
chapter eight

XHTML by Example: A
Hybrid Layout (Part I)

197

T
his chapter and the two that follow it form a tight little unit. In this

chapter, we’ll roll up our sleeves and apply what we’ve learned

about XHTML thus far to mark up a real-world design project. The

markup we create will be partly structural, partly transitional, and

fully standards-compliant. In Chapter 9, “CSS Basics,” we’ll cover

Cascading Style Sheets (CSS) basics for beginning and intermediate

users. Finally, in Chapter 10, “CSS in Action: A Hybrid Layout (Part

II), we’ll learn still more about CSS while using it to complete our

project. This “teaching by doing” business is not unlike learning to

swim by being tossed into deep, cold water, although we prefer to

think of it as picking up French by visiting Paris. For good measure,

as we build this project, we’ll start learning how to incorporate

accessibility into our markup (and hence, into our sites).

2018 ch08 04.17.03 2:12 PM Page 197

198 chapter 8 > xhtml by example: a hybrid layout (part i)

Benefits of Transitional Methods Used in
These Chapters
In this chapter, we’ll begin crafting a hybrid, transitional layout combining

traditional (but here, streamlined) table layout techniques with structured

textual markup and accessibility enhancements. The techniques used in this

project and explained in these three chapters are ideal for libraries and other

public institutions, along with small companies and any other organization

that seeks to do the following:

� Manage large amounts of content on a limited budget

� Support a wide range of browsers and devices

� Conserve visitors’ bandwidth (and their own)

� Begin the transition to web standards with publishing methods that are

reliable, cost-effective, and easy to implement

Style Sheets Instead of JavaScript
By the end of these three chapters, we will have produced a standards-

compliant template for the i3Forum site [8.1]. The final templates created

in these chapters can be viewed on the Happy Cog staging server at http://

i3.happycog.com/. The finished site, produced by means of these templates,

is located at http://i3forum.com/.

In this chapter, we’ll nail down our markup. In Chapter 10, we’ll add CSS to

control the color, size, and relative positioning of elements. (We’ll pause in

Chapter 9 to learn CSS basics.) Among other things, the CSS we create will

deliver menu rollover effects more commonly accomplished with images and

JavaScript. There’s nothing wrong with images or JavaScript, but by using

XHTML text and CSS instead, we’ll save bandwidth while making the site

readily accessible to a wide variety of environments, including screen readers

and text browsers, nondesktop-browsers (such as PDA and phone-based

browsers), and non-CSS-capable browsers.

Basic Approach (Overview)
The i3Forum layout is designed to deliver a crisp, punchy brand identity with

a minimum of fuss, and its XHTML is equally straightforward. It is composed

of two XHTML tables, both centered, and both enhanced and controlled via

CSS. The first table delivers the navigational menu; the second provides the

content [8.2].

2018 ch08 04.17.03 2:12 PM Page 198

199basic approach (overview)

8.2
The template we’ll build
in this chapter, with CSS
turned off and borders
turned on. Note the
slightly thicker line
between menu and
content areas, where two
separate tables meet.

8.1
The finished template,
as it will appear when
the work explained in
Chapters 8 through 10 has
been completed.

The XHTML for the tables will be shown in the pages that follow. But a

preliminary question might already have occurred to you. Traditionally, such

layouts would use a single table, with rowspans and colspans juggling the

various rows and columns. If we used Adobe ImageReady to automatically slice

and dice the Photoshop comp used to design the site (and to sell the design to

the client), ImageReady would render the entire page in a single table. So why

have we used two tables?

2018 ch08 04.17.03 2:12 PM Page 199

200 chapter 8 > xhtml by example: a hybrid layout (part i)

Separate Tables: CSS and Accessibility Advantages
If you skipped Chapter 7’s (“Tighter, Firmer Pages Guaranteed: Structure and

Meta-Structure in Strict and Hybrid Markup”) discussion of “div, id, and

Other Assistants,” you might want to glance at it before going any further.

