
Visual Studio .NET Debugging
Environment

7

THE ASP SCRIPT DEBUGGER THAT IS INTEGRATED with the new Visual Studio .NET
IDE is, without a doubt, one of the greatest enhancements to debugging from the pre-
vious versions of ASP. Unlike trying to debug traditional ASP pages in Visual Interdev,
this actually works right out of the box!

In this chapter, you will be looking at all the features available for debugging in
the Visual Studio .NET IDE, how to use them, and where each one is applicable for
the problem you might be trying to conquer.This will all be accomplished by building
a project from scratch in the IDE, so we recommend creating the project on your own
as it is done in this chapter.

Introduction to Features
Let’s start out by taking a look at the most important features of the Visual Studio
.NET IDE debugger.You will take a detailed look at all of these as the chapter pro-
gresses. Many of these features have existed in the Visual Studio 6.0 IDEs; however, not
all were previously available when debugging traditional ASP pages in Visual InterDev.

09 1410 ch07 10/2/01 1:32 PM Page 97

98 Chapter 7 Visual Studio .NET Debugging Environment

Call Stack
The call stack enables you to display the list of functions currently called.As the name
implies, this can be imagined simply as a stack. (As functions are called from within
function, which, in turn, are called from within functions, a stack is created.) With the
call stack viewer, you can look at this stack and jump forward and backward into the
stack to debug at any point in the chain. Figure 7.1 shows the call stack in action.

Figure 7.1 The call stack window.

Command Window
If you have used the Visual Basic IDE previously, the command window will be quite
familiar to you.The command window enables you to execute program statements
separately from the running program. For example, if you want to set a variable equal
to a new value, or if you want to print the value of a variable, or even if you want to
create an object and call some methods on it, you can do it from this window. Figure
7.2 shows how the command window can be used.

09 1410 ch07 10/2/01 1:32 PM Page 98

99Introduction to Features

Figure 7.2 The command window.

Breakpoints
Breakpoints enable you to stop the execution of a program at a defined point either in
all instances or based on a certain set of criteria.The easiest way to set a breakpoint is
to click in the gray left margin next to the line where you want to stop.The IDE
drops a red “dot” in the margin; when you start the program in debug mode, it stops
at that specified position. By popping up the breakpoint window from the debugging
windows at the bottom of the screen, you can see all breakpoints currently set in the
system. Figure 7.3 shows an example of the breakpoint window.

09 1410 ch07 10/2/01 1:32 PM Page 99

100 Chapter 7 Visual Studio .NET Debugging Environment

Figure 7.3 The breakpoint window.

Watch Window
The watch window can be used to watch the contents of a variable or series of
variables.This window also enables you to change the value of a variable, which
can be quite useful in debugging applications.You can see an example of the watch
window in Figure 7.4.

Figure 7.4 The watch window.

09 1410 ch07 10/2/01 1:32 PM Page 100

101Attaching to Processes

Tracing
Tracing simply enables you to write out a series of text messages as the program is
executing so that you can see what is happening at any point during the program’s life
cycle.This can be very useful in creating a log of events that can be inspected later to
ensure that the program is operating as you expect in all aspects. Figure 7.5 shows an
output from a Debug.Trace statement in the output window.

Figure 7.5 Tracing and the output window.

Attaching to Processes
At some point you might need to attach to a process running somewhere on the
computer and debug it from within the ASP.NET page.This could be the ASP.NET
process, aspnet_wp.exe, or another running service, or any other program running on
the server.This can be accomplished quite easily.

Under the Debug menu you will find the Processes selection. Clicking this brings
up the dialog box in Figure 7.6.

09 1410 ch07 10/2/01 1:32 PM Page 101

102 Chapter 7 Visual Studio .NET Debugging Environment

Figure 7.6 Attaching to a running process.

