
M A N A G I N G A W E E K L Y

P U B L I C A T I O N

“For a list of all the ways technology has

failed to improve the quality of life,

please press three.”

— A L I C E K A H N

In Chapter 2, “Updating a Daily News

Site,” you put together a daily newspaper.

You learned how to fashion columns and

create readable style. But more magic is

needed to manage the design and tech-

nology of publications—especially large

publications and information sites. In this

chapter, you explore some of these

issues through WebReview.com, an

award-winning resource site for web

developers and designers.

48

Project 2

Managing a Weekly
Publication
By Molly E. Holzschlag

PROJECT SNAPSHOT
The problem: Managing larger, regularly updated,

content-rich sites.

This chapter is for anyone who is looking for solutions to

manage navigation, presentation, and effective markup of

large, content-rich sites.

TECHNICAL SPECS
The following are the technical specifications that you

need to manage a weekly publication:

n Markup used—XHTML 1.0 (You can also use

HTML 4 if you prefer.)

n Document type definition (DTD) used—Transitional.

49

From a markup perspective, I used XHTML 1.0 transitional when I developed the

site. My rationale for doing so was two-fold. First, a site that’s predominantly made

up of text conceivably can be simplified to ensure crisp separation of document

formatting and presentation, even using complicated tables to ensure the layout

remains intact across platforms and browsers. The rationale was a good one, but

during the production process, I learned my choice was compromised by the

amount of ads I had to design into the site. The more complex a layout becomes,

the more difficult it becomes to separate document formatting from presentation.

The second reason I selected XHTML 1.0 was that I wanted to make a statement

that showed that XML—in the form of XHTML—could easily be used on the

web. I learned some interesting lessons from making the choice to use XHTML,

especially in terms of JavaScript, as you see later in this chapter.

Because the exercises in this chapter are comparative, you can choose to use HTML

4 or XHTML 1.0. My only recommendation is that you stick to the transitional

DTD to ensure utmost f lexibility in a design that’s still primarily accessed through

the web. If you’re shifting toward a publication that appeals to users accessing with

wireless and other devices, consider moving to strict markup instead.

Here are the additional technologies or skills that you need:

n Familiarity with HTML.

n Familiarity with a text editor, such as Notepad, SimpleText, or a favorite

HTML editor.

Browser considerations: Cross-browser compatible site.

You must use an external style sheet and an embedded style sheet.

Here’s how you should structure your site. In the case of WebReview.com, the

site uses a hierarchical structure. Top-level pages are used daily. The second tier

contains information by year, and the third level contains the individual issues and

their dependents by date.

How a real-world site is structured will be determined greatly by individual needs.

So if you have a publication site that is updated monthly, you’ll have different

archival management needs. What’s more, you might already be working on a site

that has legacy problems with structure and have to make do. See the sidebar,

“Structure Inspiration” for some ideas on how to solve structure problems.

HOW IT WORKS
It’s just coincidental that I was working on this book when WebReview.com was

being restructured. This restructuring meant having to take a hard look at markup

and structure. Some of the detailed problems I needed to tackle included the follow-

ing:

n Make the most of available screen space—The old site design was a

fixed-width table, centered on the page. Three columns were then within

that table. The look was a bit old-fashioned and cramped. The solution?

Use dynamic tables.

n Solve problems with site structure and navigation—WebReview.com

was created in 1995, and as it grew, it became like a ramshackle house—rooms

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N

STRUCTURE INSPIRATION

A primary concern with any regularly published, content-rich site is how

to effectively manage a site’s infrastructure. There’s no definite answer

here—much depends on your publication’s specific needs. However, it’s a

good idea to grab a pen and paper, a great big white board or charting soft-

ware, such as Visio, and work out the site’s physical structure before you

attempt to write any of the markup.

A strong physical site structure helps ensure that your markup is more con-

sistent. Where things such as directories for images, media, and style sheets,

archived information, and so on, are placed will immediately be ref lected in

the way you write your internal links. This, in turn, ref lects on the markup

and the speed at which you can troubleshoot problematic documents.

