Essential XSLT

WELCOME TO THE WORLD OF EXTENSIBLE STYLESHEET Language
Transformations, XSLT. This book is your guided tour to that world, which

is large and expanding in unpredictable ways every minute. In this book,
we’re going to make that world your world. There’s a lot of territory to cover,
because these days XSLT is getting into the most amazing places, and in the
most amazing ways. And you’re going to see all of it at work in this book.

XSLT is all about handling and formatting the contents of XML docu-
ments (the companion volume to this book is Inside XML, New Riders,
2000). XML has become a very hot topic, and now it’s XSLT’s turn. XML
enables you to structure the data in documents, and XSLT enables you to
work with the contents of XML documents—manipulating the content and
creating other documents, such as when you sort an XML employee records
database or store that data in an HTML document, as well as format that
data in a detailed way.

You can work with the contents of XML documents by writing your
own programs that interface to XML parser applications, but that involves
writing your own code. With XSLT, on the other hand, you can perform the
same kinds of tasks, and there’s no programming required. Rather than write
your own Java,Visual Basic, or C++ to handle the contents of XML docu-
ments, you just use XSLT to specify what you want to do, and an XSLT
processor does the rest. That’s what XSLT is all about, and it’s become the
next big thing in the XML world.

2 Chapter 1 Essential XSLT

XSL = XSLT + XSL-FO

XSLT itself is actually part of a larger specification, Extensible Stylesheet
Language, or XSL. XSL is all about specifying the exact format, down to the
millimeter, of documents. The formatting part of XSL, which is a far larger
specification than XSLT is based on special formatting objects, and this part
of XSL is often called XSL-FO (or XSL:FO, or XSLFQO). XSL-FO is an
involved topic, because styling your documents with formatting objects can
be an intricate process. In fact, XSLT was originally added to XSL to make
it easier to transform XML documents into documents that are based on
XSL-FO formatting objects.

This book is all about XSLT, but it also provides an introduction to XSL-
FO, including how to use XSLT to transform documents to XSL-FO form,;
after all, XSLT was first introduced to make working with XSL-FO easier.
To get started, this chapter examines both XSLT and XSL-FO in overview.

A Little Background

XSL itself is a creation of the World Wide Web Consortium (W3C,
www.w3.org), a coalition of groups originally founded by Tim Berners-Lee.
The W3C is the body that releases the specifications, such as those for XSL,
that are used in this book. They make XML and XSL what they are.

W3C and Style Languages
You can read about the history of W3C's work with style languages at www.w3.org/Style/History. It's inter-
esting to see how much work has gone on—and how much style languages have changed over the years.

The W3C originally developed the grandfather of XML, SGML (Standard
Generalized Markup Language), in the 1980s, but it was too complex to find
much use, and in fact, XML (like HTML) is a simplified version of SGML.
The W3C also created a style language called DSSSL (for Document Style
Semantics and Specification Language) for use with SGML, and in the same
way that XML was derived from SGML, XSL is based on the original
DSSSL. As the W3C says: “The model used by XSL for rendering documents
on the screen builds upon many years of work on a complex ISO-standard
style language called the Document Style Semantics and Specification
Language (DSSSL).”

However, the original part of XSL—that is, XSL-FO—has not proven
easy enough to find widespread use yet either, so XSLT was introduced to
make it easier to convert XML documents to XSL-FO form. As it turns out,

A Little Background 3

XSLT is what has really taken off, because it provides a complete transforma-
tion language that enables you to work with the contents of XML docu-
ments without writing programming code, transforming those documents
into another XML document, HTML, or other text-based formats. The big
success story here, surprising even the W3C, is XSLT.

XSLT—XSL Transformations

XSLT lets you work with the contents of XML documents directly. For
example, you might have a huge XML document that holds all baseball sta-
tistics for the most recent baseball season, but you might be interested only
in the statistics for pitchers. To extract the data on pitchers, you can write
your own program in Java,Visual Basic, or C++ that works with XML
parsers. Parsers are special software packages that read XML documents and
pass all the data in the document, piece by piece, to your own code.You can
then write a new XML document, pitchers.xml, that contains only data
about pitchers.

That way of doing things works, but it involves quite a bit of program-
ming, as well as the investment of a lot of time and testing. XSLT was
invented to solve problems such as this. XSLT can be read by XSLT proces-
sors, which work on XML documents for you—all you have to do is create
an XSLT stylesheet that specifies the rules you want to apply to transform
one document into another. No programming is needed—and that’s what
makes it attractive to many people, even experienced programmers. For the
baseball example, all you'd have to do is write an XSLT stylesheet that speci-
fies what you want to do, and let the XSLT processor do the rest.

Besides transforming one XML document into another XML document,
you can also transform XML documents into other types of documents, such
as HTML documents, rich text (RTF) documents, documents that use XSL-
FO, and others.You can also transform XML documents into other XML-
based languages, such as MathML, MusicML,VML, XHTML, and more—all
without programming.

In many ways, XSLT can function like a database language such as SQL
(Structured Query Language, the famous database-access language), because
it enables you to extract the data you want from XML documents, much like
applying an SQL statement to a database. Some people even think of XSLT
as the SQL of the Web, and if you’re familiar with SQL, that gives you some
idea of the boundless horizons available to XSLT. For example, using an
XSLT stylesheet, you can extract a subset of data from an XML document,
create an entire table of contents for a long document, find all elements that
match a specific test—such as customers in a particular zip code—and so on.
And you can do it all in one step!

4 Chapter 1 Essential XSLT

XSL-FO: XSL Formatting Objects

The other part of XSL is XSL-FO, which is the formatting language part of
XSL, and you’ll get a taste of XSL-FO in this book.You can use XSL-FO to
specify how the data in XML documents is to be presented, down to the
margin sizes, fonts, alignments, header and footer size, and page width. When
you're formatting an XML document, there are hundreds of items to think
about, and accordingly, XSL-FO is much bigger than XSLT.

On the other hand, because of its very complexity, XSL-FO is not very
popular yet, certainly not compared to XSLT. There’s not much software
that supports XSL-FO at this point, and none that implements anywhere
near the complete standard. Just as the most common use of XSLT is to
transform XML to HTML, the most common use of XSL-FO is to convert
XML to formatted PDF (Portable Data Format), the format used by the
Adobe Acrobat.You’ll see an example of that at the end of this chapter, as
well as in Chapter 11.

The W3C Specifications

W3C releases the specifications for both XML and XSL, and those specifica-
tions are what we’ll be working with in this book. W3C specifications are
not called standards because by international agreement, standards are created
only by government-approved bodies. Instead, the W3C starts by releasing the
requirements for a new specification. The requirements are goals, and list a sort
of preview of what the specification will be all about, but the specification isn’t
written at that point. Next, the W3C releases specifications first as working
drafts, which anyone may comment on, then as candidate recommendations, which
are still subject to review, and then finally as recommendations, which are final.
The following list includes the XSLT-related W3C specifications that we’ll
be using in this book and where you can find them:

= The complete XSL candidate recommendation www.w3.org/TR/xsl/.
This is the big document that specifies all there is to XSL.

= The XSL Transformations 1.0 recommendation www.w3.org/TR/xs1t.
XSLT’s function is to transform the contents of XML documents into
other documents, and it’s what’s made XSL so popular.

= The XSLT 1.1 working draft www.w3.org/TR/xs1t11.This is the XSLT
1.1 working draft, which will not be upgraded into a recommendation—
the W3C plans to add the XSLT 1.1 functionality to XSLT 2.0.

= The XSLT 2.0 requirements www.w3.org/TR/xslt20req. W3C has
released the set of goals for XSLT 2.0, including more support for
XML schemas.

A Little Background 5

= The XPath 1.0 specification www.w3.org/TR/xpath. You use XPath to
locate and point to specific sections and elements in XML documents so
that you can work with them.

» The XPath 2.0 requirements www.w3.org/TR/xpath20req. XPath is being
updated to offer more support for XSLT 2.0.

XSLT Versions

The specifications for XSLT have been considerably more active than the
specifications for XSL as a whole. The XSLT 1.0 recommendation was made
final November 16, 1999, and that’s the version that forms the backbone of
XSLT today.

Next came the XSLT 1.1 working draft, and although it was originally
intended to go on and become a new recommendation, some people in the
W3C started working on XSLT 2.0; after a while, the W3C decided to cancel
the XSLT 1.1 recommendation. This means that the XSLT 1.1 working draft
is not going to go any further—it’ll always stay in working draft form and
will not become a recommendation. In other words, there will be no official
version 1.1 of XSLT.

However, the W3C also says that it plans to integrate much of what was
done in the XSLT 1.1 working draft into XSLT 2.0, and for that reason, I'll
take a look at the XSLT 1.1 working draft in this book. I'll be sure to label
material as “XSLT 1.1 working draft only” when we’re discussing something
new that was introduced in the XSLT 1.1 working draft.

Here are the changes from XSLT 1.0 that were made in the XSLT 1.1
working draft; note that this list is included just for reference, because most
of this material probably won’t mean anything to you yet:

= The result tree fragment data type, supported in XSLT 1.0, was eliminated.

= The output method no longer has complete freedom to add namespace
nodes, because a process of namespace fixup is applied automatically.

» Support for XML Base was added.

= Multiple output documents are now supported with the <xsl:document>
element.

= The <xsl:apply-imports> element is now allowed to have parameters.
» Extension functions can now be defined using the <xsl:script> function.

» Extension functions are now allowed to return external objects, which do
not correspond to any of the XPath data types.

6 Chapter 1 Essential XSLT

This book covers the XSLT 1.0 recommendation, as well as the XSLT 1.1
working draft. In fact, the W3C has raced ahead and has released the require-
ments for XSLT 2.0, and we’ll also cover what’s known of XSLT 2.0 in this
book. The tfollowing list gives you an overview of the goals for XSLT 2.0:

= Add more support for the use of XML Schema-typed content with XSLT.
= Simplify manipulation of string content.

= Make it easier to use XSLT.

= Improve internationalization support.

» Maintain backward compatibility with XSLT 1.0.

= Support improved processor efficiency.

Although XSLT 2.0 won't be out for quite a while yet, I'll cover all that’s
known about it so far when we discuss pertinent topics. For example, the
W3C’s successor for HTML is the XML-based XHTML. In XSLT 1.0 the
XSLT 1.1 working draft, there is no special support for XML to XHTML
transformations, so we’ll have to create that transformation from scratch.
However, that support is coming in XSLT 2.0, and I'll mention that fact
when we discuss XHTML.

That provides us with an overview, and sets the stage. Now it’s time to get to
work. XSL is designed to work on XML documents, so I'm going to review
the structure of XML documents first. You’ll be working on XML documents,
but XSL stylesheets themselves are actually XML documents as well, which is
something you have to keep in mind as you write them. This book assumes that
you have some knowledge of both XML and HTML. (As mentioned earlier,
this book is the companion volume to New Rider’s Inside XML.)