By default, you will see only the processes that you have started in some way. If you
click the Show System Processes check box, you have access to everything that is run-
ning on the current machine. Click the process to be debugged, and then click the
Attach button. Now, if that process hits a breakpoint or any other type of debugger
event, that event pops up in the Visual Studio .NET IDE.You can also force the pro-
gram to break by clicking the Break button at the bottom of the window.At any time,
you can stop debugging the process by clicking the Detach button.Terminate kills the
process altogether.

After clicking the Attach button, you are given a choice of what type of debugging
you want to do on the process you’ve selected. Figure 7.7 shows an example of this
dialog box.

Figure 7.7 Choosing the debug type.

09 1410 ch07 10/2/01 1:32 PM Page 102

103Inline Debugging of ASP.NET Pages

If you are attaching to a .NET process written using the Common Language
Runtime (CLR), choose the Common Language Runtime option from the dialog
box. If you’ll be breaking into a process that uses Microsoft Transact SQL language,
check Microsoft T-SQL as your debug type. Native enables you to debug a standard
Win32 application.This enables you to debug a Win32 program at an assembly lan-
guage level. Finally, the Script type gives you the capability to debug standard Visual
BasicScript and JavaScript.This is especially useful for debugging an instance of
Internet Explorer.

Setting It All Up
There really isn’t a whole lot to mention here. It is extremely simple to use the Visual
Studio .NET IDE for debugging ASP.NET pages. In most cases, it will be a plug-
and-play affair.The default debug build of any ASP.NET project will have everything
set up for you to begin. However, even though that probably will be the case, we will
discuss what is absolutely required for the debugging to work, just in case something
goes wrong.

Take a look at the web.config file contained in your project.This is an XML file
that contains specific configuration information for your ASP.NET project. One line
in this file will look similar to the following:

<compilation defaultLanguage=”vb” debug=”true” />

The defaultLanguage parameter will be based on the default language of your
ASP.NET project. But what we are concerned about here is the debug parameter. If
you are running in a debugging environment and want to be able to access the spiffy
features of the Visual Studio .NET IDE, this debug parameter must be set to true, as it
is in the previous line. If it is set to false, none of the features will work.This is what
you want for a release build of your project.

Inline Debugging of ASP.NET Pages
This is so very easy—you’re going to be extremely happy about this. If you’ve ever
debugged a program using Visual Studio 6.0 (Visual Basic,Visual C++, and so on) you
will feel right at home with what you are about to learn about Visual Studio .NET.
Let’s discuss these great features using a sample project mentioned earlier in the
chapter.As usual, both Visual Basic .NET and C# versions of the code will be
provided for you to see.

This sample project will consist of an ASP.NET page and a Visual Basic .NET/C#
component so that you can see how easily the two interact and how they can be
debugged simultaneously.The project itself will simply ask the user for a valid email
address and then send a form letter to that address. Start out by creating the project.
We called ours Chap5Visual Basic for the Visual Basic .NET version and Chap5CS for
the C# version.

09 1410 ch07 10/2/01 1:32 PM Page 103

104 Chapter 7 Visual Studio .NET Debugging Environment

The first thing to do is create the ASP.NET page that the user will see. Listing 7.1
contains the main ASP.NET page that contains the input form on which the user can
enter the email address where the mail will be sent. Here the page name is left as
WebForm1, the default name provided when the project was created.

Listing 7.1 ASP.NET Page for Debugging Example

<%@ Page Language=”vb” AutoEventWireup=”false”

➥Codebehind=”WebForm1.aspx.vb” Inherits=”Chap7VB.WebForm1”%>

<html>

<HEAD>

<title>Email Test Page</title>

</HEAD>

<body MS_POSITIONING=”GridLayout”>

<form id=”Form1” method=”post” runat=”server”>

Please enter the email address to send to:

<input type=”text” id=”txtEmail” runat=”server”

➥NAME=”txtEmail”>

<input type=”submit” id=”btnSubmit” value=”Send Email”

➥runat=”server” NAME=”btnSubmit”>

</form>

</body>

</html>

This page would work in a Visual Basic .NET project.To have it work in a C#
project, change the first line to the following:

