
Application Design:
A Real-Life Example

3

Prevent trouble before it arises.
Put things in order before they exist.

The giant pine tree
grows from a tiny sprout.

The journey of a thousand miles
starts from beneath your feet.

APPLICATION DESIGN IS A TOPIC SO BROAD that a whole book couldn’t fully cover
it.The term application design contains merely every single part of development, from
data structure layout, flow charts, and entity-relationship diagrams to code layout,
documentation, and anything in between. Because it is so important, however, we
decided not to exclude it from this book, but instead to tackle a discussion of
application design by restricting the topics covered to a “hands-on” example, namely
phpChat.This chapter will give you an in-depth view of this real-time chat server
application implemented in PHP, similar to an extended software case study.We hope
that you can extract useful information and methods to use when designing your next
application.

04 9971 CH03 10/11/00 1:05 PM Page 89

90 Chapter 3 Application Design: A Real-Life Example

Many of the boxed notes in this chapter contain remarks about techniques
common to application design that you should memorize and try to use directly on
the suggested example (or phpChat in general), and indirectly on your next project.
Note: Another, more theoretical but shorter discussion about application design can be
found in Chapter 7,“Cutting-Edge Applications.”

Project Overview
When designing an application, you start with the idea of what the application is
supposed to do. In the case of phpChat, the application is supposed to provide a
browser-based chat service.

The chat should have the following features:
n Real-time chat. No deferred relaying of messages and no refreshes.
n No client-side programming. The browser should be confronted only with

pure HTML (and eventually some JavaScript).
n Networkable. It should be possible to link chat boxes.
n Generic. Make as few assumptions about the target systems as possible and

introduce as few requirements as possible.
n No design enforcements. Separation of code and page layout.
n Easy to use and administer.

n Unlimited number of clients and chat rooms.

Once you’ve gotten this far and know what your application is supposed to do, you
have to evaluate the concept and create a more detailed overview of how the
application should be laid out.

Take the time to write down all the requirements. It helps a lot, especially as a
reminder later on.

04 9971 CH03 10/11/00 1:05 PM Page 90

91Comparing Technologies

When designing an application with a customer, this step is called creating the
specifications (or just specs).At this point, the customer can still influence the layout
of the application.This is very important because the application must meet the
requirements listed in this step, or it won’t be approved by the customer.

For this project, you will take the role of the project manager and the authors will be
your customers. Since we’re nice customers, we won’t keep insisting on nailing down
further details of this application; we’ll leave the rest of the design to you.Whenever
this chapter hits a point where a choice or decision can be made, sit back and try to
make your own choices. Closely evaluate all facts and then compare your results with
the conclusions discussed in the book.

Comparing Technologies
Before even starting to think about code layout, there’s a phase we don’t know what
else to call but “getting things together.”This is the intermediate step between the idea
and the specs/code layout stage—figuring out the inner workings and on what to
base them.

To make it clearer, let’s go back to the very beginning:
n What do we want to create?
n How are we going to create it?
n Are there any existing implementations of our idea already?

The Customer Is Always Right, Even When He’s Wrong

Customers who contract you for an application often do not have enough
expertise to design such an application by themselves, which is why they hire
you.When discussing requirements with customers, guide them when they’re
suggesting bad solutions. For example, if the customer says,“I want a chat
that displays full-screen images of every chatter, refreshed at least every second,”
you might make this counter-suggestion:“Wouldn’t it be better to try to stick
to thumbnail views next to each line? Most of your chatters won’t have enough
bandwidth to display full-screen pictures at all.”

But be careful; never insist on your point of view (except when customers want
you to implement unrealistic features).After all, customers pay you to
implement their vision.To avoid losing a contract, you may have to accept
temporarily implementing a bad solution (when you see that you can’t talk the
customer into doing it the right way), and then later on change it when the
customer sees that it won’t work out using their strategy.

04 9971 CH03 10/11/00 1:05 PM Page 91

92 Chapter 3 Application Design: A Real-Life Example

n Do similar systems exist that perform almost the same task?
n If so, can we reuse anything from that design?
n Can we reuse foreign techniques, maybe add up to our system with them?

Questions over questions.
The first is easy to answer.We want to create a chat system. How? Well, with PHP,

and somehow server-side—we don’t know much more about it at this time.
Are there already any chat systems or something similar out there? Indeed there are.

