that the browser knows which font to use

because it was established by an earlier rule on the page.

Laying Out the Page Divisions
Our next set of rules establishes basic page divisions. We have put them close

to each other in our CSS file to make editing and redesign easier, and we’ve

preceded them with a comment to remind us—or to explain to a colleague who

might subsequently have to modify our style sheet—what the set of rules is for.

If you’re familiar with commenting in HTML, it’s the same deal here, but with a

slightly different convention based on C programming.

2018 ch10 04.18.03 10:10 AM Page 246

247establishing basic parameters

Following the comment, we have a rule that establishes that the primary content

area will have 25px of whitespace at its left and top [10.7], and another that

places a nonrepeating graphic background image (arrow.gif) at the bottom

and in the center of the table whose id is content [10.8].

10.7
Vertical spacing between
the navigation area
and body content and
horizontal whitespace
between the sidebar
photo area and the body
text are both handled
by a single rule applied
to the primary content
selector. No spacer GIF
images or table cell hacks
are needed.

10.8
A screened-back arrow
image derived from the
logo anchors the content
area and serves as its
watermark thanks to a
background declaration
applied to the content
selector. Because the
selector encompasses the
entire table, the arrow is
able to span the two table
cells (sidebar and primary
content). Simple as the
effect is, achieving it via
old-school methods
would be difficult if
not impossible.

To achieve this effect by means of the deprecated background image attribute

to the table cell tag would be difficult if not impossible. For one thing, the

background image would have to span two table cells. Therefore, we would

need to slice our background image in pieces, assign each piece to a different

table cell, and hope all the pieces lined up.

2018 ch10 04.18.03 10:10 AM Page 247

248 chapter 10 > css in action: a hybrid layout (part ii)

Then, too, the deprecated background image tag in HTML tiles by default, and

there is no way to prevent it from tiling. We would have to make two transparent

images exactly as tall as the table cells that contain them and pray that the user

would not resize the text, thus throwing the table cell heights out of alignment.

We would also have to insist that every page be the same height, which would

limit how much text our client could add to or subtract from each page. Our

client might not appreciate that.

With CSS, we never have to think about such stupid stuff again. The rules

take far less time to read and understand than the paragraphs we just wrote

to describe them:

/* Basic page divisions */

#primarycontent {

padding-left: 25px;

padding-top: 25px;

}

#content {

background: transparent url(images/arrow.gif)center

➥bottom no-repeat;

}

Next, we establish rules for the sidebar:

/* Sidebar display attributes */

#sidebar p {

font-style: italic;

text-align: right;

margin-top: 0.5em;

}

#sidebar img {

margin: 30px 0 15px 0;

}

#sidebar h2 {

font-size: 1em;

font-weight: normal;

font-style: italic;

margin: 0;

line-height: 1.5;

text-align: right;

}

The first rule says that paragraphs within the element whose unique id is

sidebar will be right-aligned and italic and have an upper margin (whitespace)

2018 ch10 04.18.03 10:10 AM Page 248

249establishing basic parameters

of half their font size height (0.5em). If it looks familiar, it’s because we snuck

it into Chapter 9’s discussion of id selectors in CSS.

The second rule says that images within the element whose unique id is

sidebar will have an upper margin of 30px, a lower margin of 15px, and no

extra whitespace at left or right [10.9]. We alluded to this rule earlier in the

chapter in the section “The Image Rule.” Now it has arrived.

10.9
Carefully chosen vertical
whitespace values above
and below the sidebar
photograph are achieved
by applying upper and
lower margin values to
#sidebar img. Images
within the div labeled
sidebar will obey
these whitespace values;
images elsewhere on the
site will not.

It’s rules like this that make life worth living because they free us from the

necessity of using multiple empty table cells and spacer GIF images to create

whitespace. (Can you imagine any other visual medium forcing designers to

jump through their own eardrums simply to create whitespace? That’s how the

web was, but we don’t have to build it that way any more.)

The third rule in this section makes h2 headlines look like magazine pull

quotes (especially in smooth text environments like Windows Cleartype and

Mac OS X Quartz) instead of HTML headlines [10.10]. It specifies that h2

text within sidebar will be of modest size (1em), normal weight, italic, and

right-aligned, and that it will have the same line-height value (1.5) as other

text on the page.

10.10
Sidebar pull quotes,
marked up as second-
level headlines (h2),
nevertheless look like
magazine pull quotes,
not like HTML headlines.

2018 ch10 04.18.03 10:10 AM Page 249

250 chapter 10 > css in action: a hybrid layout (part ii)

Navigation Elements: First Pass
Up to now, we’ve been doing all right. Every rule we’ve written displays as

expected in the standards-friendly, best-case-scenario browser we use to test

our work. Getting the navigation bar just right will be trickier. In our first pass,

shown next, we nail certain desired features and just miss on others:

/* Navigation bar components */

table#nav {

border-bottom: 1px solid #000;

border-left: 1px solid #000;

}

This rule tells the table whose id is nav to create a 1px solid black border effect

at its bottom and left (but not at the top or right).

table#nav td {

font: 11px verdana, arial, sans-serif;

text-align: center;

vertical-align: middle;

border-right: 1px solid #000;

border-top: 1px solid #000;

}

You don’t need us to explain that this rule specifies 11px Verdana as the

preferred menu text font and fills out the border elements that the previous

rule neglected (namely, at the right and top). If we had told the table to create

a border effect around all four sides, then the table cells would have added an

extra pixel of border at the top and right, bringing shame to our family and

sadness to all viewers.

