
OBJECT IVES

3C H A P T E R

Physical Database
Design and

Implementation

Create and alter databases. Considerations
include file groups, file placement, growth
strategy, and space requirements.

• Specify space management parameters.
Parameters include autoshrink, growth
increment, initial size, and maxsize.

• Specify file group and file placement.
Considerations include logical and physical
file placement.

• Specify transaction log placement.
Considerations include bulk load operations
and performance.

. The placement of the files related to a SQL Server
2000 database environment helps to ensure opti-
mum performance while minimizing administration.
Recoverability can also be improved in the event of
data corruption or hardware failures if appropriate
measures are taken. On the exam, you must be pre-
pared to respond to these requirements and properly
configure the interactions with the file system.

Create and alter database objects. Objects
include constraints, indexes, stored proce-
dures, tables, triggers, user-defined functions,
and views.

• Specify table characteristics.
Characteristics include cascading actions,
CHECK constraints, clustered, defaults,
FILLFACTOR, foreign keys, nonclustered,
primary key, and UNIQUE constraints.

• Specify schema binding and encryption for
stored procedures, triggers, user-defined
functions, and views.

• Specify recompile settings for stored
procedures.

• Specify index characteristics.
Characteristics include clustered,
FILLFACTOR, nonclustered, and uniqueness.

OBJECT IVES OUTL INE

. An absolute necessity of building databases that
interact with SQL Server 2000 is using the appro-
priate database objects to obtain a usable database
system while improving response times and main-
taining data integrity. There are considerations and
trade-offs for choosing one technique over the
other. The selection of the most appropriate
method to obtain the desired result requires that
you know where each is best implemented. The
exam will test on the appropriate application of
each of these objects.

Alter database objects to support replication
and partitioned views.

• Support merge, snapshot, and transactional
replication models.

• Design a partitioning strategy.

• Design and create constraints and views.

• Resolve replication conflicts.

. A variety of technologies exist in handling multiple
server environments, knowing what each technol-
ogy offers—as well its restrictions—helps you adapt
a database system applied across multiple machines.
Considerations for controlling data alterations, hav-
ing the data available when needed, and responding
to queries in a timely manner will be the aim of
questions within this area of the exam.

Troubleshoot failed object creation.

. Troubleshooting is certainly a broad topic. In this
chapter, the focus for troubleshooting is on the
interactions with objects and the server as well as
application settings that are required for an object
to be created and used. On the exam, troubleshoot-
ing will be approached from a wide variety of
angles. In the “real world,” it is good practice to
always view a procedure from a problem-solving
perspective. Always be ready to ask yourself, “What
could go wrong?” and “What can be done to
resolve the problem?”

Creating and Altering Databases 111

Creating Database Files and Filegroups 112

Using Filegroups 117

File Placement 119

Space Requirements 126

Creating and Altering
Database Objects 129

Table Characteristics 130

Application of Integrity Options 155

Multiple Server Implementations 158

Use of Replication 158

Partitioning to Achieve a Balance 159

Troubleshooting SQL Server Objects 161

Setting Server Configuration Options 162

Setting Database Configuration Options 170

Setting the Database Options 176

Apply Your Knowledge 181

Exercises 181

Review Questions 183

Exam Questions 183

Answers to Review Questions 188

Answers to Exam Questions 188

STUDY STRATEGIES

. Ensure that you have a thorough understanding
of the variety of objects and technologies avail-
able within the realm of physical design. Know
what each technique accomplishes (advan-
tages) and also watch out for associated pit-
falls (disadvantages).

. Understand the basics of the file system and
its use by SQL Server. Know when to split off a
portion of the database structure and storage
to a separate physical disk drive.

. Know the interaction between SQL Server and
the OS (operating system). Some of the physi-
cal design concepts that are discussed point
out the role that the OS performs and the rea-
son for its participation.

. Recognize the changes to the actual data struc-
ture and other areas of the database definition
that might occur. Some technologies impact the
database schema by applying their own objects.

. Watch out for “What’s new in SQL Server 2000.”
Typically the exam tests on new features within
the software, and this exam is certainly no dif-
ferent. The discussion of physical design topics
reviews many important design and exam crite-
ria, many of which are new features.

110 Par t I EXAM PREPARATION

INTRODUCTION

Chapter 1, “Introduction to SQL Server 2000,” looked at the mod-
eling considerations and the logical structure of a database design. In
moving from an idea to a logical structure to the actual physical ele-
ments, you must remember to consider elements that contribute to
performance, reliability, and data integrity. Having a model of the
system is one thing, but it must be able to meet the demands of an
environment where inevitably the system must meet the intended
goals of the company and add to the bottom line.

This chapter explores the aspects of the physical database design. It
compares and contrasts the physical design and logical data modeling
of Chapter 1 and then proceeds towards the implementation of a
database system. Included are discussions of the file system, data
structure, index structure, SQL Server objects, hardware, and finally,
troubleshooting of the database design. Of particular interest to any-
one preparing for the exam will be the discussion of schema binding
and data partitioning. Because these two topics represent functional-
ity that has been provided over and above the previous version, you
can certainly expect questions on these areas when you take the exam.

In any physical design, the goal is to provide an efficient and respon-
sive database system that also lends itself to appropriate maintenance
tasks without becoming a database administrator’s burden. At this
stage of a database implementation, care is taken to provide a system
structure that is usable, provides for optimum user response time,
can be readily maintained, and above all meets the needs of the
business for which it was designed.

As each of the physical design topics are discussed, pay close
attention to the options that are available. Many different database
technologies can be applied. Selecting the most appropriate tech-
nique to apply, based on what the problem warrants, is a very
imperfect science. To become proficient in all these technologies,
a developer must have a diverse background covering many data
solutions. It would be beneficial, therefore, to try to experiment
with as many different types of applications as possible. You will
find that a manufacturing solution is considerably different from
an online sales-oriented solution, which differs as well from a
scientific application’s solution, and so on.

The exam covers physical elements in numerous areas. The material
contained in this chapter hits many of the exam topics. This chapter

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 111

covers the exam objectives for the physical database design section of
the Database Development SQL Server 2000 exam, including the
hardware, the operating system, SQL Server, the database, all data-
base objects, and the application. Many of these features are
overviewed in this chapter but are further defined in other chapters
throughout the book.

CREATING AND ALTERING DATABASES

. Create and alter databases. Considerations include file
groups, file placement, growth strategy, and space
requirements.

The file format in SQL Server 2000 has not significantly changed
from the previous version (SQL Server 7). SQL Server uses a set of
files to store the data, indexes, and log information for a database. A
primary file also has some header information in it, providing SQL
Server with necessary information about a database. Each database
has a minimum of two files associated with it, one for the data and a
second for the log. It is also possible to create multiple files for each
of these purposes as described in the following paragraphs. File
placement, and object placement within these files, plays an impor-
tant role in the responsiveness of SQL Server. A database consists of
two or more files with each file used for only a single database. A
single file cannot be shared by multiple databases.

Each database has one or more files used to store indexes and data.
The first file created for this purpose is referred to as the primary
file. The primary file contains the information needed to start up a
database and is also used to store some or all of the data. If desired,
secondary files might be created to hold some of the data and other
objects. Some databases might be large enough or complex enough
in their design to have multiple secondary files used for storage.

Normally the log is maintained in a single file. The log file is used to
store changes to the database before these changes are recorded in
the data files themselves. The storage of information into log files in
this manner enables SQL Server to use these files as an important
part of its recovery process. Every time the SQL Server is started, it
uses the log files for each of the databases to determine what units of
work were still being handled at the time the server was stopped.

112 Par t I EXAM PREPARATION

The file names given to all data and log files can be any desired
name, although it is recommended that you select a name that gives
some indication as to the content of the file. The file extensions for
the primary data file, secondary data file(s), and log files can also be
any chosen set of characters. It is recommended for consistency and
standardization that the extensions be .mdf, .ndf, and .ldf for the
primary, secondary, and log files, respectively.

Creating Database Files and
Filegroups
All files needed for a database can be created through a single activ-
ity using SQL Server’s Enterprise Manager, or with a single CREATE
DATABASE Transact SQL statement. Either of these methods can be
used to initialize all files and create the database and logs in a single
step. The number of files you create and the placement of the files
are addressed a little later in this chapter. (See the sections, “Using
Filegroups” and “File Placement.”)

The default names for the primary database and transaction log files
are created using the database name you specified as the prefix—for
example, NewDatabase_Data.mdf and NewDatabase_Log.ldf. These
names and locations can be changed if desired from the default val-
ues provided for the new database file. The Transact SQL (T-SQL)
syntax for creating a database is as follows:

CREATE DATABASE databasename
[ON[<filespec>[,...n]][,<filegroup>[,...n]]][LOG

➥ ON{<filespec>[,...n]}]
[COLLATE collationname][FOR LOAD | FOR ATTACH]
<filespec>::=
[PRIMARY]
([NAME=logicalfilename,][FILENAME=’physicalfilename’]
➥ [,SIZE=size][,MAXSIZE={size | UNLIMITED}]
[,FILEGROWTH=growthincrement])
[,...n]<filegroup>::=FILEGROUP filegroupname
➥ <filespec>[,...n]]

In the procedures that follow, you have the opportunity to create a
database one step at a time. There are two techniques that can be
used for these procedures. The first option uses the Create Database
Wizard tool and Enterprise Manager in Step by Steps 3.1 and 3.2.
The second option available provides for the syntax for the creation
of a database using T-SQL code.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 113

S T E P B Y S T E P
3.1 Creating a Database Using the Create

Database Wizard

1. Expand a server group, and then select the server in which
to create a database.

2. On the Tools menu, click Wizards.

3. Expand Database.

4. Double-click Create Database Wizard.

5. Complete the steps in the wizard.

Or, if you prefer to use the Enterprise Manager:

S T E P B Y S T E P
3.2 Creating a Database Using the

Enterprise Manager

1. Expand a server group and then the server where the data-
base is to be placed.

2. Right-click Databases, and then click New Database.

3. Enter a name for the database.

4. To specify how any specific file should grow, switch to
the Data Files or Transaction Log tabs, highlight the
file, select Automatically Grow File, then choose In
Megabytes or By Percent and specify a value. To specify
the file size limit, select Unrestricted Filegrowth or
Restrict Filegrowth (MB) and specify a value.

To use T-SQL to create a database, use this code:

CREATE DATABASE MyDatabase
ON
(NAME = ‘DataStore’,

FILENAME = ‘d:\data directory\DataStore_MyDatabase.mdf’,
SIZE = 1MB, MAXSIZE = 5MB, FILEGROWTH = 1MB)

LOG ON continues

114 Par t I EXAM PREPARATION

(NAME =’LogStore’,
FILENAME = ‘e:\log directory\LogStore_MyDatabase.ldf’,
SIZE = 1MB, MAXSIZE = 5MB, FILEGROWTH = 1MB)

You can use the CREATE DATABASE statement to create a database from
script. Saving the script enables you to re-create a similar database
on another server in the future. Any SQL Server object can have its
creation script saved. The advantages of saving these scripts are dis-
cussed later in this chapter. Using the CREATE DATABASE statement to
create a database using multiple files and log files would look similar
to this:

CREATE DATABASE Example
ON
PRIMARY (NAME = ExampleData,
FILENAME = ‘c:\mssql\data\sampdat.mdf’,

SIZE = 10MB,
MAXSIZE = 20MB,
FILEGROWTH = 2MB),

(NAME = ExampleIndexes,
FILENAME = ‘c:\mssql\data\sampind2.ndf’,
SIZE = 10MB,

MAXSIZE = 20MB,
FILEGROWTH = 2MB),

(NAME = ExampleArchive,
FILENAME = ‘c:\mssql\data\samparch.ndf’,
SIZE = 10MB,

MAXSIZE = 20MB,
FILEGROWTH = 2MB)

LOG ON (NAME = ExampleLog1,
FILENAME = ‘d:\mssql\log\samplog1.ldf’,
SIZE = 10MB,

MAXSIZE = 20MB,
FILEGROWTH = 2MB),

(NAME = ExampleLog2,
FILENAME = ‘d:\mssql\log\samplog2.ldf’,
SIZE = 10MB,

MAXSIZE = 20MB,
FILEGROWTH = 2MB)

Important issues with regard to appropriate use of the CREATE
DATABASE statement are as follows:

á The default growth increment measure is MB, but can also be
specified with a KB or a % suffix. When % is specified, the
growth increment size is the specified percentage of the size of
the file at the time the increment occurs.

á A maximum of 32,767 databases can be defined on a server.

á The minimum size for a log file is 512K.

continued

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 115

á Each database has an owner. The owner is the user who creates
the database. The database owner can be changed through
sp_changedbowner.

á The Master database should be backed up after a user database
is created.

á The default unit of measure for the size and maxsize settings is
MB if you supply a number, but no measure is provided. If no
options are supplied, maxsize defaults to unlimited and the
filegrowth is 10%.

At the time that you create the database and its associated files, you
provide values to determine the initial file sizes, whether and how
the files will grow, as well as some other basic database and file prop-
erties. The initial settings are used as a basis for future file system
activities. If at a later date the initial settings are in need of alter-
ation, you can perform this activity through the Enterprise Manager
or by using the ALTER DATBASE T-SQL statement.

Using the Model Database
When you create a database for the first time, that database initially
takes most of its attributes from the Model database. The Model data-
base is a system database that SQL Server uses as a kind of template
for database creations. It is a good and common practice to set the
properties and contents of the Model database based on the majority
of new databases that are to be created.

OBJECT AND CODE REUSE

In practice, many objects are stored in the Model database to mini-
mize the need to re-create these objects every time a database is
created. Common elements placed in the Model often include spe-
cialized user-defined functions and data types that are present and
frequently used by the development staff in their coding. In theory,
objects are created for use in a single database, but all developers
realize that object and code reuse is an important facet of easing
the development process.

N
O

T
E Selecting a Secure Partition When

interacting with a Windows 2000 or
Windows NT Server operating system,
ensure that all data is stored on an
NTFS partition with appropriate secu-
rity measures. NTFS provides for a
flexible file system while maintaining
a complete permission set for files
and folders stored on disk. Using
NTFS partitions helps prevent file tam-
pering and allows for more flexible
disk administration.

IN THE FIELD

116 Par t I EXAM PREPARATION

Often an object, such as a user-defined function, standard security
role, or corporate information table, can be found in most if not all
databases within a company. A property value, such as recovery level,
might also have a standard implementation across all servers in the
enterprise. If an object or property value is going to be present in
most of the user databases, placing the object into the Model data-
base or setting a property accordingly can save you the work of per-
forming the activity as a post-creation task.

Using a Collation Sequence
A collation sequence is a set of rules governing over the characters that
are used within a database and the means by which characters are
sorted and compared. In SQL Server 2000 this sequence can be set
on a database-by-database basis. In previous versions of SQL Server,
the collation sequence was a server-wide setting. You therefore had
to either perform a whole series of rebuilding actions to create a
database that did not use the server collation, or install the database
on a separate server altogether.

In SQL 2000 you can specify a non-default collation for any data-
base on the server. This means that one database does not have to
have the same characters or sorting rules as the rest of the databases
on the server. If all but one or two of your databases have the same
set of characters, then a single server can now implement the func-
tionality that would have previously taken two separate machines.

To create a database with a non-default collating sequence, provide
the COLLATE clause on the CREATE DATABASE command. You might
also select the collation name from the drop-down box in the
Enterprise Manager when you create the database from the GUI.

Be careful in the use of multiple collating sequences because it
makes the transfer and entry of data more complex. It might also
limit the application development environment and techniques
normally used for data entry and editing.

Altering Database Properties
A number of the database properties affect the way in which some
SQL Server commands operate. You can use the Enterprise Manager
to make appropriate adjustments to some of the database properties.
Alternatively you can use the ALTER DATABASE T-SQL statement to
script these changes.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 117

In altering a database, you can add or remove files and filegroups
and/or modify attributes of the files and filegroups. ALTER DATABASE
also enables you to set database properties, whereas in previous ver-
sions these properties could only be changed using the sp_dboption
stored procedure.

Using Filegroups
In a lot of database scenarios, you will not implement more than
one data file and one log file. In a number of instances, however,
you might want to implement a filegroup. Filegroups enable a group
of files to be handled as a single unit, and thus make implementa-
tions that require multiple files easier to accommodate. With
filegroups, SQL Server provides an administrative mechanism of
grouping files within a database. You might want to implement
filegroups to spread data across more than one logical disk partition
or physical disk drive. In some cases, this provides for increased
performance as long as the hardware is sufficient to optimize reading
and writing to multiple drives concurrently (see the section on “File
Placement”). You might also have a performance gain through the
appropriate placement of objects within these groups.

You can create a filegroup when a database is created, or you might
add them in later when more files are needed or desired. After a file-
group has been assigned to a database, you cannot move its files to a
different filegroup. Therefore, a file cannot be a member of more
than one filegroup. SQL Server provides for a lot of flexibility in the
implementation of filegroups. Tables, indexes, text, ntext, and image
data can be associated with a specific filegroup, allocating all pages
to one specific group. Filegroups can contain only data files; log files
cannot be part of a filegroup.

Objects can easily be moved from one filegroup to another. Using
the appropriate property page, you just select the new filegroup into
which you wish to move the object.