Unfortunately, many of you will walk into situations that you can’t change;

pre-existing problems must be dealt with as best as possible. Streamline

wherever you can. Cleaner markup that relies on style sheets makes so

much sense when it’s put into this perspective. Imagine how easy it would

be to update a site simply by changing its style sheet and not having to

rebuild it from the ground up? Now that’s practical.

50

upon rooms with some rooms staring to fall down.

The site really needed a navigation and structure

update. To solve this problem, I reorganized the site

structure and made the navigation global. I also put the

navigation into Server Side Includes (SSIs).

n Manage consistency from page to page more

effectively—Headers were inconsistent in style and

color; sometimes, graphics were used instead of text

headers; and navigation was incredibly problematic due

to the growth of sections. No consistent navigation

existed on the site. Style sheets came to the rescue in

terms of achieving consistency.

n Incorporate advertisements effectively into the

interface and solve scripting problems—A major

challenge with interface design on a commercial site is

how to place numerous ads on a page and still keep the

content in focus. What’s more, ad delivery often

comes from external vendors who serve up their own

brand of markup. Correcting problem markup and

escaping characters properly when using XHTML

helped to successfully address these problems.

Managing issues such as these is standard fare for the pro-

fessional web designer these days. You must analyze an

existing site and make complex decisions that will be

matched by equally complex technology solutions.

MANAGING LAYOUT
For this example, you’ll use a mixed fixed width and

dynamic table layout in XHTML 1.0 transitional that

effectively manages navigation, content, and graphics

Use a mixed fixed width and
dynamic table layout to man-
age navigation, content, and
multiple ads. The
WebReview
.com home page juggles

51

along with a total of seven ads on the page.

The virtues of the fixed and dynamic layout combinations

are numerous, including cross-resolution compatibility,

visual control over specific areas of the document, and

dynamic f low of specific areas.

Download the code samples related to this chapter from

this book’s web site and follow along. You will want to

have the master_document.html and the table_tem-

plate

.html documents available.

To achieve a combination of fixed and dynamic layout

tables, follow these steps:

1 Open table_template.html in your editor.

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N

TABLE CELLS AND SINGLE-PIXEL GIFS

Fixed-table cells require either a graphic of the cell’s exact width (such as a header), or a single-

pixel GIF shim set to the width of the table to ensure the cell does not collapse.

Graphic shims have been a long-debated issue. The idea of a graphic shim goes right to the heart of

the argument that says document formatting and presentation should be separated. If browsers con-

form to current CSS2 standards, and if all people had browsers that conformed, we could toss the

idea of a shim out the window and rely on style-sheet positioning to control presentation instead.

Until then, the shim is the only invisible method to ensure that a fixed cell does not collapse.

<table border=”0” width=”100%” cellpadding=”0”

<table>
<tr>

<td>

</td>

<td>

</td>

<td>

</td>

</tr>

</table>

It should read

2 In the table tag itself, insert the following border,

52

width, and padding attributes:

The width is dynamic, set to 100 percent. This

ensures that the entire document dynamically adjusts

to the available screen space. Setting the defaults of

padding and spacing to 0 eliminates any problems

with spliced graphics within the table by ensuring

that no unwanted gaps appear.

3 In the first table cell, add the following attributes:

You’ll notice that this cell has a numeric value, like

its width attribute. This fixes the size.

4 In the second table cell, add the following attributes:

In this case, the cell is dynamic—its content stretches

to the available resolution. Notice that the value is

100 percent. This means that the content portions of

the site will be dynamic to the most-available space.

5 In the third table cell, add the following attributes:

This cell is fixed. Again, a graphic or shim set to

the same width of the cell will be helpful to ensure

<td
width=”200”>

<td
width=”100%”>

<td

53

structure of WebReview.com’s home page.

