Accessing SQL 2000
via HTTP

I N THE FIRST THREE CHAPTERS, WE COVERED THE XML specification, Extensible
Stylesheet Language Transformations (XSLT), and the necessary setup steps for virtual
roots on SQL Server. In this chapter, we’ll first discuss client/server architecture to
give you a feel for how the different system components, application servers, database
servers, and so on interact with each other. Then we’ll look at how to utilize the
HTTP protocol in various ways to execute SQL statements against SQL Server. This
includes the use of template files to generate XML data. Utilizing the HTTP protocol
via URLs will simplify our tasks because most people in the computer industry are
very familiar with this process.

This chapter will cover the following topics:

= General client/server architecture in two-, three-, and n-tiered configurations
= SQL Server 2000’s HTTP capabilities

= Entities in XML and URLs

= Generating XML documents by querying SQL Server via HTTP

= Generating XML documents utilizing XML template files

= Generating XML documents utilizing stored procedures

136 Chapter 4 Accessing SQL 2000 via HTTP

I think it’s about time to define this template file that we’ve been talking about. It’s not
some new language you’ll have to learn, so you can relax. It also has nothing to do
with the template elements of XSLT that we learned about in Chapter 2, “XSLT
Stylesheets.” Simply put, these templates are just XML files that contain one or more
SQL statements. When these templates are applied to a database through mechanisms
you’ll learn about in this chapter, they help produce results in XML format.

Let’s take one last look at the XML process diagram that we used in Chapter 1,
“Database XML,” and Chapter 2 (see Figure 4.1).

HTML Form

Raw XML XML Transformed
Data Engine Document Data

|

XSLT XSLT
Stylesheet Stylesheet

Any other raw data
input you can think of

Figure 4.1 The XML process.

Yes, that’s right; this is the last look. We’ve covered all the components in the diagram
and will remain at the XML engine component for the rest of this book. The XML
engine is SQL Server 2000.

Two-, Three-, and N-Tiered Architectures

To get a better understanding of how client/server components function together and
therefore a better understanding of system extensibility and capability, we need to have
a brief discussion of client/server architecture.

Each component of a client/server system performs one or more specific logical
functions. We’ll begin this discussion by defining these functions, and then we’ll show

Two-, Three-, and N-Tiered Architectures

you how they are distributed throughout a client/server system. These four functions
are the basic building blocks of any application:
= Data storage logic. Most applications need to store data, whether it’s a small
memo file or a large database. This covers such topics as input/output (I/O) and
data validation.
= Data access logic. This is the processing required to access stored data,
which is usually in the form of SQL queries (whether they are issued from
the command line of Query Analyzer or from a stored procedure).
= Application logic. This is the application itself, which can be simple or
complex. Application logic is also referred to as a company’s business rules.
= Presentation logic. This is the projection of information to the user and the
acceptance of the user’s input.

With these difterent functional processes now defined, we can look at how different
client/server configurations split these functions up and what eftect they have on
extensibility. We’ll begin with two-tier architecture, followed by three-tier and then
n-tier architecture. Finally, we’ll talk briefly about a sample SQL Server and IIS
configuration.

Two-Tier Client/Server Architecture

In its simplest form, client/server architecture is a two-tier structure consisting of,
believe it or not, a client component and a server component. A static Web site is a

good two-tier example (see Figure 4.2).

Presentation Logic Data Access Logic
Application Logic Data Storage
—

—
Client Computer
Server

Figure 4.2 Two-tier client/server architecture.

In this configuration, the client accepts user requests and performs the application
logic that produces database requests and transmits them to the server. The server

accepts the requests, performs the data access logic, and transmits the results to the
client. The client accepts the results and presents them to the end user.

137

138 Chapter 4 Accessing SQL 2000 via HTTP

Three-Tier Client/Server Architecture
The next step up is three-tier architecture. Take a look at Figure 4.3.

Data Access Logic

Presentation Logic Application Logic Data Storage
— —
— —
Client Computer — —
Application Database
Server or Server
Web Server

Figure 4.3 Three-tier client/server architecture.

This design utilizes three different focus points. In this case, the client is responsible
for presentation logic, an application server is accountable for application logic, and a
separate database server is responsible for data access logic and data storage. Many large-
scale Web sites with database servers separate from Web servers are examples of this.

N-Tier Client/Server Architecture
Last but not least, there is the n-tier client/server architecture. This configuration is
basically open ended (see Figure 4.4).

Presentation Logic Application Logic

—
—
Client Computer —
Web Server

Data Access Logic

Application Logic Data Storage
— P ——
%ﬁ %ﬁ
— —
Application Database
Server Server

Figure 4.4 N-tier client/server architecture.

Two-, Three-, and N-Tiered Architectures

In this figure, there are more than three focus points. The client is responsible for pre-
sentation logic, a database server(s) is responsible for data access logic and data storage,
and application logic is spread across two or more different sets of servers. In our
example, one of the application servers is a Web server, and the other is a non-Web
server. This isn’t required for the architecture. Any combination of two or more types
of application servers is all right.

The primary advantage of n-tiered client/server architecture, as compared to a two-
tiered architecture (or a three-tiered to a two-tiered), is that it prepares an application for
load balancing, distributing the processing among multiple servers. Also, a proper n-tier
setup enables better integration with other components and ease of development,
testing, and management.

Typical Microsoft Three-Tier Architecture for IIS
and SQL 2000

Looking at Figure 4.5, you’ll see that I have diagrammed it in a slightly different

way to illustrate some important points. At first glance, you'll see that it represents
three-tier client/server architecture. Nothing is new here; the client is responsible for
presentation logic, a SQL Server 2000 server(s) is responsible for data access logic and
data storage, and IIS contains the application logic. It’s the internal workings of IIS in
this instance that I want to explain a little more deeply.

Client Computer Microsoft
SQL Server 2000
Internet Explorer 4
Netscape 4 Data Access Logic
Internet Explorer 5 . Data Storage
Microsoft .

IIS Server [

Application Logic
N\ —=
SQLISAPI.DLL SQLXMLX.DLL —

==

= Northwind

==

T —

Annotated
Schemas

XSL Templates

Figure 4.5 Typical Microsoft client/server architecture.