Placement of Objects Within Filegroups
Placement of individual objects can aid in organizing data and at the
same time provide for improved performance and recoverability.
Many different objects can be assigned to separate files or filegroups.

Be Sure of Your Collation Sequence
After the collation sequence is set,
it can be changed only through
rebuilding of the database. If possi-
ble, collation decisions should be
made during the logical design of
the system so that you don’t have
to rebuild. Although collations can
be different, if you want to change
the sequence post creation, you will
have to rebuild the database.

W
A

R
N

IN
G

N
O

T
E Setting Options Using T-SQL The

system-stored procedure sp_dboption
can still be used to set database
options, but Microsoft has stated that
in future versions of SQL Server this
functionality might not be supported.

118 Par t I EXAM PREPARATION

For reasons given in the next few paragraphs, you might want to
place the following objects into separate filegroups:

á Indexes

á A single table

á Text, ntext, or image columns

If you place indexes into their own filegroup, the index and data
pages can be handled as separate physical read elements. If the asso-
ciated filegroups are placed onto separate physical devices, then each
can be read without interfering with the reading of the other. This is
to say that while reading through an index in a sequential manner,
the data can be accessed randomly without the need for manipulat-
ing the physical arm of a hard drive back and forth from the index
and the data. This can improve performance and at the same time
save on hardware wear and tear.

Placing an entire table onto its own filegroup offers many benefits. If
you do so, you can back up a table without having to perform a
much larger backup operation. Archived or seldom-used data can be
separated from the data that is more readily needed. Of course the
reverse is true: A table that needs to be more readily available within
a database can be placed into its own filegroup to enable quicker
access. In many instances, planned denormalization (the purposeful
creation of redundant data) can be combined with this feature to
obtain the best response.

Placing text, ntext, and image data in their own filegroup can
improve application performance. Consider an application design
that allows the data for these column types to be fetched only upon
user request. Frequently, it is not necessary for a user to view pic-
tures and extensive notes within a standard query. Not only does this
accommodate better-performing hardware, but it can also provide
faster query responses and less bandwidth saturation, because data
that is not required is not sent across the network.

Considerations for Backup and Restore
Filegroups can provide for a more effective backup strategy for larger
database environments. If a large database is placed across multiple
filegroups, then the database can be backed up in smaller pieces.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 119

This is an important aspect if the time to perform a full backup of
the entire database is too lengthy.

To perform a backup in this manner, you would create a schedule to
back up the individual filegroups (after an initial full database
backup). In between each of the filegroup backups you then schedule
log backups. Using this strategy enables you to break up an exceed-
ingly large and long backup into more manageable increments.

After a determination has been made to use a filegroup strategy for
storing data, always ensure that when a backup is performed
against a filegroup that the indexes are also backed up at the same
time. This is easily accomplished if the data and indexes are stored
in the same filegroup. If they are located on separate filegroups,
ensure that both the data and index filegroups are included in a
single backup operation.

File Placement
After the decision has been made to go with filegroups, then
comes the next major decision in the physical design: where to
put the filegroups. Also, although logs are not stored into file-
groups, they are stored in files and the placement of these files is
very important.

Considerations in the placement within the file system depend on
a number of variables. The first consideration is sequential versus
random access. When a file is being read sequentially, the moving
parts of the physical data device do less work (assuming no frag-
mentation). A large read/write process can use multiple physical
devices at one time if they are placed on appropriate RAID hard-
ware. Of course, there is also a software implementation of RAID
that might not outperform the hardware one but is still beneficial.

Another consideration for file placement is system recoverability.
When files are spread amongst multiple physical volumes, a
fuller and faster recovery becomes possible in the event of hard-
ware failure. Also, many other operations can benefit from
appropriate file placement. The next four topics look at these
considerations and discuss some of the instances where they
each might be implemented.

SQL Server Does Not Enforce
Backup Be aware that SQL Server
does not enforce backup of data
and index filegroups in a single
operation. You must ensure that
the files associated with the
indexes tied to a particular data set
are backed up with the data during
a filegroup backup.

W
A

R
N

IN
G

120 Par t I EXAM PREPARATION

Sequential/Random Access Considerations
Many processes performed within SQL Server can be classified as
sequential or random. In a sequential process, the data or file can be
read in a forward progression without having to locate the next data
to be read. In a random process, the data is typically more spread
out, and getting at the actual physical data requires multiple
accesses.

Where possible, it is desirable to keep sequential processes running
without physical interruption caused by other processes contending
for the device. Using file placement strategies to keep random
processes separate from sequential ones enables the configuration to
minimize the competition over the placement of the read/write heads.

In an ideal configuration (somewhat tongue in cheek), you might
want to separate the operating system from its page file. You would
then place the log onto its one drive, separate from the data, with
the data configured over a RAID volume as described in the follow-
ing section. Take the seldom-used data (column or table data) and
separate it from data that will be accessed more frequently. Place the
indexes off on their own volume as well, and for about
$150.00–$200,000.00, you have the optimum performance in a
database server. In fact, while you’re at it, why not throw in a couple
of extra network cards and a few processors?

Obviously, in most production environments the database team must
balance an ideal configuration with the company bottom line. For
many of these volume placements, a definitive cost must be budgeted.

As a minimum requirement for almost any implementation, you
should separate the normal sequential processing of the log files
from the random processing of the data. You also improve recover-
ability by separating the data from the log and placing them on sep-
arate physical volumes. If the volume where the data is stored is
damaged and must be restored from backup, you will still have
access to the last log entries. The final log can be backed up and
restored against the database, which gives something very close to
100% recoverability right to the point of failure.

An interesting and flexible strategy is to provide a separate drive
solely for the log. This single volume does not have to participate in
RAID architecture, but RAID might be desired for full recoverabil-
ity. If you give the log the space of an entire volume, you give the
log more room to grow and accumulate more of the log over time

N
O

T
E Log Files Logs are not stored in file-

groups. You can, however, use multiple
log files and place them in different
locations to obtain better and more
varied maintenance and allow more
storage space for log content.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 121

without the need for periodic emptying. Less frequent log backups
are needed and the best possible log performance is achieved.

RAID Considerations
RAID (Redundant Array of Independent/Inexpensive Disks) is a
technology where two or more disk drives can be configured in such
a manner as to provide

á Larger volumes, because space on multiple disks is combined
to form a single volume.

á Improved performance, by interacting with more than one
physical disk at a time (disk striping).

á Safeguarding data, by providing mechanisms (mirror or parity)
for redundant data storage.

RAID is classified under many categories, each category assigned as
a number. For more information about RAID hardware or other
interesting information, visit the web site of the RAID advisory
board: http://www.raid-advisory.com/CIC.html. This book is con-
cerned with only three RAID levels, 0 (zero), 1, and 5, although
there are many different other qualifications for RAID.

RAID 0 (stripe set) provides for multiple simultaneous read/write
access across two or more disks. There is no data redundancy and
thus no fault tolerance. A striped implementation is valid when
strong backups exist and recovery time is not relevant. It might also
be considered if the data is considered somewhat trivial and loss of
data is unimportant. Parity sets provide optimum performance with
no waste space allocated to data redundancy. Microsoft recom-
mends a 64K stripe size, which should be considered if you are
using RAID 0.

RAID 1 (mirror) provides the exact duplication of one volume onto
another. This solution offers quick recoverability but has a perfor-
mance cost. Everything written to one volume is then written a sec-
ond time to the alternate volume. A mirror implementation is valid
for operating system drives or any other system where speed is not as
important as recovery time in the event of a failure. In most imple-
mentations, if the first drive fails, the system has little or no down-
time because it can operate fully on the mirror drive. Mirrors are a

122 Par t I EXAM PREPARATION

more costly form of fault tolerance than parity sets, losing a full
50% of available space to data redundancy.

An alternative form of mirroring, duplexing, involves not only the
duplication of hard drives but also redundant drive controllers. In
using duplexing, you achieve fault tolerance over the loss of the con-
troller as well as hard drive failure. To achieve up-to-the minute
recovery in any failure, you might want to place your log files on a
mirror or duplexed volume.

RAID 5 (parity set) provides the best read performance while still giv-
ing the recoverability through data redundancy. In a parity set, the
data is written across all the available drives in segments referred to as
stripes. In each stripe, all but one drive will contain data, with the
remaining drive containing the parity check information. Each time
data is written, a checksum is calculated and written to the parity seg-
ment. If a failure causes the loss of a disk drive, the parity segment can
be used to enable the stripe set to be regenerated. RAID 5 is usually
referred to as a poor man’s mirror because the more drives that are
included in the set, the more cost-effective this solution. For example,
if three drives are used, a third of the available space is lost to redun-
dancy. If ten drives are used there is only a 10% loss of usable space.

RAID: SOFTWARE VERSUS HARDWARE

Even though software implementations of RAID must be known to
pass certification exams and will be found in production systems,
they are not nearly regarded as reliable as hardware RAID. For any
high-volume, mission-critical application, it is therefore preferred to
set up data redundancy mechanisms at the hardware level.

Recoverability in the Event of Failure
Two primary concerns in most data environments are data recover-
ability in the event of the inevitable failures and considerations for
minimal downtime. In the industry, one of the optimum ratings to
strive for is the elusive “five nines” (99.999). This rating means that
over any given period of time (generally accepted standard of 365
days minimum), the server remained online and servicing the end
user 99.999 percent of the time. In other words, the total downtime
for an entire year is a little over 5 minutes.

IN THE FIELD

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 123

In an attempt to achieve as little downtime as possible, it is essential to
consider a strategy that involves multiple servers and redundant other
hardware, as well as other issues on each machine. Data redundancy,
adequate backups, and some form of disaster recovery plan must all be
a part of a complete solution. Most of the topics surrounding server
clustering fall out of the scope of this book, although the partitioned
views will be discussed at length within the section “Multiple Server
Implementations,” later in this chapter. Other multi-server functional-
ity, such as data replication, is addressed in Chapter 11, “Implementing
and Understanding Replication Methodologies.”

Though most of the topics related to recoverability fall into the realm
of administration, you need to give some consideration to these
processes when you put together a physical design. The following three
sections explain these considerations as they pertain to database design.

System and Data Recovery
Recovering from outages and minimizing data loss in the event of
hardware failures involves prior planning, adequate backups, and the
setting of appropriate database and server options. On the server, the
recovery interval and service startup options can be adjusted to
lessen the time it takes for a SQL Server to be online and opera-
tional after a power failure or other serious service interruption. In
each database, the recovery model can be set to determine the log
usage and amount of lost data activity upon failure. Backups are one
of the most important aspects of recovery. Backups must be main-
tained in a diligent and thorough manner. Finally, a plan of action
that is regularly practiced must be part of a workable solution.

Operating System Service Properties
In SQL Server 2000, two aspects of the server allow for a successful
server database restart in the event of failure. The operating system’s
services can be configured to automatically start upon computer
startup and can also be set up to respond to service interruptions. To
set service properties, you must locate the MSSQLSERVER service.
This service can be found in your administrative tools, Services for
Windows 2000, or Control Panel Services for NT. For the configu-
ration options as displayed using the Windows 2000 services proper-
ties, see Figures 3.1 and 3.2. The database recovery interval can be
set for the number of minutes each database takes to start up after
an outage or controlled server startup. You can find the Recovery

124 Par t I EXAM PREPARATION

Interval option in the Enterprise Manager by right-clicking the
server, selecting Properties from the pop-up menu, and navigating to
the Database Settings tab.

F IGURE 3 .1
General properties for operating system services.

F IGURE 3 .2
Recovery properties for operating
system services.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 125

Use of Recovery Models
Some of the database properties that were available in previous releases
of SQL Server have been combined to form what is referred to in SQL
Server 2000 as recovery models. Setting the appropriate model can enable
most if not all data activity to be recovered in the event of system fail-
ures. Three models are supported: Simple, Bulk-Logged, and Full.

The Simple recovery model ensures higher performance during
bulk copy operations and maintains a smaller database log.
However, the model does not support transaction log backups and,
therefore, there will be data loss in the event of a failure because the
database can be restored only to the point of the last full or differ-
ential database backup.

Bulk-Logged recovery also allows for high-performance bulk proce-
dures that use minimal log space. Some data might be lost, but
because you can perform log backups, usually the only loss will be
bulk operations since the last backup.

If recoverability to a specific point in time with as little data loss as
possible is the goal, then the Full recovery model should be set. The
Full recovery model makes the heaviest use of the database logs.

Backup and Disaster Recovery
Usually backup and disaster recovery falls into the realm of the data-
base and network administrators. In a total systems design strategy, a
complete plan of recovery activity that includes a variety of sched-
uled backups and other tasks is documented and tested. This disaster
recovery plan will be updated as needed, because test recovery and
practicing the plan is sure to point out anything that might be oth-
erwise missed. Though not a specific detail of implementation, the
topic of recoverability would not be complete without at least the
mention of a system-wide plan. Consider a regular exercise of simu-
lating failures to test the plan.

Standby Servers and Log Shipping
A warm backup server or standby server is a lower-cost implementa-
tion that is often selected as an alternative to replication or cluster-
ing. The premise is to back up the production server on a regular
basis, restoring it to a second machine that can be put into produc-
tion in the event of failure in the first computer. A standby server

N
O

T
E User Accounts for Services

Separate user accounts can be identi-
fied for each of the SQL Server ser-
vices. Conversely, the same account
can be used for all services and sev-
eral servers. As a standard imple-
mentation, it is usually best to use
the same account. You might want to
use separate accounts for each
server, particularly if you want each
server to send and receive email as a
separate identity.

126 Par t I EXAM PREPARATION

can also assist in taking some of the workload from the production
machine if it is used as a read-only query server.

In SQL Server 2000 you can use the Maintenance Plan Wizard to
implement a standby server configuration. The wizard prompts you
through the configuration of backups and regularly scheduled log
shipments to the standby machine.

Space Requirements
Over time, the size of the database will need to be adjusted to
accommodate new data or data removal. The configuration of the
ideal server in any given situation will vary greatly. The applications
that a server is intended to handle usually point toward the size of
machine needed and its associated peripherals.

For a general guideline or minimum starting point, consider
the following:

á Multiple processors. Preferred in most database environments
(keep in mind that licensing models change).

á RAM. Can you ever have enough RAM? Start out with 1GB
and don’t be afraid to work your way up.

á OS drive mirror. Two physical disks set up in a physical or
software mirror. In some cases, the use of two physical con-
trollers provides for complete disk duplexing.

á Data parity array. A number of separate physical drives. A
number of 4 to 6 usually provides an adequate size volume,
but this might vary in larger systems.

á Log volume. One disk used for log storage. In some cases, this
volume also stores data files for implementations that include
archived data storage. You might also want to mirror this vol-
ume to ensure up-to-the-minute data recovery.

File Growth Strategies
SQL Server 2000 enables you to set database files so that they
expand and shrink automatically as needed, eliminating the need for
additional administration. By default, SQL Server enables data files
to increase in size as needed for data storage. Therefore, a file can

N
O

T
E Licensing Models With the release

of SQL Server 2000, the licensing
models available included Per Seat or
Per Processor. The Per Server model
has been discontinued.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 127

grow to the point where all disk space is exhausted. You can specify
that a file is not to grow beyond its creation size or implement a maxi-
mum size for file growth. Ensure that disk space is not exhausted by
using the MAXSIZE option of the CREATE DATABASE or ALTER DATABASE
statements to indicate the largest size to which a file can grow.

In a volatile environment, the database and its related files might
frequently increase and decrease in size and this activity might be the
desired operation of the server. In most instances, an implementa-
tion providing for more stability in the file system is the desired end
result. A determination has to be made as to whether the database
stays at about the same size or grows or shrinks over time. In most
scenarios, a database grows over time and needs to be reduced only
when data is archived.

When creating the files, you should set the SIZE, MAXSIZE, and
FILEGROWTH parameters so that the database can increase in volume
over time. The FILEGROWTH configuration should be implemented in
larger increments so that growth within the file system isn’t occupy-
ing too much of the server’s resources. Growth of files occurs in the
background and can be minimized by using a larger growth incre-
ment. Always provide a MAXSIZE entry even if the entry itself is close
to the capacity of the volume.

Shrinking Files
File “shrinking” might be required as an application ages. In most
operations, the older the data is, the less valuable its presence is
among the mainstream data. As data ages, it is less likely to be
queried and thus is passed over by most reads. It might become
“wasted space” in the database and unnecessarily consume system
resources. A system design usually includes means by which data is
aged out into archive tables. After the archival process has completed,
there might be a high percentage of empty space in the data files.

You can shrink each file within a database to remove unused pages.
This applies to both data and log files. It is possible to shrink a data-
base file manually or as a group. You use the DBCC statement with the
SHRINKDATABASE or SHRINKFILE parameters (DBCC parameters are
shown in the Fast Facts section in Part II “Final Review”). Use DBCC
SHRINKDATABASE to shrink the size of the data files in the specified
database, or you can selectively choose a specific file and shrink its
size using DBCC SHRINKFILE.

128 Par t I EXAM PREPARATION

You can set the database to automatically shrink at periodic intervals
by right-clicking the database and selecting the database Properties
page from within the Enterprise Manager.