Tip: Here’s a trick that many web designers use to
assist them during the development of page layouts: Set

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N
The WebReview.com
home page with table borders
on. This way, you can see
each individual cell, the entire
table structure, and how
the various text and image
elements fit into each cell.

table borders to a value of 1. This way, the grid is clearly visible and adjustments can
be easily made. Switch the borders back to a value of 0 to see the end result.

ADDING LOOK AND FEEL BY USING STYLE
With a developed structure in place, you can now move on to creating a look and feel

against collapsing cells.

6 Insert this table into an HTML or XHMTL docu-

ment template of your own and add content to see

how it works.

You can also modify which cells are fixed and which

are dynamic—it just depends on on your needs. If

you examine master_document.html, you see that

the main table has additional cells. Play around with

the number and type of cells and see what might

work the best magic for you. In the figure, I turned

on the table borders so you can see the table

54

for your site. At WebReview.com, several choices were

made regarding the global style for all documents. I want-

ed WebReview.com to have good onscreen readability

(characteristics for good onscreen readability are described

in Chapter 2).

The bulk of the site uses high contrast: black text on a

white background. I also chose sans-serif fonts. I made the

choice to use points when sizing fonts (a controversial

choice, but I prefer the fixed rather than dynamic results),

and I added a variety of features needed for the color

palette, link behaviors, and specialty text, such as block

quotes and code samples.

To create a style sheet that’s suitable for highly readable

documents, follow these steps:

p {
font-size : 11pt;
font-family : verdana, helvetica, arial, sans-serif;
font-weight : normal;
font-style : normal;
color : #000000;
line-height : 12pt;
text-decoration : none;

}

LISTING 3.1 HEADER AND LINK SETTINGS FOR WEBREVIEW.COM

h1 {
font-size : 15pt;
font-family : verdana, helvetica, arial, sans-serif;
font-weight : bold;
font-style : normal;
color : #000000;
text-decoration : none;

}

1 Download and open the master_style.css docu-

ment to see WebReview.com’s sheet for comparison.

2 Begin a new, blank document in your text editor;

continues

55

name it style.css.

3 In the document, add the following:

4 Add the header and link information.

Listing 3.1 shows the header and link information for WebReview.com.

h2 {
font-size : 14pt;
font-family : verdana, helvetica, arial, sans-serif;
font-weight : bold;
font-style : normal;
color : #000000;
text-decoration : none;

}

h3 {
font-size : 13pt;
font-family : verdana, helvetica, arial, sans-serif;
font-weight : bold;
font-style : normal;
color : #000000;
text-decoration : none;

}

h4 {
font-size : 11pt;
font-family : verdana, helvetica, arial, sans-serif;

font-weight : bold;
font-style : normal;
color : #000000;
line-height : 11pt;
text-decoration : none;

}

a {
color: #336699;
text-decoration : none;

}

a:visited {
color: #336699;
text-decoration : none;

}

a:active {
color: #CC9933;
text-decoration : none;

}

a:hover {
color : #FF9933;

}

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N
continued

56

5 To ensure that your list items pick up style in as

many browsers as possible, be sure to apply the style

to the list types, as follows:

Caution: Netscape 4.x doesn’t properly read styles
assigned to the list item tag (li). So it’s important to
apply those styles to the list type (ul, ol, or dl),
because Netscape 4.x browsers will then apply the
styles more consistently.

ul {
font-size : 11pt;
font-family : verdana, helvetica, arial, sans-serif;
font-weight : normal;
font-style : normal;
color : #000000;
text-decoration : none;

}

ol {
font-size : 11pt;
font-family : verdana, helvetica, arial, sans-serif;
font-weight : normal;
font-style : normal;
color : #000000;
text-decoration : none;

}

dl {
font-size : 11pt;
font-family : verdana, helvetica, arial, sans-serif;
font-weight : normal;
font-style : normal;
color : #660000;
line-height : 12pt;
text-decoration : none;

}

57

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N

pre {
font-size: 9pt;
font-family: courier, courier new,
➥ monospace;
font-weight: normal;
font-style: normal;
color: #660000;
line-height: 12pt;
text-decoration: none;

}

code {
font-size: 9pt;
font-family: courier, courier new,
➥ monospace;
font-weight: normal;
font-style: normal;
color: #660000;
line-height: 12pt;
text-decoration: none;

}

blockquote {
font-size : 11pt;
font-family : verdana, helvetica,
➥ arial, sans-serif;
font-weight : normal;
font-style : normal;
color : #000000;
line-height : 12pt;
text-decoration : none;

}

Within the browser you’ll note
that code and preformatted
text styles now appear in
monospace font.

