Essential XML

WELCOME TO THE WORLD OF EXTENSIBLE MARKUP Language (XML).
This book is your guided tour to that world, so have no worries—you’ve
come to the right place. The world of XML is large and is expanding in
unpredictable ways every minute, but we’ll become familiar with the lay of
the land in detail here. We also have a lot of territory to cover because
XML is getting into the most amazing places, and in the most amazing
ways, these days.

XML is a language defined by the World Wide Web Consortium
(W3C, at www.w3c.org), the body that sets the standards for the Web. This
first chapter is all about getting a solid overview of that language and how
you can use it. For example, you probably already know that you can use
XML to create your own elements by designing a customized markup
language for your own use. In this way, XML supercedes other markup
languages such as Hypertext Markup Language (HTML): In HTML, all
the HTML elements you can use are predefined—and there are simply not
enough of them. In fact, XML is a meta-markup language because it lets
you create your own markup language.

Markup Languages

Markup languages are all about describing the form of the document—that
is, the way the content of the document should be interpreted. The markup
language that most people are familiar with today, of course, s HTML,

2 Chapter 1 Essential XML

which you use to create standard Web pages. Here’s a sample HTML
page:
<HTML>
<HEAD>
<TITLE>Hello From HTML</TITLE>
</HEAD>
<BODY>
<CENTER>
<H1>
Hello From HTML
</H1>
</CENTER>
Welcome to the wild and woolly world of HTML.

</BODY>
</HTML>

You can see the results of this HTML in Figure 1.1 in Netscape Navigator.
Note that the HTML markup in this page—that is, fags such as <HEAD>,
<CENTER>, <H1>, and so on—is there to give directions to the browser. That’s
what markup does; it specifies directions on the way the content is to be
interpreted.

¥ Hello Fram HTML - Netscape [= B3
File Edt View Go Communicator Help

I R T S S B :

Back Fopwad Reload Home Seach Metscape Fiint Secur

' § Bookmaks g Goto | E7 what's Relsted
Hello From HTML

Welcome to the wild and woolly world of HTRL.

|[EiS S |Document: Dore

Figure 1.1 An HTML page in a browser.

There is a real relationship between HTML and XML; both are based on
Standard Generalized Markup Language (SGML). As its name implies, SGML
is a very general markup language, with enormous capabilities. Because of
the large number of things you can do with SGML, however, it can be very
difficult to learn, and it hasn’t caught on in general use. XML is actually an
easier-to-use subset of SGML (and technically speaking, HTML is called an
application of SGML).You can read more about the relationship between
SGML and XML at www.w3.org/TR/NOTE -sgml-xml.

Markup Languages

When you think of markup in terms of specifying how the content of a
document is to be handled, it’s easy to see that many kinds of markup
languages abound already. For example, if you use a word processor to

save a document in rich text format (RTF), you’ll find all kinds of markup
codes embedded in the document. Here’s an example; in this case, I've just
created an RTF file with the letters “abc¢” underlined and in bold using
Microsoft Word. Try searching for the actual text (hint: it’s near the very
end):

{\rtf1\ansi\ansicpg1252\uc1 \deff@\deflang1033
deflangfe1033{\fonttbl{\f0\froman\fcharsetd\fprg2{*\panose\
02020603050405020304}Times New Roman;}}{\colortbl;\red0
green®\blue0;\red0@\green®\blue255;\redd\green255\blue255;\
redd\green255\blue@; \red255\greend\blue255;\red255\greend\
blue0;\red255\green255\blued;\red255\green255\blue255;\red0\
green@\blue128;\red0d\green128\bluel128;\redd\greeni128\blued;\
red128\green@\blue128;\red128\green@\blued;\red128\greeni28\
blue@;\red128\green128\blue128;\red192\green192\blue192;}
{\stylesheet{\widctlpar\adjustright \fs20\cgrid \snext® Normalj;}
{*\cs10 \additive Default Paragraph Font;}}{\info{\title }
{\author Steven Holzner}{\operator Steven Holzner}{\creatim
yr2000\mo\dy\hr\min}{\revtim\yr2000\mo4\dy17\hr13\min55}
{\versioni1}{\edmins1}{\nofpages1}{\nofwords@}{\nofcharsi}
{*\company SteveCo}{\nofcharswsi}{\vern89}}\widowctrl\ftnbj\
aenddoc\formshade\viewkind4\viewscale100\pgbrdrhead\pgbrdrfoot\
fet0\sectd \pszi\linex@\endnhere\sectdefaultcl {*\pnseclvli\
pnucrm\pnstarti\pnindent720\pnhang{\pntxta .}}{*\pnseclvl2\
pnucltr\pnstarti\pnindent720\pnhang{\pntxta .}}{*\pnseclvl3\
pndec\pnstarti\pnindent720\pnhang{\pntxta .}}{*\pnseclvl4\
pnlcltr\pnstarti\pnindent720\pnhang{\pntxta)}}{*\pnseclvl5\
pndec\pnstarti\pnindent720\pnhang{\pntxtb (}{\pntxta)}}
{*\pnseclvl6\pnlcltr\pnstarti\pnindent720\pnhang{\pntxtb (}
{\pntxta)}}{*\pnseclvl7\pnlcrm\pnstarti\pnindent720\pnhang
{\pntxtb (}{\pntxta)}}{*\pnseclvl8\pnlcltr\pnstarti\
pnindent720\pnhang{\pntxtb (}{\pntxta)}}{*\pnseclvl9\pnlcrm\
pnstart1\pnindent720\pnhang{\pntxtb (}{\pntxta)}}\pard\plain\

$1480\slmulti\widctlpar\adjustright \fs2@\cgrid {\b\fs24\ulabc }
{\b\ul \par }}

The markup language that most people are familiar with these days is
HTML, but it’s easy to see how that language doesn’t provide enough
power for anything beyond creating standard Web pages.

HTML 1.0 consisted of only a dozen or so tags, but the most recent
version, HTML 4.01, consists of almost 100—if you include the other tags
added by the major browsers, that number is closer to 120. But as handling

3

4 Chapter 1 Essential XML

data on the Web and other nets intensifies, it’s clear that 120 tags isn’t
enough—in fact, you can never have enough.

For example, what if your hobby was building model ships, and you
wanted to exchange specifications with others on the topic? HTML doesn’t
include tags such as <BEAMWIDTH>, <MIZZENHEIGHT>, <DRAFT>, <SHIPCLASS>, and
others that you might want. What if you worked for a major bank and
wanted to exchange financial data with other institutions—would you
prefer tags such as , , and or tags such as <FISCALYEAR>,
<ACCOUNTNUMBER>, and <TRANSFERACCOUNT>? (In fact, such markup languages,
including Extensible Business Reporting Language, exist now and are built
on XML))

Likewise, what if you were a Web browser manufacturer who wanted to
create your own markup language to let people configure your browser,
adding scrollbars, toolbars, and other elements? You might create your own
markup language. In fact, Netscape has done just that with the XML-based
User Interface Language, which we’ll see in this chapter.

The upshot is that there are as many reasons to create markup languages
as there are ways of handling data—and, of course, both are unlimited
numbers. That’s where XML comes in: It’s a meta-markup specification
that lets you create your own markup languages.

What Does XML Look Like?

So what does XML look like, and how does it work? Here’s an example that
mimics the HTML page just introduced:

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.

</MESSAGE>
</DOCUMENT>

We’ll see the parts of an XML document in detail in the next chapter, but in
overview, here’s how this one works: I start with the XML processing instruc-
tion <?xml version="1.0" encoding="UTF-8"?> (all XML processing instructions

What Does XML Look Like? 5

start with <? and end with ?>), which indicates that I'm using XML version
1.0 (the only version currently defined) and the UTF-8 character encoding,

an 8-bit condensed version of Unicode (more on this later in the chapter).
Also, when I add new sections of code, they’ll be highlighted with shading to
point out the actual lines I'm discussing.

<?xml version="1.0" encoding="UTF-8"?7>

<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.

</MESSAGE>
</DOCUMENT>

Next, | create a new tag named <DOCUMENT>. As we’ll see in the next chapter,
you can use any name for a tag, not just DOCUMENT, as long as the name
starts with a letter or an underscore (_), and as long as the following charac-
ters consist of letters, digits, underscores, dots (.), or hyphens (-), but no
spaces. In XML, tags always start with < and end with >.

XML documents are made up of XML elements. Much like in HTML,
you create XML elements with an opening tag, such as <DOCUMENT>, followed
by the element content (if any), such as text or other elements, and ending
with the matching closing tag that starts with </, such as </DoCUMENT>. (There
are additional rules we’ll see in the next chapter if the element doesn’t
contain any content.) It’s necessary to enclose the entire document, except
for processing instructions, in one element, called the roof element—that’s the
<DOCUMENT> element here:

<?xml version="1.0" encoding="UTF-8"?7>
<DOCUMENT>

</DOCUMENT>

Now I'll add to this XML document a new element that I made up,
<GREETING>, which encloses text content (in this case, Hello From XML),
like this:

6 Chapter 1 Essential XML

<?xml version="1.0" encoding="UTF-8"?7>
<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>

</DOCUMENT>

Next, I can add a new element, <MESSAGE>, which also encloses text content,

like this:

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.

</MESSAGE>
</DOCUMENT>

Now the <DOCUMENT> root element contains two elements: <GREETING> and
<MESSAGE>. Each of the <GREETING> and <MESSAGE> elements also hold text
themselves. In this way, I've created a new XML document.

Note the similarity of this document to the HTML page we saw earlier.
Note also, however, that in the HTML document, all the tags were prede-
fined, and a Web browser knew how to handle them. Here, we’ve just created
the tags <DOCUMENT>, <GREETING> and <MESSAGE> from thin air. How can we use
an XML document like this one? What would a browser make of these new
tags?

What Does XML Look Like in a Browser?

It turns out that a browser such as Microsoft Internet Explorer version 5 or
later lets you display raw XML documents directly. For example, if I saved
the XML document we just created in a document named greeting.xml and
then opened that document in the Internet Explorer, you'd see something
like what appears in Figure 1.2.

What Does XML Look Like in a Browser? 7

=J C:\XML\a xml - Microsoft Internet Explorer
File Edt View Favoites Took Help ‘
3 =
e e - IE= [e B —
Back Fanward Stop Refresh Home Search Favoites History 1 il Frint
Aiddress [] @60 [|Liks &]wieb Search »]
<7uml version="1.0" encaoding="UTF-8" 7=
- <DOCUMENT»
“GREETING=Hello From XML</GREETING:
<MESSAGE=Welcome to the wild and woolly world of XML.</MESSAGE:
</DOCUMENT =
@] Done || [= My Computer v

Figure 1.2 An XML document in Internet Explorer.

