
T R A N S I T I O N A L C S S

A N D J A V A S C R I P T

S T R A T E G I E S

“In life, always do right. This

will gratify some people and

astonish the rest.”

— M A R K T WA I N

1321_12.qxd 04.23.02 3:54 PM Page 232

A TABBED INTERFACE

Creating web sites that take advantage of the

CSS and JavaScript capabilities of modern

browsers, while still accommodating older

browsers, is a headache faced by every site

creator. In this project we’ll explore some ways

of dealing with this issue.

1321_12.qxd 04.23.02 3:54 PM Page 233

234

GETTING STARTED
Web site navigation interfaces that use a tab metaphor are very common. (Perhaps

the best-known site that uses a tab-navigation interface is Amazon.com.) Yet in

most cases, the navigation tabs are merely graphical links that load other pages from

the server.

In this project, we show you how to create a tabbed “index-card” type of interface

using a combination of CSS and JavaScript. All of the “pages” are actually con-

tained in the one page; once the whole page is loaded into the browser, the user can

very quickly “f lip” through each “page” without having to reload content from the

server.

Project 12

Transitional CSS and
JavaScript Strategies

Because we are using CSS and JavaScript, which are only recognized by the newer

browsers, we’ve also taken steps to ensure that the page is still readable in older

browsers.

Here are the main points we’ll cover in this project:

n Creating “gracefully degrading” pages using a combination of CSS

and JavaScript

n Modularizing the code

n Using arrays to streamline the script

n Manipulating the stacking order, or z-index, of elements

1321_12.qxd 04.23.02 3:54 PM Page 234

235

CREATING THE BASE GRAPHICS FOR THE
TABS AND ASSEMBLING THE TAB TABLE
Each navigational tab is made up of three tiny graphics and the label text, assembled

into a small table.

T
R

A
N

S
I

T
I

O
N

A
L

C

S
S

A

N
D

J

A
V

A
S

C
R

I
P

T

S
T

R
A

T
E

G
I

E
S

GRACEFULLY DEGRADING PAGES

The latest advanced graphical browsers offer a wealth of

JavaScript and CSS features that were previously unavailable or

too buggy to be practical. What’s more, these modern browsers

finally (in large part) follow a common set of standards as speci-

fied by the World Wide Web Consortium. This is a great

development for those of us on the creative side of the World

Wide Web.

There’s still one thorny problem to face, however: How do

you take advantage of these new methods and features but still

accommodate users of version 4 and older browsers? Statistics

for browser usage are in a constant state of f lux, but as of this

writing, a small yet still significant number of web surfers are

using version 4 browsers.

Up until now, you have probably been accommodating users of

older or alternate browsers using “browser sniffing” methods

to redirect them to other pages, writing alternate content onto

the page, and so on. However, this can greatly increase the

time and cost needed to create and maintain a site.

In extreme cases, you may even have closed off users of older

and alternate browsers by telling them that your site can only

be accessed with certain browsers. This only invites resentment

from your site visitors, who may never return to your site.

The method introduced in this project is called graceful degrada-

tion. Essentially, this means that you while you may design your

page so that it’s optimized for modern browsers, at the same

time you ensure that the content of your site is viewable in

older or non-graphical browsers. The goal is to make the same

pages viewable and useable by the widest audience. See the

“How It Works” sidebars at the end of this project to see how

this is accomplished.

1 Create the basic outline shape of the tab. Make the

inside of the tab itself transparent and make the outside

corners the same color as the background color of your

page.

2 Slice the image. You only want to obtain the two side

segments. Save each slice as a GIF with transparency.

Note that the corners outside of the tab have a white

background. This background color should match the

background color you intend to use on your page.

The tab showing the transpar-
ent area (the checkered area)
in Photoshop.

1321_12.qxd 04.23.02 3:54 PM Page 235

236

3 Select a 1-pixel wide segment of the middle section.

Save this as a GIF with transparency.

The three graphics: the tab
sides, and the one-pixel-wide
center graphic. The checkered
area is the transparent area.

4 Pre-assemble the tab elements into an HTML/

XHTML table.

The tab consists of a small table with three table cells.

Each table cell has a different background image. The

left and right side table cells have a fixed width, but

the middle table “stretches” to accommodate the text

that is placed inside it.

The graphic dot.gif is a 1×1 pixel transparent GIF

that is used to hold the side tds open.

Note: Why not simply use the tab graphics as img src
files instead of as background images for the table
cells? This is possible, of course, but we’re going to use
a bit of CSS trickery to make the graphics invisible in
older browsers, as you’ll see later in this project.