<%@ Page language=”c#” Codebehind=”WebForm1.aspx.cs” AutoEventWireup=”false”
➥Inherits=”Chap7CS.WebForm1” %>

This is a very simple page. It consists of two elements: a text box for the email address
and a Submit button to send the form to the server. Now you will create the server–
side code for this project. It will be contained in two parts: First, you will look at the
code-behind file that is associated with this file. Here you will verify that you have a
valid email address. Second, you will create a Visual Basic .NET/C# component that
will actually send the email. Listing 7.2 contains the code-behind file for the C# pro-
ject, and Listing 7.3 contains the code-behind file for the Visual Basic .NET project.

09 1410 ch07 10/2/01 1:32 PM Page 104

105Inline Debugging of ASP.NET Pages

Listing 7.2 Listing for Debugging Example (C#)

using System;

namespace Chap7CS

{

public class WebForm1 : System.Web.UI.Page

{

protected System.Web.UI.HtmlControls.HtmlInputText txtEmail;

protected System.Web.UI.HtmlControls.HtmlInputButton btnSubmit;

public WebForm1()

{

Page.Init += new System.EventHandler(Page_Init);

}

private void Page_Init(object sender, EventArgs e)

{

InitializeComponent();

}

private void InitializeComponent()

{

this.btnSubmit.ServerClick += new

➥System.EventHandler(this.btnSubmit_ServerClick);

}

private void btnSubmit_ServerClick(object sender,

➥System.EventArgs e)

{

if(txtEmail.Value.IndexOf(“@”) == -1 ||

txtEmail.Value.IndexOf(“.”) == -1)

Response.Write(“The supplied email address is not

➥valid.”);

}

}

}

09 1410 ch07 10/2/01 1:32 PM Page 105

106 Chapter 7 Visual Studio .NET Debugging Environment

Listing 7.3 Listing for Debugging Example (Visual Basic .NET)

Public Class WebForm1

Inherits System.Web.UI.Page

Protected WithEvents txtEmail As

➥System.Web.UI.HtmlControls.HtmlInputText

Protected WithEvents btnSubmit As

➥System.Web.UI.HtmlControls.HtmlInputButton

Private Sub btnSubmit_ServerClick(ByVal sender As System.Object, ByVal e

➥As System.EventArgs) Handles btnSubmit.ServerClick

If txtEmail.Value.IndexOf(“@”) = -1 Or _

txtEmail.Value.IndexOf(“.”) = -1 Then

Response.Write(“The supplied email address is not valid.”)

End If

End Sub

End Class

These examples are also extremely simple, but they demonstrate the features of the
Visual Studio .NET IDE quite effectively.

In this example, you are listening to the ServerClick event of the Submit button,
named btnSubmit.When the user clicks the Submit button, this event is fired.At this
point, you can inspect what is in the text box on the form. If it does not contain an @
symbol or a ., it cannot be a valid email address and you then report this back to the
user with a Response.Write of an error message.

Next you will look at how the previously mentioned debugging tools can aid you
in tracking down a problem in this simple page.

Setting a Breakpoint
Let’s start out by setting a breakpoint on the ServerClick event of the Submit button.
This is the btnSubmit_ServerClick function in either piece of code.To set a break-
point, simply move the mouse cursor to the gray left margin in the code editor
window, and click.This drops a red dot into the margin, signifying that a breakpoint
has been set at that specific line. Figure 7.8 shows exactly where to set this breakpoint
and what the margin will look like after clicking.

09 1410 ch07 10/2/01 1:32 PM Page 106

107Inline Debugging of ASP.NET Pages

Figure 7.8 Setting the breakpoint in the example program.

Now go ahead and run the program.When Internet Explorer appears, enter some
gibberish into the text box that does not contain either an @ symbol or a .. Now
click the Submit button.When this occurs, the Visual Studio .NET IDE should pop
up with
the breakpoint line highlighted in yellow.The execution of your program has paused,
and now you can use some of the other debugging features.You will look at the watch
window next.