You can see our complete XML document in Figure 1.2, but it’s nothing
like the image you see in Figure 1.1; there’s no particular formatting at all.
So, now that we’ve created our own markup elements, how do you tell a
browser how to display them?

Many people who are new to XML find the claim that you can use XML
to create new markup languages very frustrating—after all, what then? It
turns out that it’s up to you to assign meaning to the new elements you
create, and you can do that in two main ways. First, you can use a style sheet
to indicate to a browser how you want the content of the elements you’ve
created to be formatted. The second way is to use a programming language,
such as Java or JavaScript, to handle the XML document in programming
code. We'll see both ways throughout this book, and I'll take a quick look at
them in this chapter as well. I'll start by adding a style sheet to the XML
document we’ve already created.

There are two main ways of specifying styles when you format XML
documents: with cascading style sheets (CSS) and with the Extensible Style
Sheets Language (XSL). We’ll see both in this book; here, I'll apply a CSS
style sheet by using the XML processing instruction <?xml-stylesheet
type="text/css" href="greeting.css"?>, which tells the browser that the
type of the style sheet I'll be using is CSS and that its name is greeting.css:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="greeting.css"?>
<DOCUMENT>
<GREETING>
Hello From XML

continues »

8 Chapter 1 Essential XML

</GREETING>
<MESSAGE>

Welcome to the wild and woolly world of XML.
</MESSAGE>
</DOCUMENT>

Here’s what the contents of the file greeting.css itself looks like. In this case,
I'm customizing the <GREETING> element to display its content in red, cen-
tered in the browser, and in 36-point font. The <mESSAGE> element has been
customized to display its text in black 18-point font. The display: block part
indicates that I want the content of these elements to be displayed in a
block, which translates here to being displayed on individual lines:

GREETING {display: block; font-size: 36pt; color: #FFQ000; text-align: center}
MESSAGE (display: block; font-size: 18pt; color: #000000}

You can see the results in two browsers that support XML in Figures 1.3 and
1.4. Figure 1.3 shows greeting.xml in Netscape 6 (available only in a preview
version as of this writing), and Figure 1.4 shows the same document in
Internet Explorer. As you can see, we’ve formatted the document as we like
it—in fact, this result already represents an advance over HTML because we

can format exactly how we want to display the text instead of having to rely
on predefined elements such as <H1>.

[Netscape

File Edt Yiew Search Go Bookmarks Issks Help

A)

My Sidebar

. Hello From XML

{ What’s Related \
[Search Resutts | “Welcome to the wild and woolly world of XML

within [the Wb =]
Settings for the Web..

[Bucidy List \
[Stocks \

Document: Done (1.32 secs)

P 7 ol Chennels = Tools = Business

Bluild |0 2000033112 &5

~ FreeTime ~ Shopping

Figure 1.3 An XML document in Netscape 6 (preview version).

What's So Great About XML? 9

3 C:\XML\a.xml - Microsoft Intemet Explorer

| Fie Edt Wiew Favories Tods Help E
e < RTINS -1 g
Back fowesd Stop Befesh Home | Seah Favores Histoy | Mal Prnt
| Adsress |] @60 ||tk &)webSesrch |
=l
TWelcome to the wild and woolly world of 3L,
|
€] Done || |2 My Computer A

Figure 1.4 An XML document in Internet Explorer.

That gives us a taste of XML. Now we’ve seen how to create a first XML
document and how to use a style sheet to display it in a browser. We've seen
what it looks like, so what’s so great about XML? Take a look at the
overview, coming up next.

What’s So Great About XML?

XML is popular for many reasons, and I'll examine some of them here as
part of our overview of where XML is today. My own personal favorite is
that XML allows easy data handling and exchange.

Easy Data Exchange

I've been involved with computing for a long time, and one of the things
[’'ve watched with misgiving is the growth of proprietary data formats. In
earlier days, programs could exchange data easily because data was stored
as text. Today, however, you need conversion programs or modules to let
applications transfer data between themselves. In fact, proprietary data
formats have become so complex that frequently one version of a com-

plex application can’t even read data from an earlier version of the same
application.

10 Chapter 1 Essential XML

In XML, data and markup are stored as text that you can configure. If you
like, you can use XML editors to create XML documents, but if something
goes wrong, you can examine or modify the document directly because its
all just text. The data also is not encoded in some way that has been patented
or copyrighted, so it’s more accessible.

You might think that binary formats would be more efficient because
they can store data more compactly, but that’s not the way things have
worked out. For example, Microsoft Corporation is notorious for turning
out huge applications that store even simple data in huge files (the not-so-
affectionate name for this is “bloatware”). If you store only the letters “abc”
in a Microsoft Word 97 document, you may be surprised to find that the
document is something like 20,000 bytes long. A similar XML file might be
30 or 40 bytes. Even large amounts of data are not necessarily stored effi-
ciently; for instance, Microsoft Excel routinely creates even larger files that
are five times as long as the corresponding text. As we’ll see, XML provides
a very efficient way of storing most data.

In addition, when you standardize markup languages, many different
people can use them. I'll take a look at that next.

Customizing Markup Languages

As we've already seen, you can create customized markup languages using
XML, and that represents its extraordinary power. When you and a number
of other people agree on a markup language, you can create customized
browsers or applications to handle that language. Hundreds of such languages
already are being standardized now, including these:

» Banking Industry Technology Secretariat (BITS)
» Financial Exchange (IFX)

» Bank Internet Payment System (BIPS)

» Telecommunications Interchange Markup (TIM)
» Schools Interoperability Framework (SIF)

» Common Business Library (CBL)

» Electronic Business XML Initiative (ebXML)

» Product Data Markup Language (PDML)

» Financial Information eXchange protocol (FIX)

» The Text Encoding Initiative (TEI)

What's So Great About XML? 11

Some customized markup languages, such as Chemical Markup Language
(CML), let you represent complex molecules graphically, as we’ll see later in
this chapter. Likewise, you can imagine how useful a language would be that
creates graphical building plans for architects when you open a document in
a browser.

Not only can you create custom markup languages, but you also can
extend them using XML. If someone creates a markup language based on
XML, you can add the extensions you want easily. In fact, that’s happening
now with Extensible Hypertext Markup Language (XHTML), which I'll
take a look at briefly in this chapter and in detail later in the book. Using
XHTML, you can add your own elements to what a browser displays as
normal HTML.

Self-Describing Data

The data in XML documents is self-describing. Take a look at this
document:

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.

</MESSAGE>
</DOCUMENT>

Based solely on the names we’ve given to each XML element here, you can
figure out what’s going on: This document has a greeting and a message to
impart. Even if you came back to this document years later, you could figure
out what’s going on. This means that XML documents are, to a large extent,
selt-documenting. (We’ll also see in the next chapter that you can add
explicit comments to XML files.)

Structured and Integrated Data

Another powerful aspect of XML is that it lets you specify not only data, but
also the structure of that data and how various elements are integrated into
other elements. This is important when youre dealing with complex and
important data. For example, you could represent a long bank statement in

12 Chapter 1 Essential XML

HTML, but in XML, you actually can build in the semantic rules that specify
the structure of the document so that the document can be checked to make

sure it’s set up correctly.
Take a look at this XML document:

<?xml version="1.0"?>
<SCHOOL>
<CLASS type="seminar">
<CLASS_TITLE>XML In The Real World</CLASS TITLE>
<CLASS_NUMBER>6.031</CLASS_NUMBER>
<SUBJECT>XML</SUBJECT>
<START_DATE>6/1/2002</START_DATE>
<STUDENTS>
<STUDENT status="attending">
<FIRST_NAME>Edward</FIRST_NAME>
<LAST_NAME>Samson</LAST_NAME>
</STUDENT>
<STUDENT status="withdrawn">
<FIRST_NAME>Ernestine</FIRST_NAME>
<LAST_NAME>Johnson</LAST_NAME>
</STUDENT>
</STUDENTS>

</CLASS>
</SCHOOL>

Here I've set up an XML seminar and added two students to it. As we’ll see
in Chapter 2, “Creating Well-Formed XML Documents,” and Chapter 3,
“Valid XML Documents: Creating Document Type Definitions,” with XML
you can specify, for example, that each <STUDENT> element needs to enclose a
<FIRST_NAME> and a <LAST NAME> element, that the <START DATE> element can’t
go in the <STUDENTS> element, and more.

In fact, this emphasis on the correctness of documents is strong in XML.
In HTML, a Web author could (and frequently did) write sloppy HTML,
knowing that the Web browser would take care of any syntax problems
(some Web authors even exploited this intentionally to create special effects
in some browsers). In fact, some people estimate that 50% or more of the
code in modern browsers is there to take care of sloppy HTML in Web
pages. For that kind of reason, the story is different in XML. In XML,
browsers are supposed to check your document; if there’s a problem, they are
not supposed to proceed any further. They should let you know about the
problem, but that’s as far as theyre supposed to go.

Valid XML Documents 13

So, how does an XML browser check your document? XML browsers can
make two main checks: a check to see whether your document is well-formed,
and a check to see whether it’s valid. We’ll see what these terms mean in
more detail in the next chapter, and I'll go over them briefly here.

Well-Formed XML Documents

What does it mean for an XML document to be well-formed? To be well-
formed, an XML document must follow the syntax rules set up for XML
by W3C in the XML 1.0 specification (which you can find at www.w3.org/
TR/REC-xml, and which we’ll discuss in more detail in the next chapter).
Informally, well-formedness often means that the document must contain
one or more elements, and one element, the root element, must contain
all the other elements. Each element also must nest inside any enclosing
elements properly. For example, this document is not well-formed because
the </GREETING> closing tag comes after the opening <MESSAGE> tag for the
next element:

<?xml version="1.0" encoding="UTF-8"?7>
<DOCUMENT>
<GREETING>
Hello From XML
<MESSAGE>
</GREETING>
Welcome to the wild and woolly world of XML.

</MESSAGE>
</DOCUMENT>

Valid XML Documents

Most XML browsers will check your document to see whether it is well-
formed. Some of them also can check whether it’s valid. An XML document
is valid if there is a document type definition (DTD) associated with it, and
if the document complies with that DTD.