Breaking our layout into two tables allows us to harness the power of the id

attribute to do the following:

� Streamline the CSS we’ll create in Chapter 10

� Provide certain accessibility enhancements

� Structurally label each table according to the job it does, making it easier

to some day revisit the layout and replace presentational XHTML tables

with divs styled via CSS

The Table Summary Element
In addition, breaking the layout into two tables allows us to add a summary

attribute to each:

<table id="nav" summary="Navigation elements" … etc. >

<table id="content" summary="Main content." … etc. >

The summary attribute is invisible to ordinary desktop browsers like IE

and Netscape. But the screen-reading software used by non-sighted visitors

understands the summary attribute and will read its value aloud. In our case,

the screen reader will say “Navigation elements” and “Main content.” Well-

designed screen readers allow users to skip the table if they don’t think it will

interest them. Writing table summaries thus forms a good accessibility backup

strategy to accommodate users who might miss the Skip Navigation link

described two paragraphs from now.

Page Structure and id
We’ve assigned an id attribute value to each table according to the structural

job it does—navigation or content. Doing so now allows us to later write

compact CSS rules that apply to an entire table, avoiding classitis and divitis

(defined and discussed in Chapter 7).

It also allows us to provide a Skip Navigation link in the top of our markup.

The What and Why of Skip Navigation
As its name implies, the Skip Navigation link allows visitors to bypass

navigation and jump directly to the content table by means of an anchor link.

2018 ch08 04.17.03 2:12 PM Page 200

201basic approach (overview)

The id attribute whose value is “content” provides the anchor to which we link:

<div class="hide"><a href="#content" title="Skip navigation."

accesskey="2">Skip navigation.</div>

Skipping navigation is not an urgent requirement for most sighted web users,

who can focus their attention on particular parts of a web page simply by

glancing at those parts and ignoring other parts that don’t interest them.

But nonsighted visitors who are using screen readers experience the web in a

linear fashion, one link at a time. It frustrates such users to endure a constant

audio stream of menu links each time they load a page of your site. Skip

Navigation lets these users avoid this problem.

Skip Navigation can also help sighted readers using non-CSS-capable PDA

browsers and web phones avoid tediously scrolling through a fistful of links

every time they load a new page. Finally, Skip Navigation can benefit sighted

users who are physically impaired, although the method is not perfect. (See

the later section titled “accesskey: Good News, Bad News.”)

Skip Navigation and accesskey
Our Skip Navigation link enables visitors who are using nonvisual or non-CSS

browsers to jump directly to content in the second table, whose id attribute

name (and thus whose anchor link) is "content":

<table id="content" …> etc.

In these nonvisual or non-CSS environments, the link is readily available at the

top of the page [8.3, 8.4]. You’ll create a rule to hide the Skip Navigation link in

CSS-capable browsers in Chapter 10. (If you’re the impatient type, we’ve also

included it here.)

.hide {

display: none;

}

Because of this CSS rule, visitors who are using modern browsers with CSS

turned on will not see the Skip Navigation link—but most of them do not

need to see it because they do not require Skip Navigation functionality for the

reasons discussed in “The What and Why of Skip Navigation.” Screen readers

that ignore CSS will merrily read the content of the div, thus informing non-

sighted visitors that they can avoid the boring recitation of the other links.

(Alas, some screen readers obey CSS even though their users can’t see it.)

2018 ch08 04.17.03 2:12 PM Page 201

202 chapter 8 > xhtml by example: a hybrid layout (part i)

8.3
In a non-CSS browser (or
a CSS-capable browser
with CSS turned off), the
Skip Navigation link is
clearly visible at the top
of the page.

8.4
The visible Skip
Navigation link in
context—in our layout
with CSS turned off.

There’s an exception to every assumption, of course. A person who has

impaired mobility, viewing the site via a CSS-capable browser, might desire

to skip the navigation area and jump directly to content. Most web users who

have impaired mobility can see an entire web page at once (the exception being

users who are visually and physically impaired). But to navigate that page,

impaired users employ the keyboard or an alternative, assistive input device.

Tabbing their way past unwanted navigation links could be a nuisance,

or worse.