When a URL-type query is passed to IIS, it examines the virtual root contained in
the URL and ensures that the SQLISAPL.DLL has been registered for this virtual
root. This should have been done when the virtual root was configured via one of the
two configuration methods covered in Chapter 3, “Internet Information Server and
Virtual Directories.”

139

140 Chapter 4 Accessing SQL 2000 via HTTP

SQLISAPLDLL, in conjunction with other DLLs, establishes a connection with the
SQL Server identified in the virtual root. After the connection is established and it is
determined that the command in the URL is an XML command, the command is
passed to SQLXMLX.DLL. SQLXMLX.DLL executes the command, and the results
are returned. All XML functionality is contained in SQLXMLX.DLL.

If you take into account what we have just discussed and look back to Chapter 3's section “The Advanced
Tab," you'll see why the configuration of the Advanced tab is so important. If the SQLISAPIDLL file can't
be found, nothing works.

As you can see in Figure 4.5, template files, schema files, and XSLT stylesheets all
reside on the IIS server.

What Are Our Capabilities When Utilizing
HTTP?

Now let’s take a quick look at what we can accomplish by using the HTTP protocol.
The rest of this chapter will then go into each of these functions in depth.

Placing a SQL Query Directly in a URL
Take a look at the following:
http://IISServer/Nwind?sql=SELECT+*+FROM+Employees+FOR+XML+AUTO&root=root

Placing a SQL query in a URL like this is simple enough, don’t you think? After the
URL, which points to the Nwind virtual directory, insert a question mark followed by
sql= and then the SQL query itself. Separate all words in the query with a plus (+)
sign. We’ll explain the &root parameter in the upcoming section “Well-Formed
Documents, Fragments, and &root.”

FOR XML AUTO is a new extension to the SELECT statement making its appearance with SQL Server 2000.
It will be covered in depth in Chapter 8, "OPENXML." For now, it's only necessary to know that it returns
the results of the SQL statement as an XML document instead of as a standard rowset, as you're probably
used to. You might also see it as FOR XML RAW or FOR XML EXPLICIT. Hang in there for now; we'll get to
it. If you try leaving out the FOR XML statement with code similar to the following:

http://griffinj/Nwind/?sql=select+*+from+Employees&root=root

You'll see an error message in your browser that's very similar to what is shown in Listing 4.1.

What Are Our Capabilities When Utilizing HTTP? 141

Listing 4.1 Error Generated by Missing FOR XML Statement

<?xml version="1.0" encoding="utf-8" ?>
<root>

<?MSSQLError HResult="0x80004005" Source="Microsoft XML Extensions to
SQL Server" Description="Streaming not supported over multiple column
result"?>
</root>

Specifying a Template Directly in a URL
Here’s an example of specifying a template directly:
http://IISServer/Nwind?template=<RO0T+xmlns:sql="urn:schemas-

microsoft-com:xml-sql"><sql:query>SELECT+*+FROM+Employees+FOR+XML+AUTO
</sql:query></RO0T>

Now you see an example of a template file. It is in the form of an XML document
and contains one or more SQL statements.

Templates allow the data to be returned as a well-formed XML document. As
you’ll see shortly, this isn’t necessarily so when specifying a SQL statement directly in
a URL. Also, some SQL query statements can become quite long. If they were in a
template file, they would be easier to read than in a URL with all the additional
markup needed (the plus [+] signs).

Declaring a Template File in a URL

Rather than writing a very long URL statement similar to the one in the preceding
section, we could put the SQL query in a template file and refer to it in the URL like
this:

http://IISServer/Nwind/TemplateVirtualName/template.xml

Remember that the TemplateVirtualName was specified with the Virtual Directory
Management utility.

This also provides for better security by keeping the user away from the details of
the database.

Specifying an XPath Query Against a Schema File in a URL
The following example shows how this would look:

http://IISServer/Nwind/SchemaVirtualName.schemafile.xml/
Employee[@EmployeeID=6]

142 Chapter 4 Accessing SQL 2000 via HTTP

Here the SchemaVirtualName was specified with the Virtual Directory Management
Utility, and Employee[@EmployeeID=6] is the XPath query executed against
schemafile.xml.

Specifying Database Objects Directly in a URL

Database objects such as tables and views can be specified in a URL, and then an
XPath query can be issued against it to produce results as shown in the following
example:

http://IISserver/Nwind/dbobjectVirtualName/XpathQuery

The XPath query is placed as the last entity in the URL, directly after the
VirtualDirectoryName.

Entities

When we talked about XML documents in Chapter 1, we mentioned certain special
characters that must be treated differently than other characters because they are inter-
preted differently depending on their location in documents. For more information,
go to http://www.landfield.com/rfcs/rfc1738.html.

We must also be concerned now about special characters in URLs. Certain
characters have a functionality all their own when used in URLs.

Entities in XML

The characters listed in Table 4.1 should not be used between tags in an XML docu-
ment. These characters have special meaning to XML and will cause misinterpretation
during parsing. The appropriate substitution entities that should be used in their place
are provided in the table.

For a more thorough discussion of these characters and why they affect things the way they do, see
RFC 2396. This RFC is freely available on the Internet athttp://www.landfield.com/rfcs/
rfc2396.html.

Table 4.1 Entity Substitutions

Character Entity

& (ampersand) Use &
‘ (apostrophe) Use '
< (less than) Use &1t;
> (greater than) Use >

“ (quote) Use "

Entities

Let’s look at the sample template file in Listing 4.2.You’'ll see why these entities are
necessary. Listing 4.3 shows the result.