A document’s DTD specifies the correct syntax of the document, as we’ll
see in Chapter 3. DTDs can be stored in a separate file or in the document
itself, using a <!DOCTYPE> element. Here’s an example in which I add a
<1DOCTYPE> element to the greeting XML document we developed earlier:

14 Chapter 1 Essential XML

<?xml version="1.0" encoding="UTF-8"?7>
<?xml-stylesheet type="text/css" href="first.css"?>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT (GREETING, MESSAGE)>
<!ELEMENT GREETING (#PCDATA)>
<!ELEMENT MESSAGE (#PCDATA)>
1>
<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.

</MESSAGE>
</DOCUMENT>

We'll see more about DTDs in Chapter 3, but this DTD indicates that you
can have <GREETING> and <MESSAGE> elements inside a <DOCUMENT> element, that
the <DOCUMENT> element is the root element, and that the <GREETING> and
<MESSAGE> elements can hold text.

Most XML browsers will check XML documents for well-formedness,
but only a few will check for validity. I'll talk more about where to find
XML validators in the later section “XML Validators.”

We've gotten an overview of XML documents now, including how to
display them using style sheets, and what constitutes a well-formed and valid
document. However, this is only part of the story. Many XML documents are
not designed to be displayed in browsers at all, for example, or even if they
are, they’re are not designed to be used with modern style sheets (such as
browsers that convert XML into industry-specific graphics such as molecular
structure, physics equations, or even musical scales). The more powerful use
of XML involves parsing an XML document to break it down into its
component parts and then handling the resulting data yourself. Next I’ll
take a look at a few ways of parsing XML data that are available to us.

Parsing XML Yourself

Let’s say that you have this XML document, greeting.xml, which we devel-
oped earlier in this chapter:

Parsing XML Yourself 15

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.

</MESSAGE>
</DOCUMENT>

Now say that you want to extract the greeting Hello From XML from this
XML document. One way of doing that is by using XML data islands in
Internet Explorer and then using a scripting language, such as JavaScript, to
extract and display the text content of the <GREETING> element. Here’s how
that looks in a Web page:

<HTML>
<HEAD>
<TITLE>
Finding Element Values in an XML Document
</TITLE>

<XML ID="firstXML" SRC="greeting.xml"></XML>

<SCRIPT LANGUAGE="JavaScript">
function getData()

{
xmldoc= document.all("firstXML").XMLDocument;

nodeDoc = xmldoc.documentElement;
nodeGreeting = nodeDoc.firstChild;

outputMessage = "Greeting: " +
nodeGreeting.firstChild.nodeValue;
message.innerHTML=outputMessage;
}
</SCRIPT>
</HEAD>

<BODY>
<CENTER>
<H1>
Finding Element Values in an XML Document
</H1>

continues »

16 Chapter 1 Essential XML

<DIV ID="message"></DIV>
<p>
<INPUT TYPE="BUTTON" VALUE="Get The Greeting"
ONCLICK="getData()">
</CENTER>

</BODY>

</HTML>

This Web page displays a button with the caption “Get The Greeting,” as you
see in Figure 1.5. When you click the button, the JavaScript code in this page
reads in greeting.xml, extracts the text from the <GREETING> element, and
displays that text, as you also can see in Figure 1.5. In this way, you can

see how you can create applications that handle XML documents in a
customized way—even customized XML browsers.

=l Finding Element Yalues in an XML Document - Microsoft Internet Explorer
Fie Edt Yiew Favoites Took Help ‘
« 00 T8 @ Q @ 4 B g
Back Fowad Stop Refesh Home | Seach Favoiles Histoy | Mal Punt
Adsfess [~| oo |JLinks &]'WebSearch @] Weather Forecast >
=
. . .
Finding Element Values in an XML Document
Greeting: Hello From XL
El
2] Done || = My Computer v

Figure 1.5 Extracting data from an XML document in Internet Explorer.

We'll see more about using JavaScript to work with XML later in this book,
and I'll also cover how JavaScript itself works first. If you haven’t used
JavaScript before, you won'’t have a problem doing so now.

Although JavaScript is useful for lightweight XML uses, most XML
programming is done in Java today, and we’ll take advantage of that in this
book. Here’s an example Java program, read XML java, using XMLA4],
probably the most widely used XML parser, which is free from IBM’s
AlphaWorks. This program also reads greeting.xml and extracts the text
content of the <GREETING> element:

Parsing XML Yourself

import org.apache.xerces.parsers.DOMParser;
import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.Text;

public class readXML

{

static public void main(String[] argv)

{
try {
DOMParser parser = new DOMParser();
parser.parse("greeting.xml");
Document doc = parser.getDocument();
for (Node node = doc.getDocumentElement().getFirstChild();
node != null; node = node.getNextSibling()) {
if (node instanceof Element) {
if (node.getNodeName().equals("GREETING")) {
StringBuffer buffer = new StringBuffer();
for (Node subnode = node.getFirstChild();
subnode != null; subnode =
subnode.getNextSibling()){
if (subnode instanceof Text) {
buffer.append(subnode.getNodeValue());
}
}
System.out.println(buffer.toString());
}
}
}
} catch (Exception e) {
e.printStackTrace();
}
}

When you compile and run this program (you’ll see how to do so in
Chapter 11), the output looks like this. (I'll use “%” to represent the
command-line prompt in this book; if you’re using UNIX, this prompt

17

18 Chapter 1 Essential XML

may look familiar, or your prompt may look something like /home/steve:.
If you're using Windows, you get a command-line prompt by opening an
MS-DOS window, and your prompt may look something like ¢:\xmL>.)

%java readXML
Hello From XML

(Note that this program returns all the text in the <GREETING> element,
including the leading spaces.) We’ll see how to use Java to parse XML docu-
ments later in this book, mostly using the IBM AlphaWorks XML4] parser,
which adheres closely to the W3C Document Object Model. I'll also cover
the Java you need to know before getting into the programming, so if you
haven’t programmed in Java before, that’s no problem.

We now have a good overview of how XML works. It’s time to take a
look at how it’s already working in the real world, starting with an overview
of the XML resources available to you.

XML Resources

Many XML resources are available to you online. Because it’s very important
that you know about them to get a solid background in XML, I list them
here.
The XML specification is defined by W3C, and that’s where you should
start looking for XML resources. Here’s a good starter list (we’ll see all these
topics in this book):

www . w3c.org/xml. W3C’s main XML site, the starting point for all things
XML.
www.w3.org/XML/1999/XML-1n-10-points. “XML in 10 Points” (actually only

seven), an XML overview.

WWw .

the

w3.org/TR/REC-xml. The official W3C recommendation for XML 1.0,
current (and only) version. It won’t be easy to read, however—that’s

what this book is all about, translating that kind of document to English.

www

www

www

www

www

.w3.org/TR/xml-stylesheet/. All about using style sheets and XML.
.w3.org/TR/REC-xml-names/. All about XML namespaces.
.w3.org/Style/xsL/. All about Extensible Style Language (XSL).
.w3.org/TR/xslt. All about XSL transformations (XSLT).

.w3.0org/XML/Activity.html. An overview of current XML activity

at W3C.

XML Resources 19

= www.w3.org/TR/xmlschema-@/, www.w3.org/TR/xmlschema-1/, and
www.w3.org/TR/xmlschema-2/ XML. Information on schemas, the alternative to
DTDs.

» www.w3.org/TR/x1link/. The XLinks specification.

= www.w3.org/TR/xptr. The XPointers specification.

= www.w3.org/TR/xhtml1/. The XHTML 1.0 specification.

= www.w3.org/TR/xhtm111/. The XHTML 1.1 specification.

» www.w3.org/DOM/. The W3C Document Object Model, (DOM).

Many non-W3C XML resources are out there, too—a casual search for
“XML” on the Web turns up a mere 561,870 pages. Here’s a list to get you
started:

= www.xml.com; XML.com. A site filled with XML resources, discussions, and
notifications of public events.

= www.xml-zone.com. Excellent XML overviews and listings of events.

= www.oasis-open.org. The Organization for the Advancement of Structured
Information Standards (OASIS) is dedicated to the adoption of product-
independent formats such as XML.

» www.xml.org. XML.ORG is designed to provide information about the use
of XML in industrial and commercial settings. It’s hosted by OASIS and is
a reference for XML vocabularies, DTDs, schemas, and namespaces.

= http://msdn.microsoft.com/xml/default.asp. Microsoft’s XML page.

You'll also find quite a few XML tutorials online (searching for “XML
Tutorial” brings up more than 500 matches). Here are a few to start with:

= www2.software.ibm.com/developer/education.nsf/xml-onlinecourse-
bytitle. IBM’ free tutorials.

= www.ucc.ie/xml/. A comprehensive frequently asked questions (FAQ) list
about XML, kept up by some of the contributors to the W3C’s XML
Working Group. This is considered by many to be the definitive FAQ on
XML.

s msdn.microsoft.com/xml/tutorial/default.asp. Microsoft’s XML tutorial.
= www.xml.com/pub/98/10/guide@.html. XML.com’s XML overview.

= web2.javasoft.com/xml/docs/tutorial/TOC.html. JavaSoft’s XML tutorial.

20 Chapter 1 Essential XML

In addition, you might find some newsgroups on Usenet useful (note that
your news server may not carry all these groups):

comp.text.xml. A good, general-purpose, free-floating XML forum.

microsoft.public.inetexplorer.ie5beta.programming.xml. XML discussions
and questions concerning Internet Explorer 5.

microsoft.public.xml. The general Microsoft XML forum.

That’s a good start on XML resources available on the Internet. What about
XML software? Let’s take a look at what’s out there, starting with XML
editors.

XML Editors

To create the XML documents we’ll use in this book, all you need is a text
editor of some kind, such as vi, emacs, pico, Windows Notepad, or Windows
WordPad. By default, XML documents are supposed to be written in
Unicode, although in practice you can write them in ASCII, and nearly all
of them are written that way so far. Just make sure that when you write an
XML document, you save it in your editor’s plain-text format.

Using Windows Text Editors

Windows text editors such as WordPad or Notepad have an annoying habit of appending the extension .txt to a

filename if they don't understand the extension you've given the file. That's not a problem with .xml files, though,

because WordPad understands the extension .xml. For example, if you try to save an XML-based User Interface

Language document with the correct extension of .xul, WordPad will give it the extension .xul.txt. To avoid that,

place the name of the file in quotation marks when you save it, as in "scrollbars.xul.”