XML Documents

It’s going to be important for you to know how XML documents work, so
use this section to ensure that youre up to speed. Here’s an example XML
document that I'll take a look at:

<?xml version="1.0" encoding="UTF-8"?7>
<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.
</MESSAGE>
</DOCUMENT>

XML Documents 7

Here’s how this document works: I start with the XML processing instruction
<?xml version="1.0" encoding="UTF-8"?> (all XML processing instructions
start with <? and end with ?>), which indicates that 'm using XML version
1.0, the only version currently defined, and UTF-8 character encoding,
which means that I'm using an eight-bit condensed version of Unicode:

<?xml version="1.0" encoding="UTF-8"?7>

<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.
</MESSAGE>
</DOCUMENT>

Next, I create a new fag named <DOCUMENT>.You can use any name, not just
DOCUMENT, for a tag, as long as the name starts with a letter or under-
score (_), and the following characters consist of letters, digits, underscores,
dots (.), or hyphens (-), but no spaces. In XML, tags always start with < and
end with >.

XML documents are made up of XML elements, and you create XML
elements with an opening tag, such as <DOCUMENT>, followed by any element
content (if any), such as text or other elements, and ending with the match-
ing closing tag that starts with </, such as </DOCUMENT>.You enclose the entire
document, except for processing instructions, in one element, called the root
element, and that’s the <DOCUMENT> element here:

<?xml version="1.0" encoding="UTF-8"?7>
<DOCUMENT>

</DOCUMENT>

Now I'll add a new element, <GREETING>, that encloses text content (in this
case, “Hello From XML”) within this XML document as follows:

<?xml version="1.0" encoding="UTF-8"?>

<DOCUMENT>

<GREETING>
Hello From XML
</GREETING>

</DOCUMENT>

8 Chapter 1 Essential XSLT

Next, I can add a new element as well, <MESSAGE>, which also encloses text
content, like this:
<?xml version="1.0" encoding="UTF-8"?7>
<DOCUMENT>
<GREETING>

Hello From XML
</GREETING>

<MESSAGE>
Welcome to the wild and woolly world of XML.
</MESSAGE>

</DOCUMENT>

Now the <DOCUMENT> root element contains two elements—<GREETING> and
<MESSAGE>. And each of the <GREETING> and <MESSAGE> elements themselves
hold text. In this way, I've created a new XML document.

There’s more to the story, however—XML documents can also be well-
formed and valid.

Well-Formed XML Documents

To be well-formed, an XML document must follow the syntax rules set up
tor XML by the W3C in the XML 1.0 recommendation (which you can
find at www.w3.org/TR/REC-xml). Informally, “well-formed” means mostly that
the document must contain one or more elements, and one element, the root
element, must contain all the other elements. Also, each element must nest
inside any enclosing elements properly. For example, the following document
is not well formed, because the </GREETING> closing tag comes after the
opening <MESSAGE> tag for the next element:

<?xml version="1.0" encoding="UTF-8"?>

<DOCUMENT>

<GREETING>
Hello From XML

<MESSAGE>
</GREETING>

Welcome to the wild and woolly world of XML.
</MESSAGE>
</DOCUMENT>

Valid XML Documents

Most XML browsers will check your document to see whether it is well-
formed. Some of them can also check whether it’s valid. An XML document
is valid if a Document Type Declaration (DTD) or XML schema 1s associated
with it, and if the document complies with that DTD or schema. That is, the

XML Documents 9

DTD or schema specifies a set of rules for the document’s own internal con-
sistency, and if the browser can confirm that the document follows those
rules, the document is valid.

XML schemas are gaining popularity, and much more support for schemas
1s coming in XSLT 2.0 (in fact, supporting XML schemas is the motivating
force behind XSLT 2.0), but DTDs are still the most commonly used tools
for ensuring validity. DTDs can be stored in a separate file, or they can be
stored in the document itself, in a <!DOCTYPE> element. This example adds a
<1DOCTYPE> element to the example XML document we developed:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="first.css"?>

<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT (GREETING, MESSAGE)>
<!ELEMENT GREETING (#PCDATA)>
<!ELEMENT MESSAGE (#PCDATA)>

1>

<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.
</MESSAGE>
</DOCUMENT>

This book does not cover DTDs (see Inside XML for all the details on
DTDs), but what this DTD says is that you can have <GREETING> and <MESSAGE>
elements inside a <DOCUMENT> element, that the <DOCUMENT> element is the root
element, and that the <GREETING> and <MESSAGE> elements can hold text.

You can have all kinds of hierarchies in XML documents, where one
element encloses another, down to many levels deep.You can also give
elements attributes, like this: <CIRCLE COLOR="blue">, where the COLOR
attribute holds the value “blue.”You can use such attributes to store addi-
tional data about elements. You can also include comments in XML docu-
ments that explain more about specific elements by enclosing comment
text inside <!-- and -->.

Here’s an example of an XML document, planets.xml, that puts these fea-
tures to work by storing data about the planets Mercury, Venus, and Earth,
such as their mass, length of their day, density, distance from the sun, and so
on. This document is used throughout the book, because it includes most of
the XML features you’ll work with in a short, compact form:

10 Chapter 1 Essential XSLT

Listing 1.1 planets.xml

<?xml version="1.0"?>

<PLANETS>

<PLANET>

<NAME>Mercury</NAME>

<MASS UNITS="(Earth = 1)">.0553</MASS>

<DAY UNITS="days">58.65</DAY>

<RADIUS UNITS="miles">1516</RADIUS>

<DENSITY UNITS="(Earth = 1)">.983</DENSITY>

<DISTANCE UNITS="million miles">43.4</DISTANCE><!--At perihelion-->
</PLANET>

<PLANET>

<NAME>Venus</NAME>

<MASS UNITS="(Earth = 1)">,815</MASS>

<DAY UNITS="days">116.75</DAY>

<RADIUS UNITS="miles">3716</RADIUS>

<DENSITY UNITS="(Earth = 1)">.943</DENSITY>

<DISTANCE UNITS="million miles">66.8</DISTANCE><!--At perihelion-->
</PLANET>

<PLANET>

<NAME>Earth</NAME>

<MASS UNITS="(Earth = 1)">1</MASS>

<DAY UNITS="days">1</DAY>

<RADIUS UNITS="miles">2107</RADIUS>

<DENSITY UNITS="(Earth = 1)">1</DENSITY>

<DISTANCE UNITS="million miles">128.4</DISTANCE><!--At perihelion-->
</PLANET>

</PLANETS>

You also need to understand a few XML definitions in this book:

CDATA. Simple character data (that is, text that does not include
any markup).

ID. A proper XML name, which must be unique (that is, not shared by
any other attribute of the ID type).

IDREE Will hold the value of an ID attribute of some element, usually
another element that the current element is related to.

IDREFS. Multiple IDs of elements separated by whitespace.
NAME Character. A letter, digit, period, hyphen, underscore, or colon.

NAME. An XML name, which must start with a letter, an underscore, or
a colon, optionally followed by additional name characters.

NAMES. A list of names, separated by whitespace.

What Does XML Look Like in a Browser? 11

NMTOKEN. A token made up of one or more letters, digits, hyphens,
underscores, colons, and periods.

NMTOKENS. Multiple proper XML names in a list, separated by
whitespace.

NOTATION. A notation name (which must be declared in the DTD).

PCDATA. Parsed character data. PCDATA does not include any markup,
and any entity references have been expanded already in PCDATA.

That gives us an overview of XML documents, including what a well-
formed and valid document is. If you don't feel youre up to speed on XML
documents, read another book on the subject, such as Inside XML.You might
also look at some of the XML resources on the Web:

http://www.w3c.org/xml. The World Wide Web Consortium’s main XML
site, the starting point for all things XML.

http://www.w3.org/XML/1999/XML-in-10-points. “XML In 10 Points” (actually
only seven); an XML overview.

http://www.w3.org/TR/REC-xml. This is the official W3C recommendation
for XML 1.0, the current (and only) version. Not terribly easy to read.

http://www.w3.org/TR/xml-stylesheet/. All about using stylesheets and XML.
http://www.w3.org/TR/REC-xml-names/. All about XML namespaces.

http://www.w3.org/XML/Activity.html. An overview of current XML
activity at W3C.

http://www.w3.org/TR/xmlschema-0/, http://www.w3.0org/TR/xmlschema-1/, and
http://www.w3.org/TR/xmlschema-2/. XML schemas, the alternative to DTDs.

http://www.w3.org/TR/x1ink/. The XLinks specification.
http://www.w3.org/TR/xptr. The XPointers specification.
http://www.w3.org/TR/xhtml1/. The XHTML 1.0 specification.
http://www.w3.org/TR/xhtm111/. The XHTML 1.1 specification.
http://www.w3.org/DOM/. The W3C Document Object Model, DOM.

So, now you’ve created XML documents—how can you take a look at them?

What Does XML Look Like in a Browser?

You can use a browser such as the Microsoft Internet Explorer, version 5 or
later, to display raw XML documents directly. For example, if I saved the XML
document we just created in a document named greeting.xml, and opened
that document in the Internet Explorer, you'd see something like Figure 1.1.

12 Chapter 1 Essential XSLT

A C\xSL'planets.xml - Microsoft Internet Explorerii

| Fle Edt View Favortes Tooks Help ‘ &

J Sk - = - (D A | Qlsearch [FfFavories £ BHistory ‘ &
|address [| =l @eo |[unks

<?xml version="1.0" 7=
=7uml-stylesheet type="text/xml" href="planets xsl"?>
~ <PLANETS:

- <PLANET:
“MAME>Mercury</NAME:=
<M&SS UNITS="(Earth = 1)">.0553</M255>
=0AY UNITS="days"=58.65</DAY>
<RADIUS UNITS="miles">1516</RADIUS:
<DENSITY UNITS="({Earth = 1)">.983=/DENSITY>
“DISTANCE UNITS="million miles"=43.4</DISTANCE>
<l AT perihelion -

< /PLAMNET =

- <PLANET:
“MAME=Venus</MNANME>
<M&SS UNITS="(Earth = 1)">.815</Ma55>
=DAY UNITS="days"=116.75</DaY>
<RADIUS UNITS="miles">37 16</RADIUS: -
<DENSITY UNITS="({Earth = 1)">.943=</DENSITY>
“DISTANCE UNITS="million miles"=66.8</DISTANCE>
<l AT perihelion -

< /PLAMNET =
- <PLANET:
<MAME=Earth</MNAME>
SMASS UNTTS="{Farth = 11" 1< /MAGS =
&7 pone [[= vty Computer Y

Figure 1.1 An XML document in the Internet Explorer.

You can see the complete XML document in Figure 1.1. There’s no particular
formatting at all; the XML document appears in the Internet Explorer just as it
does when you might print it out on a printer. (In fact, the Internet Explorer
default stylesheet for XML documents was used for the screen shown in
Figure 1.1.The stylesheet converts XML into Dynamic HTML, which the
Internet Explorer knows how to use.) But what if you want to present the
data in a different way? For example, what if you want to present the data in
planets.xml in an HTML document as an HTML table?

This is where XSLT transformations enter the picture. We’ll take a look at
them first in this chapter. At the end of this chapter, we’ll take a look at the
other side of XSL, XSL-FO.