It starts right at your shell—the “talk” command allows you to chat with other people
that you can reach via a valid network link (or local link), as shown in Figure 3.1.

Figure 3.1 The traditional “talk” command.

04 9971 CH03 10/11/00 1:05 PM Page 92

93Comparing Technologies

Of course, this isn’t as powerful as we’d want it to be, but it’s a start. Next, we could
surf the Web to look for pages that have one of the (nowadays almost obligatory) chat
links.Although they differ widely in look and feel/implementation, most of them can
be boiled down to the following:

n Java for fancy interfaces, although some use plain HTML.
n A proprietary protocol with a single server (or simply database-backed).
n Few predefined rooms.
n Few predefined commands.

Apart from these chat setups, there are chat applications and networks such as
Mirabilis’ ICQ or the diverse Instant Messaging Systems—systems that don’t always
provide real-time services and generally require additional proprietary client software
to be installed on every participating system.

However, one system stands out from the list. IRC (Internet Relay Chat) is a widely-
known and long-used chat protocol used by many networks, some of which carry
hundreds of thousands of users simultaneously.The IRC protocol is text-based—a
drawback when operating under high load (long string commands generate much
more traffic than single binary characters), but this also makes it significantly easier to
process. Most current IRC servers support compressed backbone links, which greatly
reduce traffic.

Although IRC requires special client software on every participating system, we can
“tweak” this requirement to our advantage:Why not provide the client software
ourselves server-side, and abstract it by using an HTML interface and allowing each
user access to the network through an HTML client? This would give us control over
what the user can do (each user is required to use our HTML client).Additionally, we
have all the advantages of an existing network system: reliable client software, proven
concept, hundreds of tools, etc.We could even allow users to use their own client
software—an option to be avoided in most cases, however, as we want to create a
“closed” chat network. On a closed network, you know every way that each client can
access your network. By limiting the access points to specific setups, you greatly
reduce the risk of being attacked.

This directly leads to the question, do we need a real protocol such as IRC? Or
would it be sufficient to simply use a database-driven protocol, with a remote
synchronization feature to provide the requested networking abilities?

Questions such as this will arise every time you plan an application, and they’ll
arise often. Make sure that you’ve got all of them covered, and make sure that no
questions will arise at a later stage during development. This is the point where
you can still address these questions; later on you might be unable to resolve
them (and eventually get your project kicked into the trash).A good project is a
project without doubts, without uncertainties, without inconsistencies, and
without unforeseen eventualities. Make sure that after your planning phase you
can assure a stable, fully evaluated situation!

04 9971 CH03 10/11/00 1:05 PM Page 93

94 Chapter 3 Application Design: A Real-Life Example

So let’s get back to answering the question: Do we need an open (and perhaps too
complex) protocol such as IRC, or should we stick with a conventional database
approach? The simplest method to find an answer is also the most logical one—
compare pros and cons and choose the option with the best results.

Implementing IRC as a protocol into the chat system will introduce a significant
amount of complication because of protocol processing—processing network protocols
requires nonlinear coding, something that isn’t really supported by PHP. (To react to
network messages, we need an event-based system.) On top of that problem, we’d
need a way to handle message exchange efficiently; that is, dealing with messages from
a user and for a user (which, unfortunately, may not always be handled in the same
way).This problem exists in the database-backed solution, too, of course, but the
database-backed solution doesn’t require protocol handling.A lot of databases are
supported natively by PHP, and those that aren’t are most likely supported indirectly
by ODBC.To gain the ability of networkable chat boxes, we’d only need to create a
tool that can synchronize between chat boxes. (Unless you only want to run one
central database server that’s accessed by all boxes simultaneously.)

What would you choose?
Spoiler: phpChat is based on IRC, and this is why:

n Using a database, we’d introduce some kind of “proprietary,” private protocol
that wouldn’t be able to interface to other standard systems. In times of
interoperability and interconnectivity, this is a bad thing.

n An IRC library that functions well (namely phpIRC, see
www.phpwizard.net/phpIRC) abstracts access to IRC networks into a set of easy-
to-use API functions—and makes IRC handling equal to database handling in
terms of code complexity.

n Existing IRC server software handles all the itsy-bitsy teenie-weenie problems of
user management, reliable traffic forwarding, routing, etc., across networks.The
software has been around for a long time and is proven to work, plus it’s
available for all types of systems.

n IRC is extremely scalable. If you run into load problems on server A at peak
times or due to unforeseen events, simply fire up server B and dynamically
establish a server connection into the existing chat (IRC allows you to do so,
and is fully automated)—and you now have another server with enough free
capacity for additional users.