The preceding rule also tells text to be horizontally centered in each table cell

and vertically aligned in the middle of the table cell, much like the old-school

td valign="middle" presentational hack we all know and love. (This seemed

like the right thing to do, but in our second pass, we had to remove it.)

table#nav td a {

font-weight: normal;

text-decoration: none;

display: block;

margin: 0;

padding: 0;

}

2018 ch10 04.18.03 10:10 AM Page 250

251navigation elements: first pass

In the preceding rule, you recognize that we’re telling links how to behave, and

you also recognize that we’re doing so with a sophisticated chain of contextual

selectors. The multipart selector means “apply the following rule only to

links within table cells, and only if they are found in the table whose unique

identifier is nav.”

As we hinted in the “The Image Rule” discussion, we’re also using the CSS

display: block declaration to turn the humble XHTML links into block-

level elements that completely fill their table cells. (At least, we hope they will

completely fill their table cells.)

#nav td a:link, #nav td a:visited {

background: transparent url(images/bgpat.gif)repeat;

display: block;

margin: 0;

}

#nav td a:hover {

color: #000;

background: white url(images/nopat.gif)repeat;

}

The final two rules use contextual and id selectors to control the link, visited,

and hover pseudo-classes, filling the first two classes with our alternating-pixel

background color image [refer to 10.3] and using a plain-white background

image for the hover/rollover state. (See the following sidebar, “Needless Images

II: This Time It’s Personal.”)

Needless Images II: This Time It’s Personal

Remember our earlier sidebar about “the needless image,” where we said

the plain-white background really isn’t needed for this execution? Well, the

plain-white background really isn’t needed for this execution.

Instead of this…

#nav td a:hover {

color: #000;

background: white url(images/nopat.gif)repeat;

}

continues

2018 ch10 04.18.03 10:10 AM Page 251

252 chapter 10 > css in action: a hybrid layout (part ii)

…we might have written the following rule:

#nav td a:hover {

color: #000;

background-image: none;

}

Removing the image from hovered link states (background-image: none;)

would create the same rollover effect of a plain-white background with one

less image to worry about and a bit less bandwidth consumed. A bit later in

this chapter, when we create the “you are here” effects for individual pages,

we’ll do so without relying on the plain-white background GIF.

Nevertheless, because swapped CSS background image swaps are cool and

because you might want to harness their power on your own projects, we’ve

used them to create our navigation bar rollover effects in this chapter.

A glance back at Figure 10.1 shows you everything we’ve gotten right and

wrong in our first pass at styling the site. Everything we wanted to achieve

we have, except for the navigation bar. The logo is okay; the background color

is completely filled in [10.11], and on-hover rollover effects [10.12] work

as expected.

continued

10.11
CSS rollover effects in
action, accomplished
by means of link, visited,
and hover pseudo-classes
applied to table cells
within the table whose
id is nav. Here we see
the default state of a
menu graphic.

10.12
CSS rollover effects, part
two: When the visitor’s
cursor hovers over a
menu graphic, the back-
ground turns white.
Look, Ma, no JavaScript!
(Not that there’s anything
wrong with it.)

2018 ch10 04.18.03 10:10 AM Page 252

253navigation bar css: first try at second pass

But the default (link, visited) background pattern [10.1] fills only part of

each right-side menu item, and we intended to fill the entire space. We feel

inadequate, vulnerable, and slightly ashamed. In a first attempt at a “final”

CSS solution, we will solve this problem but create new ones.

Navigation Bar CSS: First Try at Second Pass
In a first try at a second pass, we specify sizes on our link effects:

#nav td a:link, #nav td a:visited {

background: transparent url(images/bgpat.gif)repeat;

display: block;

margin: 0;

width: 100px;

height: 25px;

}

As expected, this causes the right-side buttons to be filled in completely,

but it louses up our logo, whose background is also now a mere 100 × 25 pixels

[10.13]. 100 × 25 is the right value for the little buttons, but it’s wrong for the

logo (which is 400 × 75).

10.13
One step forward, two
steps back: Specifying
sizes on nav pseudo-
classes fills in their
backgrounds completely
but louses up the logo’s
background. It also
obliterates the vertical
alignment we established
earlier. Text now hugs the
top of each cell.

Somehow, the changes we’ve made also kill the vertical alignment we estab-

lished earlier. Elements are vertically aligned within their cells, but their

content is not. As Fig. 10.13 makes plain, “button” text now hugs the top of

each table cell instead of being vertically aligned in the middle. This top-hug-

ging presentation is the same in all CSS-compliant browsers tested. It is not a

bug, but unexpected behavior that falls out of the CSS layout model.