Ongoing System Maintenance
After a database and associated files have been created and the
implementation is complete, it’s necessary to maintain the system
using the periodic application of several commands. It might be
necessary to adjust the database and file properties as the database
system matures. In addition, DBCC (Database Consistency
Checker) has a number of parameters to assist in regular mainte-
nance activities.

As a starting point, use the SQL Server Maintenance Wizard to per-
form the necessary maintenance tasks. Adjust the scheduling of these
tasks as needed to maintain a healthy server. Watch and adjust
indexing and data structures because over time they will become
fragmented. Indexing and data structures as well as other database
objects are discussed more fully after the Review Break.

Physical Storage
Creating and altering databases involves selecting the physical
volume type for each database file, setting the appropriate file
properties, placing the objects into the files/filegroups, and
ensuring appropriate adjustments are made as the database
matures. The type of business needs that the database is being
designed to meet helps to indicate the measures needed to ensure
adequate performance.

Try to place onto separate volumes any files that might tend to com-
pete with each other for read cycles during a single operation. Place
log files away from the data to ensure adequate recovery and make
sure that database properties have been set in such a way as to ensure
that maintenance tasks can be performed.

R E V I E W B R E A K

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 129

CREATING AND ALTERING
DATABASE OBJECTS

. Create and alter database objects. Objects include
constraints, indexes, stored procedures, tables, trig-
gers, user-defined functions, and views.

The next thing to consider is the creation of objects within the data-
base. Database objects include constraints, indexes, stored proce-
dures, tables, triggers, user-defined functions, views, and more. Each
object is discussed in detail, paying particular attention to the
impact on the system as a whole. In many implementations, there
are several different approaches to meeting a particular need.
Selecting the appropriate technique for a task requires trade-offs
between functionality, performance, and resource utilization.

Each database contains a number of tables other than those used to
store data. These tables store information that enables SQL Server to
keep track of objects and procedures within the database. The sysob-
jects and syscomments system tables maintain entries containing the
object definitions and other tracking information for each object. A
number of other tables also exist to maintain information about spe-
cific objects. For more information regarding system tables, refer to
SQL Server Books Online. These tables are used whenever SQL
Server needs object information. You should never alter system
tables directly but instead allow SQL Server to manipulate the
entries as needed.

To help you secure the server, you might choose not to display sys-
tem objects to the user from the Enterprise Manager interface. Also,
hiding these objects from the user presents a cleaner interface to
objects with which the user normally interacts. Step by Step 3.3
describes how to hide system objects:

S T E P B Y S T E P
3.3 Setting Registration Options

1. Select the server from the Enterprise Manager interface.

2. Right-click to access the server menu.

130 Par t I EXAM PREPARATION

3. Select the option to Edit SQL Server Registration
Properties.

4. Clear the Show System Databases and System Objects
check box.

Table Characteristics
The makeup of a table in SQL Server is more than just simply
data definition. A complete table definition includes column
descriptions, storage location, constraints, relationships with
other tables, indexes, and keys, as well as table-level permissions
and text indexing columns.

When defining tables, it is a good idea to have some form of data
dictionary prepared to help you make appropriate choices for indi-
vidual properties. A data dictionary defines data usage and is an
extension of the logical data modeling discussed in Chapter 1. In
SQL Server, the term “database diagram” is usually used rather than
“dictionary,” although a database diagram is not a complete data dic-
tionary in the sense of documentation.

A data dictionary is a form of documentation generally considered a
complete reference for the data it describes. The dictionary is usually
a lot more than just a collection of data element definitions. A com-
plete dictionary should include schema with reference keys and an
entity-relationship model of the data elements or objects. A pseudo
data dictionary can be represented using the database diagram tool
provided with SQL Server. A partial dictionary for the Northwind
database is illustrated in Figure 3.3.

F IGURE 3 .3
Database diagram showing column properties
and table relationships.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 131

Column Definition
After the file structure and content of each file has been determined,
the tables themselves can be created and assigned to the files. If the
purpose of the table is to hold data that is frequently accessed, then the
file placement of the table should take that into consideration. Tables
that hold archive data and other less frequently accessed data require
less maintenance and don’t have to be as responsive to user queries.

The initial definition of each column within a table consists of a
name for the column, the type and length of data for the column,
and an indicator as to whether the column must have data or allow
NULL content. A number of additional column descriptors can be
included to define characteristics of how the column obtains its
value and how the column is treated within the table. A complete
list of potential column descriptors is as follows:

á Column Name. Should be meaningful so as to describe the
column content.

á Data Type. Any one of 25 possible definitions provides the
basis for the data a column will contain. Choices include sev-
eral possibilities for each data type. (Data types are discussed
more fully later in this book.)

á Length. For many of the data types, the length is predeter-
mined. You must, however, specify a length for character,
Unicode (nCHAR), and binary data. A length must also be speci-
fied for variable-length data columns. If a char or nCHAR data
type is only a single character, then no length has to be defined.

á Allow Nulls. You can provide an indicator for allowing NULL
content for any variable except those assigned as primary keys.

á Primary Key. Enforces unique content for a column and can
be used to relate other tables. Must contain a unique non-
NULL value.

á Description. Provides an explanation of the column for docu-
mentation purposes. (This is an extended table property.)

á Default Value. Provides a value for a column when one is not
explicitly given during data entry. A default object must be cre-
ated and then bound to a column, but the preferred technique is
to provide the default definition, directly attached to the column
in the CREATE/ALTER table definition. It is defined at the database
level and can be utilized by any number of columns in a database.

N
O

T
E Object Placement Keep in mind

when assigning objects to files that
some objects can be placed away
from the mainstream data through the
use of filegroups. You can select the
object placement from Table Design
Properties in the Enterprise Manager
or through the use of an ON clause in
a CREATE/ALTER statement. SQL
Server enables you to place the fol-
lowing table objects:

• Tables

• Indexes

• Text, nText, or Image data

132 Par t I EXAM PREPARATION

á Precision. The number of digits in a numeric column.

á Scale. The number of digits to the right of a decimal point in
a numeric column.

á Identity. Inserts a value automatically into a column, based on
seed and increment definitions.

á Identity Seed. Provides the starting value for an Identity col-
umn.

á Identity Increment. Defines how an Identity will increase or
decrease with each new row added to a table.

á Is RowGuid. Identifies a column that has been defined with
the Unique Identifier data type as being the column to be used
in conjunction with the ROWGUIDCOL function in a SELECT list.

á Formula. Provides a means of obtaining the column content
through the use of a function or calculation.

á Collation. Can provide for a different character set or sort
order than other data. (Use with extreme caution if at all
because it impairs front-end development, capability and ham-
pers data input and alteration processes.)

Many characteristics of column definitions affect other columns,
tables, and databases. For a more complete definition of any of these
properties, consult SQL Server Books Online.

Using CHECK Constraints
A CHECK constraint is one of several mechanisms that can be used to
prevent incorrect data from entering the system. Restrictions on data
entry can be applied at the table or column level through the use of
a CHECK constraint. You might also apply more than a single check to
any one column, in which case, the checks are evaluated in the order
in which they were created.

A CHECK constraint represents any Boolean expression that is applied
to the data to determine whether the data meets the criteria of the
check. The advantage of using a check is that it is applied to the
data before it enters the system. However, CHECK constraints do have
less functionality than mechanisms, such as stored procedures or
triggers. You can find a comparison of features for a number of these

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 133

mechanisms with provisions for where each one is applied at the
close of this section, just before the “Review Break.”

One use for a CHECK constraint is to ensure that a value entered
meets given criteria based on another value entered. A table-level
CHECK constraint is defined at the bottom of the ALTER/CREATE TABLE
statement, unlike a COLUMN CHECK constraint, which is defined as part
of the column definition. For example, when a due date entered
must be at least 30 days beyond an invoice date, a table-level con-
straint would be defined as:

(DueDate – InvoiceDate) >= 30

A column-level check might be used to ensure that data is within
acceptable ranges, such as in the following:

InvoiceAmount >= 1 AND InvoiceAmount <= 25000

A check can also define the pattern or format in which data val-
ues are entered. You might, for example, want an invoice number
to have an alphabetic character in the first position, followed by
five numeric values, in which case, the check might look similar
to the following:

InvoiceNumber LIKE ‘[A-Z][0-9][0-9][0-9][0-9][0-9]’

Finally, you might want to apply a check where an entry must
be from a range of number choices within a list. An inventory
item that must be one of a series of category choices might look
similar to this:

ProductCategory IN (‘HARDWARE’, ‘SOFTWARE’, ‘SERVICE’)

A COLUMN CHECK (or other constraint) is stated as a portion of the col-
umn definition itself and applies only to the column where it is
defined. A TABLE CHECK (or other constraint), on the other hand, is
defined independently of any column, can be applied to more than
one column, and must be used if more than one column is included
in the constraint.

A table definition that is to define restrictions to a single column
(minimum quantity ordered is 50), as well as a table constraint (date
on which part is required must be later than when ordered), would
be as follows:

CREATE TABLE ProductOrderLine
(ProductLineKey BigInt,
OrderMatchKey BigInt,

continues

134 Par t I EXAM PREPARATION

ProductOrdered Char(6),
QtyOrdered BigInt
CONSTRAINT Over50 CHECK (QtyOrdered > 50),

OrderDate DateTime,
RequiredDate DateTime,
CONSTRAINT CK_Date CHECK (RequiredDate >
➥ OrderDate))

Usually a single table definition would provide clauses for key
definition, indexing, and other elements that have been left out
of the previous definition to focus in more closely on the use of
CHECK constraints.

Index Organization
Putting the data into sequence to accommodate quick retrieval, and
at the same time provide meaningful and usable output to an appli-
cation, usually requires that a variety of indexes be defined. A clus-
tered index provides the physical order of the data storage, whereas a
nonclustered index provides an ordered list with pointers to the physi-
cal location of the data.

Indexing is most easily defined and understood if you compare the
data and index storage of a database to that of a book. In a book,
the data itself is placed onto the pages in a sequence that is mean-
ingful if you read the book sequentially from cover to cover. An
index at the back of the book enables you to read the data ran-
domly. You can locate a topic by looking through a list of topics
that is accompanied by a physical page reference to the place where
the topic can be found. To read a single topic you need not skim
through the entire book.

In a similar manner, data in a database can be handled randomly or
in sequence. The location of a single record can be found in the
database by looking it up in the index, rather than reading through
all the rest of the data. Conversely, if a report is to be generated from
all the data in a database, the data itself can be read sequentially in
its entirety.

Index storage in SQL Server has a B-tree structured storage. The
indexes are maintained in 8KB pages qualified as root, intermediate,
and leaf-level pages. In a clustered index, the leaf level is the data
itself, and all other levels represent index pages. In a nonclustered
index, all pages contain indexes (see Figure 3.4).

continued

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 135

If a clustered index has not been defined for a given table, then
the data is stored in a “heap.” A data heap does not maintain data
in any particular order; it simply stores the data in the order in
which it is entered. In some applications, where data is never
retrieved in any particular order on a regular basis, this might
actually be advantageous.

Indexes can be created using the T-SQL CREATE INDEX command.
When you use the Enterprise Manager to create an index, you must
access the table design and then reveal the table properties.

Step by Step 3.4 shows you how to use the Enterprise Manager to
create an index.

S T E P B Y S T E P
3.4 Selection of Index Creation from the

Enterprise Manager

1. From the Enterprise Manager, select the table with which
the index will be associated.

F IGURE 3 .4
Illustration of the B-tree structure used for
index storage.

continues

136 Par t I EXAM PREPARATION

2. Right-click on the table name and select “Design Table”
from the pop-up menu.

3. Select Table and Index Properties.

4. Click on the Indexes/Keys tab.

5. Click on the New button.

6. From the drop-down list boxes, select the column on
which to base the index and whether the index is to be
ascending or descending. If you are creating a compound
index based on a number of columns, then add additional
columns as needed.

7. Select a filegroup for the storage of the index.

8. If desired, you can make the index unique, supply fill fac-
tor and pad index values, make the index clustered
(default is nonclustered), and choose to not recalculate
statistics for the index.

9. Close the dialog box to save the index and exit table
design properties and select OK to save the changes.

Create an index using the T-SQL CREATE INDEX. The following
example creates a compound, nonclustered index that is 75% full:

CREATE INDEX IXProductItem
ON ProductOrderLine (OrderMateKey, ProductLineKey)
WITH FILLFACTOR = 75

Clustered Indexing
The selection of the appropriate column(s) on which to base a clus-
tered index is important for a number of reasons. As previously
mentioned, a clustered index represents the order in which the data
is physically stored on the disk. For this reason, you can define only
a single clustered index for any table. If you choose not to use a clus-
tered index in a table, the data on disk will be stored in a heap. A
clustered index, if present, has clustering keys that are used by all
nonclustered indexes to determine the physical location of the data.

continued

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 137

The basis for the index usually is determined by the order in which
the majority of applications and queries want their output. The clus-
tered index values are also present in other indexes and the size of
the defined index should be kept as small as possible. When you
select a clustering key, try to utilize a numeric data type because
character types cause index storage to occupy much more space.

Always define a clustered index first before you define any of the
nonclustered indexes. If you do these tasks in reverse order, then
all nonclustered indexes rebuild themselves upon creation of the
clustered index.

Nonclustered Indexing
Nonclustered indexes provide a means of retrieving the data from the
database in an order other than that in which the data is physically
stored. The only alternative to the use of these indexes would be pro-
visions for a sort operation that would place undue overhead on the
client system and might not produce the desired response times. A
data sort implementation is usually performed only for one-time
operations or for applications that will have very limited usage.

Although the creation of indexes saves time and resources in a lot of
cases, avoid the creation of indexes that will rarely be utilized. Each
time a record is added to a table, all indexes in the table must be
updated, and this might also cause undue system overhead. For that
reason, careful planning of index usage is necessary.

Unique Indexing
At times when indexes are created, it is important to guarantee that
each value is distinctive. This is particularly important for a primary
key. SQL Server automatically applies a unique index to a primary
key to ensure that each key value uniquely defines a row in the table.
You might want to create additional unique indexes for columns
that are not going to be defined as the primary key.

Leaving Space for Inserts
Fill factor is the percent at which SQL Server fills leaf-level pages upon
creation of indexes. Provision for empty pages enables the server to
insert additional rows without performing a page-split operation. A

138 Par t I EXAM PREPARATION

page split occurs when a new row is inserted into a table that has no
empty space for its placement. As the storage pages fill, page splits
occur, which can hamper performance and increase fragmentation.

MORE ON THE FILL FACTOR

You will normally find that queries (the reading of existing data) out-
weigh data updates by a substantial margin. Providing the extra
room slows down the query process. Therefore, you might not want
to adjust the fill factor value at all.

Equally, setting the fill factor too low hampers read performance
because the server must negotiate a series of empty pages to actually
fetch the desired data. It is beneficial to specify a fill factor when you
create an index on a table that already has data and will have a high
volume of inserts. If you do not specify this setting when creating an
index, the server default fill factor setting is chosen. The fill factor
for the server is a configuration option set through the Enterprise
Manager or the sp_configure stored procedure.

The percentage value for the fill factor is not maintained over time;
it applies only at the time of creation. Therefore, if inserts into a
table occur frequently, it’s important to take maintenance measures
for rebuilding the indexes to ensure that the empty space is put
back in place. A specific index can be rebuilt using the CREATE INDEX
T-SQL command with the DROP EXISTING option. Indexes can also
be de-fragmented using the DBCC INDEXDEFRAG command, which also
reapplies the fill factor.

The Pad Index setting is closely related to the setting for fill factor to
allow space to be left in non-leaf levels. Pad Index cannot be speci-
fied by itself and can be used only if you supply a fill factor. You do
not provide a value to this setting; it matches the setting given for
the fill factor.

Maintaining Referential Integrity
When multiple tables maintained in a database are related to each
other, some measures should be taken to ensure that the reliability of
these relationships stays intact. To enforce referential integrity, you

IN THE FIELD

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 139

create a relationship between two tables. This can be done through
the database diagram feature of the Enterprise Manager or through the
CREATE and ALTER TABLE T-SQL statements. Normally, you relate
the referencing or Foreign Key of one table to the Primary Key or
other unique value of a second table.

Step by Step 3.5 shows you how to use a database diagram to define
a relationship:

S T E P B Y S T E P
3.5 Using the Wizard to Create a Relationship

1. From the Enterprise Manager, expand the tree view of the
database you want to use and select Diagrams.

2. Right-click Diagrams and select New Database Diagram
from the pop-up menu.

3. A wizard asks you for the tables to use in the diagram.
Select the tables to be related and follow the wizard to
completion.

4. Select the column to be related from the subsidiary table,
and drag the column to the primary table.

5. Complete the desired options from the dialog, and press
OK to establish the relationship (see Figure 3.5).

6. Exit the diagram, and select Yes to save the changes to the
respective tables.

F IGURE 3 .5
The Create Relationship dialog box as seen
from the database diagram window.

140 Par t I EXAM PREPARATION

Step by Step 3.6 shows you how to define a relationship from the
Table Design Properties box:

S T E P B Y S T E P
3.6 Using the Table Designer to Create a

Relationship

1. From the Enterprise Manager, select the table that con-
tains the Foreign Key element of the relationship.

2. Right-click on the table name that will represent the sub-
sidiary table to be referenced, and select Design Table
from the pop-up menu.