Watch Window
At the bottom of your screen, you will see a debugging window with some tabs below
it. Click the one labeled Watch 1. If this tab is not available, you will find the same
entry under the Debug menu as part of the Windows suboption. Figure 7.9 shows the
menu entry.

09 1410 ch07 10/2/01 1:32 PM Page 107

108 Chapter 7 Visual Studio .NET Debugging Environment

Figure 7.9 The watch window option under the Debug menu.

The watch window enables you to type in a specific variable name, control name, or
other object and then see what value it contains and what type it is. For now, type in
txtEmail.You will see that you can expand this entry into all the control’s properties
to see what they each contain.To save space, you might want to see only the Value
property—in that case, you could enter txtEmail.Value as your watch name.

With the txtEmail control expanded, you can see that the Value property contains
whatever you entered in the control on the client side.This can be extremely useful
when debugging all types of controls to see what values they contain. It is always use-
ful to start here when debugging almost any problem to make sure that the data isn’t
to blame. For example, you might be chasing after a problem only to find that the
Value property is empty for some reason or that it does not contain the data that you
think it does.

The other thing that you can do with the watch window is change the value of a
variable. If you click the property value in the Value column in the watch window, you
can enter a new value as you see fit.This might be helpful if you want to test a certain
case in your logic that might be difficult to hit. For example, if an error is supposed to
occur if a value equals –1, at this point you could change the value to –1 and continue
execution to make sure that the code path is operating properly.

That’s about it for the watch window.This is a feature that you will use quite a bit
in your debugging. Remember that you can enter any variable or any object into the
window and view any or all of its specific properties.Also note that you can change
the values of any of these properties at any time.

09 1410 ch07 10/2/01 1:32 PM Page 108

109Inline Debugging of ASP.NET Pages

The Command Window
If you have used Visual Basic, this will be a familiar sight.The command window
was called the immediate window in Visual Basic, but its features are identical.This
window enables you to issue commands to debug or evaluate expressions on the fly.

To display the window, either click the Command Window tab located at the
bottom of your screen, or choose Windows, Immediate from the Debug menu at the
top of your screen. Figure 7.10 shows where you can find the option under the
Debug menu.

Figure 7.10 The immediate window option under the Debug menu.

To view the contents of a variable or object, just type its name into the command
window. For example, typing txtEmail.Value while at the breakpoint displays the
contents of the text box upon submission to the server.

Similar to the watch window, you can change the value of variables or object
properties.To change the value of the form text box, you could enter txtEmail.Value
= “newvalue”, which would set the string to “newvalue”.

What makes the command window a bit more exciting than the watch window
is its capability to execute functions. For example, if you want to execute the
ValidateEmail function in your code listing at any time, you could do it right from
the command window: Just click in the window and call the function with the appro-
priate parameter. For example, if you type ValidateEmail(“test@myhost.com”), you
will see that it returns 0. If you type ValidateEmail(“asdfasdf”), it returns –1. So,
you can test any function that you write right here without having the executing pro-
gram call it explicitly—a great debugging aid.

09 1410 ch07 10/2/01 1:32 PM Page 109

110 Chapter 7 Visual Studio .NET Debugging Environment

Tracing
Tracing is a very simple method of debugging problems.Tracing can be used to print
text statements during the execution of your code.This can be used as a log to see
exactly what is happening at any point in your code.As you can see in the previous
examples, in the ServerClick function of the Submit button, you are calling
Debug.WriteLine with the value of the form’s text box.This call spits out the value of
the text box to the debug stream.The easiest place to see the debug stream is in the
output window at the bottom of the Visual Studio .NET IDE.

This window can be displayed by either clicking the Output tab or choosing
Output under the View menu and then choosing Other Windows.This window shows
you all the debug statements that you have inserted into your code, as well as anything
else that gets written to the debug stream by any other components that might be
associated with the running project. Keep this in mind if you see a flood of messages
that you didn’t write into your code.