XSLT Transformations

XSLT is a powerful language for manipulating the data in XML documents.
For example, using an XSLT stylesheet, I'll be able to take the data in
planets.xml and format that data into an HTML table. Stylesheets contain the
rules you've set up to transform an XML document, and much of this book
focuses on writing stylesheets and helping you understand how they work.
Here’s what the XSLT stylesheet planets.xsl, that transforms the data in
planets.xml into an HTML table, looks like (we’ll dissect it in Chapter 2):

Listing 1.2 planets.xsl

XSLT Transformations 13

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="/PLANETS">
<HTML>
<HEAD>
<TITLE>
The Planets Table
</TITLE>
</HEAD>
<BODY>
<H1>
The Planets Table
</H1>
<TABLE BORDER="2">
<TR>
<TD>Name</TD>
<TD>Mass</TD>
<TD>Radius</TD>
<TD>Day</TD>
</TR>
<xsl:apply-templates/>
</TABLE>
</BODY>
</HTML>
</xsl:template>

<xsl:template match="PLANET">
<TR>
<TD><xsl:value-of select="NAME"/></TD>
<TD><xsl:apply-templates select="MASS"/></TD>
<TD><xsl:apply-templates select="RADIUS"/></TD>
<TD><xsl:apply-templates select="DAY"/></TD>
</TR>
</xsl:template>

<xsl:template match="MASS">
<xsl:value-of select="."/>
<xsl:text> </xsl:text>
<xsl:value-of select="@UNITS"/>
</xsl:template>

<xsl:template match="RADIUS">
<xsl:value-of select="."/>
<xsl:text> </xsl:text>
<xsl:value-of select="@QUNITS"/>
</xsl:template>

continues »

14 Chapter 1 Essential XSLT

Listing 1.2 Continued

<xsl:template match="DAY">
<xsl:value-of select="."/>
<xsl:text> </xsl:text>
<xsl:value-of select="@UNITS"/>
</xsl:template>

</xsl:stylesheet>

You can see that this XSLT stylesheet has the look of an XML document—
and for good reason, because that’s exactly what it is. All XSLT stylesheets are
also XML documents, and as such should be well-formed XML.You’ll see
these two documents—planets.xml (as given in Listing 1.1) and its associated
stylesheet, planets.xsl (as given in Listing 1.2)—throughout the book as we
perform XSLT transformations in many different ways.

How do you connect this stylesheet to the XML document planets.xml? As
we’ll see in the next chapter, one way to do that is with an <?xml-stylesheet?>
XML processing instruction. This processing instruction uses two attributes.
The first attribute is type, which you set to “text/xml” to indicate that you’re
using an XSLT stylesheet. (To use the other type of stylesheets, cascading
stylesheets |CSS]—which are usually used with HTML—you’d use “text/css”.)
The second attribute is href, which you set to the URI (recall that XML uses
Uniform Resource Identifiers, URIs, rather than URLs) of the stylesheet:

<?xml version="1.0"?>
<?xml-stylesheet type="text/xml" href="planets.xsl"?>
<PLANETS>

<PLANET>

<NAME>Mercury</NAME>

<MASS UNITS="(Earth = 1)">.0553</MASS>

<DAY UNITS="days">58.65</DAY>

<RADIUS UNITS="miles">1516</RADIUS>

<DENSITY UNITS="(Earth = 1)">.983</DENSITY>

<DISTANCE UNITS="million miles">43.4</DISTANCE><!--At perihelion-->
</PLANET>

Now I can use an XSLT processor to apply planets.xsl to planets.xml and cre-
ate a new document, planets.html. The XSLT processor creates planets.html,
and you can see that new HTML document in Figure 1.2.

Making an XSLT Transformation Happen 15

/3 The Planets Table - Microsoft Internet ERpIO

File Edt View Favorites Tools Help | §

Sk - = - (D 7% | Qlsearch [fFavorites
Address | =] Peo [|unks >

The Planets Table

MName Mass Radius Day
tercury |.0953 (Earth = 1) 1516 miles |56.65 days
Wenus 815 (Earth =1) |3716 miles |116.75 days
Earth |1 (Earth=1) 2107 miles |1 days
=1
&7 Done [[[y Computer

Figure 1.2 An HTML document created by an XSLT processor.

As you see in Figure 1.2, the XSLT processor read the data in planets.xml,
applied the rules put into planets.xsl, and created an HTML table in
planets.html. That’s the first example of an XSLT transformation.

What actually happened here? You've seen the XML document,
planets.xml, and the XSLT stylesheet, planets.xsl. But how did they
combine to create planets.html?

Making an XSLT Transformation Happen

You use an XSLT processor to bring about an XSLT transformation, such as

transforming planets.xml into planets.html. You can use XSLT in three ways
to transform XML documents:

» With standalone programs called XSLT Processors. There are
several programs, usually based on Java, that will perform XSLT transfor-
mations; we’ll see a number of them in this chapter.

= In the client. A client program, such as a browser, can perform
the transformation, reading in the stylesheet you specify with the
<?xml-stylesheet?> processing instruction. The Internet Explorer can
handle transformations this way to some extent.

» In the server. A server program, such as a Java servlet, can use a
stylesheet to transform a document automatically and send it to the client.

We'll see all three ways of performing XSLT transformation in this book. In
fact, you’re going to see an overview of all these different ways of doing
things right here in this chapter.

16 Chapter 1 Essential XSLT

Using Standalone XSLT Processors

One of the most common ways of making XSLT transformations happen is
to use standalone XSLT processors. There are plenty of such processors around,
although not all can handle all possible XSLT stylesheets. To use an XSLT
processor, you just run it from the command line (which means in a DOS
window in Windows), giving it the name of the XML source document, the
XSLT stylesheet to use, and the name of the document you want to create.
Here’s a starter list of some of the available standalone XSLT processors
available online, in alphabetical order—most (but not all) are free:

= 4XSLT http://Fourthought.com/4Suite/4XSLT. A Python XSLT processor.

» EZ/X http://www.activated.com/products/products.html. A Java package
for both XML parsing and XSLT processing.

= iXSLT http://www.infoteria.com/en/contents/download/index.html. A
command-line XSLT processor.

= Koala XSL Engine http://www.inria.fr/koala/XML/xslProcessor. A Java
XSLT processor using the Simple API for XML (SAX 1.0) and the
Document Object Model (DOM 1.0) APL.

s LotusXSL http://www.alphaworks.ibm.com/tech/LotusXSL. IBM’s LotusXSL
implements an XSLT processor in Java, and can interface to APIs that con-
form to the Document Object Model (DOM) Level 1 Specification. A
famous XSLT processor, but it now appears to be superceded by Xalan 2.0.

= MDC-XSL nttp://mdc-xsl.sourceforge.net. An XSLT processor in C++
that can be used as a standalone program.

= Microsoft XML Parser http://msdn.microsoft.com/downloads/
webtechnology/xml/msxml.asp. This is the Microsoft XML parser, a
high-performance parser that is available as a COM component, and
can be used to implement XSLT support in applications.

= Sablotron http://www.gingerall.com/charlie-bin/get/webGA/act/
sablotron.act. Sablotron is a fast, compact and portable XSLT processor.
Currently supports a subset of the XSLT recommendation. You can use it
with C or Perl.

= SAXON http://users.iclway.co.uk/mhkay/saxon/index.html. An XSLT
processor that fully implements XSLT 1.0 and XPath 1.0, as well as a
number of extensions to these specifications. Note that this release has
some support for the XSLT 1.1 working draft as well.

» Transformiix http://www.mozilla.org. Transformiix is Mozilla’s XSLT
component, now implemented to some extent in Netscape 6.0.

Using Standalone XSLT Processors 17

= Unicorn XSLT processor (UXT) http://www.unicorn-enterprises.com.
This XSLT processor supports XSLT Transformations, and is written in
C++.

= Xalan C++ http://xml.apache.org/xalan-c/index.html. Implementation of
the W3C Recommendations for XSLT and the XML Path Language
(XPath). The C++ version of the famous Apache Xalan processor.

= Xalan Java http://xml.apache.org/xalan-j/index.html. Java
Implementation of the W3C Recommendations for XSLT and the XML
Path Language (XPath). The Java version of the famous Apache Xalan
processor. Also includes extension functions for SQL access to databases
via JDBC, and much more.

= xesalt http://www.inlogix.de/products.html. This XSLT processor is
available as a Web server module (for both Apache and IIS Web servers),
Netscape 4.x plug-in, and command line processor.

= XML parser for C http://technet.oracle.com/tech/xml/parser_c2.
Oracle’s XSLT processor. Supports the XSLT 1.0 Recommendation,
created for use with C.

= XML parser for Java http://technet.oracle.com/tech/xml/parser_java2.
Oracle’s XSLT processor. Supports the XSLT 1.0 Recommendation,
created for use with Java.

= XML parser for PL/SQL nttp://technet.oracle.com/tech/xml/
parser_plsql. Oracle’s XSLT processor. Supports the XSLT 1.0
R ecommendation, created for use with PL/SQL.

= XML::XSLT http://xmlxslt.sourceforge.net. This is an XSLT parser
written in Perl. It implements parts of the XSLT Recommendation.

= Xport http://wew.timelux.lu. An XSLT transformation processor, available
as a COM object.

= XSL:P http://www.clc-marketing.com/xslp/download.html. An up-to-date
XSLT processor.

» XT http://www.jclark.com/xml/xt.html. XT is a well-known implementa-
tion in Java of the XSLT Recommendation.

The following sections examine four of these XSLT processors in more
detail: XT, Saxon, Oracle’s XSLT processor, and Xalan. All these programs are
available for free online, and can implement the XSLT examples shown in
this book. If you want to follow the examples in this book, it will be useful
to pick up one or more of these standalone XSLT processors (probably the
best known and most widely used is Xalan). To make XSLT transformations
happen, I'll use these XSLT processors throughout the book.

18 Chapter 1 Essential XSLT

These processors are all Java-based, so you’ll need Java installed on your
system. If you don’t already have Java, you can get it for free at Sun’s Java site.
The most recent edition, Java 2 version 1.3, is available at http://java.sun.com/
j2se/1.8, as of this writing. All you have to do is download Java for your
operating system and follow the installation instructions on the download
pages.

Although you need Java to run these XSLT processors, don’t panic if
you’re not a programmer—no programming is required. Although Chapter
10 does go into some Java programming to show you how to create XSLT
transformations in code, all these processors—XT, Saxon, Oracle’s XSLT
processor, and Xalan—can be run from the command line.

If you are running Windows, there’s an even easier way to use XT and
Saxon—they both come packaged as an .exe file (xt.exe and saxon.exe) that
you can run directly in Windows, and you won'’t need Java at all. This way of
doing things is covered as well.

Using a Java XSLT Processor

To use a Java-based XSLT processor, you download it and unzip it, and it’s
ready to go.You should read the posted directions, of course, but typically
there are just two steps to take.