3. Select Table and Index Properties.

4. Click on the Relationships tab and click New.

5. Select the desired options from the dialog, and click Close
to establish the relationship (see Figure 3.6).

6. Exit and save changes to the table.

You can define a relationship when creating or altering a table defin-
ition. The following example defines a relationship using T-SQL:

CREATE TABLE OrderDetails
(DetailsID smallint,
OrderID smallint

FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),
QtyOrdered bigint,
WarehouseLocation smallint
)

The most common relationships are one-to-many, in which the
unique value in one table has many subsidiary records in the second
table. Another form of relationship, which is usually used to split a
table with an extraordinary number of columns, is a one-to-one rela-
tionship. The use of one-to-one splits a table and associates a single
unique value in one table with the same unique value in a second
table. A many-to-many relationship can also be defined, but this
form of referencing requires three tables and is really two separate
one-to-many relationships.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 141

Utilizing referential integrity guidelines helps maintain the accuracy
of data entered into the system. A database system uses referential
integrity rules to prohibit subsidiary elements from being entered
into the system unless a matching unique element is in the refer-
enced table. The system also protects the data from changes and
deletions, assuming that cascading actions (defined later in this
chapter) have been carefully and properly implemented.

Primary and Foreign Keys
The definition of a Primary Key for each table, though not a
requirement of the SQL Server database environment, is recom-
mended. A Primary Key helps records maintain their identities as
unique rows of a table and also provides a means of relating tables
to other tables in the database to maintain normal forms. (For
further information on normalization and normal forms, see
Chapter 2, “Data Modeling.”) A Foreign Key is defined in a sub-
sidiary table as a pointer to the Primary Key or other unique value
in the primary table.

Both Primary and Foreign Keys are defined in the form of a
constraint. The pair of keys work together to accommodate
table relationships. A Foreign Key refers back to the Primary Key
in the parent table, forming a one-to-one or one-to-many rela-
tionship. (To see more about relationships, refer to Chapter 2.)

F IGURE 3 .6
Create Relationship options dialog as seen
from the table diagram window.

142 Par t I EXAM PREPARATION

Primary Key Constraint
A Primary Key constraint enforces entity integrity in that it does not
permit any two rows in a table to have the same key value. This
enables each row to be uniquely defined in its own right. Although a
Primary Key should be created when a table is initially created, it
can be added or changed at any time after creation.

A Primary Key cannot have NULL content nor can there be any dupli-
cate values. SQL Server automatically creates a unique index to
enforce the exclusiveness of each value. If a Primary Key is refer-
enced by a Foreign Key in another table, the Primary Key cannot be
removed unless the Foreign Key relationship is removed first. A
Primary Key is easily assigned in the table design window by either
of the following actions:

á Right-click on the desired column name and select the Set
Primary Key option. To select a compound key based on more
than one column, hold down the Ctrl key while selecting mul-
tiple columns before right-clicking.

á Select the desired field and click the Set Primary Key button
on the toolbar. To select a compound key based on more than
one column, hold down the Ctrl key while selecting the
appropriate columns.

Foreign Key Constraint
A Foreign Key constraint is defined so that a primary and subsidiary
table can be linked together by a common value. A Foreign Key can
be linked to any unique column in the main table; it does not neces-
sarily have to be linked to the Primary Key. It can be linked to any
column that is associated with a unique index.

With a Foreign Key defined, you cannot add a value to the Foreign
Key column if a matching value is not present in the primary table.
For instructions on setting a Foreign Key constraint, see the section
on referential integrity, earlier in this chapter.

Note in the example shown in Figure 3.7 that there are matching
Order IDs in the child Order Details table for only those Order
IDs included in the parent Orders table. An Order ID must match
from a child to a parent. If a child entry with an ID were not found
in the parent table, then that is known as an orphan child and would
be a breach of referential integrity rules.

Documentation Discrepancy The
capability to set a relationship to
any unique column is not noted in
most SQL Server documentation.
SQL Server Books Online reports
that a Foreign Key must be set to a
Primary Key or a UNIQUE constraint.
In SQL Server, you can create a
relationship against a Primary Key,
unique index, or a UNIQUE con-
straint. You need not have a
Primary Key or constraint. You can
even set a unique index to ignore
duplicates and the operation will
still be permitted.

W
A

R
N

IN
G

T
IP

Go with the Documentation If you
run into this on the exam, the cor-
rect answer is likely to be one cho-
sen based on the documentation
and not on actual functionality. The
capability to set a relationship to
any unique column is not noted in
documentation. The correct tech-
nique to use when answering an
exam question would be one that
involves a Foreign Key set to a
Primary Key or Unique constraint.

E
X

A
M

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 143

Using Cascade Action to Maintain Integrity
New to SQL Server with the 2000 release is a cascading action fea-
ture that many other database environments have been enjoying for
quite some time. Cascading actions affect update and delete activity
where an existing Foreign Key value is changed or removed. Cascade
action is controlled through the CREATE and ALTER TABLE statements,
with clauses for ON DELETE and ON UPDATE. You can also select these
features using the Enterprise Manager.

In a cascading update, when you change the value of a key in a situ-
ation where a Foreign Key in another table references the key value,
those changed values are reflected back to the other tables. A similar
thing happens with a delete operation: if a record is deleted, then all
subsidiary records in other tables are also deleted. For example, if an
invoice record is deleted from an invoice table that has invoice
details stored in another table and referenced by a Foreign Key, then
the details would also be removed.

A series of cascading actions could easily result from the update or
deletion of important keys. For example, the deletion of a customer
could cause the deletion of all that customer’s orders, which could
cause the deletion of all its invoices, which in turn could cause the
deletion of all the customer’s invoice details. For this reason, careful
system design is important and the potential archival of data
through the use of triggers should be considered.

In the case of multiple cascading actions, all the triggers to be fired
by the effects of the original deletion fire first. AFTER triggers then
fire on the original table and then the AFTER triggers in the table
chain subsequently fire.

F IGURE 3 .7
Primary Key/Foreign Key referential integrity.

T
IP

Cascading Actions Is a New
Feature You can expect that
something about it will be asked
on the exam. Also be prepared for
the exam by knowing all the
results and implications of cascad-
ing actions. For example, you
might be asked what occurs when
a record contained in the parent
table is deleted, or has its key
value changed.

E
X

A
M

144 Par t I EXAM PREPARATION

Stored Procedures
A stored procedure is a set of T-SQL statements that can be saved as a
database object for future and repeated executions. With stored pro-
cedures, you can enable a lot of the development and processing to
be performed on the server, producing much more efficient and
lightweight front-end applications. Any commands that can be
entered via SQL Query tools can be included in a stored procedure.

Using stored procedures is a powerful and flexible technique for per-
forming tasks within an application. A stored procedure, when it is
first used, is compiled into an execution plan that remains in the
procedure cache. This provides for some of the performance over ad-
hoc operations. The performance improvements in SQL 7 and 2000
are not as drastic as in previous versions because changes in the way
that other operations now execute provides them with some of the
same benefits as stored procedures. A stored procedure can accept
parameters, process operations against any number of databases, and
return results to the calling process. Performance will be discussed in
more detail in Chapter 12, “Monitoring SQL Server 2000.”

The SQL Server 2000 implementation has many other capabilities
that speed processing, secure data, reduce bandwidth usage, and
enable advanced operations to be performed. Procedures that are
repeatedly used will be held in memory in the SQL Server procedure
cache for faster execution. A stored procedure, like other operations,
can be encrypted to protect the details of the operation (the follow-
ing section covers encryption). An application might need to send
several operations across a network and respond conditionally to the
results. This can be handled with a single call if the logic is con-
tained in a single stored procedure. The use of local and global cur-
sors can expose information to the application or other applications
as needed, giving provisions for complex development processes with
conversations between separate processes.

Temporary stored procedures used frequently in earlier versions are
still supported by SQL Server, although improvements in other areas
should eliminate or reduce the need for their use. The most signifi-
cant improvement is the capability to compile and maintain most
SQL operations in cache for prolonged periods.

Many system-stored procedures have already been created and
are available upon installation of SQL Server. Extended stored

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 145

procedures, which enable DLL files to be accessed from the operat-
ing system, are pre-established and present in the Master database.

The T-SQL CREATE PROCEDURE statement is used to create a stored
procedure. This statement can be executed from the Query Analyzer
or it is available through the Enterprise Manager by right-clicking
on Stored Procedures under the database and choosing the New
Stored Procedure option. The procedure is then saved within the
current database as an object.

Encryption Can Secure Definitions
Data encryption is a mechanism that can be used to secure data,
communications, procedures, and other sensitive information. When
encryption techniques are applied, sensitive information is trans-
formed into a non-readable form that must be decrypted to be
viewed. Encryption slows performance, regardless of the method
implemented, because extra processing cycles are required whenever
encryption or decryption occurs. SQL Server can use data encryp-
tion at several levels:

á Login information

á Application role passwords

á Stored procedures

á Views

á User-defined functions

á Triggers

á Defaults

á Rules

á Data sent over the network

A variety of encryption procedures can be performed by a developer
or administrator depending on what level of encryption is desired.
SQL Server always encrypts login and role passwords within the
system tables stored on the server. This automatic encryption of
the login information stored on the server can be overridden using
sp_addlogin, but this is not recommended. By default, however,
application role passwords are not encrypted if they are provided

146 Par t I EXAM PREPARATION

across the network to invoke a role. The encryption of these pass-
words must be coded into the invoking application by utilizing the
encryption capabilities of the sp_setapprole procedure as follows:

sp_setapprole ‘SampleRole’, (ENCRYPT N ‘password’), ‘odbc’

SQL Server can use SSL (Secure Sockets Layer) encryption across all
network libraries, although multiprotocol encryption is still sup-
ported for backward compatibility reasons. A consideration in any
SQL Server installation that uses multiple instances installed on the
same server is that multiprotocol encryption is not supported by
named instances of SQL Server.

Process definition encryption applied to stored procedures, defaults,
rules, user-defined functions, triggers, and view definitions are all
implemented in a similar fashion. The definition stored on the
server is encrypted to prevent someone from viewing the details of
the process. To encrypt these definitions, use the applicable CREATE
statement, providing the WITH ENCRYPTION option as illustrated in the
following VIEW definition:

CREATE VIEW SampleEncryptedView WITH ENCRYPTION AS
SELECT FirstName, LastName, Wage FROM PayTable

Encryption can also serve the purpose of protecting the copyright
that a developer might have over the processes created. In any case,
before you encrypt a procedure, make sure you save a copy of the
procedure to a file server or other backup mechanism, because
future changes are difficult to implement if you do not have the
original definition. To update any definition or remove encryption,
simply supply the CREATE statement without the WITH ENCRYPTION
option. This overwrites the encrypted process with a new version
that is not encrypted.

Schema Binding
Schema binding involves attaching an underlying table definition to
a view or user-defined function. Normally, if this process is not used,
a function or view definition does not hold any data or other defin-
ing characteristics of a table. The definition is stored as a set of
T-SQL statements and handled as a query or procedure. With
binding, a view or function is connected to the underlying objects.
Any attempt to change or remove the objects fails unless the binding
has first been removed. Normally, you can create a view, but the

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 147

underlying table might be changed so that the view no longer works.
To prevent the underlying table from being changed, the view can
be “schema-bound” to the table. Any table changes, which would
break the view, are not allowed.

Indexed views require that a view be defined with the binding
option and also that any user-defined functions referenced in the
view must also be bound. In previous versions of SQL Server, it was
not possible to define an index on a view. With the advent of bind-
ing, however, meaningful indexes can now be defined over a view
that has been bound to the underlying objects. Other system
options must be set to define an indexed view. These options are
discussed later in the chapter in the “Indexed Views” section. More
information on the use of all types of views can be found in
Chapter 7, “Working With Views.” The following example uses
T-SQL of the creation of a schema-bound view:

CREATE VIEW SampleBoundView WITH SCHEMABINDING AS
SELECT ProductID, Description, PurchPrice,

PurchPrice * Markup AS SalesPrice
FROM dbo.ProductTable

Recompilation of Procedures
Adding or altering indexes or changing a stored procedure causes
SQL Server to automatically recompile the procedure. This opti-
mization occurs the next time the stored procedure is run, but only
after SQL Server is restarted. In instances where you want to force a
recompilation, you can use the sp_recompile system-stored proce-
dure. Alternatively, you can use the WITH RECOMPILE option when
you create or execute a stored procedure. Stored procedures are
dealt with in depth in Chapter 9, “Stored Procedures and User-
Defined Functions.”

Extended Stored Procedures
These procedures, like many of the system-stored procedures, are
loaded automatically when you install SQL Server. Extended stored
procedures access DLL files stored on the machine to enable the
calling of the functions contained in the DLLs from within a SQL
Server application. You might add to this set of procedures stored in the
Master database using the sp_addextendedproc procedure as follows:

sp_addextendedproc ‘MyFunction’, ‘MyFunctionSet.DLL’

T
IP

The Many Meanings of “Schema”
The word schema has several differ-
ent uses and definitions within SQL
Server; the exam will leverage this
and attempt to confuse the sepa-
rate definitions. Make sure you are
aware of how the term is used with
relation to XML, Indexed Views, and
maintaining metadata. For more
information about these particulars,
you can consult Chapter 5,
“Advanced Data Retrieval and
Modification,” in the section on
XML schema; Chapter 7, “Working
With Views,” in the section on
indexed views; and Chapter 12,
“Monitoring SQL Server 2000,” in
the section on metadata.

E
X

A
M

148 Par t I EXAM PREPARATION

Trigger Utilization
Triggers are like stored procedures in that they contain a set of
T-SQL statements saved for future execution. The big difference is
that unlike stored procedures, triggers are executed automatically
based on data activity in a table. A trigger may fire based on an
UPDATE, INSERT, or DELETE operation.

In SQL Server 2000, triggers can be fired AFTER an operation com-
pletes (SQL Server default) or INSTEAD OF the triggering operation.
An AFTER trigger can be used to archive data when it is deleted,
send a notification that the new data has been added or changed,
or to initiate any other process that you might want to automate
based on data activity. An INSTEAD OF trigger can be used to per-
form more advanced activities (such as advanced data checking), to
enable updates in a view to occur across multiple tables, and to
perform many other functions that might be necessary in place of
a triggering activity.

Many AFTER triggers can be specified for each INSERT, UPDATE, or
DELETE action. If multiple triggers exist, you can specify the first and
last trigger to fire. The others are fired in no particular order, and
you cannot control that order. An AFTER trigger can be defined only
on a table. Only one INSTEAD OF trigger can be defined for each of
the triggering actions; however, an INSTEAD OF trigger can be defined
on a view as well as a table.

In previous releases, you could use triggers to help enforce referen-
tial integrity constraints. This was difficult and required that you
eliminate other elements, such as Foreign Key constraints. In SQL
Server 2000, it is far more efficient to use cascading actions, dis-
cussed earlier in this chapter, for the purpose of cascading changes
and deletions.

To define a trigger, you can select the Manage Triggers option from
the Table Design window. You can also go to the table to which you
want to attach a trigger, and you can find the option as an extension
of the pop-up menu off the All Tasks option.

You can use the T-SQL CREATE TRIGGER statement to create triggers
for all applicable operations. You can access this command from the
Enterprise Manager by using the Managing Triggers option.
Managing Triggers in the Enterprise Manager (and in other objects

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 149

as well) provides you with the shell of a CREATE statement even if you
are changing an existing trigger. The Enterprise Manager enables
you to change an existing trigger and the trigger will be first
dropped prior to re-creation. The ALTER TRIGGER statement is used
to change the definition of a trigger without dropping it first, and is
used only through T-SQL. An example of the creation of a trigger
using T-SQL is as follows:

CREATE TRIGGER UpdatedCustomer ON CustomerTable
FOR INSERT, UPDATE AS

declare @phone nvarchar(20)
declare @Contact nvarchar(100)
select @phone = phoneno,

@contact = contactname from inserted
RAISERROR(50100, 1, 1, @Contact, @Phone)

This procedure is one of my favorite implementations for use in cus-
tomer applications. In the case of customer information, an auto-
mated alert that sends an email message to the salesperson could be
defined around the error being raised. On an INSERT, a clerk or
salesperson may make an initial client contact call based on an email
that the alert may send. In the event of an UPDATE, the clerk could
call the client to ensure the new information is accurate. The benefit
is that the trigger automatically fires when new rows are added to
the table or changes are made to the customer information.

Consider some other possible implementations of triggers. A govern-
ment database is present, which can be replicated into a local copy
of the database. Revenues are based on the capability to ferret out
new clients ahead of the competition. An INSERT trigger can fire an
email directly to the client with a promotional sales package
attached. The end result is that action occurs as quickly as possible,
which might provide an edge over the competition. For a more
complete guide to the use of triggers and other facets of this tech-
nology, see Chapter 8, “Triggers.”

User-Defined Functions
In some applications, the functions available from the SQL Server
installation do not suit all needs. It is for these instances that user-
defined functions were intended. The functions can contain any
combination of T-SQL statements. These functions act similarly to
stored procedures with the exception that any errors occurring inside
the function cause the entire function to fail.