2018 ch08 04.17.03 2:12 PM Page 202

203basic approach (overview)

How can we help these users skip navigation if they can’t see the Skip

Navigation link in their browser? We’ve provided that option via the accesskey

attribute, which works even when the Skip Navigation link is invisible in the

browser. Alas, the method is imperfect, as discussed next.

accesskey: Good News, Bad News
The accesskey attribute to HTML/XHTML enables people to navigate websites

via the keyboard instead of a mouse. To assign an accesskey to an element, you

simply declare it, as in the earlier XHTML excerpt, which we reprint here with

the relevant attribute and value highlighted in bold:

Skip

navigation.

In our markup, we’ve assigned the Skip Navigation link an accesskey of 2.

Therefore, to skip navigation, the visitor simply presses 2 on her keyboard.

As is often true of accessibility enhancements, the required markup is easy to

write and has no effect on the site’s visual design. In this case, that’s both good

and bad.

For how does the visitor know to press 2 on her keyboard? No widely used

browser displays accesskey letter assignments. Neither do most little-

used browsers.

accesskey and iCab
As of this writing, only iCab [8.5], a Macintosh browser, visually displays

accesskey letter assignments. Most web users are not Macintosh users, and

most Macintosh users are not iCab users. Making matters worse, iCab cannot

show the accesskey assignment when the Skip Navigation link is hidden via

CSS. As this book goes to press, iCab still does not support much of CSS1,

the W3C’s first CSS recommendation, published way back in 1996. In short,

although iCab is an interesting browser and its commitment to supporting

HTML 4 is impressive (and no, we’re not being facetious: iCab’s HTML 4

support is superb), iCab is not going to solve the world’s accesskey problem.

2018 ch08 04.17.03 2:12 PM Page 203

204 chapter 8 > xhtml by example: a hybrid layout (part i)

8.5
Of all the world’s
browsers, only iCab
for Macintosh
(http://www.icab.de/)
displays our accesskey
of 2, cuing the user that
she can skip navigation
by pressing 2 on her
keyboard.

Two Utopian Possibilities for accesskey
Clearly, the majority of users who might benefit from accesskey have no

way of knowing which accesskey letters or numbers to press; therefore, they

cannot benefit from it. Because of that, including accesskey in your markup

is somewhat idealistic.

If the W3C would recommend standard accesskey assignments for universal

functions like “skip navigation” (and if designers and developers would follow

those recommendations), users would always know which keys to press. That

would be a good thing.

Alternatively, browser makers might decide to beef up their accesskey sup-

port by visually displaying accesskey values if the user decides to turn on this

accessibility option in his preferences. IE for Windows provides an accessibility

option allowing users to ignore font sizes on any web page. It might also add

an option to Always Show Accesskey Values.

We must admit it feels rather Utopian to hope that the W3C will standardize

accesskey shortcuts any time soon, and it also feels Utopian to hope that any

2018 ch08 04.17.03 2:13 PM Page 204

205basic approach (overview)

major browser vendor (let alone all of them) will devote engineering time and

resources to an always-visible-accesskey option. Nevertheless, we continue to

use accesskey. Some users might view source to see which accesskey values

are in use on a page and thereafter use the appropriate keys to navigate. We

hope things become easier for these users soon.

Additional id Attributes
In addition to the primary id attribute names (nav and content), in our first

pass at the site’s markup we also assign unique id attribute names to each cell

of the navigation table. Two cells should suffice to make the method clear:

<td width="100" height="25" id="events"><a href=

"events.html">Events</td>

<td width="100" height=”25” id="schedule"><a href=

"schedule.html">Schedule</td>

We also assign unique id attribute values to each of the two primary divisions

of the content table, namely the sidebar (id="sidebar") and primary content

(id="primarycontent") areas. Next, with much data removed for clarity, is

the shell of the content table; id attributes and values have been highlighted

in bold:

<table id="content" etc.>

<tr>

<td width="200" id="sidebar">

Sidebar content goes here.

</td>

<td width="400" id="primarycontent">

Primary content goes here.