However, it can be a lot easier to use an actual XML editor, which is
designed explicitly for the job of handling XML. Here’s a list of some pro-
grams that let you edit your XML:

Adobe FrameMaker, www.adobe.com. Great, but expensive, XML support
in FrameMaker.

XML Pro, www.vervet.com/. A costly but powerful XML editor.

XML Weriter, on disk, XMLWriter, http://xmlwriter.net/. Color syn-
tax highlighting, with a nice interface.

XML Notepad, msdn.microsoft.com/xml/notepad/intro.asp. Microsoft’s
free XML editor, a little difficult to use.

XML Editors 21

» eNotepad, www.edisys.com/Products/eNotepad/enotepad.asp. A WordPad
replacement that does well with XML and has a good user interface.

» XMetal from SoftQuad, xmetal.com. An expensive but very powerful
XML editor, and many authors’ editor of choice.

» XML Spy, www.xmlspy.com/. A good and easy-to-use user interface.

You can see XML Spy at work in Figure 1.6, XML Writer in Figure 1.7,
XML Notepad in Figure 1.8, and eNotepad in Figure 1.9.

File Edit %ML Yiew Browser “Window Help
DS EY &l - bR AadamEE < B2 -2
@ did2_xml [_ O[]
(] ctelZooml [o] XA -
D0CTYPEDOCUMENT
Elm DOCUMENT (CUSTOMER)*
Eln CUSTOMER (MAME DATE ORDERS)
Elm HAME (LASTNAME FIRSTRAME]
Elin LASTHAME (HPCDATAY
Eln FIRSTHAME (HPCDATA)
Eln DATE (HPCDATAY
Eln ORDERS (ITEM)*
Eln ITEM (PRODUCT NUMBER: PRICE)
Elm PRODUCT (HPCDATA)
Elin HUMBER (HPCDATAY =
Elm PRICE (HPCDATA)
AiDOCUMENT -
4 | AW
$ML Spy v2.5 EWALUATION VERSION! [c)1398-93 |con Information-Spstems 4

Figure 1.6 XML Spy editing XML.0

EE dtd2 xml - XMLwriter [Unregistered]

Ele Edit Wew Project Iools Window Help
B fewedl i =ala

S| Eh
=Y e R AR AR R R R PR L
=l

----- 51 Mo Project Loaded

<?xml version = "1.0M7>

< !DOCTYPE DOCUMENT [

<!ELEMENT DOCUMENT (CUSTOMER) *>
<!ELEMENT CUSTOMER (NAME, DATE, ORDERS
<!ELEMENT NAME (LASTNAME, FIRSTNAME)>
< !ELEMENT LASTNANE ([#PCDATA)>

< !ELEMENT FIRSTNAME (#PCDATL)>
«<!ELEMENT DATE (#PCDATR)>

<!ELEMENT ORDERS (ITEM) *>

<!ELEMENT ITEM (PRODUCT,NUMEER,PRICE
< !ELEMENT PRODUCT (#PCDATR)>

< !ELEMENT NUMBER (#PCDATij>
«<!ELEMENT PRICE [#PCDATA)>

153
T Proect [®4 Tagha | B Outpu] a2l

Visit us onlin at Luriter. net [Cn 1. Char 1 T | 2

Figure 1.7 XML Writer editing XML.

22 Chapter 1 Essential XML

£ ded2.xml - XML Hotepad

File Edit iew Inset Tools Help
IS o] Flsg) els|e]]] =[] @
Stucture Values
5 =5 DOCUMENT
=[] CUSTOMER
-] NAME
S, LASTNAME Edwads
%, FIRSTHAME Eiita
S, DATE Apil 17,1998
=0 EREEE
=1 1TEM
s, FRODUCT Cucumber
S, NUMEER 5
8, FRICE §1.25
3 1TEM
=] CUSTOMER
-] NAME
S, LASTNAME Thompsan
%, FIRSTHAME Fhocke
S, DATE May 27, 1998
{1 ORDERS
For Help. press F1 [[

Figure 1.8 XML Notepad editing XML.

B sNotepad - Evaluation [_[O]x]

File Edit Miew Help
DS e&| s =@ “lda g € o - g =

| Explorer x | @] chumbdd2am

;I <?xml version = "1.0"2» -
< !DOCTYPE DOCUMENT [

< |ELEMENT DOCUMENT (CUSTOMER) >

<!ELEMENT CUSTOMER (WNAME,DATE, ORDERS)>

— < !ELEMENT NAME (LASTWNAME,FIRSTHNAME) >

< !ELEMENT LASTHANE (#PCDATA)>

< !|ELEMENT FIRSTNAME (#PCDATA)>

«<!ELEMENT DATE (#PCDATA)>

< !ELEMENT ORDERS (ITEM) #»

<!ELEMENT ITEM (PRODUCT,NUMEER,PRICE)>

e

P3| <|ELEMENT PRODUCT [#PCDATA) >
13| <!ELENENT NUNBER (#PCDATE)>
<IELEMENT PRICE [#PCDATA)>
H 1>
L <DOCUMENT>
& <CUSTONER>
<MAME>
<LASTHAME>Edwarda</LASTHANES
& <F TRSTHAME>Br ittas/F TRSTHANE>
</ NAME>
—>I <NATE>dnril 17. 1998</DATR> j
a2 |
Pos:]] Y

Figure 1.9 eNotepad editing XML.

Now that we’ve gotten an overview of creating XML documents, what
about XML browsers? The list is more limited, but there are a few out there.
See the next topic.

XML Browsers

Creating a true XML browser is not easy. Besides supporting XML, the
browser would have to support a style language such as CSS or XSL. It also
should support a scripting language, such as JavaScript. These are heavy

XML Browsers 23

requirements for most third-party vendors, so the true XML browsers out
there are few. In fact, no complete, general XML browsers currently exist.
None of the browsers listed here validate XML documents—they just check
for well-formedness—but a few come close.

Internet Explorer 5

Whether you love or hate Microsoft, the fact remains that Internet Explorer
is the most powerful XML browser available now; you currently can get it at
www.microsoft.com/windows/ie/default.htm.

Internet Explorer can display XML documents directly, as you saw
in Figure 1.2, and also can handle them in scripting languages (JScript,
Microsoft’s version of JavaScript, and Microsoft’s VBScript are supported).
There is good support for style sheets and other features such as the <xuL>
element, which lets you create XML data islands into which you can load
XML documents, and ways of binding XML to ActiveX Data Object (ADO)
database recordsets.

Internet Explorer 5.5, in preview at this writing, also supports additional
XML features, such as the XPath specification. There’s no question that
Microsoft’s XML commitment is strong—XMUL has been integrated even
into the Office 2000 suite of applications—but Microsoft sometimes swerves
significantly from the W3C standards (that is, when Microsoft isn’t writing
those standards itself).

Netscape Navigator 6

Netscape has just released the preview version of Netscape Navigator 6
(available at www.netscape.com/download/previewrelease.html), which has
significant XML support.You can see Netscape Navigator 6 at work back
in Figure 1.3.This preview version is based on Netscape’s open source
Mozilla browser, which you can pick up at www.mozilla.org. Unfortunately,
both Mozilla and the preview version of Netscape Navigator 6 have a
reputation for crashing machines frequently.

As with Internet Explorer, support for style sheets is good in Netscape
Navigator. The preview version of Netscape Navigator 6 also supports the
XML-based User Interface Language (XUL), which lets you configure the
controls in the browser. In fact, the preview version’s user interface is based
on XUL. More XML features will come in Netscape 6, but right now
documentation is virtually nonexistent.

24 Chapter 1 Essential XML

Jumbo

One of the more famous true XML browsers that exist is Jumbo, an XML
browser designed to work with XML and the CML.You can pick up Jumbo
for free at www.xml-cml.org/jumbo.html. This browser not only can display
XML (although not with style sheets), but it also can use CML to draw
molecules, as you see in Figure 1.10.

[%Tree M= B3
File Edit View Parsing Help
[Current URL: | \(ediuRET to change)
thicphenal thiophen | thiophen ‘
s} C.atomAird
s} C.atomAird .
ElementName: |C:molecule | [C] WaluesOK? Update
s} C.atomAird
O [Cibandirel _ ,
o Cobondhira) Add Attribute ‘ | Delete Attribute J
© A Cobondire Mame [value [Tone [

id thiophenal COATA

Default | Nested B | Nested B

An editzhle GraphichiodePans!

4] D
[Messape

Figure 1.10 Jumbo at work.

Relatively few real XML browsers exist, but there are a large number of
XML parsers. You can use these parsers to read XML documents and break
them up into their component parts.

XML Parsers

XML parsers are software packages that you use as part of an application
such as Oracle 81 (which includes good XML support) or as part of your
own programs. For example, later in this book, I'll use the IBM AlphaWorks
XML for Java (XML4]) parser; it is written in Java and connects well to your
own Java code. Here’s a list of some of the parsers out there:

» SAX:The Simple API for XML. Written by David Megginson et al.
(www. megginson.com/SAX/index.html), SAX is a well-known parser that
uses event-based parsing. I'll use SAX in this book.

XML Parsers 25

expat. This famous XML parser was written in the C programming lan-
guage by James Clark (www.jclark.com/xml/expat.html). This parser is used
in Netscape Navigator 6 and in the Perl language’s XML::Parser module.

expat as a Perl Module. XML::Parser is maintained by Clark Cooper
(ftp://ftp.perl.org/pub/CPAN/modules/by-module/XML/).

TclExpat. This is expat written for use in the Tcl programming language
by Steve Ball. Superceded by TcIXML. (www.zveno.com/zm.cgi/in-tclxml).

LT XML. This is an XML developers’ toolkit from the Language
Technology Group at the University of Edinburgh (www.1tg.ed.ac.uk/
software/xml/).

XML for Java —(XMLA4J). From IBM AlphaWorks (www.alphaworks.ibm.
com/tech/xml4j), this is a famous and very widely used XML parser that
adheres well to the W3C standards.

XML Microsoft’s validating XML processor. This parser requires
Internet Explorer 4.01 SP1 and later in order to be fully functional. In
addition to various tools, samples, tutorials, and online documentation,
this can be found at msdn.microsoft.com/xml/default.asp.

Lark. This is a nonvalidating XML processor that was written in Java by
Tim Bray (www.textuality.com/Lark/), and it’s one of the famous ones that
have been around a long time.

XP. XP is a nonvalidating XML processor written in Java by James Clark
(www.jclark.com/xml/xp/index.html).