6 To add inline code, preformatted text, and block

quote text, use the following code:

Remember that any time you require special text

features, you can add style rules as needed. The

figure shows how preformatted text (used for a

number of reasons in HTML and XHTML, but

here for denoting code) is now styled on any page

linking to this sheet.

code style

pre style

58

7 Save the file. Link any documents you’d like to have

the style sheet inf luence by adding the following

markup to the head section of that document:

Tip: You’ll want to adjust the href attribute to the proper
location within your own directories. When I have only
one or two style sheets for a web site, I tend to put them
on the top level. When I have more than two or three
style sheets, I keep them in a separate style directory.

Tip: To see if your style passes muster, use the W3C’s
CSS Validator service, available at jigsaw.w3.org/
css-validator/.

<link href=”style.css” type=”text/css” rel=”stylesheet” />

HEADERS AND LINKS, OH MY!

Brief ly mentioned in Chapter 2, there is an historical basis for why head-

ers in HTML are formulated the way that they are. In publishing, the

need to designate top-level content from supporting subjects is impor-

tant. Look, for example, at this chapter. It uses a system of headers that

denote this process. If a topic is primary, it received a certain type of

header, with specific styles attached. If it is secondary, that header is likely

to be smaller and differently styled, and so on.

As you know, h1 headers, by default, will be larger than an h6 header. It’s

my recommendation that you use headers consistent with the use that was

originally intended for them. h1 headers should be larger and perhaps

bolder than any lower-level headers you use. You can choose different col-

ors for header levels if you like; it just depends on the aesthetic that you’re

trying to achieve. What you do not want to do is randomly assign styles to

header levels. If you do this, you won’t achieve consistent results.

When it comes to links, no hard and fast rules exist. In fact, there’s some

debate as to the appropriateness of coloring links at all and simply allow-

ing them to remain default colors—blue for standard, purple for visited,

and so forth. This argument is based on ideas set forth by various usabili-

ty specialists, who feel that the consistency across all sites achieved by this

is a benefit.

I don’t agree. As a designer, matching link colors to the esthetic of

your design is important. I will say, however, that keeping your link

colors consistent throughout your site is imperative for a professional-

looking site.

59

2 In the head portion of the document, insert the

opening and closing style tags:

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N

CONTROLLING TABLE STYLE
In certain instances, such as when information must be

accessible through a visible grid system, WebReview.com

uses tables for the display of information. In these

instances, the requirements for detailed style become nec-

essary. For example, embedded style is an excellent style

method choice when you have only a few pages that

require the particular style applied to them.

To embed a style sheet, follow these steps:

1 Open an HTML or XHTML document. You can

use master_document.html if you like.

Use specialty tables, such as these on WebReview.com, when you need detailed style.

<style type=”text/css”>

</style>

td.bighead {
vertical-align: top;
background-color: #666699;
font-family: verdana, helvetica, arial, sans-serif;
font-size: 1em;
color: #FFFFFF;

continues

3 Insert the style rules:

60

td.head {
border-color: #333366;
border-style: solid;
vertical-align: top;
background-color: #666699;
font-family: verdana, helvetica, arial, sans-serif;
font-size: .8em;
color: #FFFFFF;

}

td.side {
border-color: #333366;
border-style: solid;
vertical-align: top;
text-align: center;
background-color: #DDDDF0;
font-family: verdana, helvetica, arial, sans-serif;
font-size: .8em;
color: #000000;

}

td.yes {
vertical-align: top;
background-color: #ff9900;
font-family: verdana, helvetica, arial, sans-serif;
font-size: .8em;
color: #000000;