Execution Control
Before we start talking about the call stack, let’s take a brief journey into the execution
control features of the debugger.These features enable you to control exactly what is
executed in your program—and in what order.They can also be used to trace deeply
into certain portions of the code or skip over them, if that level of detail is unneces-
sary.

All these features can be found under the Debug menu at the top of your screen.
All are also associated with keyboard shortcuts that vary depending on how you have
configured Visual Studio .NET.The keyboard shortcuts are the easiest method of using
these
features because they enable you to move through many lines of code in a very quick
fashion.We recommend learning the keyboard shortcuts and using them while
debugging your own code.

The three options are Step Into, Step Over, and Step Out. Step Into enables you to
step one level deeper into the code at the current point of execution or, at the very
least, move to the next statement. If you are about to call a function in your code,
using Step Into continues execution at the first line of the called function.

Step Over does the opposite of Step Into. If you are about to call a function, using
Step Over at this point does just that—it steps over execution of the function to the
very next line of the function that you are currently executing. Now keep in mind
that this does not mean that it will not execute the function—it just will not allow
you to dig into it. It executes the function and moves on to the next line.This is quite
useful when you know that a function or block of code is working correctly and you
do not want to spend the time hitting every single line.

Step Out enables you to jump out of the current function that you are debugging
and go one level up.Again, similar to the Step Over feature, this does not skip the exe-
cution of the remaining lines of code; they just execute behind your back, and your
debugging cursor moves to the next line in the previous function you were in.

09 1410 ch07 10/2/01 1:32 PM Page 110

111Inline Debugging of Components

So how do you know which function you were previously in? That leads to the
next debugging feature, the call stack.

Call Stack
The call stack shows the current function you are in and all functions that preceded it.
When you call a function from a function from a function from a function, you have a
call stack that is four levels deep, with the current function on the top.You can view
the call stack window by clicking the Call Stack tab at the bottom of your screen or
by choosing Call Stack from the Debug menu under Windows.

Continuing the previous example, stop execution again on the
btnSubmit_ServerClick function and then trace into the ValidateEmail function.
Now you have called a function from a function.Take a look at the call stack window.
The top two levels should show you the ValidateEmail function, followed by the
btnSubmit_ServerClick function.You will also see quite a few other functions that are
called by the ASP.NET system processes.

Now go ahead and double-click the btnSubmit_ServerClick function.A green
highlight appears over the point in the function that you currently are in. In this case,
the call to ValidateEmail is highlighted because this is the exact position that you are
currently at in that function.

This feature can be of use when you are debugging code that might not be all your
own. If you are many levels deep into a function stack, you might need to know
where you came from. By using this, you can trace back to the calling stack and see
exactly who called you and with what information.After you have traced back to the
call stack, you can use the watch window or the command window to inspect the
local variables from the previous functions.This can be handy when you want to find
where certain data values are coming from if they are wrong.

Feature Summary
That about wraps up the baseline features of the Visual Studio .NET IDE. Next you
will look at how to add a C# or Visual Basic .NET component to your project and
debug that simultaneously with your ASP.NET pages.The process is extremely stream-
lined and quite
seamless, as you will soon see.

Inline Debugging of Components
If you tried debugging Visual Basic components within an ASP page in the previous
version of Visual Studio, you will remember that it can be a pain to deal with.You
need the Visual Interdev IDE open for debugging the ASP page, and you need the
separate Visual Basic IDE open to debug the components at the same time.

09 1410 ch07 10/3/01 10:06 AM Page 111

112 Chapter 7 Visual Studio .NET Debugging Environment

The new Visual Studio .NET IDE makes this process remarkably simpler.You can
add the component to your ASP.NET project, and debugging of that component can
be done within the same IDE in sequence with your ASP.NET code. Let’s look at
how this is done.To do this, you will add a component to the previous project that
actually sends out the email to the address provided.