</td>

For good measure, we slap an id attribute name on the secondary rows of the

navigation bar. Thus, the second row of navigation “buttons” has the following

id value:

<tr id="nav2">

And, as you might expect, the third row of navigation “buttons” has this id

value:

<tr id="nav3">

2018 ch08 04.17.03 2:13 PM Page 205

206 chapter 8 > xhtml by example: a hybrid layout (part i)

How Much Is Too Much?
The latter two id attribute names (nav2 and nav3) aren’t required for this lay-

out’s purposes, but they might come in handy one day, in the event a redesign is

required. Should we include them or not? Including them now adds a few bytes

to our XHTML, and we might with equal merit have chosen not to do so.

If, on the final site, the navigation bar lives in a separate Server-Side Include

file (or in a unique record managed by PHP, JSP, ColdFusion, or ASP), the

client could easily edit that file at any point in the future, changing the entire

site by adjusting a single file. If the client plans to use server-side technologies,

it might be silly to include nav2 and nav3. On the other hand, if no server-side

technologies are used and the menu markup is manually repeated on every

page, it might be safer to go ahead and include nav2 and nav3 to avoid potential

search-and-replace errors in a future redesign. And that is what we’ve done.

First Pass Markup: Same as Last Pass Markup
On this and the next few pages, you’ll find our first pass at the site’s markup

from <body> to </body>. It is also our final pass at the site’s markup. Any

subsequent design adjustments were handled entirely in CSS. That is one

benefit of offloading as much presentational stuff as possible to your style

sheets, even in a hybrid layout like this one. To save space in this book,

we’ve replaced the lovely body copy used in the template with generic

placeholder text.

Note, too, that in this markup we’ve used relative image file reference

links (img src="images/logo.gif") instead of absolute ones (img src=

"/images/logo.gif") because we’re working off our desktop instead of

on the staging server. The final markup will use absolute file reference links.

(Absolute URLs are more reliable than relative URLs because they don’t break

if file locations change; for instance, if /events.html moves to /events/

index.html, the absolute reference to /images/logo.gif will still work. Also,

absolute URLs help avoid a CSS bug in some old browsers that misunderstand

relative file references in style sheets.)

Technically speaking, the “final” markup differs slightly from the first pass

markup by replacing relative file references with absolute file references. Not

that most of you care, but there is always one reader who views page source to

verify claims made in a book.

2018 ch08 04.17.03 2:13 PM Page 206

207first pass markup: same as last pass markup

You might find it easier to view source at the source. As mentioned earlier in

this chapter, the project is archived at http://i3.happycog.com/.

Navigational Markup: The First Table
What follows is the navigation section, from the body element on. To keep

things interesting, we’ll tell you in advance that this portion of the markup,

although it validates, commits a “sin” of nonpresentational markup purity.

See if you can spot the sin.

<body bgcolor="#ffffff">
<div class="hide"><a href="#content" title="Skip navigation."
accesskey="2">Skip navigation.</div>
<table id="nav" summary="Navigation elements" width="600"
border="0" align="center" cellpadding="0" cellspacing="0">
<tr>
<td rowspan="3" id="home" width="400"><a href="/" title=
"i3Forum home page."><img src="images/logo.gif" width="400"
height="75" border=""0" alt="i3forum home" /></td>
<td width=""100” height="25" id="events"><a href="
"events.html">Events</td>
<td width="100" height="25" id="schedule"><a href=
"schedule.html">Schedule</td>
</tr>
<tr id="nav2">
<td width="100" height="25" id="about"><a href=
"about.html">About</td>
<td width="100" height="25" id="details"><a href=
"details.html">Details</td>
</tr>
<tr id="nav3">
<td width="100" height="25" id="contact"><a href=
"contact.html">Contact</td>
<td width="100" height="25" id="guestbios"><a href=
"guestbios.html">Guest Bios</td>
</tr>
</table>

Presentation, Semantics, Purity, and Sin
How big a standards geek are you? Did you spot the worst sin in our XHTML?