150 Par t I EXAM PREPARATION

SQL Server supports three varieties of user-defined functions:

á Scalar functions

á Inline table-valued functions

á Multi-statement table-valued functions

The functions defined can accept parameters if needed and return
either a scalar value or a table. A function cannot change any infor-
mation outside the scope of the function and therefore maintains no
information when processing has been completed. Other activities
that are not permitted include returning information to the user and
sending email. The CREATE FUNCTION statement is used to define a
user-defined function similar to the following:

CREATE FUNCTION MyFunction (@Num1 smallint, @Num2 smallint)
RETURNS real AS

BEGIN
Declare @ReturnValue real

If (@Num1 > @Num2)
Set @ReturnValue = @Num1 * 2 + 30
If (@Num1 = @Num2)
Set @ReturnValue = @Num1 * 1.5 + 30
If (@Num1 < @Num2)
Set @ReturnValue = @Num1 * 1.25 + 30
If (@Num1 < 0)
Set @ReturnValue = @Num2 * 1.15 + 30
Return(@ReturnValue)
End

User-defined functions (UDFs) represent powerful functionality that
has a wide variety of uses within the SQL Server environment. For
more complete information on how to use UDFs see Chapter 9,
“Stored Procedures and User-Defined Functions.”

Focusing Interaction with Views
A view is a SELECT statement that is saved and given a name. In
most respects, a view acts as a table. A VIEW name can be used in
SELECT INSERT, UPDATE, and DELETE statements as if it were a table.
No data is stored within views (except indexed views).

Often you would like to design an application that gives the user
a list of specific columns out of a table but does not grant the
user access to all data. A view can be used to limit what the user
sees and the actions the user can perform over a portion of the
data in a table.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 151

An alternative to creating a view would be to handle column-level
permissions over a table, which can be a true nightmare to adminis-
ter. A new interface feature in SQL 2000 does enable you to use the
GUI to set column-level permissions. However, this feature should
be used as little as possible—if ever. (See Figures 3.8, 3.9, and 3.10
for column permission availability.) In previous releases, you could
set column permissions, but only through the use of T-SQL com-
mands. These illustrations shows that the GUI representations for
column permissions are significantly different from standard permis-
sions and thus stand out if they are set.

F IGURE 3 .8
Command button now available on the interface
to set column-level permissions.

F IGURE 3 .9
Column Permissions dialog box, available from
the GUI.

152 Par t I EXAM PREPARATION

The problem with column-level permissions is the initial creation
process of the permission is time-consuming, and the granularity of
maintenance of the permissions requires extremely careful documen-
tation. Imagine a table with 100 columns and 1000 or more users,
groups, and roles. Trying to document and keep track of all the per-
missions set is an immense task that will overwhelm even the best
administrator.

Use a view to simplify administration and provide a more meaning-
ful perspective on the data for the user. The following example
shows the creation of a view:

CREATE VIEW InStock AS
SELECT ProductID, Description, QTYOnHand FROM Products
WHERE QTYOnHand > 0

Indexed Views
If you want to use indexed views, a number of session-level
options must be set On when you create the index. You need to
set NUMERIC_ROUNDABORT Off. The options that need to be set On
are as follows:

á ANSI_NULLS

á ANSI_PADDING

á ANSI_WARNINGS

á ARITHABORT

á CONCAT_NULL_YIELDS_NULL

á QUOTED_IDENTIFIERS

F IGURE 3 .10
Permissions dialog box, showing that column
permissions have been set.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 153

Other than setting the specific set of options, nothing more needs to
be done for the optimizer to utilize an index with a query on a view.
Essentially, the SQL SERVER Optimizer handles the view query in
the same manner that it would a standard query against a table. The
view cannot reference another view; only underlying tables are per-
mitted and you must create the view with the SCEMABINDING option.
Only the Enterprise and Developer editions support the creation of
an indexed view.

There are limitations to the content of the SELECT statement for the
view definition. They are as follows:

á No use of *.

á A column name used as a simple expression cannot be speci-
fied in more than one view column.

á No derived tables.

á Rowset functions are not permitted.

á UNION, Outer Joins, Subqueries, or Self-joins cannot be used
only simple Joins.

á No TOP, ORDER BY, COMPUTE, or COMPUTE BY clause.

á DISTINCT is not permitted.

á COUNT(*) cannot be used, but COUNT_BIG(*) is allowed.

á Aggregate functions: AVG, MAX, MIN, STDEV, STDEVP, VAR, or VARP
are not permitted.

á A SUM function cannot reference a nullable expression.

á No use of full-text predicates CONTAINS or FREETEXT.

Partitioned Views
A partitioned view enables the creation of a view that spans a num-
ber of physical machines. These views can fall into one of two cate-
gories: local and distributed. A distinction is also made between
views that are updateable and those that are read-only. The use of
partitioned views can aid in the implementation of federated data-
base servers, which are multiple machines set up to share the process-
ing load. For more information on federated server
implementations, see SQL Server Books Online, “Designing
Federated Database Servers.”

T
IP

Know Your Options A lot of spe-
cific options need to be in place to
allow for Indexed Views. Make sure
you are confident with the set of
configuration features that are
needed. Make sure that you read
up on this topic as presented in
Chapter 7, “Working with Views.”

E
X

A
M

154 Par t I EXAM PREPARATION

To use partitioned views, you horizontally split a single table into
several smaller tables, each having the same column definitions. Set
up the smaller tables to accept data in ranges and enforce the ranges
using CHECK constraints. Then you can define the distributed view
on each of the participating servers. Add linked server definitions on
each of the member servers. An example of a distributed view defini-
tion is as follows:

CREATE VIEW AllProducts AS
Select * FROM Server1.dbo.Products9999

UNION ALL
Select * FROM Server2.dbo.Products19999

UNION ALL
Select * FROM Server3.dbo.Products29999

Easing Data Entry with Defaults
A default is used to provide a value for a column so as to minimize
data entry efforts or to provide an entry when the data is not
known. A default provides a value for the column as a basis for ini-
tial input. Any data that is entered for the column overrides the
default entry. You can apply a default definition to a column
directly using the CREATE or ALTER TABLE statement or through the
Design Table option from within the Enterprise Manager. You can
also create a default as its own object and then bind it to one or
more columns.

A default definition provided as part of a table definition is a stan-
dard and preferred method of implementing default entries. The
advantages of this technique are that the default is dropped when
the table is dropped and that the definition is stored within the table
itself. A default object must be created and bound to the column in
a two–step operation.

To create and bind a default object, use the following code:

CREATE DEFAULT StateDefault AS ‘IN’
sp_bindefault StateDefault, ‘customers.state’

To create a default within a table definition, use the following:

CREATE TABLE SampleDefault
(SampleID smallint NOT NULL

CONSTRAINT UPKCL_SampleID PRIMARY KEY CLUSTERED,
City varchar(50)
DEFAULT (‘Woodstock’),

State char(2)
DEFAULT (‘NY’)

)

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 155

When an INSERT operation is performed on a table, you must supply
values for all columns that do not have a default entry defined or
that allow NULL content.

Application of Integrity Options
As discussed throughout this chapter, a number of techniques are
available to maintain the integrity of the database. Each of these
techniques will in part provide a usable, responsive system that pre-
vents inappropriate data from getting into the system. Table 3.1
summarizes these techniques and provides some further detail as to
what can be expected in their use.

TABLE 3.1

INTEGRITY MAINTENANCE OBJECTS

Technique Integrity Achieved Usage Timing (Log)

Primary Key Entity Identify each row Before

Foreign Key Referential/Domain Ensure no orphan Before
child elements

Unique Index Entity Ensure entries Before
are exclusive

Unique Constraint Entity No duplicate Before
column values

Identity Entity Auto-incremented Before
values

Check Constraint Domain Ensure correct Before
column entry

Not NULL Domain A value must Before
be present

Default Domain Provides initial Before
value

Rule Domain Ensure correct Before
column entry

Trigger Referential/Domain Respond to add, After
change, delete

Stored Procedures Referential/Domain/ Process-controlled Before
Entity operations

156 Par t I EXAM PREPARATION

Note from Table 3.1 that most integrity techniques are applied
before the data is actually allowed into the system, and therefore
operate faster with a much lower overhead. Triggers offer the most
functionality, but at a cost: the data is allowed into the system and
then reacted upon. If a trigger determines that data should not be
permitted, it must be rolled back. Use triggers sparingly and only
when the application requires the additional functionality.

When you define the table structure from the GUI, fill in the upper
portion of the Design Table dialog box with column information by
supplying the column name, selecting the appropriate data type
from the drop-down list box, completing the Length field if the data
type allows this to be adjusted, and setting whether the column is to
allow NULL content. In the lower portion of the dialog box, you can
optionally complete a description for the column, provide a default
value, and, for numeric data types that allow for scale and precision,
supply appropriate entries. If the column is to be an Identity col-
umn, select one of the integer data types, select Identity, and provide
a starting value in the seed identification and an increment for the
Identity. If the column is to be a row guid, select this option. If the
column value is derived from a formula, specify the formula.

S T E P B Y S T E P
3.7 Creating Tables, Indexes, and Constraints

1. Expand a server group, then the server, and then the data-
base where the table is to be located.

2. Right-click Tables, and then select New Table.

3. Provide column definitions until all columns are defined.

4. Right-click on the column to be used as the Primary Key
and select Set Primary Key.

5. In the top-left corner of the dialog box is a Table and Index
Properties button that provides access to an area where you
can provide further information to define the table.

6. Select the Relationships tab to define a Foreign Key.

7. Select the Indexes/Keys tab to define more indexing options.

Collation for an Individual Column
A collation can be selected for an
individual column but is not recom-
mended because it causes great
difficulty in the development of
front-end applications.

W
A

R
N

IN
G

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 157

8. Select the Check Constraints tab to define any constraint
options for the table.

9. Close the Properties dialog box, and then save and exit to
finish defining the table.

Using T-SQL code, you create the tables as follows:

CREATE TABLE projects
(project_id smallint not Null
IDENTITY(1,1)

PRIMARY KEY CLUSTERED,
project_description varchar(25) NOT NULL

DEFAULT ‘*Unknown*’,
start_date datetime NOT NULL

CHECK (start_date >= getdate()),
completion_date datetime NOT NULL

CHECK (completion_date >= getdate())
)

Database Design, an Involved Process
Consider the functionality that is needed for any procedure that main-
tains the integrity of the data. In many cases, there are a number of
choices that can be made between different techniques. The highest
degree of functionality is achieved from stored procedures, followed
closely by triggers. Also consider the basics of database design, regardless
of application. Primary Keys, for example, serve a number of purposes
and it is a good practice to implement them in almost any structure.

To achieve availability and performance, redundancy is the starting
point. Data redundancy can be obtained at the table and database
level through denormalization, and at the server level through the
use of log shipping, replication, and/or partitioning. Each technique
has a variety of requirements that must be closely adhered to.

There is no single, basic solution for any plan. Knowledge of the
environment and how the data is going to be used will answer a
number of the initial questions. There is no replacement for proper
system development; you can’t throw a technology at a problem and
just hope it will go away. Research and plan the implementation and
document each step of the way.

R E V I E W B R E A K

158 Par t I EXAM PREPARATION

MULTIPLE SERVER IMPLEMENTATIONS

. Alter database objects to support replication and
partitioned views.

Many high-demand implementations require the use of multiple
servers to handle the workload. A variety of options exist for using
SQL Server on multiple servers. Partitioning, log shipping, replica-
tion, federated servers, and clustering are all potential implementa-
tions for using multiple servers and obtaining load balancing.

Using log shipping is a way to have two separate servers that contain
the same database split the query load away from the updating of
data. The log information is periodically copied to a read-only,
standby server that can then be used for query purposes, thereby
offloading some of the work from the main production machine.
For further information on log shipping implementations, see SQL
Server Books Online, “Maintenance Planning Wizard.” Microsoft
failover clustering provides for availability by enabling a secondary
server to take over activities if a primary server fails. For further
information on failover clustering, see SQL Server Books Online,
“Creating a Failover Cluster.”

Partitioning and federated servers provide load balancing for a single
application and work together to provide users with better response.
This type of implementation is in place of a multiple server cluster
where all machines load balance to share the workload. In a federa-
tion, each server is completely independent and it is the application
and database design that implement the load balancing.

Replication places potentially updateable copies of the same data on
multiple servers so that applications that allow for site independence
can, at the same time, keep all copies of the data synchronized. Most
models have a degree of latency or delay between the initial updates
and the moment when all data is in agreement.

Use of Replication
Placing the same data on multiple servers, with each server closer to
the user’s location, can reduce the use of bandwidth and provide the
user with faster update operations and retrieval of data. Replication is

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 159

discussed in full in Chapter 11, “Implementing and Understanding
Replication Methodologies,” so this section focuses more or the
specifics of designing a system to support the replication models.

These replication techniques can be applied to three replication
models, as well as several different physical models. The physical
aspects and models have no direct correlation. The replication model
supplies the functionality, whereas the physical aspects lay out the
placement and roles of individual servers.

Merge, snapshot, and transactional replication all involve essentially
the same basic elements to begin with. However, each model has
idiosyncrasies of its own that require some thought during the
design of the implementation. For further information on replica-
tion, consult Chapter 11.

Partitioning to Achieve a Balance
Data partitioning as defined previously involves the horizontal divi-
sion of a singular table into a number of smaller tables, each deal-
ing with a range of data from the original and split off onto
separate servers. Some configuration options can help gain perfor-
mance when operating against partitions. Setting the Lazy Schema
Validation option using sp_serveroption can optimize perfor-
mance. Attempting to ensure that the correct query goes to the
appropriate server also helps to improve performance while mini-
mizing bandwidth use.

A partitioned view is considered to be updateable if a set of SELECT
statements is combined into one resultset using UNION ALL opera-
tions, as was shown in the section “Partitioned Views.” Indexes
based on calculated columns are not permitted within any table defi-
nitions and all tables must have a Primary key and ANSI_PADDING set.

When you use a partitioned view to insert data, all columns must
be included in the INSERT statement, even if the table definitions
provide DEFAULTS or allow for NULL content. Also, IDENTITY
columns cannot be referenced; therefore, no underlying tables
can have IDENTITY columns nor are they permitted to have time-
stamp columns.

Remote partitioned views require that you keep a few additional
considerations in mind. A distributed transaction is automatically

160 Par t I EXAM PREPARATION

initiated to ensure that integrity is maintained throughout all opera-
tions, and the XACT_ABORT option must be set to ON Smallmoney and
smalldatetime data types in the remote tables are mapped to money
and datetime types locally.

Partition Creation Strategy
Partitions can be designed in a symmetric or asymmetric fashion,
and although it is most useful to design symmetrically, the access
requirements of a lot of systems necessitate an asymmetric design.

A symmetrical design is one in which all related data is placed on
the same server so that most queries do not have to cross network
boundaries to access the data. It is also easier to manage the data if
the division of tables can be performed in such a manner that each
server has the same amount of data.

In most real-world applications, data is accessed in a random fashion
that can make the designer lean toward an asymmetric implementa-
tion. The design can be configured so that one server has a larger
role and/or contains more data than the others. Performance can be
improved if you weigh each server’s use and make one server work
harder on the partitioned applications because the other servers per-
form larger tasks that deal with other unrelated processes.

Designing for distributed partitioned views requires appropriate
planning of front-end applications to ensure that, whenever possi-
ble, data queries are sent to the appropriate server. Middleware,
such as Microsoft Transaction Server or Application Server or
other third-party equivalents, should attempt to match queries
against data storage.

Constraint Considerations
Constraints need to be defined on each participating server so that
only the data pertaining to the table(s) stored on that server is han-
dled. Although CHECK constraints are not needed to return the cor-
rect results, they enable the query optimizer to more appropriately
select the correct server to find the requested data.

T
IP

Be Comfortable with Configuration
You are likely to find exam ques-
tions that will ask you to balance
the work load and properly config-
ure partitioned views. Ensure you
are comfortable with the configura-
tion required. To find out more infor-
mation on these and other styles of
views you can expect to see, refer
to Chapter 7.

E
X

A
M

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 161

Spreading It Out
Multiple server operations balance the load so that updates are
potentially separated from queries and query load can be spread
across multiple machines.

Partitioned views drastically restrict the underlying table designs and
require a number of options to be set when using indexes.

The application of the initial snapshot that begins the entire replica-
tion process can be compressed and/or saved to a CD so that some
of the necessary communications can be offloaded. Doing so makes
more efficient use of network bandwidth in slow-link or dial-up
environments in particular.

TROUBLESHOOTING SQL SERVER
OBJECTS

. Troubleshoot failed object creation.

Most problems associated with creating and/or accessing objects can
be resolved through setting appropriate object access permissions.
However, other elements that can hamper the creation or use of
objects include (but are not limited to) the following:

á Backup and restore operations

á Other users’ operations locking parts of the system

á Metadata corruption

á Hardware or resource problems

á Network connectivity

á Configuration settings

á Operating system

á Metadata corruption

A good starting point from which to resolve most problems is the
wealth of feedback SQL Server gives in the form of OS Application

R E V I E W B R E A K

162 Par t I EXAM PREPARATION

Event Log, SQL Server Logs, and the Current Activity Window, as
well as the permission properties of the users, roles, and objects.

To create a database, you need to be a member of System
Administrators or Database Creators server roles or have the Create
Database permission. To create objects within a database, you must
be a member of db_owner or db_ddladmin database roles or have the
specific permission to create the object as given by statement-level
permissions. Statement-level permissions can be found on the
Permissions tab of the database Properties dialog box.