Note: Normally, when you create a GIF with transparent
areas, you make the areas surrounding the actual image
transparent. However, if you make GIFs with the main
areas set as transparent and the “background” areas in
the same color as the background of your page, the
“background” areas essentially act as masks. Then you
can use CSS to “color” the main area of the element.
This is a great way to create graphical elements that
you can reuse again and again.

<!-- The tab “table” --->
<table cellpadding=”0” cellspacing=”0” border=”0”>
<tr>
<td background=”images/tableft.gif”><img src=”images/dot.gif”
alt=”” width=”8” height=”24” border=”0”></td>
<td id=”tabmiddle4” background=”images/middle.gif”>tab text</td>
<td background=”images/tabright.gif”><img src=”images/dot.gif”
alt=”” width=”7” height=”24” border=”0”></td>
</tr></table>

The tab “table” shown with
the table borders visible (left),
borders off (center), and with
a background color set. The
background color “shows
through” the transparent
areas of the GIFs.

1321_12.qxd 04.23.02 3:54 PM Page 236

237

PLANNING THE PROJECT AND DIVIDING IT INTO
LOGICAL MODULES
This project is divided into modules. Instead of putting everything into one document, each

specific task is put into its own document, and the result is assembled at the end. The CSS

is divided into two separate stylesheets: one containing rules that are compatible with

CSS-aware (version 4 and higher) browsers and the other containing rules that are recog-

nized only in browsers that recognize more advanced CSS rules (version 5.0 and higher of

Netscape 6.x, Mozilla, and Internet Explorer). The JavaScript is also divided into two: one

that contains two document object constructor functions that can be used over and over

again for many projects and another that contains the functions specific to this project. The

markup itself is XHTML, which follows current W3C recommendations.

T
R

A
N

S
I

T
I

O
N

A
L

C

S
S

A

N
D

J

A
V

A
S

C
R

I
P

T

S
T

R
A

T
E

G
I

E
S

1 Create a new text file to contain the XHTML

markup. Save this in the root directory of your site

as an HTML/XHTML file. Here we’ve named it

tabpage.html.

2 Create a new directory under the root and name

it inc.

3 In the inc directory, create a new text file that will

contain the basic style rules that are recognized by

most CSS-aware browsers. Save this file with the

name common.css.

4 In the same directory, create a new text file that will

contain more advanced CSS style rules that are only

recognized by the latest graphical browsers. Save this

file with the name advanced.css.

5 In the same directory, create a new text file that will

contain the base document object constructor

JavaScript. Save it with the filename docobj.js.

In the same directory, create a new text file that will

contain the tab navigation Javascript. Save it with the

filename tabs.js.

1321_12.qxd 04.23.02 3:54 PM Page 237

238

CREATING THE XHTML BASE
We’ve used XHTML instead of HTML for the markup for this project. (If you’re

unsure about XHTML markup conventions, refer back to Project 4, “ Creating a

Complex Layout with CSS-P.”)

1 Create the DOCTYPE declaration for XHTML 1.0

Transitional in your markup document tabpage.html.

2 In the head section of the document, tabpage.html,

insert the tags necessary to link the external CSS

files.

Note that we created two external stylesheets in the

previous step: common.css and advanced.css. Because

advanced.css contains rules that will only apply to

later browsers, including some rules that may cause

problems in version 4 browsers, we’ll use the @import

method of linking an external stylesheet. For

common.css we will use the <link> tag.

Note the order: @import comes before the <link>.

This is because any @import rule must precede all

other style rules specified for a document.

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/2000/REC-xhtml1-

20000126/DTD/xhtml1-transitional.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”
lang=”en”>
<head>

<meta http-equiv=”content-type” content=”text/html;
➥charset=iso-8859-1” />
<title>Project 13: Tabbed interface demo</title>

<style type=”text/css” title=”supplement”>
<!--
@import “inc/advanced.css”;
-->
</style>

<link rel=”Stylesheet” rev=”Stylesheet” href=”inc/common.css”
/>

Note: As you saw in Project 4, older browsers, such as Netscape 4.x, do
not recognize the @import rule. We’re using this seeming deficiency to our
advantage here, to make sure that any CSS style rules that aren’t interpreted
properly are isolated from Netscape 4.x. All these rules are put in the
advanced.css stylesheet.

For more information about the @import rule, see the W3C specifications at
http://www.w3.org/TR/REC-CSS2/cascade.html#at-import.

3 In the head section of the markup document,

tabpage.html, insert the <script></script> tags to

link the external JavaScript files.

<script src=”inc/docobj.js” type=”text/javascript”></script>
<script src=”inc/tabs.js” type=”text/javascript”></script>

</head>

1321_12.qxd 04.23.02 3:54 PM Page 238

239

4 In the body section of the document, create the

markup for the contents.