Listing 4.2 Entities in Template Files

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:query>
SELECT CustomerID, OrderDate, Freight
FROM Orders
WHERE Freight > 800 <!--> substituted for '>' -->
FOR XML AUTO
</sql:query>
</ROOT>

Listing 4.3 Results of Entity Substitution

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Orders CustomerID="QUEEN" OrderDate="1996-12-04T00:00:00"
Freight="890.78" />
<Orders CustomerID="QUICK" OrderDate="1997-05-19T00:00:00"
Freight="1007.64" />
<Orders CustomerID="QUICK" OrderDate="1997-10-03T00:00:00"
Freight="810.05" />
<Orders CustomerID="SAVEA" OrderDate="1998-04-17T00:00:00"
Freight="830.75" />
</R0OOT>

Entities in URLs

When executing a query in a URL, you must be careful when using the characters
listed in Table 4.2. They are interpreted according to the description in the table. All
these characters are required at one point or another in the interpretation of URLs.
Again, RFC 2396 discusses these characters in greater detail.

Table 4.2 Special Characters in URLs

Character Description Hexadecimal Value
+ Indicates a space (spaces cannot be used in a URL). %20
/ Separates directories and subdirectories. %2F
? Separates the URL from the parameters. %3F
% Specifies special characters. %25
Indicates bookmark anchors. %23

& Separates parameters specified in the URL. %26

143

144 Chapter 4 Accessing SQL 2000 via HTTP

Here’s an example of a direct SQL query in a URL:

http://IISServer/Nwind?sql=SELECT+*+FROM+Employees+WHERE+LastName+LIKE+
'D% ' FOR+XML+AUTO&root=root

Here we are trying to retrieve all information concerning employees whose last names
start with D. Because the % character is one of the special characters for URLs, trying
this query directly in a URL results in several errors. To fix the problem, you need to
substitute the hexadecimal value of the special character in its place, like this:

http://IISServer/Nwind?sql=SELECT+*+FROM+Employees+WHERE+LastName+LIKE+
'D%25 ' +FOR+XML+AUTO&root=root

There’s one more point to make here. There are instances when it might become nec-
essary to use a combination of XML and URL special characters. Look at the follow-
ing sample template that could be specified directly in a URL. See if you can spot the
problem.
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"><sql:query>SELECT+
CustomerID,OrderDate,Freight+FROM+Orders+WHERE+Freight+>+800+FOR+XML+AUTO
</sql:query></RO0T>

Hopetully, by now you know that the > character won’t work here, so we’ll change it
to the required XML entity.
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"><sql:query>SELECT+
CustomerID,OrderDate,Freight+FROM+0Orders+WHERE+Freight+>+800+FOR+XML+
AUTO</sql:query></RO0OT>

Did you make it this far? If so, good; but if you stopped here, you didn’t go quite far
enough. The & character is a URL special character, and a substitution needs to be
made here also. Replace the & with the hexadecimal value %26.
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql"><sql:query>SELECT+
CustomerID,OrderDate,Freight+FROM+Orders+WHERE+Freight+%26gt;+800+FOR+XML
+AUTO</sql:query></RO0T>

Executing SQL via HTTP

Up to this point, we’ve given a lot of examples to show how the HTTP protocol is
used to request XML documents from SQL Server. We've never really given a formal
definition of the syntax. Table 4.3 gives the formal definition. We’ll also cover some
more details of querying via a URL, such as stored procedures, templates in depth, uti-
lizing XSLT stylesheets, and so on.
Here’s the formal syntax for URL access accepted by the SQL ISAPI extension:
http://iisserver/virtualroot/virtualname[/pathinfo][/XPathExpression]
[?param=value[¶m=value]...n]

or:

Executing SQL via HTTP 145

http://iisserver/virtualroot?{sql=SqlString | template=XMLTemplate}
[¶m=value[¶m=value]...n]

Table 4.3 HTTP Syntax Explanation

Keyword

iisserver

virtualroot

virtualname

[/pathinfo]

[/XPathExpression]

?sql
SqlString

?template

param

Description
The IIS server to access.
For example: www.newriders.com.

The virtual root configured with the Virtual Directory Management
utility (graphically or programmatically).

A virtual name defined when the virtual root was configured. It will
be one of three types: template, schema, or dbobject.

Path information to locate template or schema files in addition to
the path information specified during virtualname configuration.
Not needed for a dbobject type.

Specified if necessary for schema files or dbobject types.
Delimits an SQL query string.

An SQL query or stored procedure name. Usually contains the FOR
XML extension unless the returned data is already in XML format.
For example, a stored procedure that returns XML data.

Delimits a SQL query string formatted as an XML document.
This is either a parameter name or one of the following:

contenttype Specifies the content format of the
returned document to allow a Web browser
to pick the proper display method.
Specified in two parts, the contenttype
and subtype. Its sent in the HTTP
header to become the MIME type of the
document. text/ XML, text/HTML, and
image/gif designate an XML document, an
HTML document, and a GIF image,
respectively.

outputencoding The character set used to render the gener-
ated XML document. The default is UTF-
8. Templates specified directly in a URL
via template= are rendered in Unicode.
Template files can specity the outputen-
coding themselves because they are XML
documents.

continues

146 Chapter 4 Accessing SQL 2000 via HTTP

Table 4.3 Continued

Keyword Description

root When specified, the returned data is brack-
eted with the element name given to gen-
erate a well-formed XML document.

xsl The URL of an XSLT stylesheet used to
process the returned data. By default, out-
put documents are UTF-8 encoded unless
overridden by an encoding instruction in
the XSL file. If outputencoding is speci-
fied, it overrides the XSL specified
encoding.

Character encodings are specified with the encoding= attribute in the XML declaration. The XML speci-
fication explicitly says XML uses ISO 10646, the international standard 31-bit character repertoire that
covers most human languages. It is planned to be a superset of Unicode and can be found at
http://www.iso.ch.

The spec says (2.2) "All XML processors must accept the UTF-8 and UTF-16 encodings of ISO 10646... ."
UTF-8 is an encoding of Unicode into 8-bit characters: The first 128 are the same as ASCII; the rest are
used to encode the rest of Unicode into sequences of between 2 and 6 bytes. UTF-8 in its single-octet
form is therefore the same as 1SO 646 IRV (ASCII), so you can continue to use ASCII for English or other
unaccented languages using the Latin alphabet. Note that UTF-8 is incompatible with I1SO 8859-1 (ISO
Latin-1) after code point 126 decimal (the end of ASCII). UTF-16 is like UTF-8 but with a scheme to rep-
resent the next 16 planes of 64k characters as two 16-bit characters.