First, you must let Java know how to find the XSLT processor, which is
stored in a Java Archive, or JAR, file. To tell Java to search the JAR file, you
set the classpath environment variable to the path of the JAR file. For
example, in any version of Windows, you start by opening a DOS window.
Then you can execute a line such as the following, which sets the classpath
variable to the Oracle XSLT processor’s JAR file, xmlparserv2.jar, which in
this case is stored in the directory c:\oraclexml\lib:

C:\>set classpath=c:\oraclexml\lib\xmlparserv2.jar

Now you're ready to take the second step, which is to run the XSLT proces-
sor. This involves executing the Java class that supports the XSLT processor.
For the Oracle XSLT processor, this is oracle.xml.parser.v2.oraxsl. In
Windows, for example, you could change to the directory that held the
planets.xml and planets.xsl files, and execute oracle.xml.parser.v2.oraxsl
using Java this way:

C:\planets>java oracle.xml.parser.v2.oraxsl planets.xml planets.xsl planets.html

This will transform planets.xml to planets.html using planets.xsl. Note that
this example assumes that java.exe, which is what runs Java, is in your
Windows path. If java.exe is not in your path, you can specifically give its
location, which is the Java bin directory, such as c:\jdk1.3\bin (JDK stands

Using Standalone XSLT Processors 19

for Java Development Kit, and Java 2 version 1.3 installs itself in the
c:\jdk1.3 directory by default) as follows:

C:\planets>c:\jdk1.3\bin\java oracle.xml.parser.v2.oraxsl
wplanets.xml planets.xsl planets.html

In fact, you can combine the two steps (setting the classpath and running
the XSLT processor) into one if you use -cp with Java to indicate what
classpath to use:

C:\planets>c:\jdk1.3\bin\java -cp c:\oraclexml\lib\xmlparserv2.jar

=oracle

.xml.parser.v2.oraxsl planets.xml planets.xsl planets.html

These are all fairly long command lines, and at first you might feel that this is
a complex way of doing things. However, there’s a reason that most XSLT
processors are written in Java: Java is supported on many platforms, from the
Macintosh to UNIX, which means that the XSLT processor can run on all
those platforms as well.

Of course, this is all a lot easier if youre running Windows and use the
precompiled version of either XT (which is xt.exe) or Saxon (saxon.exe).
For example, here’s how to use xt.exe in Windows to perform the same
transformation (this example assumes that xt.exe is in your path):

C:\planets>xt planets.xml planets.xsl planets.html

James

That’s the process in overview; now I'll take a look at each of the four XSLT
processors (XT, Saxon, Oracle’s XSLT processor, and Xalan) in depth, show-
ing exactly how to use each one. First, note two things: XML and XSL soft-
ware changes very quickly, so by the time you read this, some of it might
already be out of date; and although all these XSLT processors are supposed
to support all standard XSLT, they give different results on some occasions.

Clark’s XT

You can get James Clark’s XT at www. jclark.com/xml/xt.html. Besides XT
itself, you’ll also need an XML parser, which XT will use to read your XML
document. The XT download also comes with sax.jar, which holds James
Clark’s XML parser, or you can use James Clark’s XP parser, which you can
get at www. jclark.com/xml/xp/index.html, for this purpose.

My own preference is to use the Apache Project’s Xerces XML parser,
which is available at http://xml.apache.org. (As of this writing, the current
version, Xerces 1.3.0, is available at http://xml.apache.org/dist/xerces-j/ in
zipped format for UNIX as Xerces-J-bin.1.3.0.tar.gz and Windows as
Xerces-J-bin.1.3.0.zip.)

XT itself is a Java application, and included in the XT download is the
JAR file you’ll need, xt.jar. To use xerces.jar and xt.jar, you must include

20 Chapter 1 Essential XSLT

them both in your classpath, as shown in the following example for
Windows (modify the locations of these files as needed):

C:\>set classpath=C:\xerces-1_3_0\xerces.jar;C:\xt\xt.jar

Then you can use the XT transformation class, com.jclark.xsl.sax.Driver.
class.You supply the name of the parser you want to use, which in this case is
org.apache.xerces.parsers.SAXParser in xerces.jar, by setting the com.jclark.
xsl.sax.parser variable to that name on the command line. For example, here’s
how I use XT to transform planets.xml, using planets.xsl, into planets.html in
Windows (assuming that c:\planets is the directory that holds planets.xml
and planets.xsl, and that java.exe is in your path):

C:\planets>java -Dcom.jclark.xsl.sax.parser=org.apache.xerces.parsers.SAXParser
wcom.jclark.xsl.sax.Driver planets.xml planets.xsl planets.html

That line is quite a mouthful, so it might provide some relief to know that
XT 1s also packaged as a Win32 executable program, xt.exe. To use xt.exe,
however, you need the Microsoft Java Virtual Machine (VM) installed (which
is included with the Internet Explorer). Here’s an example in Windows that
performs the same transformation as the preceding command, assuming
xt.exe 1s in your path:

C:\planets>xt planets.xml planets.xsl planets.html

If xt.exe is not in your path, you can specify its location directly, like this if
xt.exe 1s in c:\xt:

C:\planets>c:\xt\xt planets.xml planets.xsl planets.html

Saxon

Saxon by Michael Kay is one of the earliest XSLT processors, and you can
get it for free at http://users.iclway.co.uk/mhkay/saxon/.All you have to do
is download saxon.zip and unzip it, which creates the Java JAR file you
need, saxon.jar.

To perform XSLT transformations, you first make sure that saxon.jar is in
your classpath. For example, in Windows, assuming that saxon jar is in
c:\saxon, you can set the classpath variable this way:

C:\>set classpath=c:\saxon\saxon.jar

Now you can use com.icl.saxon.StyleSheet.class, the Saxon XSLT class, like
this to perform an XSLT transformation:

C:\planets>java com.icl.saxon.StyleSheet planets.xml planets.xsl

Using Standalone XSLT Processors 21

By default, Saxon sends the resulting output to the screen, which is not
what you want if you want to create the file planets.html. To create
planets.html, you can use the UNIX or DOS > pipe symbol like this,
which sends Saxon’s output to that file:

C:\planets>java com.icl.saxon.StyleSheet planets.xml planets.xsl > planets.html

If you’re running Windows, you can also use instant Saxon, which is a Win32
executable program named saxon.exe.You can download saxon.exe from
http://users.iclway.co.uk/mhkay/saxon/, and run it in Windows like this (the
-0 planets.html part specifies the name of the output file here):

C:\planets>saxon -o planets.html planets.xml planets.xsl

Oracle XSLT

Oracle corporation also has a free XSLT processor, which you can get from

http://technet.oracle.com/tech/xml/.You have to go through a lengthy regis-

tration process to get it, though. As of this writing, you click the XDK for

Java link at http://technet.oracle.com/tech/xml/ to get the XSLT processor.
When you unzip the download from Oracle, the JAR file you need (as of

this writing) is named xmlparserv2.jar. You can put it in your classpath in

Windows as follows:

C:\>set classpath=c:\oraclexml\lib\xmlparserv2.jar

The actual Java class you need is oracle.xml.parser.v2.oraxsl, and you can use
it like this to transform planets.xml into planets.html using planets.xsl:

C:\planets>java oracle.xml.parser.v2.oraxsl planets.xml planets.xsl planets.html

Xalan
Probably the most widely used standalone XSLT processor is Xalan, from the
Apache Project (Apache is a type of Web server in widespread use). You can
get the Java version of Xalan at http://xml.apache.org/xalan-j/index.html.
Just click the zipped file you want, currently xalan-j_2_0_0.zip for Windows
or xalan-j_2_0_0.tar.gz for UNIX.

When you unzip the downloaded file, you get both xalan jar, the XSLT
processor, and xerces.jar, the XML parser you need.You can include both
these JAR files in your classpath like this in Windows (modify the paths here
as appropriate for your system):

C:\>set classpath=c:\xalan-j_2 0_0\bin\xalan.jar;c:\xalan-j_2 0 0\bin\xerces.jar

To then use planets.xsl to transform planets.xml into planets.html, execute
the Java class you need, org.apache.xalan.xslt.Process, as follows:

22 Chapter 1 Essential XSLT

C:\planets>java org.apache.xalan.xslt.Process
=-IN planets.xml -XSL planets.xsl -OUT planets.html

Note that you use -IN to specify the name of the input file, -ouT to specify
the name of the output file, and -xsL to specify the name of the XSLT
stylesheet. Xalan is the XSLT processor we’ll use most frequently, so here are
some more details. The following list includes all the tokens you can use with
the org.apache.xalan.xslt.Process class, as printed out by Xalan itself:

= -CR (Use carriage returns only on output—default is CR/LF)

= -DIAG (Output timing diagnostics)

= -EDUMP [optional]FileName (Do stackdump on error)

= -HTML (Use HTML formatter)

= -IN inputXMLURL

= -INDENT (Number of spaces to indent each level in output tree—default is 0)
= -LF (Use linefeeds only on output—default is CR/LF)

= -OUT outputFileName

= -PARAM name value (Set a stylesheet parameter)

= -Q (Quiet mode)

= -aC (Quiet Pattern Conflicts Warnings)

s -TEXT (Use simple text formatter)

= -TG (Trace each result tree generation event)

= -TS (Trace each selection event)

» -TT (Trace the templates as they are being called)

= -T7C (Trace the template children as they are being processed)

= -v (Version info)

= -VALIDATE (Validate the XML and XSL input—validation is off by default)
= -xML (Use XML formatter and add XML header)

s -XSL XSLTransformationURL

You’ll see all these processors in this book, but as mentioned, probably the
one I'll use most is Xalan. (The reason I use Xalan most often is because it
has become the most popular XSTL processor and is the most widespread
use). Of course, you can use any XSLT processor, as long as it conforms to
the W3C XSLT specification.

That completes your look at standalone XSLT processors. There’s another
way to transform XML documents without a standalone program—you can
use a client program, such as a browser, to transform documents.