04 9971 CH03 10/11/00 1:05 PM Page 94

95IRC Network Basics

IRC Network Basics
Having chosen a communication standard for the chat, we should take a look at how
exactly IRC networks are built.

Ideally, you should have evaluated the IRC network basics discussed in this
section prior to choosing IRC—since it’s a bad thing to find out that IRC
introduces a complicated structure after already having made the decision to use
it.To this point, however, we’ve been working with “common knowledge”
about using IRC networks, just for the sake of application planning. Now that
we’ve led you to the “right” method to use for the application (IRC), this
section provides the details you need to execute that plan.

IRC networks distinguish between clients and servers. Users can participate on the
network only by using a special client software that establishes a client link to a server.
All servers on the network are interconnected using special server links. Current
implementations of IRC servers only support hierarchical structures, meaning that
there must not be redundant ways to reach a server.This forms the net into a tree-like
structure prone to network splits, but also greatly simplifies routing:All servers simply
have to send all incoming data to all other links, without fearing to send redundant
information to a server.

Each server can have a number of clients; the maximum number depends on the
number of connections the server is willing to accept (of course, limits also exist in
terms of network capacity and server load).As shown in Figure 3.2, each server can
reach every other server across more or fewer server hops, so each server simply sends
all incoming data to all outgoing links. For example, Server C and Server F might
carry clients participating in the same channel (channels are IRC’s chat rooms—places
where people can “meet” and “talk”). In this example, Server C would send the data
via the only link it has: Server B. Server B then distributes the data to its other links,
namely Server A and Server D. Server A doesn’t have any other links, so it won’t do
anything, but Server D would pass on the data to Server E, and Server E in turn to
Server F. Pretty easy to implement, but with one drawback: If Server A doesn’t have
any clients connected to it participating in the channels to which Server C sends data,
all data for Server A targeted at this channel would simply waste bandwidth.

RFC for IRC
Similar to all open standards on the Internet, the basics of the IRC protocol have been specified in an

RFC (Request For Comments). The RFC for IRC is RFC 1459, which can be retrieved, for example, at

www.irchelp.org, a site that carries a lot of information on IRC.

04 9971 CH03 10/11/00 1:05 PM Page 95

96 Chapter 3 Application Design: A Real-Life Example

Figure 3.2 A sample IRC network structure.

This is one of the main problems of this “limited by design” network:All public traffic
has to go to all servers. But will this problem really arise under the conditions in
which we intend to implement our IRC network? Surely not, as the number of
clients we intend to handle will never be so large as to be harmful, given a standard
server-hosting situation. In internal networks, this problem shouldn’t arise at all.

To reduce the total number of critical links, the network can be laid out to follow
its physical topology. If one server is connected with higher capacity than the rest, for
example, it can take more leaf nodes than others (connecting lots of leaf nodes to a
server with a small backbone wouldn’t even make sense).Another option is to set up
the routing to fit the network. For example, U.S. servers are homed in the States,
German servers are homed in Germany, and so on. Frankfurt has an overseas link to
New York; thus, the IRC server in Frankfurt should link to New York’s server
(following the network’s physical layout). It could also be done in another way:
Frankfurt could link to, say, Poland. But if Poland doesn’t have its own overseas link,
the traffic routed from Frankfurt to Poland would need to find some other way to
cross the ocean—it would be routed to some other country (or even two or three
countries) until it finds a free overseas link.This additional routing wastes a lot of
bandwidth; thus, attempts are being made to adapt the IRC network structure to best
fit the underlying physical network structure.

These design problems are present only in the biggest networks, carrying tens of
thousands of users.These networks really need to find reliable links for their
backbones.Typical Web-based chat rooms or networks are unlikely to carry more than
1,000 clients at once, so you shouldn’t run into serious problems at first.To avoid
complications, however, it’s a good idea to plan around these sorts of problems that
may arise eventually.

From a server’s point of view, the network looks like Figure 3.3.

Server B

Server C

Server D

Server A Server F

Server E

04 9971 CH03 10/11/00 1:05 PM Page 96

97Fitting the Application into the Network

Figure 3.3 Network structure from a server’s point of view.