Python and XML Processing Preliminary XML Parser. This parser
offers XML support to the Python programming language

(www . python.org/topics/xml/).

TcIXML. This XML parser was written in Tcl by Steve Ball
(www.zveno.com/zm.cgi/in-tclxml/).

XML Testbed. This parser was written by Steve Withall
(www.w3.org/XML/1998/0@8withall/).

SXP. Silfide XML Parser (SXP) is another famous XML parser and, in
fact, a complete XML Application Programming Interface (API) in Java
(www.loria.fr/projets/XSilfide/EN/sxp/).

The Microsoft XML Parser. The parser used in Internet Explorer is

implemented as a COM component at www.msdn.microsoft.com/
downloads/tools/xmlparser/xmlparser.asp.

26 Chapter 1 Essential XML

» OmiMark 5 Programming Language. Includes integrated support for
parsing and validation of XML (www.omnimark.com/).

» Java Standard Extension for XML. Because XML and Sun
Microsystem’s Java is such a popular mix, Sun is getting into the act with
its own Java package for XML (java.sun.com/products/xml/).

Parsers will break up your document into its component pieces and make
them accessible to other parts of a program; some parsers also check for well-
formedness and fewer check for document validity. However, if you just want
to check whether your XML is both well-formed and valid, all you need is
an XML validator.

XML Validators

How do you know whether your XML document is well-formed and valid?
One way is to check it with an XML wvalidator, and you have plenty to
choose from. Validators are packages that will check your XML and give you
teedback. For example, if you have the XML for Java parser from IBM’s
AlphaWorks installed, you can use the DOMWeTriter example as a complete
XML validator. Let’s say you wanted to check this document, greeting.xml:

<?xml version="1.0" encoding="UTF-8"?>
<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.

</MESSAGE>
</DOCUMENT>

To do this, you'd set things up for the XML4] package (we’ll see how to do
so later in the book) and run the DOMWeriter sample on it, like this:

%java dom.DOMWriter greeting.xml
greeting.xml:
[Error] greeting.xml:2:11: Element type "DOCUMENT" must be declared
[Error] greeting.xml:3:15: Element type "GREETING" must be declared
[Error] greeting.xml:6:14: Element type "MESSAGE" must be declared.
<?xml version="1.0" encoding="UTF-8"?7>
<DOCUMENT>

<GREETING>

Hello From XML

XML Validators 27

</GREETING>
<MESSAGE>

Welcome to the wild and woolly world of XML.
</MESSAGE>

</DOCUMENT>

If all goes well, DOMWeriter simply displays the document you’ve asked it to
validate, but if there are errors, it will display them. Here, DOMWTriter is
indicating that because we haven’t included a DTD in greeting.xml, it can’t
check for the validity of the document.

That’s fine if you have the XML for Java package installed, but more

accessible XML validators are available to you as well. Here’s a list of some of
the XML validators on the Web:

W3C XML Validator, validator.w3.org/. This is the official W3C
HTML validator. Although it’s officially for HTML, it also includes some
XML support. Your XML document must be online to be checked with
this validator.

Tidy, www.w3.org/People/Raggett/tidy/. Tidy is a beloved utility for clean-
ing up and repairing Web pages, and it includes limited support for XML.
Your XML document must be online to be checked with this validator.

www . xm1.com/xml/pub/tools/ruwf/check.html. This is XML.com’s XML
validator based on the Lark processor. Your XML document must be
online to be checked with this validator.

www.1tg.ed.ac.uk/~richard/xml-check.html. This is the Language
Technology Group at the University of Edinburgh’s validator, based

on the RXP parser. Your XML document must be online to be checked
with this validator.

www.stg.brown.edu/service/xmlvalid/. This is an excellent XML validator
from the Scholarly Technology Group at Brown University. This is the
only online XML validator I know of that allows you to check XML
documents that are not online. You can use the Web page’s file upload
control to specify the name of the file on your hard disk that you want to
have uploaded and checked.

To see a validator at work, take a look at Figure 1.11.There, I'm asking the
XML validator from the Scholarly Technology Group to validate this XML
document, c¢:\xml\greeting.xml. I've intentionally exchanged the order of
the <MESSAGE> and </GREETING> tags:

28 Chapter 1 Essential XML

<?xml version="1.0" encoding="UTF-8"?7>
<!DOCTYPE DOCUMENT [
<!ELEMENT DOCUMENT (GREETING, MESSAGE)>
<!ELEMENT GREETING (#PCDATA)>
<!ELEMENT MESSAGE (#PCDATA)>

1>
<DOCUMENT>
<GREETING>
Hello From XML
<MESSAGE>
</GREETING>
Welcome to the wild and woolly world of XML.
</MESSAGE>
</DOCUMENT>
3 5TG XML Validation Form - Microsoft Intemet Explorer M=
| Fie Edt Wiew Favories Tods Help ‘
| Adsress |] @60 ||Links &]wen Sasrer

@ SCHOLARLY TECHNOLOGY GROUP

STG sy .
XML Validation Form
STG Home
Search STG To validate a small XML document, just paste it into the text fiele
Erojects validate buttorn. If the document is too large to be conveniently p
Eublications field, enter its filename into the local file field. You may alsc vahcé
Webs ol 5TG JOML document on the Web by typing its TRI into the URT field,
STG Staff
About 3TG .
e For more instructions, see below. See also the FAD.
P :ML Validator|
FAD
Report
Local file:
|c:\xml\greetmg.xml Browse...
[T Suppress warning messages

™ Relax namespace checks

“alidate I Clear _'LI
4| »

|
&1 Done || [Intemet v

Figure 1.11 Using an XML validator.

You can see the results in Figure 1.12. As you can see, the validator is
indicating that there is a problem with these two tags.

CSS and XSL 29

2 Validation Results for c:\xml\greeting. xml - Microsoft Internet Explorer

| Fle Edt View Favortes Iook Help ‘ #

J - - AR] -5
Back fowed Stop Rehech Home | Semch Favertss Histoy | Mal Pt
|agdess [| =] @0 ||Links &]web Search |

Validation Results for c¢:\xml\greeting.xml

A list of error and warning messages follows along with (if needed, and if supplied) a line-tumbered
dumnp of the original document from the first up through the last erroneocus line

Errors:

lne 11, clamligreeting zml -
ervor (L098): end tag doesn't match its stark tag: CREETING

line 11, c'xml\greeting. zml
crror (1152): element violates snclosing tag's content modsl: MFSSAGE

line 13, c'xml\greeting. zml
errar (1100): end tag found for elsment that is not open: MESSAGE (matches start tag, GREETING: slement
MESZACE was last closed at line 11)

line 14, ¢'wzml\greeting wml
crror (1154); content ends prematurely for element: DOCULENT (expecting MESIAGE)

@] Done [[intemet

Figure 1.12 The results from an XML validator.

XML validators give you a powerful way of checking your XML documents.
That’s useful because XML is much stricter than HTML about making sure
that a document is correct. (Recall that XML browsers are not supposed to
make attempts to fix XML documents if they find a problem; they’re just
supposed to stop loading the document.)

We’ve gotten a good overview of XML already in this chapter. In a few
pages, I'll start taking a look at a number of XML languages that are already
developed. But there are a few more useful topics to cover first, especially if
you have programmed in HTML and want to know the differences between
XML and HTML.

CSS and XSL

Style sheets are becoming increasingly important in HTML because, in
HTML 4, many built-in style features such as the <CENTER> element have
become deprecated (declared obsolete) in favor of style sheets. However,
most HTML programming ignores style sheets entirely.

30

Chapter 1 Essential XML

The story is different in XML because you create your own elements in
XML.Thus, if you want a browser to display them, you have to tell it how.
This is both good and bad: It’s good because it enables you to use the
powerful CSS and XSL specifications to customize the appearance of your
XML elements far beyond what’s possible with standard HTML. It’s bad
because it can demand a lot of additional work. (One way of getting around
the necessity of designing your own style sheets is to use an established XML
language that has its own style sheets.)

All this is to say that XML defines the structure and semantics of the
document, not its format; if you want to display XML directly, you can either
use the default presentation in Internet Explorer, or use a style sheet to set
up the presentation yourself.

You have two main ways to specify a style sheet for an XML document:
with CSS and with XSL, both of which I'll dig into in this book. CSS is
popular with those creating HTML documents and is widely supported.
Using CSS, you can specify the formatting of individual elements, create
style classes, set up fonts, use colors, and even specify placement of elements
in the page.

XSL, on the other hand, is ultimately a better choice to work with XML
documents because it’'s more powerful (in fact, XSL style sheets themselves
are well-formed XML documents). XSL documents are made up of rules
that are applied to XML documents. When a pattern that you’ve specified in
the XSL document is recognized in the XML document, the rules transform
the matched XML into something entirely new. You can even transtorm
XML into HTML in this way.

Although CSS can set only the format and placement of elements, XSL
can reorder elements in a document, change them entirely, display some but
hide others, select styles based not just on elements but also on element
attributes (XML elements can have attributes just as HTML elements can,
and I'll introduce them in the next chapter), select styles based on element
location, and much more. There are two ways to approach XSL: with XSL
transformations and with XSL formatting objects. We’ll take a look at both
in this book.

Here are some good online resources for style sheets that provide a good
reference:

= www.w3.org/Style/CsS/. The W3C outline and overview of CSS program-
ming.

= www.w3.org/TR/REC-CSS1. The W3C CSS1 specification.

URLs versus URIs 31

= www.w3.org/TR/REC-CSS2. The W3C CSS2 specification.
= www.w3.org/Style/XsL/. The W3C XSL page.

XLinks and XPointers

It’s hard to imagine the World Wide Web without hyperlinks; of course,
HTML documents excel at letting you link from one page to another.
How about XML? In XML, it turns out, you use XLinks and XPointers.

XLinks let any element become a link, not just a single element such as
the HTML <A> element. That’s a good thing because XML doesn’t have a
built-in <A> element. In XML, you define your own elements, and it only
makes sense that you can define which of those represent links to other
documents.

In fact, XLinks are more powerful than simple hyperlinks. XLinks can be
bidirectional, allowing the user to return after following a link. They can
even be multidirectional—in fact, they can be sophisticated enough to point
to the nearest mirror site from which a resource can be fetched.