As databases and their objects are created, the system uses the default
filegroup for the physical storage of the element. It is a good practice
to create a storage group for user objects and make that the default
filegroup. This way, as the user creates objects, those objects don’t
compete for storage with other data.

If a user lacks the permission to create or alter an object, an alterna-
tive is available that grants the user creation permission without giv-
ing the user too much control over the environment. An Application
role that has permission to work with objects in this manner can be
assigned to a stored procedure that creates the objects for the user.
When the user executes the procedure, objects can be created or
altered in a controlled manner.

Setting Server Configuration Options
Standard configuration settings are available through the Server
Properties dialog box in the Enterprise Manager or can be accessed
using the sp_configure stored procedure. Some of the more
advanced options require that you enable Show Advanced Options.

sp_configure ‘show advanced options’, 1
reconfigure

Affinity Mask (Advanced)
Use this option in systems that have four or more processors. It
increases performance when the system is under a heavy workload.
You can specify which processors Microsoft SQL Server is to use.
You can exclude SQL Server activity from processors that have been
given specific workload assignments by the Windows NT 4.0 or
Windows 2000 operating system.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 163

Allow Updates
This option is used to allow the direct alteration of system tables.
When Allow Updates is set to 1, any user with appropriate permis-
sions can either update system tables directly with ad-hoc updates or
create stored procedures that update system tables.

AWE Enabled (Advanced)
Address Windowing Extension (AWE) is an advanced option used to
support up to a maximum of 64 gigabytes (GB) of physical memory.

C2 Audit Mode
Use C2 audit mode to review both successful and unsuccessful
attempts to access statements and objects. Allowing for the docu-
mentation of system activity and observance of security policy viola-
tions, C2 auditing tracks C2 audit events and records them to a file
in the \mssql\data directory or the \mssql$instancename\data direc-
tory for named instances of SQL Server. If the file reaches a size
limit of 200 megabytes (MB), C2 auditing starts a new file.

Cost Threshold for Parallelism (Advanced)
Use this option to specify the threshold where SQL Server creates
and executes parallel query plans. Parallel query plans are executed
only when the estimated cost to execute a serial plan for the same
query is higher than the value set. The cost refers to an estimated
elapsed time in seconds that is required to execute a standard plan.
Only set cost threshold for parallelism on symmetric multiprocessors.

Cursor Threshold (Advanced)
Use this option to indicate the number of rows in the cursor set at
which cursor keysets are generated asynchronously. If you set Cursor
Threshold to -1, all keysets are generated synchronously, which ben-
efits small cursor sets. If you set Cursor Threshold to 0, all cursor
keysets are generated asynchronously. With other values, the query
optimizer compares the number of expected rows in the cursor set
and builds the keyset asynchronously if it exceeds the number set in
Cursor Threshold. Do not set Cursor Threshold too low because
small result sets are better built synchronously.

164 Par t I EXAM PREPARATION

Default Language
Use this option to specify the default language for all newly
created logins.

Fill Factor (Advanced)
Use this option to specify how full the server should make each page
when it creates a new index using existing data. The Fill Factor per-
centage affects performance because SQL Server must take time to
split pages when they fill up. The default for Fill Factor of 0 (zero)
does not mean that pages are 0% full. It is treated similarly to a fill
factor value of 100 in that indexes are created with full data pages
and nonclustered indexes with full leaf pages. The default setting is
different from 100 in that SQL Server leaves some space within the
upper level of the index tree.

Index Create Memory (Advanced)
Use this option to control the amount of memory used by index cre-
ation sorts. The Index Create Memory option is self-configuring and
should operate without requiring adjustment. If difficulties are expe-
rienced creating indexes, consider increasing the value. Query sorts
are controlled through the Min Memory Per Query option. The
default value for this option is 0 (self-configuring).

Default Full-Text Language (Advanced)
Use the default full-text language option to specify a default lan-
guage value for full-text indexed columns. The default value of this
option is the language of the server.

Lightweight Pooling (Advanced)
This option provides a means of reducing the overhead associated
with the excessive context switching sometimes seen in multiproces-
sor environments. When excessive context switching is present,
lightweight pooling might provide better throughput.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 165

Locks (Advanced)
The Locks option sets the maximum number of available locks, lim-
iting the amount of memory the server uses. The default setting is 0,
which enables SQL Server to allocate and deallocate locks dynami-
cally based on changing system requirements.

Max Degree of Parallelism (Advanced)
This option limits the number of processors to use in parallel plan
execution. The default value is 0 (actual number of CPUs) and the
maximum is 32.

Max Server Memory/Min Server Memory
These two settings establish upper and lower limits to the amount of
memory the database engine uses. The database engine starts with
only the memory required to initialize. As the workload increases, it
acquires additional memory. The database engine frees any of the
acquired memory until it reaches the amount specified in Min
Server Memory.

Max Text Repl Size
Specifies the maximum size (in bytes) of text and image data that
can be added to a replicated column in a single INSERT, UPDATE,
WRITETEXT, or UPDATETEXT statement.

Max Worker Threads (Advanced)
Configures the number of worker threads available to the server and
its processes. SQL Server uses the threads so that one or more
threads simultaneously support each network that SQL Server sup-
ports; another thread handles database checkpoints; and a pool of
threads handles user connections.

Media Retention (Advanced)
Use the Media Retention option to provide a default for the length
of time each backup should be retained. Overridden by the RETAIN-
DAYS clause of the BACKUP statement, Media Retention helps protect
backups from being overwritten until the specified number of days
has elapsed.

166 Par t I EXAM PREPARATION

Min Memory Per Query (Advanced)
Use this option to specify the minimum amount of memory that
will be allocated for the execution of a query.

Nested Triggers
The Nested Triggers option enables actions that initiate another trig-
ger to be performed. When the Nested Triggers option is set to 0,
triggers cannot cascade. When the Nested Triggers option is set to
the default setting of 1, triggers can cascade to as many as 32 levels.

Network Packet Size (Advanced)
Use this option to set the packet size used across the entire network.
The default packet size is 4096 bytes. If an application does bulk
copy operations, or sends or receives large amounts of text or image
data, a packet size larger than the default can improve efficiency
because it results in fewer network reads and writes. If an application
sends and receives small amounts of information, you can set the
packet size to 512 bytes, which is sufficient for most data transfers.

Open Objects (Advanced)
Use this option to set the maximum number of database objects that
can be open at one time. Database objects are those objects defined
in the sysobjects table: tables, views, rules, stored procedures,
defaults, and triggers.

Priority Boost (Advanced)
This option specifies the processor scheduling priority. If you set
this option to 1, SQL Server runs at a priority base of 13 in the
Windows NT 4.0 or Windows 2000 Scheduler. The default is 0,
which is a priority base of 7.

Query Governor Cost Limit (Advanced)
Specifies an upper limit for the time in which a query can run.
Query cost refers to the estimated elapsed time, in seconds, required
to execute a query.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 167

Query Wait (Advanced)
Memory-intensive queries, such as those involving sorting and hash-
ing, are queued when not enough memory is available to run the
query. The query times out after a set amount of time that SQL
Server calculates (25 times the estimated cost of the query) or the
time amount specified by the non-negative value of the query wait.

Recovery Interval (Advanced)
Use this option to set the maximum number of minutes per data-
base that the server needs to recover the database activity. The recov-
ery process is initiated each time SQL Server starts or as the basis for
completing a restore operation. The recovery process rolls back
transactions that did not commit and rolls forward transactions that
did commit. This configuration option sets an upper limit on the
time it should take to recover each database. The default is 0, indi-
cating automatic configuration by SQL Server. In practice, this
means a recovery time of less than one minute and a checkpoint
marker is placed into the transaction log approximately every one
minute for active databases.

Remote Access
Use the Remote Access option to control logins from remote servers
running SQL Server. Set Remote Access to 1 (default) to enable
logins from remote servers. Set the option to 0 to secure a local
server and prevent access from a remote server.

Remote Login Timeout
Use this option to specify the number of seconds to wait before
returning from a failed remote login attempt.

Remote Proc Trans
This option protects the activities of a server-to-server process
through the use of the Distributed Transaction Coordinator. Set
Remote Proc Trans to 1 to provide an MS DTC-coordinated distrib-
uted transaction that protects the ACID properties of transactions.
Sessions begun after setting this option to 1, inherit the configura-
tion setting as their default.

168 Par t I EXAM PREPARATION

Remote Query Timeout
This option is used to indicate the number of seconds that must
elapse when processing a remote operation before the operation
times out. The default of 600 sets a ten-minute wait.

Scan for Startup Process (Advanced)
Use this option to scan for automatic execution of stored procedures
at startup time. If it is set to 1, SQL Server scans for and executes all
automatically executed stored procedures defined on the server. The
default value is 0 (do not scan).

Set Working Set Size (Advanced)
Reserves physical memory space for SQL Server that is equal to the
server memory setting. SQL Server, based on workload and available
resources, configures the server memory setting automatically. It
varies dynamically between the Min Server Memory and Max Server
Memory settings.

Two Digit Year Cutoff
Use the Two Digit Year Cutoff option to specify an integer from
1753 to 9999 that represents the last year for interpreting two-digit
years as four-digit years.

User Connections (Advanced)
Use this option to specify the maximum number of simultaneous
user connections. The actual number of user connections allowed
also depends on the version of SQL Server you are using and the
limits of your application(s) and hardware. SQL Server enables a
maximum of 32,767 user connections.

User Options
The User Options option is used to specify global defaults for all
users. A list of default query processing options is established for
the duration of a user’s work session. A user can override these
defaults by using the SET statement. You can configure user

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 169

options dynamically for new logins. After you change the setting
of user options, new logins use the new setting; current logins are
not affected.

Reconfigure
This option updates the server configuration. It is used after the applica-
tion of sp_configure to change server settings and make the new set-
tings take effect. Because some configuration options require that a
server stop and restart before the currently running value can be
updated, Reconfigure does not always update the currently running
value. Use the With Override option of this command to force a value
that might or might not meet ranges of allowed values or recommended
settings.

Changing configuration options can easily be performed using
T-SQL operations:

TSQL

USE master

EXEC sp_configure ‘show advanced option’, ‘1’

RECONFIGURE

GO

EXEC sp_configure ‘recovery interval’, ‘3’

RECONFIGURE WITH OVERRIDE

Step by Step 3.8 takes you through the setting of some common
server options.

S T E P B Y S T E P
3.8 Setting Server Configuration Options

1. Expand a server group, then right-click the server, and
then select Properties.

2. Select the Database Settings tab.

3. Set the Recovery Interval to 3.

4. Select OK to save the setting.

170 Par t I EXAM PREPARATION

Configuration Exam Considerations
The SQL Server configuration options are used to fine-tune the
database environment. Many options provide a mechanism for an
administrator or developer to obtain optimum performance and
achieve a more secure and stable server. A total approach to an opti-
mum environment also involves the proper use of database configu-
ration options. Server property adjustments affect all the databases
stored on the server where database configuration options are used
to control a database and not affect other databases.

Setting Database Configuration
Options
Standard database configuration settings are available through the
Database Properties in the Enterprise Manager or can be accessed
using the sp_dboption stored procedure. Some of the more advanced
settings cannot be set singly; they must be set in combination with
other settings.

There are five categories of database options:

á Auto options. AUTO_CLOSE, AUTO_CREATE_
STATISTICS, AUTO_UPDATE_STATISTICS, and
AUTO_SHRINK

á Cursor options. CURSOR_CLOSE_ON_COMMIT
and CURSOR_DEFAULT LOCAL or GLOBAL

á Recovery options. RECOVERY FULL or BULK_LOGGED
or SIMPLE and TORN_PAGE_DETECTION

á SQL options. ANSI_NULL_DEFAULT, ANSI_NULLS,
ANSI_PADDING, ANSI_WARNINGS, ARITHABORT,
NUMERIC_ROUNDABORT,
CONCAT_NULL_YIELDS_NULL, QUOTED_
IDENTIFIER, and RECURSIVE_TRIGGERS

á State options. OFFLINE or ONLINE, READ_ONLY or
READ_WRITE, SINGLE_USER or RESTRICTED_USER
or MULTI_USER and WITH ROLLBACK AFTER or
WITH ROLLBACK IMMEDIATE or NO_WAIT.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 171

These options are described in the following sections, and are cov-
ered in alphabetical order.

ANSI_NULL_DEFAULT
This option enables the user to control the default nullability. When
NULL or NOT NULL is not specified, a user-defined data type or a column
definition uses the default setting for nullability. When this option is
set to ON, all user-defined data types or columns that are not explicitly
defined as NOT NULL during a CREATE TABLE or ALTER TABLE statement
default to allowing null values. Columns that are defined with con-
straints follow constraint rules regardless of this setting.

ANSI_NULLS
When set to ON, all comparisons to a null value evaluate to NULL
(unknown). When set to OFF, comparisons of non-Unicode values to
a null value evaluate to TRUE if both values are NULL. By default, the
ANSI_NULLS database option is OFF.

ANSI_PADDING
When set to ON, trailing blanks in character values inserted into var-
char columns and trailing zeros in binary values inserted into
varbinary columns are not trimmed. Values are not padded to the
length of the column. When set to OFF, the trailing blanks and zeros
are trimmed. This setting affects only the definition of new
columns. It is recommended that ANSI_PADDING always be set to
ON. SET ANSI_PADDING must be ON when creating or manipulat-
ing indexes on computed columns or indexed views.

ANSI_WARNINGS
When set to ON, errors or warnings are issued when conditions such
as “divide by zero” occur or null values appear in aggregate func-
tions. When set to OFF, no warnings are raised when null values
appear in aggregate functions, and null values are returned when
conditions such as “divide by zero” occur. By default,
ANSI_WARNINGS is OFF.

172 Par t I EXAM PREPARATION

ARITHABORT
When set to ON, an overflow or divide-by-zero error causes the query
or batch to terminate. If the error occurs in a transaction, the trans-
action is rolled back. When set to OFF, a warning message is dis-
played if one of these errors occurs, but the query, batch, or
transaction continues to process as if no error occurred.

AUTO_CLOSE
When set to ON, server resources are freed up as soon as the database
is closed and shut down cleanly when the last user of the database
exits. By default, this option is set to ON for all databases in the
Desktop Engine, and OFF for all other editions. The database reopens
automatically when a user tries to use the database again. When set
to OFF, the database remains open even if no users are currently
using it.

AUTO_CREATE_STATISTICS
When set to ON, statistics are automatically created on columns used
in a predicate. Adding statistics improves query performance because
the optimizer can better determine how to evaluate queries. If the
statistics are not used, SQL Server automatically deletes them. When
set to OFF, SQL Server does not automatically create statistics;
instead, statistics can be manually created.

AUTO_SHRINK
When set to ON, the database files are set up for periodic shrinking.
Any database-associated file, data, or log can be shrunk automatically.
When set to OFF, the database files are not automatically shrunk dur-
ing periodic checks for unused space. By default, this option is set to
ON for all databases in SQL Server Desktop Edition, and OFF for all
other editions, regardless of operating system.

AUTO_UPDATE_STATISTICS
When set to ON, existing statistics are automatically updated when
the statistics become out-of-date because the data in the tables has
changed. When set to OFF, existing statistics are not automatically
updated; instead, statistics can be manually updated.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 173

CONCAT_NULL_YIELDS_NULL
When set to ON, if one of the operands in a concatenation operation
is NULL, the result of the operation is NULL. When set to OFF, concate-
nating a null value with a character string yields the character string
as the result.

CURSOR_CLOSE_ON_COMMIT
When set to ON, any open cursors are closed automatically when a
transaction using the cursor is committed. By default, this setting is
OFF and cursors remain open across transaction boundaries, closing
only when the connection is closed or when they are explicitly
closed, which is usually when a procedure finishes.

CURSOR_DEFAULT LOCAL or GLOBAL
When CURSOR_DEFAULT LOCAL is set, and a cursor is not
defined as GLOBAL when it is created, the scope of the cursor is
local to the batch, stored procedure, or trigger. The cursor name is
valid only within this scope. When CURSOR_DEFAULT
GLOBAL is set, and a cursor is not defined as LOCAL when
created, the scope of the cursor is global to the connection. The
cursor name can be referenced in any stored procedure or batch the
connection executes.

NUMERIC_ROUNDABORT
If set to ON, an error is generated when the loss of precision occurs in
an expression. When set to OFF, losses of precision do not generate
error messages and the result is rounded to the precision of the col-
umn or variable storing the result.

OFFLINE or ONLINE
When OFFLINE is specified, the database is closed and shut down
cleanly and marked offline. The database cannot be modified while
it is offline. When ONLINE is specified, the database is open and
available for use.

174 Par t I EXAM PREPARATION

QUOTED_IDENTIFIER
When set to ON, identifiers can be delimited by double quotation
marks and literals must be delimited by single quotation marks. All
strings delimited by double quotation marks are interpreted as object
identifiers. Quoted identifiers do not have to follow the T-SQL rules
for identifiers. They can be keywords and can include characters not
generally allowed in T-SQL identifiers. When set to OFF (default),
identifiers cannot be in quotation marks and must follow all T-SQL
rules for identifiers. Literals can be delimited by either single or dou-
ble quotation marks. Identifiers must be enclosed in square brackets
([]) if they contain spaces or other characters or key words.