The structure implemented here is similar to a mixture of a multiplexor,
demultiplexor, and a hub. In the direction client to network, the server compresses
all data from the clients and sends it to the network links. In the other direction, it
determines which information from the network is important for which client and
sends it to the appropriate link.All incoming data from the network that has to be
passed on to the other network links is sent on directly.

Basically, this is the setup we’d need for our own chat system. Now take a minute
and try to imagine how we can achieve our goal.We need a working server
environment that fits the following description:

n Accepts IRC network links
n Accepts IRC client links
n Provides a Web-based user interface
n Is as easy to implement as possible

Fitting the Application into the Network
If you came up with a plan to develop your own server in PHP (or something
similar), rethink a bit.You might have gotten a bit confused with the idea that
implementing a chat server means implementing a network server.This is indeed
something we wanted to lead you to, but don’t want you to do, as this is simply
unnecessary—there’s already a well-written server software available for all systems. So
how about using one of the existing servers and representing our server to the
network as a client? The only thing we’d have to do is to add another layer of
abstraction to the network, as shown in Figure 3.4.

Multiplexing

Client 1
Client 2
Client 3

Client n

S
e
r
v
e
r

Network link

Network link

Hub

Demultiplexing

...

04 9971 CH03 10/11/00 1:05 PM Page 97

98 Chapter 3 Application Design: A Real-Life Example

Figure 3.4 phpChat as an abstraction layer to the server.

The Web server will run the PHP chat server. For each client connection it accepts, it
will create a client connection to the IRC server.This way, we can make sure that all
data we get for this client is meant only for this client—and nobody else. Each chat
process will carry a single user, and doesn’t have to worry about other users. User
coordination, traffic control, and so on can be done by the IRC server, for which we’ll
simply take one of the freely available servers.

This technique also has the advantage that this chat server application can be used
as a safe gateway to IRC networks (see Figure 3.5).A lot of corporate and private
networks are behind firewalls that filter IRC ports. Since this chat is only
communicating via HTTP to its clients (which is not filtered), only the chat server
itself needs an open connection to an IRC server.

Therefore, the only thing we’re going to do is to implement the client software that
would otherwise be required on the user’s side on our Web server. IRC knows all the
commands that are required to set up a powerful chat, and the networking issues can
all be solved by using standard “off the shelf ” server software that’s already available.
Thus, if our interface supports all features of IRC in a convenient way, we’re done
with our work.

Client 1
Client 2
Client 3

Client n

W
e
b

s
e
r
v
e
r

Network link

Network link
...

I
R
C

s
e
r
v
e
r

Client 1
Client 2
Client 3

Client n

W
e
b

s
e
r
v
e
r

Network link

Network link
...

I
R
C

s
e
r
v
e
r

F
i
r
e
w
a
l
l

HTTP
Port 80

HTTP
Port 80

IRC
Port 6667

Figure 3.5 phpChat as a safe IRC gateway.

04 9971 CH03 10/11/00 1:05 PM Page 98

99Interfacing the Network

Interfacing the Network
As we mentioned earlier, IRC requires some processing overhead. Hacking a complete
protocol handler for interfacing with IRC is a bit of a complex task, but we favored
IRC instead of the database-backed solution because an API already exists that does
this work for us.

Exercise for the Reader
Search for applications/libraries written in PHP that make use of IRC and compare them in terms of

design, flexibility, and ease of use. Of course, the implementation is also interesting (but shouldn’t be

your main focus). The design is always the most crucial part of development; after the design is finished,

the actual implementation is usually straightforward and easy to do (even though a lot of programmers

think differently).

Know the market! It’s essential for every programming project to know which
parts have already been done by other people and which still need to be done.
Never reinvent the wheel! Especially for commercial projects, it can pay off
tremendously to buy foreign bulletproof solutions for specific tasks, rather than
design and develop one yourself.The latter is sometimes more expensive and
much more time-consuming. On top of that, external solutions are usually
constantly being improved—a process that’s totally independent of the progress
of your own project. By receiving an upgrade from an external company, you
simply replace a part of your application with a newer version.This way, you
can upgrade certain parts of your application without having to put your own
work into the changes. Plus, when using existing libraries, you automatically
agree to build your project on common, standardized APIs, which is always a
great benefit.

On the other hand, binding yourself to foreign products can prove to be a
negative decision if the producer fails to improve the product or keep it up to
date, as well as if bugs in it aren’t corrected.