}

td.no {
vertical-align: top;
background-color: #ffffcc;
font-family: verdana, helvetica, arial, sans-serif;
font-size: .8em;
color: #000000;

}

td.part {
vertical-align: top;
background-color: #ffcc33;
font-family: verdana, helvetica, arial, sans-serif;
font-size: .8em;
color: #000000;

}

td.cont {

border-color: #333366;

border-style: solid;

vertical-align: top;

background-color: #ffffff;

font-family: verdana, helvetica, arial, sans-serif;

font-size: .8em;

color: #000000;
}

continued

Note how this sample controls table style. You can

have as many style rules as you like. Just be sure not

to overburden the document. It’s helpful to create a

consistent formatting style for your Cascading Style

Sheets (CSS). Other techniques, such as grouping

(which is discussed in Chapter 1 “About Web

Markup: XML, HTML, XHTML,” can also be

used to streamline your documents.

Tip: If the style rules become too long, you might
consider creating an external style sheet.

61

CSS PRINTING FEATURES
Style sheets offer you the ability to hide certain portions of

a page. This, in turn, makes it easy to be more printer-

friendly—especially in instances like WebReview.com,

which uses dynamic, rather than fixed, tables.

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N
Dynamic tables can pose a
printing problem.

The style sheet guide at WebReview.com—written by the

World Wide Web Consortium (W3C) style sheet working group

member Eric Meyer—uses the display property along with

classes to ensure that certain parts of the page won’t print.

To recreate this feature, follow these steps:

1 Open an existing HTML or XHTML document

along with the print_style.css document found on

the web site.

Note: For more information on class and grouping, see
Chapter 1.

Use the display property
to hide some items for eas-
ier printing.

62

2 In the print_style.css document, note the class

selectors for elements that are to be prevented from

printing:

3 Add the class attribute to the tags in question.

Here’s a sample from the Style Guide at

WebReview.com:

4 Choose to embed or link externally to the file and

enter the appropriate code.

I choose to link externally, so I entered the following

into the head portion of my HTML document:

Caution: The display property is not supported by any
4.0 versions or below of Netscape or Internet Explorer.
In this case, you won’t be able to print out the printer-
friendly version of the page, but the page will print. The
display property is supported by Internet Explorer 5.x
and higher on Windows and Macintosh, and Netscape
6.x for Windows and Mac. It is also supported by Opera
4.x and 5.x, and many versions of Mozilla.

table.top-ads, table.bottom-ads, table.footer, td.left-nav *,
td.right-ads *, p.style-nav {display: none;}

<td width=”125” valign=”top” align=”right” class=”right-ads”>

<link href=”printout.css” type=”text/css” rel=”stylesheet”

MANAGING NAVIGATION AND ADS WITH
SERVER-SIDE INCLUDES
Consistent navigation is a key component to making your content accessible. Weighing the

various options, I felt that, on a site this large, it might be helpful to pull that navigation out

into a SSI. This way, any changes to that navigation can be made to just one file instead of the

thousands files that reside on the site.

WebReview.com sits on an Apache server using OpenBSD as its OS. On this setup, it’s

possible to use SSIs to address multiple concerns. With an SSI, you can insert an include

statement that asks the server to supply a snippet of code in place of the include when the

page is served. It’s an awesome technology when you’re trying to manage large sites.

63

In the case of WebReview.com, SSIs helped me find solutions, such as navigation con-

sistency, easy update access (the navigation SSI is one file and changes made to it apply

to the entire site), and a means to separate the advertising markup from our own

markup. The ad markup requires regular updating, so it makes sense to use SSIs.

Of course, different servers use different include methods. The one WebReview.com

uses is fairly common. You can check with your hosting service for details. Otherwise,

the following method is fairly general.

To view the include file, simply open it in an editor.

To better understand an SSI:

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N

Viewing the contents of the
include file in an editor.

1 Open master_document.html and find the navi-

gation section, under the begin left navigation

comment tag.