Arrange the content logically so that it can be easily

read even if the browser in use does not recognize

CSS or JavaScript. The text inside the tabs becomes

the header for each section.

T
R

A
N

S
I

T
I

O
N

A
L

C

S
S

A

N
D

J

A
V

A
S

C
R

I
P

T

S
T

R
A

T
E

G
I

E
S

<body>

<div id=”tab1”>
<table cellpadding=”0” cellspacing=”0” border=”0”>
<tr>
<td width=”8” height=”24” class=”tableft”><img src=”images/dot.gif”
➥alt=”” width=”8” height=”24” border=”0”></td>
<td id=”tabmiddle1”>overview</td>
<td class=”tabright”><img src=”images/dot.gif” alt=”” width=”7”
➥height=”24” border=”0”></td>
</tr></table>
</div>

<div id=”box1”>
<!-- content of the first text box. Omitted for clarity. -->
</div>

<div id=”tab2”>
<table cellpadding=”0” cellspacing=”0” border=”0”>
<tr>
<td width=”8” height=”24” class=”tableft”><img src=”images/dot.gif”
alt=”” width=”8” height=”24” border=”0”></td>
<td id=”tabmiddle2”>background</td>
<td class=”tabright”><img src=”images/dot.gif” alt=”” width=”7”
➥height=”24” border=”0”></td>
</tr></table>
</div>

<div id=”box2”>
<!-- content of the second text box. Omitted for clarity. -->
</div>

<div id=”tab3”>
<table cellpadding=”0” cellspacing=”0” border=”0”>
<tr>
<td width=”8” height=”24” class=”tableft”><img src=”images/dot.gif”
➥alt=”” width=”8” height=”24” border=”0”></td>
<td id=”tabmiddle3”>best recipes</td>
<td class=”tabright”><img src=”images/dot.gif” alt=”” width=”7”
➥height=”24” border=”0”></td>
</tr></table>
</div>

<div id=”box3”>
<!-- content of the third text box. Omitted for clarity. -->
</div>

<div id=”tab4”>
<tr>
<td width=”8” height=”24” class=”tableft”><img src=”images/dot.gif”
➥alt=”” width=”8” height=”24” border=”0”></td>
<td id=”tabmiddle4”>etcetera</td>
<td class=”tabright”><img src=”images/dot.gif” alt=”” width=”7”
➥height=”24” border=”0”></td>
</tr></table>
</div>

Each of the three table cells that make up a tab have a

class or id designation: the left side table cells have a

class attribute value of tableft; the right side table

cells have a class value of tabright; and the middle

section table cells have the id values tabmiddle1,

tabmiddle2, and so on.

Each div has a unique id.

1321_12.qxd 04.23.02 3:54 PM Page 239

240

CREATING THE MAIN CSS STYLESHEET
(common.css)
The stylesheet, common.css, holds all the CSS style rules that are recognized by older

browsers—as well as the newer browsers.

1 Create the style rules that control the text appearance

rules for the basic elements on the page, such as a

(link) elements, p (paragraph) elements, and h1

(header) elements.

Group the h1 and p selectors together to specify the

style rules that they share in common and then speci-

fy the unique style rules for each separately. Grouping

together selectors to specify any common style rules

together is a good way of streamlining your

stylesheets—and also makes it easier to change the

styles for these elements at once if necessary.

Group the ID selectors, #tabmiddle1, #tabmiddle2,

#tabmiddle3, #tabmiddle4, and #tabmiddle5, together

and specify the styles rules for them all at once.

Note: Because the div elements that act as text boxes
on this page and the tabs are precisely sized in pixels,
specify the font and line-height sizes in pixels also
rather than in relative units such as em or percent.

a {
outline: none;
}

a:link {
text-decoration: none;
color: #000000;
}

a:visited {
text-decoration: none;
color: #000000;
}

a:hover {
text-decoration: underline;
}

h1, p {
background: transparent;
color: #000000;
font-family: verdana, helvetica, sans-serif;
margin-left: 3em;
margin-right: 3em;
}

h1 {
font-size: 13px;
margin-bottom: 0px;
}

p {
font-size: 11px;
line-height: 14px;
}

#tabmiddle1, #tabmiddle2, #tabmiddle3, #tabmiddle4, #tabmiddle5 {
font-family: verdana, helvetica, sans-serif;
font-size: 16px;
font-weight: bold;
}

1321_12.qxd 04.23.02 3:54 PM Page 240

241

CREATING THE SUPPLEMENTAL CSS STYLE
RULES (advanced.css)
The stylesheet, advanced.css, contains the style rules that are recognized only by

browsers that recognize @import. It contains all of the positioning rules for the page,

as well as some rules that override those in common.css.