Adding the Component
You will now add the component to the ASP.NET application. Just right-click your
mouse on the project name (Chap5VB or Chap5CS, if you’ve named them what we
called them) and choose Add Component under the Add submenu. Here, choose
either a Visual Basic .NET component class or a C# component class, depending on
which type of project you are currently doing. Name the component Emailer, for lack
of a better name. Figure 7.11 shows the menu option to choose after right-clicking
the project name.

Figure 7.11 Adding a new component to the project.

Now that you have added the component, it needs some code. Listing 7.4 is the C#
version of the emailer, and Listing 7.5 is the Visual Basic .NET version. Reference
whichever one is applicable for your project.

09 1410 ch07 10/3/01 10:06 AM Page 112

113Inline Debugging of Components

Listing 7.4 Code for Emailer Component (C#)

using System.Web.Mail;

namespace Chap7CS

{

public class Emailer : System.ComponentModel.Component

{

private System.ComponentModel.Container components = null;

public Emailer(System.ComponentModel.IContainer container)

{

container.Add(this);

InitializeComponent();

}

public Emailer()

{

InitializeComponent();

}

private void InitializeComponent()

{

components = new System.ComponentModel.Container();

}

public void SendFormEmail(string toAddr)

{

MailMessage mm = new MailMessage();

mm.To = toAddr;

mm.From = “admin@domain.com”;

mm.Body = “This is a test message. Exciting, isn’t it?”;

mm.Subject = “Chapter 7 Test Message”;

SmtpMail.SmtpServer = “smtp.domain.com”;

SmtpMail.Send(mm);

}

}

}

09 1410 ch07 10/2/01 1:32 PM Page 113

114 Chapter 7 Visual Studio .NET Debugging Environment

Listing 7.5 Code for Emailer Component (Visual Basic .NET)

Imports System.Web.Mail

Public Class Emailer

Inherits System.ComponentModel.Component

Public Sub New(ByVal Container As System.ComponentModel.IContainer)

MyClass.New()

Container.Add(Me)

End Sub

Public Sub New()

MyBase.New()

InitializeComponent()

End Sub

Private components As System.ComponentModel.Container

<System.Diagnostics.DebuggerStepThrough()> Private Sub

➥InitializeComponent()

components = New System.ComponentModel.Container()

End Sub

Public Sub SendFormEmail(ByVal toAddr As String)

Dim mm As MailMessage = New MailMessage()

mm.To = toAddr

mm.From = “admin@domain.com”

mm.Body = “This is a test message. Exciting, isn’t it?”

mm.Subject = “Chapter 7 Test Message”

SmtpMail.SmtpServer = “smtp.domain.com”

SmtpMail.Send(mm)

End Sub

End Class

The code here is pretty simple. Each version contains a function called SendFormEmail
that takes the email address to send to as a parameter.Then you use the MailMessage
and SmtpMail objects from the System.Web.Mail assembly to form the email message

09 1410 ch07 10/2/01 1:32 PM Page 114

115Inline Debugging of Components

and send it out using a valid SMTP server.To get this to work in your environment,
be sure to replace the SmtpMail.SmtpServer value with the SMTP server of your local
network.

You will need to modify your btnSubmit_ServerClick function to create an
instance of this component and call the SendFormEmail method to make it happen.
Listing 7.6 gives the code for the modified btnSubmit_ServerClick in C#, and Listing
7.7 gives the same code in Visual Basic .NET.

Listing 7.6 Modified Code for btnSubmit_ServerClick (C#)

private void btnSubmit_ServerClick(object sender, System.EventArgs e)

{

Emailer em = new Emailer();

Debug.WriteLine(“User entered: “ + txtEmail.Value);

if(ValidateEmail(txtEmail.Value) == -1)

Response.Write(“The supplied email address is not valid.”);

else

{

em.SendFormEmail(txtEmail.Value);

Response.Write(“The email was sent successfully.”);

}

}

Listing 7.7 Modified Code for btnSubmit_ServerClick (Visual Basic .NET)

Private Sub btnSubmit_ServerClick(ByVal sender As System.Object, ByVal e

➥As System.EventArgs) Handles btnSubmit.ServerClick

Dim em As Emailer = New Emailer()

If txtEmail.Value.IndexOf(“@”) = -1 Or _

txtEmail.Value.IndexOf(“.”) = -1 Then

Response.Write(“The supplied email address is not valid.”)