READ_ONLY or READ_WRITE
When READ_ONLY is specified, users can retrieve data from the
database but cannot modify the data. Automatic recovery is skipped
at system startup and shrinking the database is not possible. No
locking takes place in read-only databases, which can result in faster
query performance. When READ_WRITE is specified, users can
retrieve and modify data.

RECOVERY FULL or BULK_LOGGED
or SIMPLE
When FULL is specified, database backups and transaction log
backups are used to provide full recoverability from media failure.
All operations, including bulk operations, such as SELECT INTO,
CREATE INDEX, and bulk loading data, are fully logged. When
BULK_LOGGED is specified, logging for all SELECT INTO,
CREATE INDEX, and bulk loading data operations is minimal
and therefore requires less log space. In exchange for better perfor-
mance and less log space usage, the risk of exposure to loss is
greater than with full recovery. When SIMPLE is specified, the
database can be recovered only to the last full database backup or
last differential backup.

RECURSIVE_TRIGGERS
When set to ON, triggers are enabled to fire recursively. When set to
OFF (default), triggers cannot be fired recursively.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 175

SINGLE_USER or RESTRICTED_USER
or MULTI_USER
SINGLE_USER enables only one user at a time to connect to the
database. All other user connections are broken. The timeframe for
breaking the connection is controlled by the termination clause of
the ALTER DATABASE statement. New connection attempts are
refused. RESTRICTED_USER enables only members of the
db_owner fixed database role and dbcreator and sysadmin fixed server
roles to connect to the database, but it does not limit their number.
MULTI_USER enables all users with the appropriate permissions to
connect to the database.

TORN_PAGE_DETECTION
This recovery option enables SQL Server to detect incomplete I/O
operations caused by power failures or other system outages. When
set to ON, this option causes a bit to be reversed for each 512-byte
sector in an 8-kilobyte (KB) database page as the page is written to
disk. If a bit is in the wrong state when the page is later read by
SQL Server, the page was written incorrectly; a torn page is there-
fore detected.

WITH <termination>
The termination clause of the ALTER DATABASE statement specifies
how to terminate incomplete transactions. Breaking their connec-
tions to the database terminates transactions. If the termination
clause is omitted, the ALTER DATABASE statement waits indefinitely,
until the transactions commit or roll back on their own. ROLL-
BACK AFTER ‘integer’ SECONDS waits for the specified number
of seconds. ROLLBACK IMMEDIATE breaks unqualified connec-
tions immediately. NO_WAIT checks for connections before
attempting to change the database state and causes the ALTER DATA-
BASE statement to fail if certain connections exist. When the transi-
tion is to SINGLE_USER mode, the ALTER DATABASE statement fails
if any other connections exist. When the transition is to
RESTRICTED_USER mode, the ALTER DATABASE statement fails if
any unqualified connections exist.

Similar to setting server configuration options, the process of setting
database options is described in Step by Step 3.9.

176 Par t I EXAM PREPARATION

S T E P B Y S T E P
3.9 Setting Database Options

1. Expand a server group, and then expand the server where
the database is to be placed.

2. Right-click Databases, and then click Properties.

3. Select the Options tab.

4. Change the appropriate desired settings and select OK
to save.

T-SQL database options can be set programmatically, although this is
not normally recommended. The following procedure illustrates how
this can be done in those rare instances where it is desired:

TSQL

View settable database options:

Sp_dboption

View which options have been set on Northwind database:

Sp_dboption Northwind

Turn off an option:

Sp_dboption Northwind, ‘autoclose’, False

Turn on an option:

Sp_dboption Northwind, ‘autoclose’, True

Setting the Database Options
Database options are set to allow for application or procedural
requirements and to provide for administrative configuration. You
will interact with these settings to set up backups, allow for specific
procedures, and provide appropriate access levels, depending on
what is needed for a given process. Learn the settings that are
required for each process and know the resulting effect on the sys-
tem under different operating configurations.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 177

ESSENCE OF THE CASE
Here are the essential points being addressed
in this case:

. Budget is limited.

. High volume of updates.

. Downtime must be minimized.

. Data loss must be minimized if a
failure occurs.

. Referential integrity must be configured
for replication.

CASE STUDY: ACME DISTRIBUTORS

SCENAR IO
ACME Distributors is a mail-order company with
warehouse operations located in strategic loca-
tions throughout the United States. You are in
charge of planning the physical server environ-
ment to be used in the implementation of a
multi-server warehousing system. Each of the
warehouses needs information on what the other
warehouses have in stock and transactional repli-
cation has been chosen as the technique to
deliver information among the warehouses.

Each warehouse is expected to handle about
1000 transactions of its own each day, as well as
receive 9000 replicated transactions from other
warehouses. You need to supply an environment
that will function 24 hours a day, 7 days a week.
You must pay particular attention to achieving an
environment that has a minimum amount of
downtime and data loss in the event of a failure.

With a limited budget, you have been asked to
establish priorities within the system. A list
should be prepared providing a range of choices
from the minimum requirements to fulfill the
needs of the system, and on the upper range,
some alternatives that would still fall into a low-
budget scenario.

ANALYS IS
This seems to be a far-too-typical situation, in
which a company desires to have the optimum
environment but is hesitant to invest the neces-
sary funds to achieve the desired results.

To eliminate downtime, there are two separate
possibilities. First, you can provide for failover
clustering, which can incur a significant cost.

continues

178 Par t I EXAM PREPARATION

CASE STUDY: ACME DISTRIBUTORS

To enable multiple warehouses to participate in
replication and to share information, you must
create a Primary Key constraint that combines
both the location of the warehouse and the iden-
tifier for the data itself.

Here is the desired list:

• Minimum Requirements:

Compound Primary Key

• Recommended Requirements:

Second volume for transaction log and Full
Recovery mode

Frequent log backups and the development
of a disaster recovery plan

Data storage set up in RAID parity with OS
mirrored

• Also Possible (Recommended Order):

Replication to additional subscriber at each
location

Standby server with log shipping configured
(achieves similar results as replication)

Cost Restrictive

• Failover Clustering

Second, you can include in the solution a mecha-
nism where a middle-tier procedure can select
the local server by default, but if the server is
unavailable, the procedure can obtain the neces-
sary information from one of the other ware-
houses. Although the later solution can appear
less expensive at first, because hardware costs
are lower, other factors, such as development,
update ability, bandwidth, and licensing costs
have to be considered.

Also worth considering is the use of a standby
server or replication as a means of minimizing—
though not eliminating—downtime. This would be
a less expensive solution than failover clustering,
but in the event of failure, you will have a small
amount of downtime while adjusting the actual
machine being used for production purposes. An
additional advantage of this solution is the near
elimination of data loss if a failure were to occur.

To minimize data loss in the event of failure, a
number of options are available. On the less-
expensive side, setting the database recovery
mode to Full Recovery and adding a second disk
volume can provide for the storage of the log files
and allow for almost full data recovery. Other pos-
sibilities from less to more expensive would
include RAID parity storage, RAID mirror storage,
log shipping, replication, and failover clustering.
As long as replication is already being planned
for, this might be part of the desired solution.

continued

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 179

This chapter has considered a number of different subjects, all per-
taining to the physical aspects of a database system. Although the
exam concentrates on the new features in SQL Server 2000, you will
find that almost all topics are addressed in some manner. In a real-
world scenario, you will find that the best solution often involves a
compromise, rather than the ideal. Many considerations, such as
budget, time constraints, user knowledge, and technology bias might
hamper your ability to achieve an optimum environment.

When in doubt, select the options that provide for the best perfor-
mance in the system. Next to performance, a provision to minimize
administrative effort would probably come in a close second.
Performance is gained through the use of the optimum levels of
hardware, especially options pertaining to the disk, controller, and
volume configuration. Performance is gained in interactions between
the database and file system, so appropriate placement of files, file-
groups, and database objects becomes very important. Within the
databases, selection of appropriate indexing, constraints, triggers,
and other related processing all help as well.

To achieve minimal levels of administration, look to set up and uti-
lize existing features that SQL Server can perform automatically. Be
careful: Using too many of the features that are automated might
detract from the system performance.

CHAPTER SUMMARY

KEY TERMS
• constraint

• collation Sequence

• identity

• indexes

• stored procedures

• triggers

• user-defined functions (UDFs)

• views

• cascading actions

• CHECK constraints

• clustered index

• defaults

• FILLFACTOR

• Foreign Keys

• non-clustered index

180 Par t I EXAM PREPARATION

CHAPTER SUMMARY

• Primary Key

• UNIQUE constraints

• UNIQUE index

• schema binding

• encryption

• recompile

• partitioned views

• merge replication

• RAID

• snapshot replication

• filegroups

• log

• rules

• roles

• UNIQUE constraint

• transactional replication

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 181

A P P LY YO U R K N O W L E D G E

Exercises
The following set of exercises runs through the set of
steps needed to create a basic physical environment.
Each step requires that you have completed all subse-
quent steps and are thus better done in sequential order.

3.1 Creating a Database

In Exercise 3.1, you create a database with two data
files and a single log file. The exercise makes the
assumption that SQL Server 2000 has been installed
into the default locations and uses this location for all
files. You might want to alter the actual file locations.

Estimated Time: 5 minutes

1. If the SQL Query Analyzer is not already open,
load it to enable you to create a database using
T-SQL commands. Supply the logon connection
information if requested.

2. Select the Master database from the database
drop-down list box from the toolbar.

3. Type the following command to create the data-
base and accompanying files:

CREATE DATABASE Sample ON
PRIMARY (NAME = ‘SampleData’, FILENAME =
‘c:\Program Files\Microsoft SQL Server
➥ \MSSQL\Data\SampData.mdf’,
SIZE = 10, MAXSIZE = 50, FILEGROWTH = 5),

FILEGROUP Archive (Name = ‘ArchiveData’,
➥ FILENAME =
‘c:\Program Files\Microsoft SQL Server
➥ \MSSQL\Data\ArchData.ndf’,
SIZE = 10, MAXSIZE = 50, FILEGROWTH = 5)

LOG ON
(NAME = ‘LogStore’, FILENAME =

‘c:\Program Files\Microsoft SQL Server
➥ \MSSQL\Data\SampLog.ldf’,

SIZE = 1MB, MAXSIZE = 5MB,
➥ FILEGROWTH = 1MB)

Go

4. Execute the query. Check the Windows environ-
ment using the Explorer to ensure the files were
actually created. You can check for the existence
of the database and ensure the associated database
properties were set up by running the sp_helpdb
stored procedure.

Note that when the database is created that there are
two resulting filegroups. The Primary filegroup is used
for data storage and the Archive filegroup is used for
the storage of noncurrent data.

3.2 Creating a Table

In Exercise 3.2, you create three tables within the data-
base. One table contains contact information; the sec-
ond is a table to list events in the upcoming year; the
third table is for holding archive data for events that
have already passed.

Estimated Time: 10 minutes

1. If the SQL Query Analyzer is not already open,
load it to allow for the creation of the tables. Supply
the logon connection information if requested.

2. Select the Sample database created in Exercise 3.1
from the database drop-down list box from the
toolbar.

3. Type the following command to create the data-
base and accompanying files:

CREATE TABLE Contacts
(ContactID smallint NOT

➥ NULL
CONSTRAINT PKContact
➥ PRIMARY KEY CLUSTERED,

FirstName varchar(25) NOT
➥ NULL,
LastName varchar(25) NOT
➥ NULL,
PhoneNo varchar(15) NULL,
StreetAddress varchar(25) NULL,
City varchar(25) NULL,
ZipCode varchar(15) NULL)

continues

182 Par t I EXAM PREPARATION

A P P LY YO U R K N O W L E D G E

CREATE TABLE Events
(EventID smallint NOT

➥ NULL
CONSTRAINT PKEvent
➥ PRIMARY KEY CLUSTERED,

EventName varchar(50) NOT
➥ NULL,
EventLocation varchar(50) NOT
➥ NULL,
ContactID smallint NOT
➥ NULL,
EventAddress varchar(25) NULL,
City varchar(25) NULL,
ZipCode varchar(15) NULL)

CREATE TABLE EventArchive
(EventID smallint NOT

➥ NULL
CONSTRAINT PKEventArch
➥ PRIMARY KEY CLUSTERED,

EventName varchar(50) NOT
➥ NULL,
EventLocation varchar(50) NOT
➥ NULL,
ContactID smallint NOT
➥ NULL,
EventAddress varchar(25) NULL,
City varchar(25) NULL,
ZipCode varchar(15) NULL)
ON Archive

4. Execute the query. Check the Object Browser to
ensure the files were actually created. Execute
sp_help with the table name to ensure that each
table was appropriately created as follows:

sp_help Contacts
Go
sp_help Events
Go
sp_help EventArchive
Go

Note that by supplying the ON clause for the
EventArchive table that the table was placed onto
a separate filegroup whereas the other tables were
placed onto the PRIMARY file group. Also notice
the existence of the Primary Key and an associated
clustered index.

3.3 Setting Up Referential Integrity

In Exercise 3.3, you alter the tables so that the Contact
IDs of the Event table become Foreign Keys pointing
to the Contact ID in the Contacts table.

Estimated Time: 5 minutes

1. If the SQL Query Analyzer is not already open,
load it to allow for the creation of the tables.
Supply the logon connection information
if requested.

2. Select the Sample database created in the previous
exercise from the database drop-down list box
from the toolbar.

3. Type the following command to create the
database and accompanying files:

ALTER TABLE Events
ADD CONSTRAINT FKEventContactID

FOREIGN KEY (ContactID)
REFERENCES Contacts(ContactID)

ALTER TABLE EventArchive
ADD CONSTRAINT FKArchContactID

FOREIGN KEY (ContactID)
REFERENCES Contacts(ContactID)

4. Execute the query. Check the Object Browser to
ensure the constraints were actually created.
Execute sp_help with the table name to ensure
each table was modified correctly:

sp_help Events
Go
sp_help EventArchive
Go

Note that new constraints were added that reference
the appropriate column in the Contacts table.

continued

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 183

A P P LY YO U R K N O W L E D G E

Review Questions
1. How would you design a set of tables in a circum-

stance where the deletion of one record should
cause the deletion of records in related tables?

2. What are the storage considerations in an extremely
limited budget? What basic configuration require-
ments would be set up to ensure optimum data
recoverability in the event of data corruption?

3. How do you use SQL Server 2000 technologies
to maintain data integrity?

4. If data and indexes are stored in two different
filegroups, what considerations are there for per-
forming backups?

5. For what purposes does the term “schema” apply?

Exam Questions
1. You are working for a large international organiza-

tion that supplies packaging materials for compa-
nies that require custom commercial designs. The
number of products is becoming too large for the
current computer system to handle and you need
to provide a solution that will spread the load over
the current server and a new machine coming into
the system. Queries need to be performed over a
wide variety of products and there is no pre-
dictable pattern to the queries. What is an appro-
priate technique to implement the changes?

A. Configure replication using the new machine
as a subscriber and the original machine as the
publisher/distributor to balance the workload.

B. Separate the table into two smaller tables and
place one table on each server. Configure a
partitioned view and appropriate constraints
on each of the machines.

C. Implement multi-server clustering so that
each of the two servers can respond to data
activities, thus achieving a balanced workload.

D. Configure log shipping on both servers to have
a copy of the data on each of the servers and
propagate all changes to the alternate machine.

2. As a developer for a large healthcare provider,
you are assigned the task of developing a
process for updating a patient database. When a
patient is transferred from one floor to another,
an internal identifier, CurrentRoomID, which is
used as the Primary Key, needs to be altered
while the original key, AdmittanceRoomID, is still
maintained. If a patient is moved more than
once, only the original key and the current key
need to be maintained. Several underlying tables
have been configured for referential integrity
against the patient table. These underlying
tables must change in an appropriate manner
to match with one or the other of the room keys
in the patient table. These relationships will be
altered based upon different situations in other
tables. Figure 3.11 illustrates the PatientTracker
table design exhibit. What method would you
use to accommodate the update?

A. Use the Cascade Update Related Fields option
to have changes in the Primary Key automati-
cally update the keys in all referenced tables.

B. Use an indexed view to enable the user to
make changes to multiple tables concurrently.

F IGURE 3 .11
PatientTracker table design exhibit.

184 Par t I EXAM PREPARATION

A P P LY YO U R K N O W L E D G E

C. Disable the Enforce Relationship for INSERTs
and DELETEs option to enable an AFTER TRIG-
GER to handle the necessary changes.

D. Define an INSTEAD OF UPDATE TRIGGER to per-
form the necessary updates to all related tables.

3. A large organization needs to maintain IMAGE data
on a database server. The data is scanned in from
documents received from the federal government.
Updates to the images are infrequent. When a
change occurs, usually the old row of data is
archived out of the system and the new docu-
ment takes its place. Other column information
that contains key identifiers about the nature of
the document is frequently queried by an OLAP
system. Statistical information on how the data
was queried is also stored in additional columns.
The actual document itself is rarely needed
except in processes that print the image. Which
of the following represents an appropriate
storage configuration?

A. Place the IMAGE data into a filegroup of its
own, but on the same volume as the remain-
der of the data. Place the log onto a volume
of its own.