It should begin with the following:

<!-- begin left navigation -->

<font face=”verdana, helvetica, arial, sans-serif”
➥ size=”2”>SEARCH
<form method=”get” action=”/cgi-bin/atomz”>

<input type=”text” name=”q” size=”8” value=”” /> <input
➥ type=”submit”
value=”go!” />

<font face=”verdana, helvetica, arial, sans-serif” size=”-
➥ 2”>search sponsored by

<a href=”/cgi-
bin/tracker?SRC=wt_atomz&URL=http://www.atomz.com
/go/

continues

64

2 Compare this to the file master_include.inc.

Notice that the navigation section and the include

file contain the exact same markup, including por-

tions of the table that’s necessary to make the include

fit accordingly into the main document, such as the

following:

All the navigation code has been removed from the

originating file, and replaced with the include state-

ment, which you see how to do now.

3 Open master_include.shtml, and note the include

statement:

This document has the include statements that you’ll

create and use on your site. The server will then

input the markup automatically. When you call up

the page and view source, you’ll notice that the

source displays completely. You don’t see the include

statements because the server already processed the

document.

</form>
<font face=”verdana, helvetica, arial, sans-serif”
➥ size=”2”>INSIDE

 Current Issue

 Columns

 Offline

<tr>
<td width=”160” valign=”top” align=”left”>

<!-- #include virtual=’/includes/nav.inc’ -->

Note: Although SSIs are familiar to some readers, others haven’t had the
opportunity to explore them. It’s an old, standard practice that’s extremely
efficient. As you can see, we were able to create one in a few steps. Yet,
the way they work adds much power to the developer by controlling numer-
ous pages with a single file—similar to a style sheet. The main challenge for
those readers who want to try out SSIs is this: Be sure that you find out
from your server administrator how they are properly achieved on the par-
ticular server that you are using. Sometimes, this information is available on
your ISP’s web site. In some cases, you unfortunately might not have access
to include SSIs at all.

continued

65

MANAGING JAVASCRIPT IN AN XHTML SITE
Perhaps the most frustrating thing about keeping the XHTML 1.0 documents on

WebReview.com clean came about when the advertising code was delivered. The ad

code is created by an outside source, and like so many professional companies, stan-

dards aren’t an issue. The HTML they generate doesn’t conform to any particular

DTD, and they use a combination of Iframes and JavaScript to deliver the ads.

Listing 3.2 shows the markup the ad folk submitted to me.

Taking a quick look at this markup, you can already tell that it doesn’t conform to the

more rigid rules derived from XML and found in XHTML (See Chapter 1).

Furthermore, when you use recommended markup, such as XHTML 1.0 or HTML 4,

it creates some concerns. In this case, the problems are two-fold. First, the introduc-

tion of any proprietary or ill-used tag or attribute causes the document to be invalid

(although it will still likely operate). Second, the introduction of the inline JavaScript

that hasn’t been escaped also causes the page to be invalid.

When you use JavaScript with XHTML, it’s ideal if you can put your JavaScript into a

separate document. This only works with scripts that would normally be embedded,

however. (Inline scripting is another story.)

In the case of inline scripts, you have to escape special characters in order for the docu-

ment to validate. The peskiest of these characters is the ampersand (&), which is used

frequently in JavaScript. So you’ll need to escape it whenever possible.

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N

LISTING 3.2 MARKUP FROM AN EXTERNAL SOURCE

<IFRAME WIDTH=120 HEIGHT=60 MARGINWIDTH=0
MARGINHEIGHT=0 ➥ HSPACE=0 VSPACE=0
FRAMEBORDER=0 SCROLLING=no BORDERCOLOR=#000000
➥ SRC=”http://newads.cmpnet.com/html.ng/
site=webreview
&pagepos=topleftbutton”>
<SCRIPT LANGUAGE=”JavaScript”
SRC=”http://newads.cmpnet.com/
js.ng/Params.richmedia=yes
&site=webreview
&pagepos=topleftbutton”>
</SCRIPT>
</IFRAME>