XPointers, on the other hand, point not to a whole document, but to

a part of a document. In fact, XPointers are smart enough to point to a
specific element in a document, or the second instance of such an element,
or the 11,904th instance. They can even point to the first child element of
another element, and so on. The idea is that XPointers are powerful enough
to locate specific parts of another document without forcing you to add
additional markup to the target document.

On the other hand, note that the whole idea of XLinks and XPointers is
relatively new and is not fully implemented in any browser. We will see
what’s possible today later in this book.

Here are some XLink and XPointer references online—take a look for
more information on these topics:

= www.w3.org/TR/xlink/. The W3C XLink page.
» www.w3.org/TR/xptr. The W3C XPointer page.

URLs versus URIs

Having discussed XLinks and XPointers, I should also mention that the
XML specification expands the idea of standard uniform resource locators
(URLs) into uniform resource identifiers (URISs).

32 Chapter 1 Essential XML

URLs are well understood and well supported on the Internet today. On
the other hand (as you'd expect, given the addition of XLinks and XPointers
to XML), the idea of URIs is more general than with simple URLs.

URIs let you represent a way of finding resources on the Internet, and
they center more on the resource than the actual location. The idea is that,
in theory, URIs can locate the nearest mirror site for a resource or even
track a document that has been moved from one location to another.

In practice, the concept of URIs is still being developed, and most
software still handles only URLs.

ASCII, Unicode, and the Universal Character
System

The actual characters in documents are stored as numeric codes. The most
common code set today is the American Standard Code for Information
Interchange (ASCII). ASCII codes extend from O to 255 (to fit within a
single byte); for example, the ASCII code for “A” is 65, the ASCII code for
“B” 1s 66, and so on.

On the other hand, the World Wide Web is just that today: worldwide.
Plenty of scripts are not handled by ASCII, such as scripts in Bengali,
Armenian, Hebrew, Thai, Tibetan, Japanese Katakana, Arabic, Cyrillic, and
other languages.

For that reason, the default character set specified for XML by W3C is
Unicode, not ASCII. Unicode codes are made up of 2 bytes, not 1, so they
extend from 0 to 65,535, not just 0 to 255. (However, to make things easier,
the Unicode codes 0 to 255 do correspond to the ASCII 0 to 255 codes.)
Therefore, Unicode can include many of the symbols commonly used in
worldwide character and ideograph sets. You can find more on Unicode at
www.unicode.org.

Only about 40,000 Unicode codes are reserved at this point (of which
about 20,000 codes are used for Han ideographs, although more than 80,000
such ideographs are defined; 11,000 are used for Korean Hangul syllables).

In practice, Unicode support, like many parts of the XML technology, is
not fully supported on most platforms today. Windows 95/98 does not offer
tull support for Unicode, although Windows NT and Windows 2000 come
much closer (and XML Spy lets you use Unicode to write XML documents
in Windows NT). Most often, this means that XML documents are written
in simply ASCII, or in UTF-8, which is a compressed version of Unicode
that uses 8 bits to represent characters. (In practice, this is well suited to

ASCII, Unicode, and the Universal Character System 33

ASCII documents because multiple bytes are needed for many non-ASCII
symbols, and ASCII documents converted to Unicode are two times as long.)
Here’s how to specity the UTF-8 character encoding in an XML document:

<?xml version="1.0" encoding="UTF-8"?7>
<DOCUMENT>
<GREETING>
Hello From XML
</GREETING>
<MESSAGE>
Welcome to the wild and woolly world of XML.
</MESSAGE>
</DOCUMENT>

The default for XML processors today is to assume that your document is in
UTF-8, so if you omit the encoding specification, UTF-8 is assumed. If
youre writing XML documents in ASCII, you’ll have no trouble.

Actually, not even Unicode has enough space for all symbols in common
use. A new specification, the Universal Character System (UCS, also called
ISO 10646) uses 4 bytes per symbol, which gives it a range of two billion
symbols, far more than needed.You can specify that you want to use pure
Unicode encoding in your XML documents by using the UCS-2 encoding
(also called ISO-10646-UCS-2), which is compressed 2-byte UCS.You also
can use UTF-16, which is a special encoding that represents UCS symbols
using 2 bytes so that the result corresponds to UCS-2. Straight UCS
encoding is referred to as UCS-4 (also called ISO-10646-UCS-4).

I'll stick to ASCII for most XML documents in this book because support
for Unicode and UCS is not yet widespread. For example, I know of no true
Unicode editors. On the other hand, you can write documents in a local
character set and use a translation utility to convert them to Unicode, or
you can insert the actual Unicode codes directly into your documents. For
example, the Unicode for 7 is 03CO0 in hexadecimal, so you can insert
T into your document with the character entity (more on entities in the next
chapter) π.

More character sets are available than those mentioned here; for a longer
list, take a look at the list posted by the Internet Assigned Numbers
Authority (IANA) at www.isi.edu/in-notes/iana/assignments/character-sets.

34 Chapter 1 Essential XML

Converting ASCII to Unicode

If you want to convert ASCII files to straight Unicode, you can use the native2ascii program that comes with Sun
Microsystem's Java Software Development Kit (the SDK, formerly the JDK). Using this tool, you can convert to
Unicode like this: native2ascii file.txt file.uni. You also can convert to a number of other encodings
besides Unicode, such as compressed Unicode, UTF-8.

XML Applications

We’ve seen a lot of theory in this chapter, so I'm going to spend the rest of
this chapter taking a look at how XML is used in the real world. The world
of XML is huge these days; in fact, XML is now used internally even in
Netscape and Microsoft products, as well as installations of programming
languages such as Perl. You can find a good list of organizations that produce
their own XML-based languages at www.xml.org/xmlorg_catalog.htm.

It’s useful and encouraging to see how XML is being used today in these
XML-based languages. It’s a new piece of terminology: As you know, XML
is a meta-markup language, so it’s actually used to create languages. The lan-
guages so created are applications of XML, so they’re called XML applications.

Note that the term XML application refers to an application of XML to a
specific domain, such as MathML, the mathematics markup language; it does
not refer to a program that uses XML (a fact that causes a lot of confusion
among people who know nothing about XML).

Thousands of XML applications exist today, and we’ll see some of them
here.You can see the advantage to various groups (such as physicists or
chemists) for defining their own markup languages, allowing them to use
the symbols and graphics of their discipline in customized browsers. I'll start
with discussing CML.

XML at Work: Chemical Markup Language

Peter Murray-Rust developed CML as a very early XML application, so it
has been around quite a while. Many people think of CML as a sort of
HTML+Molecules, and that’s not a bad characterization. Using CML, you
can display the structure of complex molecules.

With CML, chemists can create and publish molecule specifications for
easy interchange. Note that the real value of this is not so much in looking
at individual chemicals as it is in being able to search CML repositories for
molecules matching specific characteristics.

XML Applications 35

I’ve already mentioned Jumbo, a famous CML browser that you can
download for free from www.xml-cml.org/jumbo.html. Jumbo not only works
for handling CML, but you also can use it to display the structure of an
XML document in general. However, there’s no question that the novelty
of Jumbo is that it can use CML to create graphical representations of’
molecules.

We’ve already seen an example in Jumbo in Figure 1.10, in which Jumbo
is displaying the molecule thiophenol. Here is the file, thiophenol.xml, that
it’s reading to display that molecule (this document is an example that comes
with the Jumbo browser):

<?jumbo:namespace ns="http://www.xml-cml.org" prefix="C"
java="jumbo.cmlxml.*Node" ?>
<C:molecule id="thiophenol">
<C:atomArray builtin="elsym">
cccccececsccoo
</C:atomArray>
<C:atomArray builtin="x2" type="float">
O 0.866 0.866 0 -0.866 -0.866
0.0 0.0 1.732 -1.732 1.732 -1.732
</C:atomArray>
<C:atomArray builtin="y2" type="float">
1 0.5 -0.5 -1.0 -0.5 0.5
-2.0 2.0 1.0 1.0 2.0 2.0
</C:atomArray>
<C:bondArray builtin="atid1">
1234561429 6 10
</C:bondArray>
<C:bondArray builtin="atid2">
23456187911 10 12
</C:bondArray>
<C:bondArray builtin="order" type="integer">
4444441112 1 2
</C:bondArray>
</C:molecule>

36 Chapter 1 Essential XML

XML at Work: Mathematical Markup Language

Mathematical Markup Language was designed to fill a significant gap in Web
documents: equations. In fact, Tim Berners-Lee first developed the World
Wide Web at CERN so that high-energy physicists could exchange papers
and documents. Still, there has been no way to display true equations in Web
browsers for nearly a decade.

MathML fixes that. MathML is itself a W3C specification, and you can
find it at www.w3.org/Math/. Using MathML, you can display equations and all
kinds of mathematical terms. It’s not powerful enough for many specialized
areas of the sciences or mathematics yet, but it’s growing all the time.

Because of the limited audience for this kind of presentation, no major
browser yet supports MathML. However, there is the Amaya browser, which
is W3C’s own testbed browser for testing new HTML and XHTML
elements (unfortunately, it’s not an XML browser).You can download
Amaya for free from www.w3.org/Amaya/. ,

Here’s a MathML document that displays the equation 3Z + 6Z +
12 = 0 (this document uses an XML namespace, which we’ll see more
about in the next chapter):

<?xml version="1.0"?>
<html xmlns:m="http://www.w3.0rg/TR/REC-MathML/">
<math>
<m:mrow>
<m:mrow>
<m:mn>3</m:mn>
<m:mo>⁢</m:mo>
<m:msup>
<m:mi>Z</m:mi>
<m:mn>2</m:mn>
</m:msup>
<m:mo>-</m:mo>
<m:mrow>
<m:mn>6</m:mn>
<m:mo>⁢</m:mo>
<m:mi>Z</m:mi>
</m:mrow>
<m:mo>+</m:mo>
<m:mn>12</m:mn>

XML Applications 37

</m:mrow>
<m:mo>=</m:mo>
<m:mn>0@</m:mn>
</m:mrow>
</math>

You can see the results of this document in the Amaya browser shown in
Figure 1.13.

% mathml.xml

File Edit Tppes Links “iews Sile Special Atvibuics Help

e e A e e N = I i el e B ER R S S
Address | ‘
Title | ‘
32 -6Z+12=0 =

|

< | »

Fnished‘

|

Figure 1.13 Displaying MathML in the Amaya browser.

XML at Work: Channel Definition Format

With the growth of the Web, people are always trying to come up with new
ways to use it, and Microsoft is hard at work on this, too. One such innova-
tion from Microsoft is the idea of Web site channels, which send documents
to the user rather than waiting for the user to come and get them. Channels
introduce the idea of Webcasting, or “push” (although it’s not true server
push in the HTML sense).