Regardless of the encoding used, any character in the ISO 10646 character set can be referred to by the
decimal or hexadecimal equivalent of its bit string. So, no matter which character set you personally use,
you can still refer to specific individual characters by using &#dddd; (decimal character code) or
&#xHHHH; (hexadecimal character code in uppercase). The terminology can get confusing, as can the
numbers: See the I1SO 10646 Concept Dictionary at http://www.cns-web.bu.edu/djohnson/
web_files/i18n/IS0-10646.html.

Well-Formed Documents, Fragments, and &root

As promised, the &root=root parameter used in some of the URLs and template files
in the previous section requires a little explanation.

Think back to our discussion of well-formedness and XML documents. One of the
conditions that must be met for an XML document to be well-formed is that it must

Executing SQL via HTTP 147

contain a single top-level element. Remember our RESUMES shown in the follow-
ing example:
<RESUMES xmlns='http://www.myorg.net/tags'>

<PERSON PERSONID="p1">
<NAME>

</RESUMES>
Our document contains the single top-level element <RESUMES>. Although there are
other requirements for well-formed documents, if this one isn’t met, the document
fails the test.

How does this relate to the &root parameter in the URL? The &root parameter
specifies the name of the document ROOT element. The result is an XML document
with that all-important single top-level element. Let’s look at some examples by
reusing some of the code we have given previously:

http://IISServer/Nwind?sql=SELECT+*+FROM+Employees+FOR+XML+AUTO&root=root

Here we specify &root=root. This will generate a document that contains that single
top-level element, and the element will be <R00T>. In the following example, you
would expect a document fragment to be returned because no root element is speci-
fied. You actually receive an error message stating, “Only one top-level element is
allowed in an XML document.” Because the root element is missing, all employee ele-
ments are assumed to be at the top level, which isn’t allowed.

http://IISServer/Nwind?sql=SELECT+*+FROM+Employees+FOR+XML+AUTO

‘When template files are used, the same conditions hold true. Let’s say we have the
template file shown in Listing 4.4.

Listing 4.4 Template File Without a Root Element

<ROOT XMLNS:SQL="urn:schemas-microsoft-com:xml-sql">
<sql:query>
SELECT *
FROM Employees
FOR XML AUTO
</sql:query>
</ROOT>

Let’s say we employ this template file via this URL:
http://IISServer/Nwind/TemplateVirtualName/template.xml

The template file will provide the single top-level element via the <RO0T> element
declaration.

148 Chapter 4 Accessing SQL 2000 via HTTP

Just to make sure we understand the root declaration, if I make the specification
root=EMPS in the template file, the following fragment shows how the resulting
document’s root element has changed.

<EMPS xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Employees EmployeeID="1" LastName="Davolio"

</EMPS>

Queries on Multiple Tables

Querying multiple tables has implications that you need to consider carefully if you
want to generate your resulting documents with the proper element order. Here’s the
rule of thumb: “The order in which tables are specified in the SQL query determines
the element nesting order.”” We’ll take a look at the Orders and Employees tables in
Northwind in a couple of ways (also refer to Appendix A, “Northwind Database
Schema”).

Here’s the first query:

http://iisserver/Nwind?sql=SELECT+TOP+2+0rders.OrderID,+Employees.

LastName,+Orders.ShippedDate+FROM+Orders,+Employees+WHERE+Orders.

EmployeeID=Employees.EmployeeID+0Order+by+Employees.EmployeelD,

OrderID+FOR+XML+AUTO&

root=ROOT

This returns the results in Listing 4.5.

Listing 4.5 Results of Querying Multiple Tables

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>
<Orders OrderID="10258" ShippedDate="1996-07-23T00:00:00">
<Employees LastName="Davolio" />
</Orders>
<Orders OrderID="10270" ShippedDate="1996-08-02T00:00:00">
<Employees LastName="Davolio" />
</Orders>
</ROOT>

Let’s do this again with three tables, this time adding the Order Details table.

http://iisserver/Nwind?sql=SELECT+TOP+2+0rders.OrderID,+Employees.
LastName,+0Orders.ShippedDate,+[Order+Details].UnitPrice,+[Order+
Details].ProductID+FROM+Orders,+Employees,+[Order+Details]+WHERE+Orders.
EmployeeID=Employees.EmployeeID+AND+Orders.OrderID=[0Order+Details].OrderID
+0rder+by+Employees.EmployeelID,0Orders.OrderID+FOR+XML+AUTO&ro0t=RO0T

Executing SQL via HTTP

Listing 4.6 shows the results of this query.

Listing 4.6 Results of Querying Three Tables

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>
<Orders OrderID="10258" ShippedDate="1996-07-23T00:00:00">
<Employees LastName="Davolio">
<0Order_x0020_Details UnitPrice="15.2" ProductID="2" />
<Order_x0020_Details UnitPrice="17" ProductID="5" />
</Employees>
</0Orders>
</ROOT>

Listing 4.7 shows the results obtained when we execute the same SQL expression but
move the Employees.LastName element to the last element specified.

Listing 4.7 Results of Moving Employees. LastName to the Last Element

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>
<Orders OrderID="10258" ShippedDate="1996-07-23T00:00:00">
<Order_x0020_Details UnitPrice="15.2" ProductID="2">
<Employees LastName="Davolio" />
</Order_x0020_Details>
<Order_x0020_Details UnitPrice="17" ProductID="5">
<Employees LastName="Davolio" />
</0Order_x0020_Details>
</Orders>
</ROOT>

The key point I want you to grasp here is that the placement of elements in the result
XML document depends on their placement in the SQL expression. This should be
especially evident in the difference between Listings 4.6 and 4.7.

Passing Parameters

It 1s possible to pass parameters to SQL queries in URLs. This is known as run-time
substitution as opposed to design-time substitution. In this case, we use a placeholder to
specify the location where the parameter is to be substituted at execution time. The
placeholder is a ?, which must be specified as %3F in a URL. Here’s an example:
http://iisserver/Nwind?sql=SELECT+TOP+4+0rderID+FROM+0Orders+WHERE+
EmployeeID=%3F+FOR+XML+AUTO&EmployeeID=5&root=RO0OT

Listing 4.8 1s the resulting document.