Else

em.SendFormEmail(txtEmail.Value)

Response.Write(“The email was sent successfully.”)

End If

End Sub

09 1410 ch07 10/2/01 1:32 PM Page 115

116 Chapter 7 Visual Studio .NET Debugging Environment

Debugging the Component
Now we get to the cool part.You can debug this component while you debug the
ASP.NET page and its respective code-behind file.To prove this, set a breakpoint on
the btnSubmit_ServerClick in the code-behind file and then start the program.

When Internet Explorer appears, enter a valid email address in the appropriate
box, and click the Submit button. Immediately, the breakpoint on the
btnSubmit_ServerClick function should fire and the program is paused on
that line. Now step to the point where the current function is about to call the
Emailer.SendFormEmail function.At this position, do a Step Into.You will see that the
source code to the Emailer component appears with the code pointer at the top of
the SendFormEmail function.

From here, you can use all the techniques mentioned earlier to inspect variables, set
trace statements, modify variable values, and so on. It couldn’t be easier! Say goodbye
to multiple programs being open simultaneously and other configuration issues that
make your life difficult.

Remote Debugging
Every time we have a discussion with someone regarding debugging ASP pages, we
always ask if that person has ever tried to set up ASP debugging on the local machine.
The response usually is “yes.”We then follow up with the question of if that person
has ever gotten it to work.The number who answer “yes” to that question is much
lower. Finally, we ask if that person has ever gotten ASP debugging to work remotely.
We have yet to find someone who has gotten it to work properly and consistently.

With ASP.NET and Visual Studio .NET, that all changes. It finally works.And it
couldn’t possibly be easier to install, configure, and use.

Installation
When you install Visual Studio .NET on your server, all you need to do is install both
Remote Debugging options listed under the Server Components option during the
install
procedure.

Setup
To configure remote debugging, the only thing you need to do is place your user
account into the newly created Debugger Users group both on the client machine
and on the server machine.This can be done using the standard user configuration
tools that are part of whichever Windows operating system you are using.

09 1410 ch07 10/2/01 1:32 PM Page 116

117Summary

Using It
This is the easiest part of all.To use the new remote debugging features, simply create
a project on your client computer that points to the project running on the server.
This can be done by choosing Open Project from the Web from the File menu. Just
type in the name of the server where the project resides, and you will be presented
with a list of projects currently residing on that server. Choose the appropriate one.

If you are not connecting to an existing project, you can create a brand new project
on the server, and remote debugging will still take place.

Next, set a breakpoint on the line where you want to stop, or simply start the
application running. It will connect to the server and bring up an Internet Explorer
window, as usual.The big difference here is that the application is running entirely on
the server.When you hit your breakpoint, you are hitting it on the server, in the
server’s memory space.The same goes for components and anything else that you
might be debugging. Everything that can be debugged in Visual Studio .NET locally
can now be debugged remotely on any server where the remote debugging options
have been installed.

And that’s it! It’s almost completely automatic. I wish it was this easy in Visual
Studio 6.0—it’s a huge time saver and a powerful tool.

Summary
In this chapter, you looked at many of the debugging features found in the new Visual
Studio .NET IDE.You should now be familiar with things such as the watch window,
the command window, breakpoints, variable inspection, and variable modification as
applied both to debugging ASP.NET pages and Visual Basic .NET and C# compo-
nents.With these concepts in mind, you are prepared to start debugging your own
projects, and you are prepared for what is explained in the remainder of this book.

In the next chapter, we discuss how you can use the Windows NT and Windows
2000 Event Log to aid in tracking down troublesome code in your projects.

09 1410 ch07 10/2/01 1:32 PM Page 117

09 1410 ch07 10/2/01 1:32 PM Page 118