CDF documents are actually XML files, and you can learn about them at
msdn.microsoft.com/workshop/delivery/cdf/reference/CDF.asp. I'll also discuss
them later in this book.

38 Chapter 1 Essential XML

Here’s the way CDF works: you add a link to a .cdf file to a Web page,
and then you give the link text, something like “Subscribe to this channel!”
If the user is using Internet Explorer and clicks the hyperlink to navigate to
the CDF file, Internet Explorer adds the site to the user’s Favorites folder
and subscribes to the channel, checking back periodically for updates.

Here’s an example: This document, w3c.cdf, lets the user subscribe to the
W3C XML and XSL pages:

<?xml version="1.0"?>
<CHANNEL HREF="http://www.w3.org/">
<TITLE>World Wide Web Consortium</TITLE>
<ABSTRACT>
Leading the Web to its Full Potential
</ABSTRACT>

<ITEM HREF="http://www.w3.org/XML/">
<TITLE>Extensible Markup Language (XML)
</TITLE>
<ABSTRACT>
The Extensible Markup Language (XML) is the universal
format for structured documents and data on the Web.
</ABSTRACT>
</ITEM>

<ITEM HREF="http://www.w3.org/Style/XSL/">
<TITLE>Extensible Stylesheet Language (XSL)
</TITLE>
<ABSTRACT>
Extensible Stylesheet Language (XSL) is a
language for expressing style sheets.
</ABSTRACT>
</ITEM>
</CHANNEL>

You can see the results in Figure 1.14. When the user opens this .cdf file, a
W3C channel is added to the Internet Explorer’s Favorites folder. (You can
see the current channels in Internet Explorer by clicking the Favorites but-
ton in the standard toolbar and then double-clicking the Channels folder in
the Favorites frame that opens at left.)

XML Applications 39

) W3C - The World Wide Web Consortium - Microsoft Intemet Explorer

| Ele Edit Yiew Faveries Took Help | &5

oo L@ oW am @B S
Back Faryard Stop Refresh Home Search |Favorites History Hail Print

| Addiess | =] @6o || Links &]web Seaich »|

Favarites X -
Bhadd. 3 Omanize %ﬂ ORLD WIDE WEB Jse

] Channels -
& Micrasoft Channel Guide
5 Word wide ok Lansorn Leading the Web to its Full
(L] Mews and Technolagy e Ph
(L1 5potts [Leading the web ta its Full Puten_na\f’- -
(L1 Business
() Entetainment Guidelines for Accessible
[Litestyle and Travel .
(1 The Micrasoht Network Web AUthorlng become a
:Amhc - 4II-'\’er:()mmenrl;rtmn I LIJ
&] Done || 4 Intemet 4

Figure 1.14 Subscribing to a new channel using CDE

XML at Work: Synchronized Multimedia Integration Language

Synchronized Multimedia Integration Language (SMIL, pronounced “smile”)
has been around for quite some time. It’s a W3C standard that you can find
more about at www.w3.org/AudioVideo/.

SMIL attempts to fix a problem with modern “multimedia” browsers.
Usually, such browsers can handle only one aspect of multimedia—video, or
audio, or images—at a time, but never more than that. SMIL lets you create
television-like fast cuts and true multimedia presentations.

The idea is that SMIL lets you specify what multimedia files are played
when; SMIL itself does not describe or encapsulate any multimedia itself.

Microsoft, Macromedia, and Compaq have a semicompeting specification,
HTML+TIME, which I'll take a look at next. As a result, Microsoft hasn’t
implemented much of SMIL in Internet Explorer yet, although there is
limited support for SMIL in the preview version of Internet Explorer 5.5.
You can find a SMIL applet written in Java at www.empirenet.com/~joseram,
as well as some stunning examples of symphonies coordinated with images.

SMIL has become a core part of the RealNetworks streaming software
(http://service.real.com/help/libr‘ar‘y/guides/pr‘oduction/r‘ealpgd.htm) and
Apple Quicktime (www.apple.com/quicktime/authoring/qtsmil.html). In addi-
tion, the SMIL Boston project (www.w3.org/TR/smil-boston/) adds transition
effects and event handling to SMIL 1.0. More implementations are also listed
at www.w3.org/AudioVideo.

Here’s an example SMIL document that creates a multimedia sequence,
first playing mozartl.wav and amadeus!.mov; then displaying mozart1.htm;
next playing mozart2.wav and amadeus2.mov; and finally displaying
mozart2.htm:

40 Chapter 1 Essential XML

<?xml version="1.0"?>
<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 1.0//EN"
"http://www.w3.0rg/TR/REC-smil/SMIL10.dtd">

<smil>
<body>
<seq id="mozart">
<audio src="mozarti.wav"/>
<video src="amadeus1.mov"/>
<text src="mozarti.htm"/>
<audio src="mozart2.wav"/>
<video src="amadeus2.mov"/>
<text src="mozart2.htm"/>
</seq>
</body>
</smil>

XML at Work: HTML+TIME

Microsoft, Macromedia, and Compaq have a multimedia alternative to SMIL
called Timed Interactive Multimedia Extension (referred to as HTML+
TIME), which is an XML application. Although SMIL documents let you
manipulate other files, HTML+TIME lets you handle both HTML and
multimedia presentations in the same page.

HTML+TIME is not nearly as powerful as SMIL, but Microsoft has
shown relatively little interest in SMIL. You can find out about HTML+
TIME at msdn.microsoft.com/workshop/Author/behaviors/time.asp. HTML+
TIME is implemented in Internet Explorer as a behavior, which is a new
construct in Internet Explorer 5 that lets you separate code from data.You
can find more information about Internet Explorer behaviors at msdn.
microsoft.com/workshop/c-frame.htm#/workshop/author/default.asp

Here’s an example HTML+TIME document that displays the words
Hello, there, from, and HTML+TINME, spacing the words’ appearance apart by
two seconds and then repeating:

<HTML>
<HEAD>
<TITLE>
Using HTML+TIME
</TITLE>
<STYLE>
.time {behavior: url(#default#time);}
</STYLE>
</HEAD>

<BODY>

XML Applications

<DIV CLASS="time" t:REPEAT="5" t:DUR="10" t:TIMELINE="par">

<DIV CLASS="time" t:BEGIN="0" t:DUR="10">Hello</DIV>
<DIV CLASS="time" t:BEGIN="2" t:DUR="10">there</DIV>
<DIV CLASS="time" t:BEGIN="4" t:DUR="10">from</DIV>
<DIV CLASS="time" t:BEGIN="6" t:DUR="10">HTML+TIME.</DIV>
</DIV>
</BODY>

</HTML>

You can see the results of this HTML+TIME document in Figure 1.15.

Fie Edit Wiew Favortes Tools Help |ﬁ
e D [@ | A G @R S
Back Fowsd Stop Refiesh Home | Seach Favartes Histoy | Mal it
Adress [| @60 ||Links &]web Seach »|
Hello
there
from
HTWLATIVE
2] Done [[2 My Computer 2|

Figure 1.15 An HTML+TIME document at work.

HTML+TIME actually builds on SMIL to a great extent; the example from
the previous topic on SMIL would look this way in HTML+TIME:

<t:seq id="mozart">
<t:
<t:
<t:
<t:
<t:
<t:

</seq>

audio src="mozarti.wav"/>
video src="amadeus1.mov"/>
textstream src="mozarti.htm"/>
audio src="mozart2.wav"/>
video src="amadeus2.mov"/>
textstream src="mozart2.htm"/>

42 Chapter 1 Essential XML

XML at Work: XHTML

One of the biggest XML applications around today is XHTML, the transla-
tion of HTML 4.0 into XML by W3C. I'll dig into XHTML in some depth
in this book.

W3C introduced XHTML to bridge the gap between HTML and XML,
and to introduce more people to XML. XHTML is simply an application
that mimics HTML 4.0 in such a way that you can display the results—true
XML documents—in current Web browsers. XHTML is an exciting devel-
opment in the XML world, and we’ll be spending some time with it later in
this book, in Chapter 16, “Essential XHTML,” and Chapter 17, “XHTML
at Work.”

Here are some XHTML resources online:

= www.w3.org/MarkUp/Activity.html. The W3C Hypertext Markup activity
page, which has an overview of XHTML.

s www.w3.org/TR/xhtml1/. The XHTML 1.0 specification (in more common
use than XHTML 1.1 today).

= www.w3.org/TR/xhtm111/. The XHTML 1.1 working draft of the XHTML
1.1 module-based specification.

XHTML 1.0 comes in three different versions: transitional, frameset, and
strict. The transitional version is the most popular because it supports HTML
more or less as it’s used today. The frameset version supports XHTML
documents that display frames; this version is different from the transitional
version because documents in the transitional version are based on the <body>
element, whereas documents that use frames are based on the <frameset>
element. The strict version omits all the HTML elements deprecated in
HTML 4.0 (of which there were quite a few).

XHTML 1.1 is a form of the XHTML 1.0 strict version made a little
more strict by omitting support for some elements and adding support for
a few more (such as <ruby> for annotated text).You can find a list of the
differences between XHTML 1.0 and XHTML 1.1 at www.w3.org/TR/
xhtml11/changes.html#a_changes. XHTML 1.1 is quite strict, and I think
it'll be quite a while before it’s in widespread use compared to the XHTML
1.0 transitional version.

Here’s an example XHTML document using the XHTML 1.0 transitional
DTD.You can display this document in any standard HTML browser, as long
as you give the document file the extension .html (note that tag names are
all in lowercase text in XHTML):

XML Applications 43

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>
<title>
Web page number one!
</title>
</head>
<body>
<h1>
Welcome to XHTML!
</h1>
<center>
This is simple text that appears in this page.
<p>
Here's a new paragraph!
</p>
</center>
</body>
</html>

You can see the results of this XHTML in Figure 1.16. Writing XHTML is a
lot like HTML, except that you must adhere to XML syntax (such as making
sure that every element has a closing tag).

R Web page number ane! - Microsoft Intemet Explorer M= E
| Fie Edt Wiew Favories Tods Help ‘
L e P a @ @ B4
Back Fowed Stop Refiesh Homs | Search Favoitss Histoy | Mal Print
| Adsress |] @60 ||tk &)webSesrch |
=]
Welcome to XHTMI.!
This iz sitaple text that appears in this page.
Here's a new paragraph!
E
&] Done || |2 My Computer 4

Figure 1.16 Displaying XHTML.