B. Place all the data onto one volume in a single
file. Configure the volume as a RAID parity
set and place the log into a volume of its own.

C. Place the IMAGE onto one volume in a file of
its own and place the data and log files
together on a second volume.

D. Place the IMAGE into a separate filegroup with
the log on one volume and the remainder of
the data on a second volume.

4. You are the administrator of a SQL Server 2000
computer. The server contains your company’s
Accounts database. Hundreds of users access the
database each day. You have been experiencing
power interruptions, and you want to protect the
physical integrity of the Accounts database. You
do not want to slow down server operations.
What should you do?

A. Enable the torn page detection database
option for each database.

B. Disable write caching on all disk controllers.

C. Create a database maintenance plan to check
database integrity and make repairs each night.

D. Ensure that the write caching disk controllers
have battery backups.

5. An Internet company sells outdoor hardware
online to over 100,000 clients in various areas of
the globe. Servicing the web site is a SQL Server
whose performance is barely adequate to meet the
needs of the site. You would like to apply a busi-
ness rule to the existing system that will limit the
outstanding balance of each customer. The out-
standing balance is maintained as a denormalized
column within the customer table. Orders are col-
lected in a second table containing a trigger that
updates the customer balance based on INSERT,
UPDATE, and DELETE activity. Up to this point, care
has been taken to remove any data from the table
if the client balance is too high, so all data should
meet the requirements of your new process. How
would you apply the new data check?

A. Modify the existing trigger so that an order
that allows the balance to exceed the limit is
not permitted.

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 185

A P P LY YO U R K N O W L E D G E

B. Create a check constraint with the No Check
option enabled on the customer table, so that
any inappropriate order is refused.

C. Create a rule that doesn’t permit an order that
exceeds the limit and bind the rule to the
Orders table.

D. Create a new trigger on the Orders table that
refuses an order that causes the balance to
exceed the maximum. Apply the new trigger
to only INSERT and UPDATE operations.

6. An existing sales catalog database structure exists
on a system within your company. The company
sells inventory from a single warehouse location
that is across town from where the computer
systems are located. The product table has been
created with a non-clustered index based on the
product ID, which is also the Primary Key. Non-
clustered indexes exist on the product category
column and also the storage location column.
Most of the reporting done is ordered by product
category. How would you change the existing
index structure?

A. Change the definition of the Primary Key so
that it is a clustered index.

B. Create a new clustered index based on the
combination of storage location and product
category.

C. Change the definition of the product category
so that it is a clustered index.

D. Change the definition of the storage location
so that it is a clustered index.

7. You are the sole IT person working in a small
branch office for a non-profit organization that
deals with natural resource conservation issues. A
non-critical database is maintained on the data-

base server. You have been given the task of con-
figuring appropriate database properties that
would allow for a minimum use of execution
time and storage resources. Which of the follow-
ing set of properties is most appropriate?

A. Full Recovery, Auto Shrink, Torn Page
Detection

B. Bulk Recovery, Auto Shrink, Single User

C. Simple Recovery, Auto Close, Auto Shrink

D. Simple Recovery, Auto Shrink, Single User

E. Bulk Recovery, Auto Close, Auto Shrink

8. You are designing an application that will provide
data entry clerks the capability of updating the
data in several tables. You would like to ease
entry and provide common input so the clerks
need not enter data into all fields or enter redun-
dant values. What types of technologies could
you use to minimize the amount of input
needed? Select all that apply.

A. Foreign Key

B. Cascading Update

C. Identity Column

D. Default

E. NULL

F. Primary Key

G. Unique Index

9. A database that you are working on is experienc-
ing reduced performance. The database is used
almost exclusively for reporting, with a large num-
ber of inserts occurring on a regular basis. Data is
cycled out of the system four times a year as part
of quarter-ending procedures. It is always impor-

186 Par t I EXAM PREPARATION

A P P LY YO U R K N O W L E D G E

tant to be able to attain a point-in-time restora-
tion process. You would like to minimize the
maintenance needed to accommodate increases
and decreases in file storage space. Which option
would assist the most in accomplishing the task?

A. SIMPLE RECOVERY

B. AUTOSHRINK

C. MAXSIZE

D. AUTOGROW

E. COLLATE

10. You are the administrator of a SQL Server 2000
computer. The server contains a database named
Inventory. Users report that several storage loca-
tions in the UnitsStored field contain negative
numbers. You examine the database’s table struc-
ture. You correct all the negative numbers in the
table. You must prevent the database from storing
negative numbers. You also want to minimize use
of server resources and physical I/O. Which state-
ment should you execute?

A. ALTER TABLE dbo.StorageLocations ADD
➥ CONSTRAINT
CK_StorageLocations_UnitsStored
CHECK (UnitsStored >= 0)

B. CREATE TRIGGER CK_UnitsStored On
➥ StorageLocations
FOR INSERT, UPDATE AS
IF INSERTED.UnitsStored < 0 ROLLBACK TRAN

C. CREATE RULE CK_UnitsStored As @Units >= 0
GO
sp_bindrule ‘CK_UnitsStored’
‘StorageLocations.UnitsStored’

GO

D. CREATE PROC UpdateUnitsStored
(@StorageLocationID int, @UnitsStored
➥ bigint) AS
IF @UnitsStored < 0
RAISERROR (50099, 17)

ELSE
UPDATE StorageLocations
SET UnitsStored = @UnitsStored
WHERE StorageLocationID =
➥ @StorageLocationID

11. You are the administrator of a SQL Server 2000
computer. The server contains a database named
Inventory. In this database, the Parts table has a
Primary Key that is used to identify each part
stored in the company’s warehouse. Each part has
a unique UPC code that your company’s
accounting department uses to identify it. You
want to maintain the referential integrity between
the Parts table and the OrderDetails table. You
want to minimize the amount of physical I/O
that is used within the database. Which two
T-SQL statements should you execute? (Each
correct answer represents part of the solution.
Choose two.)

A. CREATE UNIQUE INDEX IX_UPC On Parts(UPC)

B. CREATE UNIQUE INDEX IX_UPC On
➥ OrderDetails(UPC)

C. CREATE TRIGGER UPCRI On OrderDetails
FOR INSERT, UPDATE As
If Not Exists (Select UPC From Parts
Where Parts.UPC = inserted.UPC) BEGIN

ROLLBACK TRAN
END

D. CREATE TRIGGER UPCRI On Parts
FOR INSERT, UPDATE As
If Not Exists (Select UPC From Parts
Where OrderDetails.UPC = inserted.UPC)
➥ BEGIN

ROLLBACK TRAN
END

E. ALTER TABLE dbo.OrderDetails ADD
➥ CONSTRAINT
FK_OrderDetails_Parts FOREIGN KEY(UPC)
REFERENCES dbo.Parts(UPC)

F. ALTER TABLE dbo.Parts ADD CONSTRAINT
FK_Parts_OrderDetails FOREIGN KEY (UPC)
REFERENCES dbo.Parts(UPC)

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 187

A P P LY YO U R K N O W L E D G E

12. You are the database developer for a leasing
company. Your database includes a table that is
defined as follows:

CREATE TABLE Lease
(Id Int IDENTITY NOT NULL
CONSTRAINT pk_lesse_id PRIMARY KEY

➥ NONCLUSTERED,
Lastname varchar(50) NOT NULL,
FirstName varchar(50) NOT NULL,
SSNo char(9) NOT NULL,
Rating char(10) NULL,
Limit money NULL)

Each SSNo must be unique. You want the data to
be physically stored in SSNo sequence. Which
constraint should you add to the SSNo column on
the Lease table?

A. UNIQUE CLUSTERED constraint

B. UNIQUE UNCLUSTERED constraint

C. PRIMARY KEY CLUSTERED constraint

D. PRIMARY KEY UNCLUSTERED constraint

13. You are building a database and you want to
eliminate duplicate entry and minimize data
storage wherever possible. You want to track
the following information for employees and
managers: First name, middle name, last name,
employee identification number, address, date of
hire, department, salary, and name of manager.
Which table design should you use?

A. Table1: EmpID, MgrID, Firstname,
Middlename, Lastname, Address, Hiredate,
Dept, Salary. Table2: MgrID, Firstname,
Middlename, Lastname.

B. Table1: EmpID, Firstname, Middlename,
Lastname, Address, Hiredate, Dept, Salary.
Table2: MgrID, Firstname, Middlename,
Lastname. Table3: EmpID, MgrID.

C. Table1: EmpID, MgrID, Firstname,
Middlename, Lastname, Address, Hiredate,
Dept, Salary.

D. Table1: EmpID, Firstname, Middlename,
Lastname, Address, Hiredate, Dept, Salary.
Table2: EmpID, MgrID Table3: MgrID.

14. You are developing an application and need to
create an inventory table on each of the databases
located in New York, Detroit, Paris, London, Los
Angeles, and Hong Kong. To accommodate a dis-
tributed environment, you must ensure that each
row entered into the inventory table is unique
across all locations. How can you create the
inventory table?

A. Supply Identity columns using a different
sequential starting value for each location and
use an increment of 6.

B. Use the identity function. At first location,
use IDENTITY(1,1), at second location use
IDENTITY(100000,1), and so on.

C. Use a Uniqueidentifier as the key at each
location.

D. Use TIMESTAMP column as the key at each
location.

15. You are building a new database for a company
with ten departments. Each department contains
multiple employees. In addition, each employee
might work for several departments. How should
you logically model the relationship between the
department entity and the employee entity?

A. A mandatory one-to-many relationship
between department and employee.

B. An optional one-to-many relationship
between department and employee.

188 Par t I EXAM PREPARATION

A P P LY YO U R K N O W L E D G E

C. Create a new entry; create a one-to-many
relationship from the employee to the new
entry; and create a one-to-many relationship
from the department entry to the new entry.

D. Create a new entry; create a one-to-many rela-
tionship from the new entry to the employee
entry; then create a one-to-many relationship
from the entry to the department entry.

Answers to Review Questions
1. Configuring a Cascading Delete Action causes

the deletion of a record to propagate deletions
throughout the underlying related table. This
option should be configured with caution,
because the deletion of underlying data might
not be desired. You need to set two tables up in a
parent-child relationship, using appropriate
Primary and Foreign Keys. Cascading Update
Action performs a similar operation when key
values are changed, propagating the new values to
underlying child tables.

2. First, put the log files onto a volume other than
where the data is stored to ensure optimum
recoverability. If possible, use a mirror on the OS
volume to minimize downtime in a system fail-
ure. If the data volume becomes corrupt, a restore
can be performed to get that data back. Having
the log on a separate volume means that you can
recover additional data because the log volume
should be unaffected by the damage to the data.

3. Referential integrity is used to create a link
between two related tables. A Foreign Key in one
table references a Primary Key or unique index in
the other table. Any entry to the table in which
the Foreign Key resides must have a matching

record in the table containing the Primary Key.
Rules, constraints, triggers, and defaults all par-
ticipate in maintaining data integrity.

4. Both filegroups must be backed up within the
same backup set whenever the indexes are sepa-
rated from the data. Care must be taken so that
the indexes always maintain pointers to the corre-
sponding data.

5. In SQL Server, there are several uses of the term
“schema.” Information, Database, XML, and
Warehouse all use schema to define the structure
of elements, whether they be statistics, data dic-
tionaries, data structures, or cube dimensions.

Answers to Exam Questions
1. B. This is a perfect example of where partitioning a

table into two smaller objects enables you to use
two machines to help reduce the load on the overall
application. Remember that failover clustering is
the only form of clustering supported by SQL and
therefore does not actually reduce the load; it only
assists in obtaining an around-the-clock operation.
Log shipping assists in offloading query load, but
does little to reduce update load because it leaves
the second server in a read-only state. Merge repli-
cation may enable updates to span many servers,
but the associated overhead and data latency makes
it a less than desirable alternative. For more infor-
mation, see “Partitioning to Achieve a Balance.”

2. D. The INSTEAD OF trigger was designed specifi-
cally for this type of situation and also to handle
complicated updates where columns are defined
as Timestamp, Calculated, or Identity. Cascade
operations are inappropriate because the updated
key is not always stored. Indexed views by them-
selves do not allow for the type of alteration

Chapter 3 PHYSICAL DATABASE DESIGN AND IMPLEMENTATION 189

A P P LY YO U R K N O W L E D G E

desired and would have to be complemented
with the actions of a trigger. Disabling referential
integrity is a poor solution to any problem, espe-
cially considering the medical nature of this
application and the possible ramifications. For
more information, see “Trigger Utilization.”

3. D. Because the IMAGE data will seldom be
accessed, it makes sense to get the remainder of
the data away from the images while moving the
log away from the data. This will help to improve
performance while providing optimum recover-
ability in the event of a failure. For more infor-
mation, see “Using Filegroups.”

4. D. Good controllers suitable for database use will
have a battery backup. The battery should be regu-
larly tested under controlled circumstances.
Disabling caching if currently in place is likely to
affect performance, as will enabling torn page detec-
tion. Torn page detection might help point out
whether data is being corrupted because of failures.
A maintenance plan is recommended, although it is
not an entire solution in its own right.

5. A. Because a trigger is already in place, it can eas-
ily be altered to perform the additional data
check. A rule cannot provide the required func-
tionality because you cannot compare the data.
The CHECK constraint may be a viable solution
but you would have to alter the trigger to check
for an error and provide for nested operations.
The number of triggers firing should be kept to a
minimum. To accommodate additional triggers,
you would have to check the order in which they
are being fired and again set properties of the
server and database accordingly. For more infor-
mation, see “Trigger Utilization.”

6. C. Because the majority of the reporting is going
to be performed using the storage location, it

would be the likely candidate. The clustered
index represents the physical order of the data
and would minimize sorting operations when
deriving the output. For more information, see
“Index Organization.”

7. C. Simple Recovery uses the least amount of log
space for recording changes to the database. Full
recovery uses the most space because it fully logs
any bulk operations. Bulk recovery represents a
mid-point between the two. Auto Close frees up
resources at the earliest possible point during
process execution, and Auto Shrink minimizes
the space used in the file system by periodically
reducing the files when there is too much unused
space. For more information, see “Use of
Recovery Models.”

8. B, C, D, E. All these options have activities that
provide or alter data so that it does not have to be
performed as an entry operation. In the case of
NULL, data need not be provided, possibly because
the column contains non-critical information. For
more information, see “Table Characteristics.”

9. D. Use AUTOGROW to set the system so that the files
will grow as needed for the addition of new data.
You may want to perform a planned shrinkage of
the database as part of the quarter-ending process
and save on overhead by leaving the AUTOSHRINK
option turned off. For more information, see
“Creating Database Files and Filegroups.”

10. A. You need to add a constraint to prevent nega-
tive data entry. The best method of implementing
this functionality is a constraint. A trigger has too
much overhead and the RULE is not accurately
implemented. A procedure could handle the
process but is normally only used for processes
requiring more complex logic. For more informa-
tion, see “Table Characteristics.”

190 Par t I EXAM PREPARATION

A P P LY YO U R K N O W L E D G E

easily be represented using a self-join operation to
provide the desired reporting. Join operations will
be discussed in detail in the next chapter.

14. A. Using identities in this fashion enables records
to be entered that have no overlap. One location
would use entry values 1, 7, 13, 19; the next
would have 2, 8, 14, 20; the third 3, 9, 15, 21,
and so on. For more information, see
“Application of Integrity Options.”

15. C. This is a many-to-many relationship scenario,
which in SQL Server is implemented using three
tables. The center table, often referred to as the
connecting or joining table, is on the many side of
both of the relationships to the other base table.
For more information, see “Maintaining
Referential Integrity.”

11. A, E. The UNIQUE constraint on the Parts table
UPC column is required first, so that the FOREIGN
KEY constraint can be applied from the
OrderDetails.UPC column referencing Parts.UPC.
This achieves the referential integrity requirement. It
also reduces I/O required during joins between Parts
and OrderDetails, which make use of the FOREIGN
KEY constraint defined. For more information, see
“Maintaining Referential Integrity.”

12. A. To obtain the physical storage sequence of the
data, you must use a clustered constraint or
index. Although a Primary Key would also pro-
vide for the level of uniqueness, it is not the
desired key for this table. For more information,
see “Unique Indexing” in Chapter 10.

13. C. A single table could provide all the necessary
information with no redundancy. The table could

1. Inside SQL Server 2000 – Kalen Delaney
(www.insidesqlserver.com)

Not a beginner book, but it fills in many of the gaps
left out of the SQL Server Books Online documen-
tation. Explains fully how SQL Server stores and
processes data internally.

2. SQL Server 2000 Books Online

• Creating and Maintaining Databases
(Look particularly at the sections on
indexes, views, and triggers.)

• Transact-SQL Reference (Use this as a
resource for the specific syntax require-
ments of each statement, as well as some
code examples.)

• Optimizing Database Performance (Focus
on Database and Application Design.)

• Troubleshooting: Server and Database
Troubleshooting

3. MSDN Online Internet Reference
(http://msdn.microsoft.com)

• Transact SQL Overview
(/library/psdk/sql/ts_tsqlcon_6lyk.htm)

• Transact SQL Syntax Conventions
(/library/psdk/sql/ts_syntaxc_9kvn.htm)

• Transact SQL Tips
(/library/psdk/sql/ac_8_qd_14_2kc3.htm)

Suggested Readings and Resources