149

150 Chapter 4 Accessing SQL 2000 via HTTP

Listing 4.8 Results of Parameter Substitution in Our URL

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>

<0Orders OrderID="10248" />

<0Orders OrderID="10254" />

<Orders OrderID="10269" />

<Orders OrderID="10297" />
</R0OOT>

Passing multiple parameters would just consist of more than one item with a question
mark and a separate parameter for each. This URL passes two parameters:
http://iisserver/Nwind?sql=SELECT+TOP+4+0rderID+FROM+Orders+WHERE+

EmployeeID=%3F+AND+CustomerID=%3F+FOR+XML+AUTO&EmployeeID=5&CustomerID=
'"VINET'&root=RO0OT

This might not seem like a big deal here, and perhaps it’s not to you, but wait until we
start specifying template files in URLs that have parameters queries designed into
them. We’ll get to these shortly.

The XSL Keyword

Now we get to make use of what we learned in Chapter 2. Utilizing XSLT stylesheets
gives us the much-needed flexibility to manipulate the XML output we generate. We
can create HTML on-the-fly for immediate or later display, or we can change the
returned XML document to a different one for further processing. The latter occurs
more often than you would think, as with Electronic Data Interchange (EDI) related
messages. Let’s take the following SQL query and generate an HTML page:
http://iisserver/Nwind?sql=SELECT+TOP+4+0OrderID,EmployeeID,Shipname+FROM+
Orders+WHERE+EmployeeID=5+FOR+XML+AUTO&xs1l=order.xsl &root=ROOT

In this example, the XSL file is located in the virtual root directory. The resulting XML
document is given in Listing 4.9, followed by the XSLT stylesheet in Listing 4.10.

Listing 4.9 XML Document Containing Order Information

<?xml version="1.0" encoding="utf-8" ?>
<ROOT>
<Orders OrderID="10248" EmployeeID="5" Shipname="Vins et alcools
Chevalier" />
<0rders OrderID="10254" EmployeeID="5" Shipname="Chop-suey Chinese" />
<0Orders OrderID="10269" EmployeeID="5" Shipname="White Clover Markets"
/>
<Orders OrderID="10297" EmployeeID="5" Shipname="Blondel pére et fils"
/>
</ROOT>

Executing SQL via HTTP 151

Listing 4.10 XSLT Stylesheet to Apply to Order Information

<?xml version='1.0'?>
<xsl:stylesheet xmlns:xsl='http://www.w3.org/XSL/Transform/1.0'>
<xsl:output media-type="text/html"/>

<xsl:template match="/">
<HTML>
<BODY>
<TABLE width='400' border='1'>
<TR>
<TD>Order ID</TD>
<TD>Ship Name</TD>
</TR>
<xsl:apply-templates/>
</TABLE>
</BODY>
</HTML>
</xsl:template>

<xsl:template match="Orders">
<TR>
<TD>
<xsl:value-of select="@OrderID"/>
</TD>
<TD>
<xsl:value-of select="@Shipname"/>
</TD>
</TR>
</xsl:template>
</xsl:stylesheet>

This results in a simple table of Order ID versus Shipname, as shown in Table 4.4.

Table 4.4 HTML Table of Results

Order ID Shipname

10248 Vins et alcools Chevalier
10254 Chop-suey Chinese
10269 White Clover Markets
10297 Blondel per'e et fils

Again, the result in this case might be simple, but the potential is enormous. Data can
be retrieved from a database and presented in real-time to the viewer via a thin-client
browser. Static pages can be generated and stored for viewing as needed by the client.
In this case, the XSLT stylesheet functions as an HTML template. (Templates are much

152 Chapter 4 Accessing SQL 2000 via HTTP

easier to maintain than rewriting HTML documents.) Business-to-business
e-commerce documents can be generated from existing queries without having to
modify the query itself. The XSLT stylesheet can manipulate the data in any way
desired to create the required new XML document.

Next we change our focus to using template files to generate XML documents.
We’ll discuss them in a lot more detail than we have so far.

Executing Template Files via HTTP

If you look back at some of the queries we wrote in the previous section, you’ll see
that they can be pretty difficult to read sometimes. Take a look at the query that gen-
erated Listings 4.6 and 4.7 and tell me that you immediately know exactly what the
query is doing. I doubt you can.

Template files have the same functionality as SQL queries written directly in
URLs. Template files can do the following:

s Specify SQL queries or XPath queries

= Define parameters that can be passed to these queries

= Specify a top-level (root) element for the XML document

= Declare namespaces

s Specify an XSLT stylesheet to apply to the results
Template files have the added benefits of being easier to read and some say easier to
write. In addition, they remove the database details from the general user for added
security. Editing a file can be made impossible for the user, but because he can see a
URL, he can change it or write his own and obtain information you might not want

him to see or have. Also, there are fewer training requirements because the user only
needs to know the filename and any parameters that might need to be passed.

Using XML Templates

Up to this point, when we’ve written a template file, we’ve used only the <sql:query>
element to specify what the statement is to execute. In addition to this <sql:query>
element, there are four other elements that can appear in a template file. Listing 4.11
shows the general format of a template file and is followed by an explanation of each
of the elements in Table 4.5.

Listing 4.11 XML Template Format

<ROOT xmlns:sgl="urn:schemas-microsoft-com:xml-sql"
sgl:xsl="XSL FileName" >
<sgl:header>
<sql:param>..</sql:param>
<sql:param>..</sql:param>...n
</sql:header>

Executing Template Files via HTTP 153

<sql:query>
sgql statement(s)
</sql:query>
<sql:xpath-query mapping-schema="SchemaFileName.xml">
XPath query
</sql:xpath-query>
</ROOT>

Table 4.5 XML Template Elements

Element Description

<ROOT> This tag provides a single top-level element (also referred to as
the root tag) for the resulting XML document. It can have any
name.