Using Browsers to Transform XML Documents 23

Using Browsers to Transform XML Documents

Both the Microsoft Internet Explorer and Netscape Navigator include some
support for XSLT. Of the two, the Internet Explorer’s support is far more
developed, and T'll use version 5.5 of that browser here.You can read about the
Internet Explorer XSLT support at http://msdn.microsoft.com/xml/XSLGuide/.
Internet Explorer 5.5 and earlier does not support exact XSLT syntax by
default, so we'll have to make a few modifications to planets.xml and planets.xsl.
(You'll learn more about this in the next chapter. There are downloads you
can install for updated XSLT support.) In fact, just as this book goes to print,
Internet Explorer 6.0 has become available. When I installed and tested it, it
does appear to support standard XSLT syntax (except you still must use
the type “text/xsl” for stylesheets like this: <?xml-stylesheet type="text/
xsl" href="planets.xsl"?> instead of “text/xml”. If you still use IE 5.5 or
earlier, you'll have to make the changes outlined here and in the next chapter.
If you want to avoid all that, I suggest you upgrade to IE 6.0—it looks like
that browser supports full XSLT syntax.
To use planets.xml with IE (including version 6.0), I have to convert
the type attribute in the <?xml-stylesheet?> processing instruction from
“text/xml” to “text/xsl” (this assumes that planets.xsl is in the same directory
as planets.xml, as specified by the href attribute):

Listing 1.3 Microsoft Internet Explorer Version of planets.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="planets.xsl"?>
<PLANETS>

<PLANET>

<NAME>Mercury</NAME>

<MASS UNITS="(Earth = 1)">.0553</MASS>

<DAY UNITS="days">58.65</DAY>

<RADIUS UNITS="miles">1516</RADIUS>

<DENSITY UNITS="(Earth = 1)">.983</DENSITY>

<DISTANCE UNITS="million miles">43.4</DISTANCE><!--At perihelion-->
</PLANET>

<PLANET>
<NAME>Venus</NAME>
<MASS UNITS="(Earth = 1)">.815</MASS>
<DAY UNITS="days">116.75</DAY>

<RADIUS UNITS="miles">3716</RADIUS>
<DENSITY UNITS="(Earth = 1)">.943</DENSITY>

continues »

24 Chapter 1 Essential XSLT

Listing 1.3 Continued

<DISTANCE UNITS="million miles">66.8</DISTANCE><!--At perihelion-->
</PLANET>

<PLANET>

<NAME>Earth</NAME>

<MASS UNITS="(Earth = 1)">1</MASS>

<DAY UNITS="days">1</DAY>

<RADIUS UNITS="miles">2107</RADIUS>

<DENSITY UNITS="(Earth = 1)">1</DENSITY>

<DISTANCE UNITS="million miles">128.4</DISTANCE><!--At perihelion-->
</PLANET>

</PLANETS>

Now you must also convert the stylesheet planets.xsl for use in IE if you're
using version 5.5 or earlier (but not version 6.0 or later—the only change
you have to make is setting the type attribute in the <?xml-stylesheet?>
processing instruction from “text/xml” to “text/xsl”).You'll see how to
make this conversion in the next chapter; here's the new version of
planets.xsl that you use:

Listing 1.4 Microsoft Internet Explorer Version of planets.xsl

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xs1">

<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>
The Planets Table
</TITLE>
</HEAD>
<BODY>
<H1>
The Planets Table
</H1>
<TABLE BORDER="2">
<TR>
<TD>Name</TD>
<TD>Mass</TD>
<TD>Radius</TD>
<TD>Day</TD>
</TR>
<xsl:apply-templates/>
</TABLE>
</BODY>

Using Browsers to Transform XML Documents

</HTML>
</xsl:template>

<xsl:template match="PLANETS">
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="PLANET">
<TR>
<TD><xsl:value-of select="NAME"/></TD>
<TD><xsl:apply-templates select="MASS"/></TD>
<TD><xsl:apply-templates select="RADIUS"/></TD>
<TD><xsl:apply-templates select="DAY"/></TD>
</TR>
</xsl:template>

<xsl:template match="MASS">
<xsl:value-of select="."/>
<xsl:value-of select="@UNITS"/>
</xsl:template>

<xsl:template match="RADIUS">
<xsl:value-of select="."/>
<xsl:value-of select="@UNITS"/>
</xsl:template>

<xsl:template match="DAY">
<xsl:value-of select="."/>
<xsl:value-of select="@UNITS"/>
</xsl:template>

</xsl:stylesheet>

Now you can open planets.xml in the Internet Explorer directly, as you see
in Figure 1.3.

/3 The Planets Table - Microsoft Internet Explorer

| Fle Edt vew Favortes Took el ‘ &

J EBak - = - (D) A ‘ iQsearch [fFavortes € AHistory | &

| address [=l @eo |[unks
=l

The Planets Table

|Name |Masa ‘Radius |Day
[Mercury [0853 (Earth = 1) [1516 miles [58 65 days
[enus [&15 (Earth =1) [3716 miles [116.75 days
[Eanh [1(Eah=1) [2107 miles 1 days

Kl

|&] pone || i vy computer

Figure 1.3 Performing an XSLT transformation in the Internet Explorer.

26

Chapter 1 Essential XSLT

Although you can use XSLT with the Internet Explorer in this way, you
need to modify your stylesheet to match what the Internet Explorer
requires. Because the Internet Explorer does not currently support true
XSLT when you open XML documents by navigating to them, I won’t be
using that browser to perform XSLT transformations in this book unless
specifically noted. I'll use XSLT processors like Saxon and Xalan to perform
transformations, and when the result is HTML, take a look at that result in
the Internet Explorer.

Interestingly, there is a way to perform true XSLT transformations in the
Internet Explorer without making any special modifications to XML or XSL
documents, even if you don’t download and install the latest MSXML parser
(as discussed in Chapter 2)—rather than navigate to an XML document,
however, you must access the XSLT processor in the Internet Explorer,
MSXML3, directly, using JavaScript.

Using XSLT and JavaScript in the Internet Explorer

The XSLT processor in the Internet Explorer 5.5 is part of the MSXML3
XML parser, and if you access MSXML3 directly, using JavaScript, you don'’t
have to modity the original planets.xml and planets.xsl (Listings 1.1 and 1.2)
as you saw in the previous section.You’ll see how this works in Chapter 10,
but here’s a Web page, xslt.html, that uses JavaScript and MSXML3 to trans-
form planets.xml using planets.xsl and displays the results (note that you can
adapt this document to use your own XML and XSLT documents without
writing any JavaScript; just replace the names planets.xml and planets.xsl
with the names of your XML and XSL documents):

Listing 1.5 Microsoft Internet Explorer JavaScript Transformation

<HTML>

<HEAD>

<TITLE>XSLT Using JavaScript</TITLE>

<SCRIPT LANGUAGE="JavaScript">

<!|--

function xslt()

{
var XMLDocument = new ActiveXObject('MSXML2.DOMDocument.3.0');

var XSLDocument = new ActiveXObject('MSXML2.DOMDocument.3.0');
var HTMLtarget = document.all['targetDIV'];

XMLDocument.validateOnParse = true;
XMLDocument.load('planets.xml');

XSLT Transformations on Web Servers 27

if (XMLDocument.parseError.errorCode != 0) {
HTMLtarget.innerHTML = "Error!"
return false;

}

XSLDocument.validateOnParse = true;
XSLDocument.load('planets.xsl');
if (XSLDocument.parseError.errorCode != 0) {
HTMLtarget.innerHTML = "Error!"
return false;

}

HTMLtarget.innerHTML = XMLDocument.transformNode (XSLDocument);
return true;

}

/]-->
</SCRIPT>
</HEAD>

<BODY onload="xslt()">
<DIV ID="targetDIV">
</DIV>
</BODY>
</HTML>

This Web page produces the same result you see in Figure 1.3, and it does

so by loading planets.xml and planets.xsl directly and applying the MSXML3
parser to them. These files, planets.xml and planets.xsl, are the same as we’ve
seen throughout this chapter, without the modifications necessary in the
previous topic, where we navigated to planets.xml directly using the Internet
Explorer. See Chapter 10 for more information.

Using VBScript
You can also use the Internet Explorer's other scripting language, VBScript, to achieve the same results if you're
more comfortable with VBScript.

XSLT Transformations on Web Servers

You can also perform XSLT transformations on a Web server so that an
XML document is transformed before the Web server sends it to a browser.
The most common transformation here is to transform an XML document
to HTML, but XML-to-XML transformations on the server are becoming
more and more common.

28 Chapter 1 Essential XSLT

Unlike the other XSLT transformations we’ve seen so far in this chapter, if
you want to perform XSLT transformations on a Web server, you’ll usually
need to do some programming. There are three common ways to perform
XSLT transtormations on Web servers: using Java servlets, Java Server Pages
(JSP), and Active Server Pages (ASP). Chapter 10 explores all three in greater
detail. Some XSLT processors can be set up to be used on Web servers—
here’s a starter list:

= AXSL www.javalobby.org/axsl.html. AXSL is a server-side tool that con-
verts XML to HTML using XSLT.

s Microsoft XML Parser http://msdn.microsoft.com/downloads/webtechnol-
ogy/xml/msxml.asp. MSXML3 provides server-sate HTTP access for use
with ASP.

= mod_xslt http://modxslt.userworld.com. A simple Apache Web server
module that uses XSLT to deliver XML-based content. Uses the Sablotron
processor to do the XSLT processing.

= PXSLServlet www.pault.com/Pxsl. This servlet can be used to convert
XML to HTML with XSLT. It also enables you to read from and write to
a SQL database (JDBC).

= xesalt www.inlogix.de/products.html. This XSLT processor is available as a
module for both Apache and IIS Web servers.

= XML Enabler www.alphaworks.ibm.com/tech/xmlenabler. The XML
Enabler enables you to send requests to a servlet and when the servlet
responds, the XML Enabler can format the data using difterent XSLT
stylesheets.

» XT can be used as a Java servlet. It requires a servlet engine that imple-
ments at least version 2.1 of the Java Servlet API. The Java servlet class is
com.jclark.xsl.sax. XSLServlet.

The following example shows JSP used to invoke Xalan on the Web server.
Xalan converts planets.xml to planets.html, using the planets.xs| stylesheet.

The code then reads in planets.html and sends it back to the browser from
the Web server:

<%@ page errorPage="error.jsp" language="java"
contentType="text/html" import="org.apache.xalan.xslt.*;java.io.*" %>

try
{
XSLTProcessor processor = XSLTProcessorFactory.getProcessor();
processor.process(new XSLTInputSource("planets.xml"),
new XSLTInputSource("planets.xsl"),
new XSLTResultTarget("planets.html"));

XML-to-XML Transformations 29

}
catch(Exception e) {}

FileReader filereader = new FileReader("planets.html");
BufferedReader bufferedreader = new BufferedReader(filereader);
String instring;

while((instring = bufferedreader.readLine()) != null) { %>
<%= instring %>

A
o°

}

filereader.close();

o°
Vv

You can see the results in Figure 1.4, which shows planets.html as sent to the
Internet Explorer from a Web server running JSP. Chapter 10 provides more
information about using Java servlets, JSP, and ASP for server-side XSLT
transformations.

“} The Planets Table - Microsoft Internet Explorer

File Edit View Favorites Tools Help

Sk - = - (D 7% | Qlsearch [fFavorites R

Address [@] hitp:flocalnost:a080/excamplesijspixslfsp = P |JLlnks =

2|

The Planets Table

MName Mass Radius Day
tercury |.0953 (Earth = 1) 1516 miles |56.65 days
Wenus 815 (Earth =1) |3716 miles |116.75 days
Earth |1 (Earth=1) 2107 miles |1 days

-]

&) Done: [[BB Localintranet

Figure 1.4 Transforming XML on the Web server.

Up to this point, you've seen how to perform XSLT transformations using
standalone XSLT processors in the Internet Explorer browser and on Web

servers. However, the only transformation we’ve done so far is to transform
XML into HTML. Although that’s the most popular transformation, XML
to XML transformations are becoming increasingly popular.