T
R

A
N

S
I

T
I

O
N

A
L

C

S
S

A

N
D

J

A
V

A
S

C
R

I
P

T

S
T

R
A

T
E

G
I

E
S

1 Create new margin: property style rules for the p

and h1 elements.

In the common.css stylesheet, we specified 3em

margin values for these, but on our “real” layout we

want 0px margins. Therefore, we’ll override the rules

previously specified in common.css by creating new

rules that are declared !important.

2 Create the style rules for the .tableft and .tabright

class selectors that specify the background-image

property rules for each.

h1, p {
margin: 0px !important;
}

.tableft {
background-image: url(../images/tableft.gif);
}

.tabright {
background-image: url(../images/tabright.gif);
}

3 Create the style rules for the #tabmiddle1,

#tabmiddle2, #tabmiddle3, #tabmiddle4, and

#tabmiddle5 ID selectors.

These are the middle table cells of each tab table.

Note that the font-size: 12px rule is specified as

!important. This overrides the font-size: 18px

rule set in common.css.

#tabmiddle1, #tabmiddle2, #tabmiddle3, #tabmiddle4,
➥#tabmiddle5 {

background-image: url(../images/middle.gif);
text-align: center;
font-size: 12px !important;
font-weight: bold;
color: #999999;
cursor: arrow;
}

1321_12.qxd 04.23.02 3:54 PM Page 241

242

4 Create the style rules for the #tab1, #tab2, #tab3,

#tab4, and #tab5 div elements.

These are the div elements that hold the tab tables.

Note that all the div elements are specified as

position:absolute. The initial z-index is set to 0.

#tab1, #tab2, #tab3, #tab4, #tab5 {
position:absolute;
height: 24px;
top: 77px;
z-index: 0;
background-color: #cccccc;
color: #999999;
}

#tab1 {
left: 60px;
}

#tab2 {
left: 140px;
z-index: 0;
}

#tab3 {
left: 235px;
}

#tab4 {
left: 335px;
}

#tab5 {
left: 410px;
}

5 Create the style rules for the ID selectors #box1,

#box2, #box3, #box4 and #box5.

These are the div elements that contain the main

content. The content boxes all have a one-pixel wide

black border and are absolutely positioned like the

tab boxes. The height and width are specified in

absolute (pixel) values.

#box1, #box2, #box3, #box4, #box5 {
position: absolute;
top: 100px;
left: 50px;
width: 415px;
height: 320px;
z-index: 0;
padding: 10px;
background-color: #ffffff;
border: 1px solid #000000;
}

1321_12.qxd 04.23.02 3:54 PM Page 242

243

CREATING THE BASIC DOCUMENT OBJECT
CREATION SCRIPT (docobj.js)
In this section we’ll create a document object construction script, which is a slight variation

on the one we have used in the previous JavaScript projects. This script is more modular

given that the document object constructor is defined as two functions. These functions can

then be called by subsequent functions to create the necessary document object strings.

T
R

A
N

S
I

T
I

O
N

A
L

C

S
S

A

N
D

J

A
V

A
S

C
R

I
P

T

S
T

R
A

T
E

G
I

E
S

1 Open the file, docobj.js.

2 Create the function, getDocObj(). This function returns

the text string that points out the correct document object

of an element, depending on which browser is in use.

Two arguments can be passed to the function: elem, or the

id of the element in question, and parent, the id of the

parent element if the element is nested.

If the browser in use is Netscape 4.x and it recognizes the

document.layers property, the script then looks to see if

the argument, parent, is specified. If it is, then the string

of “document.”+parent+”.document.”+elem is returned. If

parent is not specified, then the string of “document.” +

elem is returned.

Otherwise, if the browser in use is Internet Explorer 4.x

and up and it recognizes the document.all method, the

string of “document.all.” + elem is returned.

Otherwise, if the browser in use is W3C-DOM compliant

(and is not Internet Explorer), the string of

“document.getElementById(‘“+elem+”’)” is returned.