<sql:header> This tag is used to hold any header values. In the current imple-

mentation of SQL Server 2000, only the <sql:param> element
can be specified in this tag. The <sql:header> tag acts as a con-
taining tag, enabling you to define multiple parameters. This
provides greater efficiency because all the parameter definitions
are in one place. This is similar to declaring variables at the start
of a T-SQL stored procedure.

<sql:param> This element defines parameters that are passed to the queries
inside the template. Each <param> element defines one parame-
ter. Multiple <param> elements can be specified in the
<sgl:header> tag.

<sql:query> This element specifies SQL queries. You can have multiple
<sql:query> elements in a template.

If there are multiple <sql:query> tags in the template and one
fails, the others will proceed.

<sql:xpath-query> This element specifies an XPath query. The schema filename
must be specified using the mapping-schema attribute.

If there are multiple <sql:XPath-query> tags in the template
and one fails, the others will proceed.

<sql:xsl> Specifies an XSLT stylesheet to be applied to the result docu-
ment. A relative or absolute path can be given for the file. If a
relative path is given, it is relative to the directory that was
defined as the Template directory with the Virtual Directory
Management utility.

mapping-schema If you are executing an XPath query in a template, this attribute

identifies the associated XDR schema. It can have a specified
path identical to the path requirements of the sql:xsl element.

154 Chapter 4 Accessing SQL 2000 via HTTP

Here are some examples of using templates and template files in URLs. I'll reuse some
of the earlier examples of URL SQL queries to illustrate the differences.
Here is a simple SELECT statement on a single table specified directly in a URL:
http://iisserver/Nwind?template=<RO0T+xmlns:sql="urn:schemas-microsoft-
com:xml-sql"><sql:query>SELECT+LastName,FirstName+FROM+Employees+
FOR+XML+AUTO</sql:query></RO0OT>

Here is the result in Listing 4.12.

Listing 4.12 Specifying a Template Directly in a URL

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Employees LastName="Davolio" FirstName="Nancy" />
<Employees LastName="Fuller" FirstName="Andrew" />
<Employees LastName="Leverling" FirstName="Janet" />
<Employees LastName="Peacock" FirstName="Margaret" />
<Employees LastName="Buchanan" FirstName="Steven" />
<Employees LastName="Suyama" FirstName="Michael" />
<Employees LastName="King" FirstName="Robert" />
<Employees LastName="Callahan" FirstName="Laura" />
<Employees LastName="Dodsworth" FirstName="Anne" />

</ROOT>

Taking the same template and making it a template file enables us to write it in a
manner that is much easier to read (see Listing 4.13).

Listing 4.13 SQL Query Rewritten into a Template Format

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sgl:query>
SELECT LastName, FirstName
FROM Employees
FOR XML AUTO
</sql:query>
</ROOT>

Assuming that this template would be saved as the file template].xml and saved to the
directory with the virtual name templates, we would execute this template using the
following URL:

http://iisserver/Nwind/templates/templatel.xml

Let’s look at one more example. When we queried a combination of three tables, we
ended up with the following URL:

http://iisserver/Nwind?sql=SELECT+TOP+2+0rders.OrderID,+Employees.
LastName,+0Orders.ShippedDate,+[Order+Details].UnitPrice,+[Order+
Details].ProductID+FROM+Orders,+Employees,+[Order+Details]+WHERE+Orders.
EmployeeID=Employees.EmployeeID+AND+Orders.OrderID=[0Order+Details].
OrderID+Order+by+Employees.EmployeeID,Orders.OrderID+FOR+XML+AUTO&root=RO0OT

Executing Template Files via HTTP

Converting this to a template file gives us Listing 4.14.

Listing 4.14 Long SQL Query Rewritten in a Template File

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sgl:query>
SELECT TOP 2
Orders.OrderID,
Employees.LastName,
Orders.ShippedDate,
[Order Details].UnitPrice,
[Order Details].ProductID
FROM
Orders, Employees, [Order Details]
WHERE
Orders.EmployeeID=Employees.EmployeeID
AND
Orders.OrderID=[0Order Details].OrderID
ORDER BY
Employees.EmployeelID,Orders.OrderID
FOR XML AUTO
</sql:query>
</R0OOT>

This template file will produce the same results as those shown in Listing 4.6, but
don’t you think this is easier to read than the URL method?

Passing Template Parameters

Just as we passed parameters to SQL queries, we can also pass them to templates. The
<sgl:header> clement is used to define the parameters, which also can be assigned
default values. These default values are used for parameters at run-time if values are
not explicitly specified.

Explicit Default Values and Parameter Passing

In this example, we want the CustomerID, OrderID, RequiredDate, and freight costs
for a CustomerID we specify in the URL. Take a close look at the template file in
Listing 4.15. We have our query stated in the <sql:query> element as we would
expect. In addition, we have explicitly specified a default value of VINET for the
CustomerID. The <sql:param> element accomplishes this. The sql:header element
holds all parameters and their values.

The item in the query that is the parameterized quantity is specified by prepending
the @ symbol to the quantity name. In this case, it is CustomerID. Don’t confuse this
@ symbol usage with the XML attribute usage of @. In this case, they are different
entities altogether. This usage is specific to Microsoft parameterized expressions. If we
execute this template file with the following URL, we will generate the result given in
Listing 4.16.

http://iisserver/Nwind/templates/customer.xml

155

156 Chapter 4 Accessing SQL 2000 via HTTP

Listing 4.15 Customer.xml

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
<sgl:header>
<sql:param name='CustomerID'>VINET</sql:param>
</sql:header>
<sgl:query>
SELECT CustomerID,OrderID,RequiredDate,Freight
FROM Orders
WHERE CustomerID=@CustomerID
FOR XML AUTO
</sql:query>
</ROOT>

Listing 4.16 Customer.xml Results with no CustomerID Passed

<ROOT xmlns:sgl="urn:schemas-microsoft-com:xml-sql">
<0rders CustomerID="VINET" OrderID="10248" RequiredDate="1996-08-
01T00:00:00" Freight="32.38" />
<Orders CustomerID="VINET" OrderID="10274" RequiredDate="1996-09-
03T00:00:00" Freight="6.01" />
<0rders CustomerID="VINET" OrderID="10295" RequiredDate="1996-09-
30T00:00:00" Freight="1.15" />
<0Orders CustomerID="VINET" OrderID="10737" RequiredDate="1997-12-
09T00:00:00" Freight="7.79" />
<Orders CustomerID="VINET" OrderID="10739" RequiredDate="1997-12-
10T00:00:00" Freight="11.08" />

</ROOT>

Because no value for the parameter CustomerID was passed in the URL, the template
file will use the default value VINET. If we pass a parameter value of WELLI, we obtain
the results in Listing 4.17. Here’s the URL:

http://iisserver/Nwind/templates/customer.xml?CustomerID=WELLI

Listing 4.17 shows the results.