In our experience, Open Source products have been the most successful
external parts to be integrated. Open Source products are being improved and
extended extremely rapidly and are usually oriented at common and open
high-potential standards.

04 9971 CH03 10/11/00 1:05 PM Page 99

100 Chapter 3 Application Design: A Real-Life Example

The library we’ve chosen for this project is phpIRC (www.phpwizard.net/phpIRC), for
these reasons:

n It’s easy to use.
n It’s a powerful, complete API.
n It uses event-based processing.

The use of event-based processing is particularly interesting here.This is a technique
usually implemented in traditional applications; for example, all Windows programs are
event-based. Event-based programs run in an endless loop, waiting for something (an
event) to happen. Events can include user input, mouse movements, network events
(incoming packets), etc.As soon as an event is signaled, the program breaks out of its
main loop and searches for a procedure that handles this event.All procedures that
want to handle the event that just occurred are called with the specific parameters of
the event (for example, packet data of incoming network traffic).

Concretely, using “traditional” programming, an incoming ping would be handled
as shown in Listing 3.1:

Listing 3.1 Pseudocode for handling a ping.

again:

wait_for_network_data();

if(incoming_data == ping)
{

send_pong();
update_traffic_counter();

}

goto again;

This code waits until it receives data from the network, then tries to find out whether
the data was a ping. If so, the code sends a pong back and updates a traffic counter for
statistical reasons.After that, it just jumps back to where it began. Imagine this with
hundreds of events, some of which might depend on others, some not, some only
under certain circumstances…A pain!

However, event-based programming makes it significantly easier, as shown in
Listing 3.2:

Listing 3.2 Event-based pseudocode for handling a ping.

event_handler ping()
{

send_pong();

04 9971 CH03 10/11/00 1:05 PM Page 100

101Interfacing the Network

}

event_handler incoming_data()
{

update_traffic_counter();

case of ping: handle_event(ping);
}

while(not_done())
{

wait_for_event();

case of network_data: handle_event(incoming_data);

}

The code looks bigger, but also much clearer.The main loop waits for an event to
happen. If it finds that an event happened and that it was triggered due to incoming
network data, it dispatches this event using the central procedure handle_event().
This function then determines a handler for the event and calls it.The handler in turn
updates the traffic counter and launches another event if the first event was a ping.
After dispatching the event using handle_event() again, a pong is sent.

Alternatively, both ping() and incoming_data() could register themselves to
the event “incoming_data”. However, creating two different events gives a
greater variety of events and thus allows for much more detailed, target-
oriented processing.

It’s a bit strange at first getting used to event-based processing of information (it works
similarly to a finite-state machine), but it has many advantages:

n A modular structure is forced on the application. Each module works indepen-
dently of the other modules and can easily be changed, exchanged, or extended.

n Any part of the program can trigger any kind of event and thus enforce any
type of reaction in the application (in other words, you can control any part of
your code from any other part of your code).

04 9971 CH03 10/11/00 1:05 PM Page 101

102 Chapter 3 Application Design: A Real-Life Example

n From one central point of the program, all data can be dispatched to all
recipients transparently.You don’t have to worry about manually copying
and transforming structures; each event handler takes care of receiving its data
on its own.

n New code can be plugged into the application extremely easily, just by creating
a procedure that registers itself to the appropriate event.

Thus, once the main event-dispatcher framework is created, the whole application can
be created by writing handlers, handlers, and more handlers.

Main application

Program entry point

Passing control to
phpIRC

phpIRC

Initialization

Setup

Incoming
network data

Outgoing
network dataCallback 1

Callback 2
Callback 3

Callback n

.

.

.

Figure 3.6 phpIRC’s forced application layout.

Get familiar with the techniques used to implement finite-state machines.These
are elemental in programming and information processing in general.

Luckily, the event-dispatcher framework is already contained in phpIRC, so we won’t
need to do that programming for this project.

Interface Structure
phpIRC forms the IRC client part of the application and is responsible for all
network communication.This means that it also needs to be in control all the time to
be able to react to network messages in a timely manner. If phpIRC’s message-
processing functions were activated only occasionally, safe, secure, and speedy
communication couldn’t be guaranteed. For this reason, phpIRC forces a special
program layout, as shown in Figure 3.6.