3 Create the function, getStyleObj(). This function returns

the string that points to the style property of an element,

depending on which browser is in use. This function is the

same as getDocObj() except that it adds the “.style” string

to the base document object string—in the case of

Internet Explorer 4.x and up and W3C-DOM-compliant

browsers. Note that the string for Netscape 4.x is identical

in both functions.

function getDocObj(elem,parent) {
if (document.layers) {

if (parent) {
return “document.”+parent+”.document.”+elem;

} else {
return “document.”+elem;

}

} else if (document.all) {
return “document.all.”+ elem;

} else if (document.getElementById) {
return “document.getElementById(‘“+elem+”’)”;

}
}

function getStyleObj(elem,parent) {
if (document.layers) {

if (parent) {
return “document.”+parent+”.document.”+elem;

} else {
return “document.”+elem + “.style”;

continues

1321_12.qxd 04.23.02 3:54 PM Page 243

244

THE CROSS-BROWSER DOCUMENT OBJECT CONSTRUCTOR REVISITED

To use the getDocObj() and getStyleObj() functions in other functions, use

the eval() method to evaluate the results. This will obtain the actual document

object. For example:

eval(getDocObj(elementid));

will return the document object of the element with the id specified, while

getDocObj(elementid);

will only return the text string.

The advantage of putting the document object constructors into functions is

that it modularizes your code and reduces the typing you have to do when

defining other functions. Experienced programmers in any object-oriented lan-

guage like to create a library of custom reusable objects and functions like this.

Let’s take an example from the previous project—the placeIt() function.

This is the old code. We’ve used this method so far so that you can see exactly

how a custom document object is assembled:

function placeIt(elem,leftPos,topPos) {
docObj = eval(doc + elem + sty);
if (n4 || n6) {

docObj.left = leftPos;
docObj.top= topPos;

} else if (ie) {
docObj.pixelLeft = leftPos;

docObj.pixelTop = topPos;
}

}

Now this is the new code that uses the getStyleObj() function (the changed

code is highlighted):

function placeIt(elem,leftPos,topPos) {
docObj = eval(getStyleObj(elem));
if (n4 || n6) {

docObj.left = leftPos;
docObj.top= topPos;

} else if (ie) {
docObj.pixelLeft = leftPos;
docObj.pixelTop = topPos;

}
}

As your understanding of JavaScript increases, try to build up your own library

of reusable objects and functions too.

The document object text string for Netscape 4.x is not really needed for this

project because none of the JavaScript functions that follow are intended to

work in that browser. The getDocObj() function also is not used in the subse-

quent functions. However, I have presented the complete getDocObj() and

getStyleObj() functions here because they are very useful when you have to

create cross-browser scripts.

}
} else if (document.all) {

return “document.all.”+elem + “.style”;
} else if (document.getElementById) {

return “document.getElementById(‘“+elem+”’).style”;
}

}

continued

1321_12.qxd 04.23.02 3:54 PM Page 244

245

CREATING THE TAB NAVIGATION SCRIPT
(tabs.js)
The file, tabs.js, contains the JavaScript that makes the tab navigation work.

The tab navigation script basically does two things: it changes the stacking order or

z-index of the elements and changes the background color and textcolor of the tab.

This is done by simply changing the style property values of elements.

T
R

A
N

S
I

T
I

O
N

A
L

C

S
S

A

N
D

J

A
V

A
S

C
R

I
P

T

S
T

R
A

T
E

G
I

E
S

1 Open the file tabs.js.

2 Define the arrays, tabArray and boxArray. These

arrays hold the style object text strings that are

obtained with the getStyleObj() function, which

will be used in the tab navigation functions.

The tabArray() array holds the style property strings

for the tab1 through tab5 div elements. The

tabTextArray() array holds the style property strings

for the tabmiddle1 through tabmiddle5 td elements.

The boxArray() array holds the style property text

strings for the box1 through box5 div elements.

It’s important to put the array values in the proper

order because the functions we’ll define later will

point to the index in each array.

Note: The data in array position 0 for each array has
been set to null. This is just a matter of convenience—
all arrays start at index number 0, but I always tend
to forget this because I like to start counting at 1.
But remember that the total number of items in the
array is 6.

Defining text strings as array values can make writing
scripts that require repeating or looping statements
much more efficient.

/* The tab navigation script. Always use in conjunction with
docobj.js! */

// Set up array of tab element style property strings

var tabArray = new Array(6);
tabArray[0] = null;
tabArray[1] = getStyleObj(‘tab1’);
tabArray[2] = getStyleObj(‘tab2’);
tabArray[3] = getStyleObj(‘tab3’);
tabArray[4] = getStyleObj(‘tab4’);
tabArray[5] = getStyleObj(‘tab5’);

var tabTextArray = new Array(6);
tabTextArray[0] = null;
tabTextArray[1] = getStyleObj(‘tabmiddle1’);
tabTextArray[2] = getStyleObj(‘tabmiddle2’);
tabTextArray[3] = getStyleObj(‘tabmiddle3’);
tabTextArray[4] = getStyleObj(‘tabmiddle4’);
tabTextArray[5] = getStyleObj(‘tabmiddle5’);

// Set up array of text box element style property strings
var boxArray = new Array(6);
boxArray[0] = null;
boxArray[1] = getStyleObj(‘box1’);
boxArray[2] = getStyleObj(‘box2’);
boxArray[3] = getStyleObj(‘box3’);
boxArray[4] = getStyleObj(‘box4’);
boxArray[5] = getStyleObj(‘box5’);

1321_12.qxd 04.23.02 3:54 PM Page 245

246

3 Define some global variables that are used in the

functions.