Listing 4.17 Partial Results with Parameter of CustomerID=WELLI

<ROOT xmlns:sqgl="urn:schemas-microsoft-com:xml-sql">
<0Orders CustomerID="WELLI" OrderID="10256" RequiredDate="1996-08-
12700:00:00" Freight="13.97" />
<Orders CustomerID="WELLI" OrderID="10420" RequiredDate="1997-02-
18T00:00:00" Freight="44.12" />
<0Orders CustomerID="WELLI" OrderID="10585" RequiredDate="1997-07-
29T00:00:00" Freight="13.41" />

</ROOT>

Executing Template Files via HTTP 157

Passing Multiple Parameters

You would think that multiple parameter passing would present no new problems, and
you would be right. The parameters can just be individually listed in the <sql:header>
element and be given default values. See Listing 4.18 and the result in Listing 4.19.

Listing 4.18 Shipvia.xml—Multiple Parameters in a Template

<ROOT xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
<sql:header>
<sql:param name='ShipVia'>1</sql:param>
<sql:param name='ShipCountry'>France</sql:param>
</sql:header>
<sgl:query>
SELECT TOP 4 CustomerID,OrderID,Freight
FROM Orders
WHERE ShipVia=@ShipVia
AND ShipCountry=@ShipCountry
ORDER BY OrderID
FOR XML AUTO
</sql:query>
</R0OOT>

Listing 4.19 Results of Listing 4.18

<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<Orders CustomerID="VICTE" OrderID="10251" Freight="41.34" />
<0Orders CustomerID="BLONP" OrderID="10265" Freight="55.28" />
<Orders CustomerID="VINET" OrderID="10274" Freight="6.01" />
<Orders CustomerID="BONAP" OrderID="10331" Freight="10.19" />
</R0OOT>

Executing the URL http://iisserver/Nwind/templates/shipvia.xml, which calls the
template in Listing 4.18, gives the results in Listing 4.19 because no parameters were
passed and the default values of 1 for ShipVia and France for ShipCountry were used.
You could also pass just one of the parameters. It would be substituted for the default
value, and the other parameter would use the default value provided.

Specifying an XSL Stylesheet

There also is really nothing new when you want to apply an XSLT stylesheet to the
results of a template file. Just specify the stylesheet name in the sql:xsl attribute of
the ROOT element. Let’s take the example from “The XSL Keyword” section earlier in
this chapter that illustrated using an XSLT stylesheet.

158 Chapter 4 Accessing SQL 2000 via HTTP

Stylesheets are developed utilizing some third-party (relative to SQL server) application using a model of
the document it is supposed to transform. If everything is tested during development, the only error con-
ditions that usually happen are a blank HTML document, garbled HTML output, or an attempted transfor-
mation of an XML document that ends up blank. Because the XSLT stylesheet and query are properly
tested in development, almost all these errors are traceable to a bad XML document or bad data.

Listing 4.20 gives the template file XSLDemo.xml.

Listing 4.20 XSLDemo.xml

<ROOT xmlns:sqgl='urn:schemas-microsoft-com:xml-sql'
sql:xsl="'XSLDemo.xml'>
<sql:query>
SELECT TOP 4 OrderID,EmployeeID,Shipname
FROM Orders
WHERE EmployeeID=5
FOR XML AUTO
</sql:query>
</ROOT>

The stylesheet to apply is given in Listing 4.9, and the results are given in Listing 4.10.
These result in Table 4.4.

Executing Stored Procedures

So far, everything we’ve done has been either SQL queries or templates in a URL or
template files accessed via a URL. There has been one glaring omission here, however:
stored procedures and how we execute them. In essence, we’ve been mimicking stored
procedures through the use of template files. Now we’ll use stored procedures as they
should be used. (No doubt we’ll be required to know how to do this in both URL
queries and template files.)

Granting users the capability to write and execute stored procedures against a database is not the most
secure way of doing business. Administrators should allow the user to read and execute stored proce-
dures written by developers but not to write files to the TemplateVirtualDirectory. You would be leaving
yourself open to all sorts of problems otherwise.

Listing 4.21 gives the stored procedure we’ll use throughout this discussion.

Listing 4.21 Example Stored Procedure

IF EXISTS (SELECT name FROM sysobjects
WHERE name = 'OrderInfo' AND type = 'P')
DROP PROCEDURE OrderInfo

GO

CREATE PROCEDURE OrderInfo

AS

SELECT OrderID, CustomerID

FROM Orders

WHERE CustomerID='CHOPS'

FOR XML AUTO
GO

Executing Stored Procedures

This stored procedure can be executed using this URL:

http://IISServer/Nwind?sql=EXECUTE+OrderInfo&root=RO0OT

Listing 4.22 gives the result file.

Listing 4.22 Results of Calling the Example Stored Procedure

<?xml version="1.0" encoding="utf-8" ?>

<ROOT>
<Orders OrderID="10254"
<Orders OrderID="10370"
<Orders OrderID="10519"
<Orders OrderID="10731"
<Orders OrderID="10746"
<0Orders OrderID="10966"
<Orders OrderID="11029"
<0rders OrderID="11041"

</ROOT>

CustomerID="CHOPS"
CustomerID="CHOPS"
CustomerID="CHOPS"
CustomerID="CHOPS"
CustomerID="CHOPS"
CustomerID="CHOPS"
CustomerID="CHOPS"
CustomerID="CHOPS"

/>
/>
/>
/>
/>
/>
/>
/>

Passing parameters is accomplished by utilizing the @ symbol again for the parameter
expression in the stored procedure, as shown in Listing 4.23.