XML-to-XML Transformations

XML-to-XML transformations are sometimes thought of as SQL for the
Internet, because they enable you to use what amount to database queries
on XML documents. Here’s an example of what I mean. The planets.xml
file we’ve been using has a lot of data about each planet, as you see here:

<?xml version="1.0"?>
<PLANETS>
<PLANET>
<NAME>Mercury</NAME>

30 Chapter 1 Essential XSLT

<MASS UNITS="(Earth = 1)">.0553</MASS>

<DAY UNITS="days">58.65</DAY>

<RADIUS UNITS="miles">1516</RADIUS>

<DENSITY UNITS="(Earth = 1)">.983</DENSITY>

<DISTANCE UNITS="million miles">43.4</DISTANCE><!--At perihelion-->
</PLANET>

<PLANET>

<NAME>Venus</NAME>

<MASS UNITS="(Earth = 1)">.815</MASS>

<DAY UNITS="days">116.75</DAY>

<RADIUS UNITS="miles">3716</RADIUS>

<DENSITY UNITS="(Earth = 1)">.943</DENSITY>

<DISTANCE UNITS="million miles">66.8</DISTANCE><!--At perihelion-->
</PLANET>

What if you just want a subset of that data, such as the name and mass of
each planet? In database terms, planets.xml represents a table of data, and you
want to create a new table holding just a subset of that data. That’s what SQL
can do in databases, and that’s what XSLT can do with XML documents.

Here’s a new version of planets.xsl that will perform the transformation we
want, selecting only the name and mass of each planet, and sending that data
to the output document. Note in particular that we’re performing an XML-
to-XML transformation, so I'm using the <xsl:output> element with the
method attribute set to “xml” (in fact, the default output type is usually XML,
but if an XSLT processor sees a <html> tag, it usually defaults to HTML):

Listing 1.6 Selecting Name and Mass Only

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:strip-space elements="*"/>
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">
<xsl:apply-templates/>
</xsl:template>

<xsl:template match="PLANETS">
<xsl:apply-templates/>
</xsl:template>

XML-to-XML Transformations 31

<xsl:template match="PLANET">
<xsl:copy>

<xsl:apply-templates/>
</xsl:copy>
</xsl:template>

<xsl:template match="MASS">
<xsl:copy>
<xsl:value-of select="."/>
<xsl:value-of select="@UNITS"/>
</xsl:copy>

</xsl:template>

<xsl:template match="RADIUS">
</xsl:template>

<xsl:template match="DAY">
</xsl:template>

<xsl:template match="DENSITY">
</xsl:template>

<xsl:template match="DISTANCE">
</xsl:template>

</xsl:stylesheet>

I'll apply this new version of planets.xsl to planets.xml using Xalan to create
a new XML document, new.xml:

C:\planets>java org.apache.xalan.xslt.Process -IN planets.xml -XSL planets.xsl -OUT new.xml

Here’s what the resulting XML document, new.xml, looks like:

<?xml version="1.0" encoding="UTF-8"?>
<PLANET>
<NAME>Mercury</NAME>
<MASS>.0553 (Earth = 1)</MASS>
</PLANET>
<PLANET>
<NAME>Venus</NAME>
<MASS>.815(Earth = 1)</MASS>
</PLANET>
<PLANET>
<NAME>Earth</NAME>
<MASS>1(Earth = 1)</MASS>
</PLANET>

32 Chapter 1 Essential XSLT

Note that this looks much like the original planets.xml, except that each
<PLANET> element contains only <NAME> and <mMASS> elements. In this way, we've
been able to get a subset of the data in the original XML document.

You can make any number of other types of XML-to-XML transforma-
tions, of course.You can process the data in an XML document to create
entirely new XML documents. For example, you can take an XML docu-
ment full of student names and scores and create a new document that shows
average scores. XSLT supports many built-in functions that enable you to
work with data in this way, and you’ll see those functions in Chapter 8.

In addition, many programs use XML to exchange data online, and they
usually format their XML documents differently, so another popular use of
XML-to-XML transformations on the Internet is to transform XML from
the format used by one program to that used by another.

XML-to-XHTML Transformations

Although many books concentrate on XML-to-HTML transformations,
the truth is that the W3C isn’t overwhelmingly happy about that. They’ve
been trying to phase out HTML (and they’re the ones who standardized it
originally) in favor of their new specification, XHTML, which is an XML-
compliant revision of HTML. XHTML documents are also well-formed
valid XML documents, so transforming from XML to XHTML is really
transforming from XML to a special kind of XML.

Although the W3C is really pushing XHTML, it’s not in widespread use
yet. For that reason, I'll stick to HTML in this book, but because the W3C
says you should use XHTML, I'll take a brief look at that here and in
Chapter 6. If you want to learn more about XHTML, take a look at the
W3C XHTML 1.0 recommendation at www.w3.org/TR/xhtm11/, as well as the
XHTML 1.1 recommendation at www.w3.org/TR/xhtml11/.

Although the W3C says you should be converting from XML to
XHTML rather than HTML, I've never seen a working example on the
W3C site. The examples that they do present do not, in fact, produce valid
XHTML documents. However, support for XML-to-XHTML transforma-
tions is supposed to be built into XSLT 2.0, so presumably that’s coming.

I'll take a closer look at this type of transformation in Chapter 6, but here’s
a working version of planets.xsl that will create a valid XHTML version of
planets.html. Note that this time you need to use the doctype-public
attribute in the <xsl:output> element, and although that is correct XSLT, not
all XSLT processors can handle it:

XML-to-XHTML Transformations 33

Listing 1.7 XML-to-XHTML Transformation

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:output method="xml" doctype-system
="http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd"

doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN" indent="yes"/>

<xsl:template match="/PLANETS">
<html>
<head>
<title>
The Planets Table
</title>
</head>
<body>
<h1>
The Planets Table
</h1>
<table>
<tr>
<td>Name</td>
<td>Mass</td>
<td>Radius</td>
<td>Day</td>
</tr>
<xsl:apply-templates/>
</table>
</body>
</html>
</xsl:template>

<xsl:template match="PLANET">
<tr>
<td><xsl:value-of select="NAME"/></td>
<td><xsl:apply-templates select="MASS"/></td>
<td><xsl:apply-templates select="RADIUS"/></td>
<td><xsl:apply-templates select="DAY"/></td>
</tr>
</xsl:template>

<xsl:template match="MASS">
<xsl:value-of select="."/>
<xsl:text> </xsl:text>
<xsl:value-of select="@QUNITS"/>
</xsl:template>

<xsl:template match="RADIUS">
<xsl:value-of select="."/>

continues »

34 Chapter 1 Essential XSLT

Listing 1.7 Continued

<xsl:text> </xsl:text>
<xsl:value-of select="@UNITS"/>
</xsl:template>

<xsl:template match="DAY">
<xsl:value-of select="."/>
<xsl:text> </xsl:text>
<xsl:value-of select="@UNITS"/>
</xsl:template>

</xsl:stylesheet>

I'll convert planets.xml into a valid XHTML document, planets.html, using
this new version of planets.xsl and the XT XSLT processor. First, I set the
classpath as needed:

C:\>set classpath=c:xerces\xerces-1_3 0\xerces.jar;c:\xt\xt.jar;

Then I perform the transformation:

C:\planets>java - Dcom.jclark.xsl.sax.parser=org.apache.xerces.parsers.SAXParser
=com.jclark.xsl.sax.Driver planets.xml planets.xsl planets.html

Here’s the resulting XHTML file, planets.html:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>
The Planets Table
</title>
</head>

<body>
<h1>
The Planets Table
</h1>

<table>
<tr>
<td>Name</td>
<td>Mass</td>
<td>Radius</td>
<td>Day</td>

XSLT Resources 35

</tr>

<tr>
<td>Mercury</td>
<td>.0553 (Earth = 1)</td>
<td>1516 miles</td>
<td>58.65 days</td>

</tr>

<tr>
<td>Venus</td>
<td>.815 (Earth = 1)</td>
<td>3716 miles</td>
<td>116.75 days</td>
</tr>

<tr>
<td>Earth</td>
<td>1 (Earth = 1)</td>
<td>2107 miles</td>
<td>1 days</td>

</tr>

</table>
</body>
</html>

This document, planets.html, does indeed validate as well-formed and valid
transitional XHTML 1.0 (the kind of XHTML in most popular use) accord-
ing to the W3C HTML and XHTML validation program. The
HTML/XHTML validator tool can be found online at http://validator.w3.
org/file-upload.html. Chapter 6 provides more information on XML-to-
XHTML transformations.

So far, you’ve gotten a good overview of how XSLT works at this point,
performing XML-to-HTML, XML, and XHTML transtormations. You’ll
also see XML-to-RTF (Rich Text Format text), to plain text, to XSL-FO, to
JavaScript, to SQL-based databases, as well as other types of XSLT transfor-
mations in this book. In addition, there’s a lot more material available to you
on XSLT that you should know about, and we’ll now take a look at what
kinds of XSLT resources you can find online.

XSLT Resources

You can find a great deal of material on XSLT online, and it’s worth know-

ing what’s out there. Note that all the following URLs are subject to change
without notice—these lists are only as up to date as the people that maintain
these sites allow them to be, and things can change frequently.

36 Chapter 1 Essential XSLT

XSLT Specifications, Tutorials, and Examples

The starting place for XSLT resources, of course, is W3C itself. Here are the
URLs for the W3C specifications that are used in this book:

www.w3.org/Style/XSL/. The main W3C XSL page.
www.w3.org/TR/xs1lt. The XSLT 1.0 specification.

www.w3.org/TR/xs1t11. The XSLT 1.1 working draft, which makes it easier
to extend XSLT, and adds support for the W3C XBase recommendation.

www.w3.org/TR/xslt20req. The XSLT 2.0 requirements, which offer a
preview of XSLT 2.0, including more support for XML schemas.

www.w3.org/TR/xsl/. XSL Formatting objects.
www.w3.org/Style/2000/xsl-charter.html. Goals of the XSL committee.
www.w3.org/TR/xpath. The XPath 1.0 recommendation.

www.w3.org/TR/xpath2oreq. The XPath 2.0 requirements, which offer a
preview of XPath 2.0, which includes more support for XSLT 2.0.

http://lists.w3.org/Archives/Public/www-xml-stylesheet-comments/. The
W3C list on XML stylesheets.

Many XSLT tutorials and examples are available from other sources as well;
here’s a starter list:

http://http.cs.berkeley.edu/~wilensky/CS294/xsl-examples.html. A number
of XSLT examples.

http://msdn.microsoft.com/xml/reference/xsl/Examples.asp. XSLT pattern
examples used in matching elements.

http://msdn.microsoft.com/xml/XSLGuide/xsl-overview.asp. Getting started
with XSLT.

www.lists.ic.ac.uk/hypermail/xml-dev/xml-dev-Nov-1999/0371.html.
PowerPoint XSLT tutorial.

www.mulberrytech.com/xsl/xsl-1ist/. An open list dedicated to
discussing XSL.

www.nwalsh.com/docs/tutorials/xsl/xsl/slides.html. XSLT tutorial.
www.0asis-open.org/cover/xsl.html. Coverage of what’s going on in XSLT.

www.w3.org/Style/Activity. Good page listing what’s going on at W3C
on stylesheets.

www.xm1101.com/xs1/. Good set of tutorials on XSLT.