The variable, active, is used as a holder to see which

element is the one on top.

The other variables hold color values and are used to

color the tabs and tab text.

4 Start to define the function, tabcolor(). This func-

tion sets the appearance of the tab.

Three arguments are passed to the function: tabnum,

or the number of the tab; color1, which is the back-

ground color of the tab; and color2, which is the text

color of the tab.

5 Continue to define function, tabcolor(). Declare

the value of the local variable tab to be the evaluated

result of the value in the tabArray[tabnum] array

element. For example, if the value of tabnum is 3, the

value of tabArray[tabnum] is the result returned by

getStyleObj(‘tab3’).

Declare the value of the local variable, tabtext, to be

the evaluated result of the value in the

tabTextArray[textnum] array element. If the value of

tabnum is 3, the value of tabTextArray[tabnum] is

the result returned by getStyleObj(‘tabmiddle3’).

6 Continue to define the function, tabcolor(), by

setting the backgroundColor property of tab to the

value of color1 and the color property of tabtext to

the value of color2.

7 Finally, define the code that changes the appearance

of the cursor. Because the tabcolor() function will

be used with mouse events associated with a td ele-

ment, the cursor will not change its appearance by

default—unlike mouse events that occur when asso-

ciated with an a link element. Therefore, we’ll

var active = null;
var activebgcolor = “#993399”;
var activetextcolor = “#000000”;

var inactivebgcolor = “#cccccc”;
var inactivetextcolor = “#999999”;

var overbgcolor = “#cc99cc”;
var overtextcolor = “#ffcc99”;

function tabcolor(tabnum,color1,color2) {
var tab = eval(tabArray[tabnum]);
var tabtext = eval(tabTextArray[tabnum]);
tab.backgroundColor = color1;
tabtext.color = color2;

continues

1321_12.qxd 04.23.02 3:54 PM Page 246

247

change the cursor style to the “pointing hand.”

Because the syntax is different for Internet Explorer

and Netscape 6/Mozilla, we have a branching state-

ment: the cursor style is set to “hand” in IE and

“pointer” in Netscape 6.

8 Define the function, choosebox().

This is the core function that sets the z-index of the

content divs and tabs. It also calls the tabcolor()

function.

One argument passed to it is tabnum, which contains

the appropriate array index number for the three

arrays we defined previously.

First, check to see if the browser in use supports

document.all or document.getElementById. If not,

the function will not continue.

Next, check to see if the value of the variable active

is null. If it is not, then that means that one of the

layers is “active”—or was the last selected one.

Therefore, the ‘active’ elements are reset to their

‘inactive’ states.

Assign the local variables activetablayer,

activetabtext, and activeboxlayer the evaluated

values of the tabArray[active], tabTextArray

[active], and boxArray[active] array elements,

respectively. Then set the zIndex property value of

activetablayer and activeboxlayer to 0 and reset

the backgroundColor and color values of the

tabTextArray[active] element by calling the

tabcolor() function, passing active,

inactivebgcolor, and inactivetextcolor as the

arguments.

T
R

A
N

S
I

T
I

O
N

A
L

C

S
S

A

N
D

J

A
V

A
S

C
R

I
P

T

S
T

R
A

T
E

G
I

E
S

if (document.all) {
tabtext.cursor = ‘hand’;

} else {
tabtext.cursor = ‘pointer’;

}
}

continued

CONVERTING HYPHENATED CSS STYLE PROPERTIES

TO JAVASCRIPT

Most CSS style properties can be used as-is in JavaScript, with

the exception of style properties with hyphens such as background-

color, z-index, and font-family. We can’t use hyphens for variable,

function, custom defined property, or method names because the

hyphen can be interpreted as a minus sign.

Fortunately, the rule for “converting” such CSS property names to

JavaScript is simple: Take away the hyphen and capitalize the first

letter of the word after the hyphen. So background-color becomes

backgroundColor, z-index becomes zIndex, and so on. (Remember

that while CSS is case-insensitive, JavaScript is case sensitive!)

1321_12.qxd 04.23.02 3:54 PM Page 247

248

9 Continue to define the function, choosebox().

This section of the function sets the newly selected

elements to the ‘active’ state.