Listing 4.23 Passing a Parameter to a Stored Procedure

SELECT OrderID,CustomerID

FROM Orders

WHERE CustomerID=@CustomerID

FOR XML AUTO

The stored procedure can then be called via a URL in one of two ways. The first

method is as follows:

http://iisserver/Nwind?sql=execute+0OrderInfo+CHOPS

This method provides the value CHOPS by virtue of its position. If two parameters were
being passed, you could just put them one right after the other, and they would be

correctly passed.

159

160 Chapter 4 Accessing SQL 2000 via HTTP

The second method is as follows:

http://iisserver/Nwind?sgql=execute+0OrderInfo+@CustomerID=CHOPS

This method provides the value CHOPS by name, which is the method we are most
used to.

Accessing Database Objects via HTTP

There is one entity left that we need to understand how to access. We’ve covered
direct SQL queries and direct templates in URLs and the use of template files. Now
we’ll take a look at accessing dbobjects (tables, views, and so on).

Posting Templates via HTML Forms

As a final exercise for this chapter, we are going to show how to post a template file
using an HTML form. In a Web environment, this would probably be the most com-
mon way of executing template files. Let’s face it; users are comfortable and familiar
with HTML forms. They see them just about every time they access the Internet and
on their company intranet if there is one. Forms are easy to generate and provide a
high level of interaction.

This template file has one parameter passed to the query. It would be a simple
exercise to add multiple parameters. This template file would be saved as an HTML
file and placed in a directory other than the virtual root tree. The SQLISAPL.DLL file
is not expecting an HTML file and will not function correctly if placed in its direc-
tory tree.

Let’s look at the HTML form itself, as shown in Listing 4.24.

Listing 4.24 Posting a Template via an HTML Form

<head>
<TITLE>Sample Form </TITLE>
</head>
<body>
For a given customer ID, order ID, order date and freight costs is
retrieved.
<form action="http://griffinjnt4s/nwind" method="POST">
Customer ID
<input type=text name=CustomerID value='VINET'>
<input type=hidden name=contenttype value=text/xml>
<input type=hidden name=template value='
<ROOT xmlns:sql="urn:schemas-microsoft-com:xml-sql" >
<sql:header>

<sql:param name="CustomerID">VINET</sql:param>
</sql:header>

<sql:query>
SELECT OrderID, OrderDate, Freight
FROM Orders
WHERE CustomerID=@CustomerID

Posting Templates via HTML Forms 161

FOR XML AUTO
</sql:query>
</ROOT>

'>

<p><input type="submit">
</form>
</body>

Here, the HTML text box supplies the value that is passed to the query. The query
then returns the order ID, date ordered, and freight cost.

It 1s also possible to give the user a choice of what XSLT stylesheet to apply to the
data. Add the following lines in Listing 4.25 to Listing 4.24.

Listing 4.25 Additional HTML Code for the Drop-Down Box

<pr>
Select a Stylesheet to apply:
<select name='stylesheets' size='1'>
<option value=''></option>
<option value='ss1.xsl'>Stylesheet 1</option>
<option value='ss2.xsl'>Stylesheet 2</option>
<option value='ss3.xsl'>Stylesheet 3</option>
</select>

This adds a drop-down list of stylesheets for the user to choose from (see Figure 4.6).

23 Sample Form - Microsoft Internet Explorer

J File Edt “iew Favoites Toolz Help | 2
I A =
Eack ey and Stop Refresh Home Search Favorites Higtary Frint

| Address [C:\WINNT Profilesiadministratar\Desktop'test html | @oo | |Links »

[~

For a given customer ID, order ID, order date and freight costs 15 retneved.

Customer ID: IV|NET

Select a Stylesheet to apply: | Stylesheet 'l
Submit Query : ANtz
Stylesheat 2

Stylesheat 3

/|
&] Done ’_l_ g My Computer 4

Figure 4.6 Adding an XSLT stylesheet selection drop-down box.

162 Chapter 4 Accessing SQL 2000 via HTTP

Also add an additional input field and parameter field like this:

<input type="text" name="stylesheet" value="ss1.xsl">

sql:param name="stylesheet">ss1</sqgl:param>

Finally, modify the <root> statement to this:

<root xmlns:sgl="urn:schemas-microsoft-com:xml-sql"
sgql:xsl="@stylesheet">

That finishes this chapter. One thing you should have noticed in this chapter is that
the documents we generated are what are known as attribute-centric documents. All data
is assigned to attributes of the elements of the document. The opposite of this is
element-centric documents. All data is returned as a series of nested elements, which is
probably the way you expected the data to be returned in the first place. SQL Server
2000 does provide ways to generate element-centric documents, and we will learn
about them when we cover the FOR XML clause in detail in Chapter 8.

Recap of What Was Discussed in This Chapter

= Client/server is an open-ended architecture that provides for enhanced extensi-
bility. It usually is implemented in two-tier, three-tier, or n-tier configurations
and is based on the organization of data, application, and client logic.

= SQL Server 2000 provides several methods for generating XML documents
directly from relational data. SQL queries can be placed directly in a URL, and
they can be placed in template files. Templates themselves also can be placed
directly in a URL.

= There are several special characters that, if placed in a URL, must be rewritten
so they will be interpreted correctly.

= SQL queries in URLs provide much functionality. In addition to providing for
document well-formedness by furnishing a RO0T element, they allow parameter
passing and specifying included XSLT stylesheets.

= SQL template files provide the same functionality as direct SQL queries while at
the same time making queries much more legible. They also provide a level of
enhanced security by hiding the details of the database structure from the end
user.

= The capability of executing SQL Server—stored procedures is very important to

prevent possibly rewriting large amounts of code. This capability is provided for
not only via SQL queries in URLs but also via template files.