44 Chapter 1 Essential XML

XML at Work: Open Software Description

Open Software Description (OSD) was developed by Marimba and
Microsoft; you can find more about this XML application at www.w3.org/TR/
NOTE-0SD.html. OSD enables you to specify how and when software is
updated via the Internet. In fact, you can use OSD with CDF to make
periodic software updates to the user’s machine.

Not everyone thinks OSD is a great idea: After all, many users want
control over when their software is updated. New versions may have
incompatibilities with old versions, for example.

Here’s an example .osd file that handles updates for a word processor
named SuperDuperTextPro from SuperDuperSoft:

<?xml version="1.0"?>
<CHANNEL HREF="http://www.superdupersoft.com/updates.html">
<TITLE>
SuperDuperTextPro Updates
</TITLE>
<USAGE VALUE="SoftwareUpdate"/>
<SOFTPKG
HREF="http://updates.superdupersoft.com/updates.html"
NAME="{34567A7E-8BE7-99C0-8746-0034829873A3}"
VERSION="2,4,6">
<TITLE>
SuperDuperTextPro
</TITLE>
<ABSTRACT>
SuperDuperTextPro version 206 with sideburns!!!
</ABSTRACT>
<IMPLEMENTATION>
<CODEBASE HREF=
"http://www.superdupersoft.com/new.exe" />
</IMPLEMENTATION>
</SOFTPKG>
</CHANNEL>

XML at Work: Scalable Vector Graphics
Scalable Vector Graphics (SVG) is another W3C-based XML application
that is a good idea but that has found only limited implementation so far
(notably, in such programs as CorelDraw and various Adobe products such
as Adobe Illustrator). Using SVG, you can draw two-dimensional graphics

XML Applications 45

using markup.You can find the SVG specification at www.w3.org/TR/SVG/ and
an overview at www.w3.org/Graphics/SVG/Overview.htms.

Note that because SVG describes graphics, not text, it’s harder for current
browsers to implement; no browsers currently have full SVG implementa-
tions. Other graphics standards are proposed, such as the Precision Graphics
Markup Language (PGML), proposed to W3C (www.w3.org/TR/1998/
NOTE-PGML) by IBM, Adobe, Netscape, and Sun.

Here’s an example PGML document that draws a blue box:

<?xml version="1.0"?>
<IDOCTYPE pgml SYSTEM */DTDs/pgml.dtd">

<pgml>
<group fillcolor="blue">
<path>
<moveto x="0" y="0"/>
<lineto x="0" y="1000"/>
<lineto x="1000" y="1000"/>
<lineto x="1000" y="0"/>
<closepath/>
</path>
</group>
</pgml>

XML at Work: Vector Markup Language

Vector Markup Language (VML) is an alternative to SVG that is imple-
mented in Microsoft Internet Explorer. You can find out more about VML
at www.w3.org/TR/NOTE-VML. Using VML, you can draw many vector-based
graphics figures. Here’s an example, vinl.html, that draws a yellow oval, a
blue box, and a red squiggle:

<HTML xmlns:v="urn:schemas-microsoft-com:vml">

<HEAD>
<TITLE>
Using Vector Markup Language
</TITLE>

<STYLE>
v\:* {behavior: url(#default#VML);}
</STYLE>

</HEAD>

continues »

46 Chapter 1 Essential XML

<BODY>

<CENTER>

<H1>
Using Vector Markup Language

</H1>

</CENTER>

<p>

<v:oval STYLE='width:100pt; height:75pt"'
fillcolor="yellow"> </v:oval>

<p>

<v:rect STYLE='width:100pt; height:75pt' fillcolor="blue"
strokecolor="red" STROKEWEIGHT="2pt"/>

<p>

<v:polyline
POINTS="20pt,55pt,100pt, -10pt,180pt,65pt,260pt,25pt"
strokecolor="red" STROKEWEIGHT="2pt"/>

</BODY>
</HTML>

You can see the results of this VML in Figure 1.17.

ZJ Using Vector Markup Language - Microsoft Internet Explorer

[TEE Bf Sen Gereies deb GER ‘
EE e I 4 = T (= B S ER—
Back Fousd Stop Refesh Home | Seach Favortes Histo | Mal Pt
bgdiess| | | @60 ||Lnks @]WebSeach »
=]
Using Vector Markup Language
-
@] Done [| [= My Computer v

Figure 1.17 Vector Markup Language at work.

XML Applications 47

XML at Work: XML-Based User Interface Language

XML-based User Interface Language (XUL, pronounced “zuul”), which
comes from Netscape and Mozilla, enables you to describe what user-
interface elements you want those browsers to display. (The only Netscape
Navigator that currently supports XUL is Netscape Navigator 6 preview
version,) Here are some online references for XUL:

» www.mozilla.org/projects/intl/xul-styleguide.html. A XUL style guide.

= www.mozilla.org/xpfe/xptoolkit/xulintro.html. An introduction to XUL.

Here’s a sample XUL document, scroll.xul, that adds scrollbars around the
browser’s document display area. (For formatting reasons, I have to break up
the expression
"http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul" to two
lines in this book; make sure you rejoin that text into a quoted text string on
one line before giving this a try).

<?xml version="1.0"?>

<window align="horizontal"

xmlns=

"http://www.mozilla.org/keymaster/gatekeeper/
there.is.only.xul">

<scrollbar align="vertical"/>

<box align="vertical" flex="100%">
<scrollbar align="horizontal"/>
<spring flex="100%" style="background-color: white"/>
<scrollbar align="horizontal"/>

</box>

<scrollbar align="vertical"/>
</window>

You can see the results of this XUL document in Figure 1.18.

48 Chapter 1 Essential XML

[Netscape

file Edt Yiew Search Go Bookmerks Tasks Help

My Sidebar

within [the Wiels =]

Settings for the Wab

Buddy List \
Stocks \

wx B 7 Al Channsls =

Figure 1.18 Using XUL to create scrollbars.

XML at Work: Extensible Business Reporting Language

Extensible Business Reporting Language (XBRL, formerly named XFRML),
is an open specification that uses XML to describe financial statements. You
can find more on XBRL at www.xfrml.org/Overview.htm. Using XBRL, you
can codify business financial statements in a way that makes it easy to search
them en masse and review them quickly, extracting the information you
want.

Here’s a sample XBRL document that gives you an idea of what this
application looks like at work:

<?xml version="1.0" encoding="utf-8" ?>
<group xmlns="http://www.xbrl.org/us/aicpa-us-gaap"
xmlns:gpsi="http://www.xbrl.org/TaxonomyCustom.xsd"
id="543-AB" entity="NASDAQ:GPSI" period="1999-05-31"
schemaLocation="http://www.xbrl.org/TaxonomyCustom.xsd"
scaleFactor="6" precision="9" type="USGAAP:Financial"
unit="I1S04217:USD" decimalPattern="" formatName="">
<item id="IS-025"
type="operatingExpenses.researchExpense"
period="P1Y/1999-05-31">20427</item>
<item id="IS-026"
type="operatingExpenses.researchExpense"
period="P1Y/1998-05-31">12586</item>
</group>
<group type="gpsi:detail.quarterly" period="1998-05-31">

XML Applications 49

<item period="1997-06-01/1998-07-31">0.12</item>
<item period="1997-09-01/1997-11-30">0.16</item>
<item period="1997-12-01/1998-02-28">0.17</item>
<item period="1998-03-01/1998-05-31">-0.12</item>
<item period="1998-06-01/1998-05-31">0.33</item>

</group>

<group type="gpsi:detail.quarterly" period="1999-05-31">
<item period="1998-06-01/1998-08-31">0.15</item>
<item period="1998-09-01/1998-11-30">0.20</item>
<item period="1998-12-01/1999-02-28">0.23</item>
<item period="1999-03-01/1999-05-31">0.28</item>
<item period="1998-06-01/1999-05-31">0.86</item>

</group>

<group type="gpsi:detail.quarterly" period="1998-05-31">
<item period="1997-06-01/1998-07-31">0.11</item>
<item period="1997-09-01/1997-11-30">0.15</item>
<item period="1997-12-01/1998-02-28">0.17</item>
<item period="1998-03-01/1998-05-31">-0.12</item>
<item period="1998-06-01/1998-05-31">0.32</item>

</group>

XML at Work: Resource Description Framework

Resource Description Framework (RDF) is an XML application that spe-
cializes in meta-data—that is, data about other data.You use RDF to specify
information about other resources, such as Web pages, movies, automobiles,
or practically anything. You can find more information about RDF at
www.w3.org/RDF/, and I'll be discussing it later in the book as well, in Chapter
18, “Resource Description Framework and Channel Definition Format.”

Using RDE you create vocabularies that describe resources. For example,
the Dublin Core is an RDF vocabulary that handles meta-data for Web
pages; you can find more information about it at http://purl.org/pC/. Using
the Dublin Core, you can specify a great deal of information about Web
pages that is designed ultimately to replace the unsystematic use of <META>
tags in today’s pages. When systemized, that information will be much more
tractable to Web search engines.

Here’s an example RDF page using the Dublin Core that gives informa-
tion about a Web page:

50 Chapter 1 Essential XML

<RDF:RDF xmlns:RDF="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmlns:DC="http://purl.org/DC/">

<RDF:Description about="http://www.starpowder.com/xml">
<DC:Format>HTML</DC:Format>
<DC:Language>en</DC:Language>
<DC:Date>2002-02-02</DC:date>
<DC:Type>tutorial</DC:Type>
<DC:Title>Welcome to XML!</DC:Title>

</RDF:Description>
</RDF :RDF>

Note that many more XML applications exist than can be covered in one
chapter—and plenty of them work behind the scenes. For example,
Microsoft Office 2000 can handle HTML as well as other types of docu-
ments, but because HTML doesn’t allow it to store everything it needs in a
document, Office 2000 also includes some XML behind the scenes (in fact,
Oftice 2000s vector graphics are done using VML). Even relatively early ver-
sions of Netscape Navigator allowed you to look for sites much like the cur-
rent one you're viewing; to do that, it connected to a CGI program that uses
XML internally. As you can see, XML is all around, everywhere you look on
the Internet.

That’s it for our overview chapter. We’ve received a solid foundation in
XML here. The next step is to start getting all the actual ground rules for
creating XML documents under our belts. I'll cover that in Chapter 2.