Assign the local variables, tablayer, tabtext, and

boxlayer, the evaluated values of the tabArray[num],

tabTextArray[num], and boxArray[num] array ele-

ments, respectively. Then set the zIndex property

value of tablayer and boxlayer to 10 and reset

the backgroundColor and color values of the

tabTextArray[tabnum] element by calling the

tabcolor() function, passing tabnum, activebgcolor,

and activetextcolor as the arguments.

Finally, set the new value of active as tabnum. This

makes the currently selected elements the active

elements.

// the central tab navigation function

function choosebox(tabnum) {
if (active) {

var activetablayer = eval(tabArray[active]);
var activetabtext = eval(tabTextArray[active]);
var activeboxlayer = eval(boxArray[active]);
activetablayer.zIndex = 0;
activeboxlayer.zIndex = 0;
tabcolor(active,inactivebgcolor, inactivetextcolor);

}

tablayer = eval(tabArray[num]);
tabtext = eval(tabTextArray[num]);
boxlayer = eval(boxArray[num]);
tablayer.zIndex = 11;
boxlayer.zIndex = 10;
tabcolor(tabnum,activebgcolor, activetextcolor);
active = tabnum;

}

10 Define the function, tabover().

The tabover() function simply calls the tabcolor()

function if the value of tabnum does not equal the

value of active (in other words, if the chosen element

is not the one currently on top or “active”). The val-

ues of the variables, overbgcolor and overtextcolor,

are passed to tabcolor() as arguments. The

tabover() function is invoked with the mouseover

event.

11 Define the function tabout().

The tabout() is identical to the tabover() function,

except that it passes the values of the variables, inac-

tivebgcolor and inactivetextcolor, as arguments.

This function is called with the mouseout event.

function tabover(tabnum) {
if (tabnum != active) {

tabcolor(tabnum,overbgcolor,overtextcolor);
}

}

function tabout(tabnum) {
if (tabnum != active) {

tabcolor(tabnum,inactivebgcolor,inactivetextcolor);
}

}

1321_12.qxd 04.23.02 3:54 PM Page 248

249

MODIFYING THE XHTML MARKUP TO CALL
THE FUNCTIONS
To activate the JavaScript, we will adjust the XHTML markup to call the various

functions we’ve defined.

T
R

A
N

S
I

T
I

O
N

A
L

C

S
S

A

N
D

J

A
V

A
S

C
R

I
P

T

S
T

R
A

T
E

G
I

E
S

1 Insert an onload event call in the <body> tag that calls

the choosebox() function, with 1 passed as the

argument.

<body onload=”choosebox(1)”>

When the page first loads,
the first tab (tab1) is set to
“active,” and the first content
box (box1) is on top.

2 Insert the onmouseover, onmouseout, and onclick

event calls from the div elements tab1, tab2, tab3,

tab4, and tab5. The tabover() function is called

onmouseover; the tabout() function is called

onmouseout; and the choosebox() function is called

onclick. The appropriate value for the tabnum argu-

ment is passed to the functions: for tab1 it’s 1, for

tab2 it’s 2, and so on. The added event calls are

highlighted in the code.

<div id=”tab1” onmouseover=”tabover(1)”
onmouseout=”tabout(1)”
onclick=”choosebox(1)”>
<table summary=”” cellpadding=”0”
➥cellspacing=”0” border=”0”>
<tr>
<td width=”8” height=”24” class=”tableft”>
➥<img src=”images/dot.gif” alt=””
➥width=”8” height=”24” border=”0” /></td>
<td id=”tabmiddle1”>overview</td>
<td class=”tabright”><img
➥src=”images/dot.gif” alt=”” width=”7”
➥height=”24” border=”0” /></td>
</tr>
</table>

</div>

<div id=”tab2” onmouseover=”tabover(2)”
onmouseout=”tabout(2)”
onclick=”choosebox(2)”>
<table summary=”” cellpadding=”0”
➥cellspacing=”0” border=”0”>
<tr>
<td width=”8” height=”24” class=”tableft”>
➥<img src=”images/dot.gif” alt=””
➥width=”8” height=”24” border=”0” /></td>
<td id=”tabmiddle1”>overview</td>
<td class=”tabright”><img
➥src=”images/dot.gif” alt=”” width=”7”
➥height=”24” border=”0” /></td>
</tr>

continues

1321_12.qxd 04.23.02 3:54 PM Page 249

250

</table>

</div>

<div id=”tab3” onmouseover=”tabover(3)”
➥onmouseout=”tabout(3)” onclick=”choosebox(3)”>
<table summary=”” cellpadding=”0” cellspacing=”0”
➥border=”0”>
<tr>
<td width=”8” height=”24” class=”tableft”><img
➥src=”images/dot.gif” alt=”” width=”8” height=”24”
➥border=”0” /></td>
<td id=”tabmiddle1”>overview</td>
<td class=”tabright”><img src=”images/dot.gif” alt=””
➥width=”7” height=”24” border=”0” /></td>
</tr>
</table>