XSLT Resources 37

= www.xslinfo.com. Good collection of XSLT resources, collected by
James Tauber.

= www.zvon.org/xxl/XSLTutorial/Books/Book1 /bookInOne.html. Tutorials on
XSLT, XPath, XML, WML, and others.

I know of only one Usenet group on XSLT, however, and it’s run by
Microsoft—microsoft.public.xsl. Others will appear in time.You might
also want to check out an XSL mailing list—it’s at www.mulberrytech.com/
xsl/xsl-1list.

Besides W3C specifications, tutorials, and examples, you’ll also find plenty
of editors that you can use to create XSLT stylesheets online.

XSLT Editors

To create the XML and XSL documents used in this book, all you need is a
text editor of some kind, such as vi, emacs, pico, Windows Notepad or
Windows WordPad. By default, XML and XSL documents are supposed to
be written in Unicode, although in practice you can write them in ASCII,
and nearly all of them are written that way so far. Just make sure that when
you write a document, you save it in your editor’s plain text format.

Using WordPad

Windows text editors such as WordPad have an annoying habit of appending the extension .txt to a filename if
they don't understand the extension you've given the file. That's not actually a problem with .xml and .xsl files,
because WordPad understands the extensions .xml and .xsl, but if you try to save documents that you create while
working with this book with extensions that WordPad doesn't recognize, it'll add the extension .txt at the end. To
avoid that, place the name of the file in quotation marks when you save it, as in “file.abc".

However, it can be a lot easier to use an actual XML editor, which is
designed explicitly for the job of handling XML documents. Here’s a list of
some programs you can use to edit XML documents:

» Adobe FrameMaker www.adobe.com. Adobe includes great, but expensive,
XML support in FrameMaker.

= XML Pro www.vervet.con/. Costly but powerful XML editor.

= XML Weriter, on disk, XMLWTriter http://xmlwriter.net/. Color syntax
highlighting, nice interface.

= XML Notepad msdn.microsoft.com/xml/notepad/intro.asp. Microsoft’s
free XML editor—a little obscure to use.

38

Chapter 1 Essential XSLT

= eNotepad www.edisys.com/Products/eNotepad/enotepad.asp. A WordPad
replacement that does well with XML and has a good user interface.

» XMetal from SoftQuad www.xmetal.com. An expensive but very pow-
erful XML editor, and many authors’ editor of choice.

= XML Spy www.xmlspy.com/. A good user interface and easy to use.

= Arbortext’s Epic www.arbortext.com/. A powerful editor, expensive, and
customizable.

You can see XML Spy at work in Figure 1.5, XML Writer in Figure 1.6, and
XML Notepad in Figure 1.7.

@ HML Spy [H[=] E3
File Edt XML Yiew Browssr window Help
= = A= & By e ER EE
L -]
PR BT -
4 DOCTYPEDOCUMENT
DOCUMENT (CUSTOMER)*
CUSTOMER (MAME,DATE, ORDERS)
HAME (LASTHAME FIRSTHAME)
LASTHAME (HPCDATA)
FIRSTHAME (HPCDATA)
DATE (HPCDATA)
ORDERS (TEM
ITEM (PRODUCT NUMBER, PRICE)
PRODUCT (HPCDATA)
HUMBER (HPCDATA) _
PRICE (#PCDATA)
4 DOCUMENT -
il | |
#ML Spy 2.5 EVALUATION VERSION! [c)1998-99 Icon Information-Systerns

Figure 1.5 XML Spy editing XML.

2 dtd2_uml - XMLwriter (Uniegistered)

Fle Edt Yiew Project Tools Window Help

B fsvad & #
OB Bk BREA s PPy rry sy
N
3 W ProeatLosced
<Zxml = "1.0"2>

< !DOCTYPE DOCUMENT [

< !ELEMENT DOCUMENT (CUSTOMER] *:

< !ELEMENT CUSTOMER (MAME,DATE, ORDERS
< !ELEMENT MAME (LASTMAME, FIRSTMAME] >
<!ELEMENT LASTNAME (#FCDATA)>
<!ELEMENT FIRSTMAME (#FCDATA)>
<!ELEMENT DATE (#FCDATA) >

< !ELEMENT ORDERS (ITEM] *>

< !ELEMENT ITEM (PRODUCT, NUMBER, PRICE
<!ELEMENT PRODUCT (#FPCDLTL) >
<!ELEMENT NUMEER (#FCDATL) >
<!ELEMENT PRICE (#PCDATL)>

1>

T Proisct [%¢ TaoBar| B Dutput B dzsml

Wisit us onfine at <MLuwriter.net Ln 1, Char1

Figure 1.6 XML Writer editing XML.

XSLT Resources 39

i dtd2 xml - XML Notepad M=
Fle Edit Yiew Insert Tools Help
D|=|E| o] s|®|@| s Plsg| e|=]e|s]]-[F=E &
Structurs | [alues
=7 DOCUMENT
=[] CUSTOMER
=0 MAME
%, LASTMAME Edwards
%, FIRSTNAME Biitts
S, DATE Apil 17,1338
SRERFUROERS
= ITEM
%, PRODUCT Cucumber
S, NUMBER 5
%, PRICE $1.25
= ITEM
=[] CUSTOMER
=0 MAME
%, LASTMAME Thompson
%, FIRSTNAME Phoebe
S, DATE May 27,1398
=[] ORDERS

For Help, press F1

Figure 1.7 XML Notepad editing XML.

In fact, some dedicated XSLT editors are available. Here’s a starter list:

http://lists.w3.org/Archives/Public/xsl-editors/. A W3C list discussing
XSL editors.

IBM XSL Editor www.alphaworks.ibm.com/tech/xsleditor. Java XSLT
stylesheet editor that provides a visual interface for writing stylesheets and
writing select-and-match expressions. Currently, you must have Java 2 ver-
sion 1.1 (not 1.2 or 1.3) installed, however.

Stylus www.exceloncorp.com/products/excelon_stylus.html. Stylus includes
an XSLT stylesheet editor.

Visual XML Transformation Tool www.alphaworks.ibm.com/aw.nsf/
techmain/visualxmltools.Visual XML Transformation Tool generates
XSLT for transforming source documents into target documents for you.

Whitehill Composer www.whitehill.com/products/prod4.html. A drag-
and-drop, WYSIWYG XSLT generator of XSLT stylesheets.

XL-Styler www.seeburger.de/xml. Includes syntax highlighting, tag com-
pletion, HTML preview, and more.

XML Cooktop http://xmleverywhere.com/cooktop/. This one is just out,
and it looks like a good one, it lets you develop and test XSLT stylesheets.

XML Spy www.xmlspy.com/. XML Spy is an XML editor you can also use
to edit XSLT.

XML Style Wizard www.infoteria.com/en/contents/download. A tool for
generating XSLT files. The wizard creates an XSLT file by examining
XML data and asking the user questions.

40 Chapter 1 Essential XSLT

= xslide www.mulberrytech.com/xsl/xslide. Supports an XSLT editing mode
for Emacs.

» XSpLit www.percussion.com/xmlzone/technology.htm. Enables you to split
HTML documents into XML DTDs and XSLT stylesheets.

XSLT Utilities

There are also many XSLT utilities available on the Web, and the following
list includes some favorites:

= Microsoft XSL ISAPI Extension
http://msdn.microsoft.com/downloads/webtechnology/xml/xslisapi. asp.The
Microsoft XSL ISAPI Extension simplifies the task of performing server-
side XSLT transformations.

= Microsoft XSL-to-XSLT Converter http://msdn.microsoft.com/
downloads/webtechnology/xml/xsltconv.asp. Converts XSL into XSLT.

= XSL Lint www.nwalsh.com/xsl/xslint. XSL Lint is a syntax checker for
XSLT that detects many types of errors.

= XSL Trace www.alphaworks.ibm.com/tech/xsltrace. This product enables a
user to visually step through XSLT.

» XSLT Compiler www.sun.com/xml/developers/xsltc. Converts XSLT files
into Java classes for transforming XML files.

» XSLT test tool www.netcrucible.com/xslt/xslt-tool.htm. This tool
enables you to run XSLT with various popular processors so that you
can make sure your transforms work well on all systems. It also enables
you to call Microsoft’s MSXML3 from the command-line like any other
XSLT processor.

= XSLTC www3.cybercities.com/x/xsltc. Compiles XSLT stylesheets into
C++ code. It’s based on Transformiix, Mozilla’s XSLT processor.

= XSLTracer www.zvon.org/xx1/XSLTracer/Output/introduction.html.
XSLTracer is a Perl tool that shows how the processing of XML files with
XSLT stylesheet works.

That completes your overview of XSLT in this chapter, the foundation chap-
ter. As you can see, there’s a tremendous amount of material here, waiting to
be put to work in this book. The rest of this chapter provides an overview of
XSL-FO.

XSL-FO Resources 41

XSL Formatting Objects: XSL-FO

The most popular part of XSL is the XSLT transtormation part that you’ve
already seen in this chapter. The other, and far larger, part is the XSL
Formatting Objects part, XSL-FO.

Using XSL-FO, you can specity down to the millimeter how an XML doc-
ument should be formatted and displayed. You specify everything for your
documents: the text font, position, alignment, color, flow, indexing, margin size,
and more. It’s sort of like writing a word processor by hand, and the complex-
ity of XSL-FO makes some people reluctant to use it. You'll learn more about
what XSL-FO has to ofter and how to use it in Chapters 11 and 12.

XSL-FO Resources

Some XSL-FO resources are available to you on the Web, but far fewer than

those for XSLT. Here are the main ones:

= www.w3.org/TR/xs1l. The main XSL candidate recommendation, which also
includes XSL-FO.

= http://lists.w3.org/Archives/Public/www-xsl-fo/. A W3C list for com-
ments on XSL-FO.

Just as there are XSLT processors out there for you to use, there are also
XSL-FO processors. None comes close to implementing the whole
standard, however. Here’s a starter list of XSL-FO processors:

= FOP http://xml.apache.org/fop. A Java application that reads an XSL for-
matting object tree (which you create with an XML parser) and creates a
PDF document.

= PassiveTeX nhttp://users.ox.ac.uk/~rahtz/passivetex. A TeX package
that formats XSL-FO output to PDE Makes use of David Carlisle’s
xmltex XML parser.

= SAXESS Wave www.saxess.com/wave/index.html. An XML-to-Shockwave/
Flash converter.

= TeXML www.alphaworks.ibm.com/tech/texml. Converts XML documents
into TeX.

» Unicorn Formatting Objects (UFO) www.unicorn-enterprises.com.
XSL Formatting Objects processor written in C++. It can generate out-
put in PostScript, PDE and other formats supported by TeX DVI drivers.

» XEP http://www.renderx.com/FO2PDF.html. A Java XSL-FO processor that
converts XSL formatting objects to PDF or PostScript.