To escape character entities in JavaScript by hand, follow

these steps:

1 Open master_script.html, which says the following:

<iframe width=”120” height=”60” marginwidth=”0”
➥ marginheight=”0”
frameborder=”0” scrolling=”no”
src=”http://newads.cmpnet.com/html.ng/site=webreview
&pagepos=topleftbutton”>
<script type=”text/javascript” language=”JavaScript”
src=”http://newads.cmpnet.com/js.ng/Params.richmedia=yes
&site=webreview
&pagepos=topleftbutton”>

</script>

66

2 Open master_script_escaped.html, which con-

tains the following: <iframe width=”120” height=”60” marginwidth=”0”
marginheight=”0” frameborder=”0” scrolling=”no”
src=”http://newads.cmpnet.com/html.ng/site=webtechniques&am
p;
➥ pagepos=topleftbutton”>
<script type=”text/javascript” language=”JavaScript”
src=”http://newads.cmpnet.com/js.ng/Params.richmedia=yes&
;
➥ site=webtechniques&pagepos=topleftbutton”>

3 Manually escape the attributes or use HTML Tidy to

escape the character entities.

HTML Tidy is a faster and happier method, so I use

the Tidy plug-in to HTML-Kit from Chami. The

figure shows the conversion of the

master_script.html to an escaped version.

Note: HTML Tidy is an excellent tool to test, repair,
and convert files. Check it out at www.w3.org/.
HTML-Kit can be found at www.chami.com/.

Convert the document by
using the HTML Tidy plug-in
in HTML-Kit from Chami.

MORE MAGIC
Of course, you might want to make some practical changes to the exercises in this

project to incorporate your own style—or to expand your own skill set.

Table Manners
Although I recommend dynamic, or a combination of fixed and dynamic, pages for

most of today’s contemporary web designs, many people use fixed designs. This is

especially true for designers who want tight control out of their graphical layouts.

67

Here are some tips for keeping fixed tables under control:

n Set the table tag width to a pixel width that’s appropriate for your

audience—At the time of this writing, the most widespread resolution is 800 ×

600, with a substantially growing number of individuals using higher resolutions.

n Ensure that, in the table tag you set, the cell spacing and padding

attributes to a 0 value —This helps avoid gapping between table-cell content.

n Do your math—Each table cell must have a pixel width that matches its con-

tents appropriately and adds up to the total width found in the table itself.

n Put the closing </td> table cells on the same line as the table-cell

contents—This helps avoid gapping.

n Place fixed-width layout tables in the center of the page—This place-

ment helps equalize any white space and avoid “left-heavy” pages.

Following these simple rules helps ensure that your tables are strongly built and

attractively displayed to your site visitors.

Style Source
Searching for some style resources to help you learn to use style effectively?

Try these:

n www.w3.org/Style/CSS/—The W3C style sheets home page.

n style.webreview.com/—WebReview.com Style Guide by Eric Meyer is a

comprehensive resource that includes browser support comparison charts

and style features.

n www.meyerweb.com/eric/css/references/css1ref.html—Eric Meyer’s

CSS1 quick-find W3C property reference for CSS1.

n www.meyerweb.com/eric/css/references/css2ref.html—CSS2 quick-find

W3C property reference.

These style resources are considered the most authoritative available. Get familiar

with them—you’ll be glad that you did.

Server-Side Magic
One important way to help in the ever-present need to keep markup clean is to

shift some responsibilities to the server. You saw how this can be done using SSIs.

Languages, such as Java, Perl and PHP, and applications, such as ColdFusion,

Active Server Pages, and .NET, can work to your benefit by removing certain

activities from the client.

A prime example of this is an alternative print method to the CSS2 print method.

By using any of these applications (Perl is an extremely popular choice), you can

create scripts that enable print processing of pages without having to rely on the

HTML layout or CSS markup.

M
A

N
A

G
I

N
G

A

W

E
E

K
L

Y

P
U

B
L

I
C

A
T

I
O

N