</div>

<div id=”tab1” onmouseover=”tabover(1)”
➥onmouseout=”tabout(1)” onclick=”choosebox(1)”>
<table summary=”” cellpadding=”0” cellspacing=”0”
➥border=”0”>
<tr>

<td width=”8” height=”24” class=”tableft”>
<img src=”images/dot.gif” alt=”” width=”8” height=”24”
➥border=”0” /></td>
<td id=”tabmiddle1”>overview</td>
<td class=”tabright”><img src=”images/dot.gif” alt=””
➥width=”7” height=”24” border=”0” /></td>
</tr>
</table>

</div>

<div id=”tab5” onmouseover=”tabover(5)”
➥onmouseout=”tabout(5)” onclick=”choosebox(5)”>
<table summary=”” cellpadding=”0” cellspacing=”0”
➥border=”0”>
<tr>
<td width=”8” height=”24” class=”tableft”><img
➥src=”images/dot.gif” alt=”” width=”8” height=”24”
➥border=”0” /></td>
<td id=”tabmiddle1”>overview</td>
<td class=”tabright”><img src=”images/dot.gif” alt=””
➥width=”7” height=”24” border=”0” /></td>
</tr>
</table>
</div>

continued

The user mouses over another
tab, and the text and back-
ground colors change.

The user clicks the tab, and
the new content box appears.
Because the whole page is
already loaded, the change
occurs right away. The tab’s
appearance changes to the
“active” state. Note how the
tab is stacked on top of the
content box.

1321_12.qxd 04.23.02 3:54 PM Page 250

251

T
R

A
N

S
I

T
I

O
N

A
L

C

S
S

A

N
D

J

A
V

A
S

C
R

I
P

T

S
T

R
A

T
E

G
I

E
S

HOW IT WORKS: GRACEFULLY DEGRADING PAGES WITH CSS

In this project, we have dealt with the issue of creating a page that degrades gracefully in older

browsers in two ways. The first is with a planned use of the varying support for CSS rules.

To review, our main goal for this project was to create a page that is readable to all and reasonably

attractive to users of browsers with partial CSS support—while still avoiding the use of styling tags

such as within the markup itself.

The CSS for this page has been separated into two documents. The first one contains the rules

that will be recognized by Netscape 4.x. This is so that the page looks reasonably attractive in that

browser. Generally speaking, these are the style rules for font appearance as well as background and

foreground colors. Some basic margin property values are also included.

The second stylesheet, advanced.css, contains the rules that are not well supported by Netscape 4.x

or any other browser with only rudimentary support for CSS. Because advanced.css is associated

with the base XHTML document using the @import property, the whole stylesheet will be ignored

by those browsers that don’t support @import. Some of the rules in advanced.css override the ones

in common.css by declaring them to be !important. It’s always important to remember to arrange

the markup content in a way that is logical for people who are using non-CSS enabled browsers.

How the page looks in Netscape 4.x, which only recognizes the
style rules included in common.css. Note how the “header” text
for each section is actually the text contained in the tab tables.
Here this text is set to a large size (font-size: 18px); this is over-
ridden in the advanced.css stylesheet with !important (font-size:
12px !important).

HOW IT WORKS: GRACEFULLY DEGRADING PAGES AND JAVASCRIPT

In the previous projects, most of the functions we created had a number of

if...else statements that specified different code for different browsers. In

this project however, there are only two browser-specific if...else state-

ments in the whole tabs.js script. The first one, in the tabcolor() function,

deals with the fact that the syntax for cursor styles for Internet Explorer and

Netscape 6 differ. The second one, at the beginning of the choosebox()

function, specifies that the function will only execute if the browser in use

recognizes document.all or document.getElementById.

The tabover() and tabout() functions, on the other hand, don’t have any

if...else statements that “sniff” the browser out. Instead, the functions are

called from within div elements rather than from a (link) elements. Modern

browsers allow for JavaScript events to be called from any element, while it’s

only possible to call JavaScript events from a limited set of elements in older

browsers. Netscape 4.x, for example, will simply ignore the onmouseover,

onmouseout, and onclick event calls in the div elements.

When creating a “gracefully degrading” site, the visitor should never get the

impression that they are somehow getting a lesser version. Ideally, he should

never know what he is missing—unless, of course, he revisits the site with

another browser!

1321_12.qxd 04.23.02 3:54 PM Page 251