The primary offense took place in the first line—namely the use of the outdated

bgcolor (background color) attribute to the body element to specify, even

in non-CSS browsers, that the page’s background color should be white

(#ffffff). Here it is again:

<body bgcolor="#ffffff">

2018 ch08 04.17.03 2:13 PM Page 207

208 chapter 8 > xhtml by example: a hybrid layout (part i)

Writing old-school markup like that could get us thrown out of the Pure

Standards Academy faster than a greased meteor. After all, CSS lets us specify

the body background color, and the W3C recommends that CSS, not HTML or

XHTML, be used for this purpose. In the eyes of many standards fans, our use of

bgcolor is a sin.

A Transitional Book for a Transitional Time
To the kind of standards geek who spends hours each week arguing about the

evils of presentational markup on W3C mailing lists, what we’ve done here is

evil and harmful. For that matter, we’ve also sinned by using tables as anything

other than containers of tabular data, by specifying widths and heights in our

table cells and by setting image margins to zero in markup. In fact, in the eyes

of some, this entire chapter is sinful. Some standards geeks might not think

much of this book, quite frankly. In their view, we should be telling you how to

write semantic markup instead of letting you think it’s okay to sometimes use

tables for layout.

But the thing is, it is okay. Maybe it won’t be okay some years from now, when

designers use and browsers support purely semantic future versions of XHTML

and rich future versions of CSS and SVG. But this is a transitional book for a

transitional time. “Web standards” is not a set of immutable laws, but a path

filled with options and decisions. In our view, people who insist on absolute

purity in today’s browser and standards environment do as much harm to the

mainstream adoption of web standards as those who have never heard of or

are downright hostile toward structural markup and CSS.

Making Allowances for Old Browsers
Why did we use the scarlet bgcolor attribute in spite of its shameful

wickedness? The hybrid site we’re producing makes no assumptions about

the browsers used by its visitors. In an old, non-CSS-capable browser, if the

default background color were set to any color other than white, the site’s

transparent GIF logo image would be afflicted by nonangelic halos caused

by mismatched edge pixels. No client wants his logo to look shoddy in any

browser, even if the rest of the site is just so-so in some old browsers.

One popular old browser that did not support CSS set medium gray as its default

background color. Our logo is not antialiased against medium gray but against

white. If we hadn’t set the background color via the XHTML bgcolor attribute,

our logo would look bad in such browsing environments.

2018 ch08 04.17.03 2:13 PM Page 208

209first pass markup: same as last pass markup

In reality, you might not care what your site looks like in a 2.0 or 3.0 browser.

For that matter, you might not care what it looks like in a 4.0 browser—neither

might your boss or your client. The semantically impure techniques used in this

chapter do not attempt to create the same visual experience in all browsers. In a

non-CSS browser, our layout will not look any better than what you see in

Figure 8.3. And that’s okay.

We used tables for this site and included bgcolor to show you that such

compromises can be made in XHTML 1.0 Transitional and the site will still

validate. We also did this to suggest that any effort to include standards in your

work—even a compromised (but realistic) effort that uses some presentational

markup—is worth making.

Content Markup: The Second Table
The “content” table immediately follows the navigational one and should be

self explanatory to anyone who’s ever written HTML or XHTML. The two things

worth noting are the compactness of this markup and its use of id:

<table id="content" summary="Main content." width="600"

border="0" align="center" cellpadding="0" cellspacing="0">

<tr>

<td width="200" id="sidebar" valign="top">

<img src="images/astro.jpg" width="200" height="200"

border="0" alt="i3Forum. Breeding leadership." title="i3Forum.

Breeding leadership." />

<h2>Subhead</h2>

<p>Text</p>

</td>

<td width="400" id="primarycontent">

<h1>Headline</h1>

<p>Copy.</p>

<p>Copy.</p>

<p>Copy.</p>

<p>Copy.</p>

<div id="footer">

<p>Copyright © 2003 <a href="/" title="i3forum

home page.">i3Forum, Inc.</p>

</div>

</td>

</tr>

</table>

</body>

2018 ch08 04.17.03 2:13 PM Page 209

210 chapter 8 > xhtml by example: a hybrid layout (part i)

In Chapter 9, we’ll explore CSS basics. Then, in Chapter 10, we’ll use CSS to add

visual control and panache to our hybrid site.

2018 ch08 04.17.03 2:13 PM Page 210