Fortunately, when creating the markup way back in Chapter 8, we gave each cell

of the table a unique identifier. Home is the id for the cell that contains our

2018 ch10 04.18.03 10:10 AM Page 253

254 chapter 10 > css in action: a hybrid layout (part ii)

logo. Can we use home to create an additional set of rules that override the rules

used to fill in the 100 × 25 buttons? You bet we can:

td#home a:link, td#home a:visited {

background: transparent url(images/bgpat.gif) repeat;

width: 400px;

height: 75px;

}

td#home a:hover {

background: white url(images/nopat.gif) repeat;

width: 400px;

height: 75px;

}

These new rules fill in the logo just right, and the site is nearly perfect. But

the loss of the behavior we expected with vertical-align: middle is still

unacceptable. We’ll fix it in the final pass.

Navigation Bar CSS: Final Pass
In the final pass, we get everything we wanted:

/* Navigation bar components */

table#nav {

border-bottom: 1px solid #000;

border-left: 1px solid #000;

}

table#nav td {

font: 11px verdana, arial, sans-serif;

text-align: center;

border-right: 1px solid #000;

border-top: 1px solid #000;

}

table#nav td a {

font-weight: normal;

text-decoration: none;

display: block;

margin: 0;

padding: 0;

}

#nav td a:link, #nav td a:visited {

background: transparent url(/images/bgpat.gif) repeat;

display: block;

margin: 0;

width: 100px;

2018 ch10 04.18.03 10:10 AM Page 254

255final steps: external styles and the “you are here” effect

line-height: 25px;

}

#nav td a:hover {

color: #f60;

background: white url(/images/nopat.gif) repeat;

}

td#home a:link img, td#home a:visited img {

color: #c30;

background: transparent url(/images/bgpat.gif) repeat;

width: 400px;

height: 75px;

}

td#home a:hover img {

color: #f60;

background: white url(/images/nopat.gif) repeat;

width: 400px;

height: 75px;

}

What changed? We removed the vertical-align: middle instruction

altogether. Then we deleted the line that said buttons were 25px tall and

replaced it with this:

line-height: 25px;

Line-height filled in the 25px just as height had done, but it also correctly

positioned the text in the vertical middle of each button. It would take a CSS

genius to explain why this method worked better than the other. The main

thing is, it worked.

Final Steps: External Styles and the
“You Are Here” Effect
To wrap the site and ship it to the client, two more steps are needed. First,

we must move our embedded styles to an external CSS file and delete the

embedded style sheet, as explained in Chapter 9. Then we must create a “you

are here” effect [10.14, 10.15] to help the visitor maintain awareness of which

page she’s on. Remember: We’re not changing the markup. We want to create

this effect using CSS, without applying additional classes to our navigation bar.

2018 ch10 04.18.03 10:10 AM Page 255

256 chapter 10 > css in action: a hybrid layout (part ii)

10.14
The “you are here”
effect on the Events
page template.

10.15
The “you are here”
effect on the About
page template.

2018 ch10 04.18.03 10:10 AM Page 256

257final steps: external styles and the “you are here” effect

The “you are here” effect is quite easy to do. Now that we’ve removed embedded

styles, every template page gets its CSS data by linking to an embedded style

sheet like so:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>i3forum</title>

<link rel="StyleSheet" href="/css/i3.css" type="text/css"

media="all" />

All we need to do is use the style element to add an embedded style sheet to

each page. That embedded style sheet will contain just one rule: a rule that

inverts the ordinary presentation of the “menu button” for that page. It’s

easier to show you than to explain it.

On the Events page, the embedded rule reads as follows, with the important

selector highlighted in bold:

<style type="text/css" media="screen">

td#events a:link, td#events a:visited {

color: #c30;

background: #fff;

}

</style>

Notice that we’re using background: #fff; instead of nopat.gif to create

the plain-white background highlighting, as promised in the earlier sidebar,

“Needless Images II.”

On the About page, the embedded rule reads like so:

<style type="text/css" media="screen">

td#about a:link, td#about a:visited {

color: #c30;

background: #fff;

}

</style>

2018 ch10 04.18.03 10:10 AM Page 257

258 chapter 10 > css in action: a hybrid layout (part ii)

Each page of the site contains a rule like this; therefore, every page tells the

visitor “you are here” without changing one line of markup. You might ask,

“Why not change the markup from page to page? Why not create a thispage

class for the ‘you are here’ indicator and use it to override the menu style for

that link?” That could certainly be done, and often it is.

But leaving the navigation markup untouched from page to page makes it

possible to insert the same data over and over via server-side includes—

a handy approach for small- to mid-sized sites like the one we’re producing.

At www.zeldman.com, we use this technique to modify a pure CSS nav bar’s

“you are here” indicator on a page-by-page basis while using SSI to insert the

same XHTML data on every page. But that’s another site and another story, and

we’ve come to the end of another chapter. In the next chapter, we’ll plumb new

CSS depths, learn about browser bugs and workarounds, discover some things

browsers do right (but we might not want), and discuss stubborn elements that

seem to resist every effort to use web standards.

2018 ch10 04.18.03 10:10 AM Page 258