42 Chapter 1 Essential XSLT

In this book, I'll use fop (formatting objects processor), which is probably the
most widely used XSL-FO processor. This Java-based XSL-FO processor
takes an XML document that is written to use the XSL-FO formatting
objects and translates it to PDF format, which you can examine with Adobe
Acrobat. Although XSLT transformations are often made to HTML, that
won’t work for XSL-FO, because in that case, you specity every aspect of the
presentation format down to the last detail, which means that PDF format is
much more appropriate.

Formatting an XML Document

To format planets.xml into planets.pdf, we can use the XSL-FO formatting
objects that are introduced in Chapter 12. For example, here’s how we might
display the name of the first planet, Mercury, using XSL-FO formatting
objects such as flow and block:

<fo:page-sequence master-name="page">

<fo:flow flow-name="xsl-region-body">
<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt" font-weight="bold">

Mercury
</fo:block>

However, writing an entire document using the XSL formatting objects is not
an easy task for any but short documents. W3C foresaw that difficulty, and
that’s one of the main reasons they introduced the transformation language,
XSLT. In particular, you can write a stylesheet and use XSLT to transform an
XML document so that it uses the XSL formatting objects.

In practice, using stylesheets is almost invariably the way such transforma-
tions are done, and it’s the way we’ll do things in Chapters 11 and 12. All you
have to do is supply an XSLT stylesheet that can be used to convert your
document to use formatting objects. In this way, an XSLT processor can do all
the work for you, transforming a document from a form youre comfortable
working with to formatting object form, which you can then feed to a pro-
gram that can handle formatting objects and display the formatted result.

To make all this self-evident, here’s an example using the XML document
we’ve already seen in this chapter, planets.xml:

<?xml version="1.0"?>
<PLANETS>

<PLANET>
<NAME>Mercury</NAME>

The XSLT Stylesheet 43

<MASS UNITS="(Earth = 1)">.0553</MASS>

<DAY UNITS="days">58.65</DAY>

<RADIUS UNITS="miles">1516</RADIUS>

<DENSITY UNITS="(Earth = 1)">.983</DENSITY>

<DISTANCE UNITS="million miles">43.4</DISTANCE><!--At perihelion-->
</PLANET>

<PLANET>

<NAME>Venus</NAME>

<MASS UNITS="(Earth = 1)">.815</MASS>

<DAY UNITS="days">116.75</DAY>

<RADIUS UNITS="miles">3716</RADIUS>

<DENSITY UNITS="(Earth = 1)">.943</DENSITY>

<DISTANCE UNITS="million miles">66.8</DISTANCE><!--At perihelion-->
</PLANET>

<PLANET>
<NAME>Earth</NAME>
<MASS UNITS="(Earth = 1)">1</MASS>
<DAY UNITS="days">1</DAY>
<RADIUS UNITS="miles">2107</RADIUS>
<DENSITY UNITS="(Earth = 1)">1</DENSITY>
<DISTANCE UNITS="million miles">128.4</DISTANCE><!--At perihelion-->
</PLANET>
</PLANETS>

In this example, I'll use an XSLT stylesheet—which you’ll see how to create in
Chapter 11—to transform planets.xml so that it uses formatting objects. Then
I’ll use the FOP processor to turn the new document into a PDF file. I'll also
take a look at the formatted document as it appears in Adobe Acrobat.

The XSLT Stylesheet

Here’s what that stylesheet, planetsPDExsl, looks like. This stylesheet takes the
data in planets.xml and formats it in a PDF file, planets.pdf. In this case, I'll
use a large font for text—36 point:

Listing 1.8 XML to XSL-FO Transformation

<?xml version='1.0'?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:fo="http://www.w3.0rg/1999/XSL/Format"
version='1.0"'>

<xsl:template match="PLANETS">
<fo:root xmlns:fo="http://www.w3.0rg/1999/XSL/Format">
<fo:layout-master-set>
<fo:simple-page-master master-name="page"

continues »

44 Chapter 1 Essential XSLT

Listing 1.8 Continued

page-height="400mm" page-width="300mm"
margin-top="10mm" margin-bottom="10mm"
margin-left="20mm" margin-right="20mm">

<fo:region-body
margin-top="0mm" margin-bottom="10mm"
margin-left="0mm" margin-right="0mm"/>

<fo:region-after extent="10mm"/>
</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-name="page">
<fo:flow flow-name="xsl-region-body">
<xsl:apply-templates/>
</fo:flow>
</fo:page-sequence>
</fo:root>
</xsl:template>

<xsl:template match="PLANET/NAME">
<fo:block font-weight="bold" font-size="36pt"
line-height="48pt" font-family="sans-serif">
Name:
<xsl:apply-templates/>
</fo:block>
</xsl:template>

<xsl:template match="PLANET/MASS">
<fo:block font-size="36pt" line-height="48pt"
font-family="sans-serif">
Mass (Earth = 1):
<xsl:apply-templates/>
</fo:block>
</xsl:template>

<xsl:template match="PLANET/DAY">
<fo:block font-size="36pt" line-height="48pt" font-family="sans-serif">
Day (Earth = 1):
<xsl:apply-templates/>
</fo:block>
</xsl:template>

<xsl:template match="PLANET/RADIUS">
<fo:block font-size="36pt" line-height="48pt" font-family="sans-serif">
Radius (in miles):
<xsl:apply-templates/>
</fo:block>
</xsl:template>

Transforming a Document into Formatting Object Form 45

<xsl:template match="PLANET/DENSITY">
<fo:block font-size="36pt" line-height="48pt" font-family="sans-serif">
Density (Earth = 1):
<xsl:apply-templates/>
</fo:block>
</xsl:template>

<xsl:template match="PLANET/DISTANCE">
<fo:block font-size="36pt" line-height="48pt" font-family="sans-serif">
Distance (million miles):
<xsl:apply-templates/>
</fo:block>
</xsl:template>
</xsl:stylesheet>

Transforming a Document into Formatting
Object Form

To transform planets.xml into a document that uses formatting objects, which
I'll call planets.fo, all I have to do is apply the stylesheet planetsPDExsl. You
can do that using the XSLT techniques you already saw in this chapter.

For example, to use Xalan to create planets.fo, you first set the classpath
something like this in Windows:

C:\>set classpath=c:\xalan\xalan-j_2 0 0\bin\xalan.jar;
c:\xalan\xalan-j_2_0_0\bin\xerces.jar

Then you apply planetsPDExsl to planets.xml to produce planets.fo:

C:\planets>java org.apache.xalan.xslt.Process
= -IN planets.xml -XSL planetsPDF.xsl -OUT planets.fo

The document planets.fo uses the XSL formatting objects to specify how the
document should be formatted. Here’s what planets.fo looks like:

Listing 1.9 planets.fo

<?xml version="1.0" encoding="UTF-8"?>
<fo:root xmlns:fo="http://www.w3.0rg/1999/XSL/Format">

<fo:layout-master-set>
<fo:simple-page-master margin-right="20mm" margin-left="20mm"
margin-bottom="10mm" margin-top="10mm"
page-width="300mm" page-height="400mm" master-name="page">
<fo:region-body margin-right="0mm" margin-left="0mm"
margin-bottom="10mm" margin-top="0mm"/>

continues »

46 Chapter 1 Essential XSLT

Listing 1.9 Continued

<fo:region-after extent="10mm"/>
</fo:simple-page-master>
</fo:layout-master-set>

<fo:page-sequence master-name="page">
<fo:flow flow-name="xsl-region-body">
<fo:block font-family="sans-serif" line-height="48pt"

font-size="36pt" font-weight="bold">
Name :
Mercury

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Mass (Earth = 1):
.0553

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Day (Earth = 1):
58.65

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Radius (in miles):
1516

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Density (Earth = 1):
.983

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Distance (million miles):
43.4

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"

font-size="36pt" font-weight="bold">
Name:
Venus

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Mass (Earth = 1):
.815

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Day (Earth = 1):
116.75

Transforming a Document into Formatting Object Form 47

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Radius (in miles):
3716

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Density (Earth = 1):
.943

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Distance (million miles):
66.8

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"

font-size="36pt" font-weight="bold">
Name:
Earth

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Mass (Earth = 1):
1

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Day (Earth = 1):
1</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Radius (in miles):
2107

</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Density (Earth = 1):
1</fo:block>

<fo:block font-family="sans-serif" line-height="48pt"
font-size="36pt">
Distance (million miles):
128.4

</fo:block>

</fo:flow>
</fo:page-sequence>

</fo:root>

OK, now we’ve created planets.fo. How can we use it to create a formatted
PDF file?

48 Chapter 1 Essential XSLT

Creating a Formatted Document

To process planets.fo and create a formatted document, I'll use James Tauber’s
fop, which has now been donated to the Apache XML Project.

The main fop page is http://xml.apache.org/fop, and currently, you can
download fop from http://xml.apache.org/fop/download.html. The fop pack-
age, including documentation, comes zipped, so you have to unzip it. It’s
implemented as a Java JAR file, fop.jar, and I'll use fop version 0.15 here.

You can use fop from the command line with a Java class that at this
writing is org.apache.fop.apps.CommandLine. You need to provide the
XML parser you want to use, and I'll use the Xerces Java parser in xerces.jar
(which comes with Xalan). Here’s how I use fop to convert planets.fo to
planets.pdf with Java in Windows; in this case, I'm specifying the classpath
with the -cp switch to include xerces.jar, as well as two necessary JAR files
that come with the fop download—top.jar and w3c jar. (This example
assumes that fop.jar, xerces.jar, and w3c.jar are all in C:\planets—if not, you
can specify their full paths.)

C:\planets>java -cp fop.jar;xerces.jar;w3c.jar
=org.apache.fop.apps.CommandLine planets.fo planets.pdf

You can use the Adobe Acrobat PDF reader to see the resulting file, planets.
pdf, as shown in Figure 1.8. (You can get Acrobat PDF Reader for free at

www . adobe . com/products/acrobat/readermain.html.) The planets.xml document
appears in that figure formatted as specified in the planetsPDExsl stylesheet.

B3 Acrobat Reader - [planets.pdf]

] File Edit Document View Window Help

AE-IEEE N A »\D@]_Faﬁ‘hhﬁﬁlén

Name: Mercury

Mass (Earth = 1): .0553

Day (Earth = 1): 58.65
Radius (in miles): 1516
Density (Earth = 1): .983
Distance (million miles): 43.4
Name: Venus

Mass (Earth = 1): .815

Day (Earth = 1): 116.75
Radius (in miles): 3716

[ess =]l 4 vort | F M) 11EE=1sen |E]4

Figure 1.8 A PDF document created with formatting objects.

Creating a Formatted Document 49

The PDF format is a good one for formatting object output, although it has
some limitations—for example, it can’t handle dynamic tables that can
expand or collapse at the click of a mouse, or interactive multiple-target
links, both of which are part of the formatting objects specification. Although
there is little support in any major browser for XSL-FO today, it will most
likely be supported in browsers one day.

That completes your overview. In this book, you're going to see all there
is to XSLT, and you’ll also get an introduction to XSL-FO. Now its time to
dig into XSLT, starting with the next chapter.