04 9971 CH03 10/11/00 1:05 PM Page 102

103Interfacing the Network

After doing initialization and setup, the application has to surrender control to
phpIRC. phpIRC then enters its main event loop and waits for something to happen.
During setup, the application has to register callbacks for each event it wants to
process (for example, incoming private messages, incoming server messages, and so on).
These callbacks are the only possibility for the application to regain control. phpIRC
then dispatches all events to all functions that have registered themselves with the
library.These functions can in turn enter another idle loop in phpIRC to wait for
another event to happen, or they can use phpIRC’s API to perform certain actions on
the network (send private messages, join/leave channels, and so on).

This very basic layout already allows for downstream communication, which means
that phpIRC is able to receive messages from other users. People could actually “talk”
to your script.

Note: Downstream means from the network to the user. Upstream is the opposite,
from the user to the network.

Exercise for the Reader
Structure a downstream interface that makes use of phpIRC’s features.
Implement it on paper to become familiar with phpIRC’s API.Then build a
simple downstream interface that logs onto IRC and displays all messages from
a specified channel.

Downstream Communication
Since chatting is a real-time task, meaning that it happens as you do it and causes
instant replies, we don’t want to introduce latency into the interface. Latency describes
the reaction time of the interface; for example, the time from the point when the
reader presses the Enter key to submit a message until it shows up in the chat window.
Even though a latency of less than a second might objectively be a very short wait, it
seems extremely long and annoying to the user. Ergo, incoming messages must be
displayed at once (or at least as soon as possible). HTTP is a stateless protocol,
however, and doesn’t allow instant updates of pages without reloading a complete
document. Of course, there are multipart documents and automatic refreshes, but these
options introduce a very nasty flicker each time the page loads again, require database
buffering for output, and introduce lag because of constant reconnects and data
transfer from the Web server.

One solution is “streaming HTML,” something that’s not officially supported
anywhere, but works nevertheless:The script that does the interface output simply
idles in an endless loop and doesn’t terminate the HTML page the browser is
receiving.When something has to be sent to the user, it’s printed and immediately
flushed from the server’s buffers.This way, the browser is constantly rendering and
always displays the most up-to-date data. One problem persists in this approach,
however; no complex HTML entities can be rendered on the fly. For example, you
can’t output the rows of a table one by one, because the browser requires all rows and

04 9971 CH03 10/11/00 1:05 PM Page 103

104 Chapter 3 Application Design: A Real-Life Example

Streaming HTML also has one implication that some see as drawback and some as
advantage: Since the client connection stays open, there must always be one server
process handling it.This means that every client requires at least one Web server
process to be running only for that client.The advantage is that no overhead “per hit”
occurs. Usually, when the client requests a document, a new process has to be
spawned; the script generating that document has to be loaded, parsed, and executed;
and finally, the data has to be sent. Since the server process now remains in memory,
however, spawning, script loading, and interpretation only have to be done once per
client. On sites that would otherwise have hundreds of hits per second, this might be a
definite advantage. However, each process now stays resident in memory and demands
RAM for itself—on Intel x86 systems equipped with Linux,Apache, and PHP 4.0,
such processes tend to be as big as 2MB each. Consequently, a small server with
minimal RAM on board would soon start to run from swap—and that means death.

Note: Swap memory is virtual memory that’s meant to extend the RAM—the
physical amount of memory on a computer. Swap memory is stored on a hard disk,
which is extremely slow.When physical memory is all used up, modern operating
systems start allocating new memory in the slow swap memory. If a chat server gets hit
by a lot of clients at once, which eat up all physical memory and start running in swap
memory, the operating system will constantly have to exchange parts of the RAM
with parts of the swap memory (since programs can’t be executed from swap
memory), and this starts a “cycle of death”:The operating system notices that a process
in swap needs to be run and loads it into RAM, but has to put another running
process from RAM into swap. It executes the process in RAM but finds the old
process (now residing in swap) has to be run, so it swaps it back into RAM, and so on
and so on.You can quickly kill a server this way, forcing it to be reset or taken off the
net. By the way, this is also a common “denial of service” attack, a bit similar to the
ones that Yahoo! and others were exposed to earlier this year.

columns of the table to be present completely to determine the final size of the table.
As long as you restrict yourself to outputting text lines one after another, and only use
tables when you can print them all at once, everything works fine.

Would you have thought about the implications of resident processes? If not,
make sure you do next time! Keep evaluating every situation fully.

Upstream Communication
Upstream communication—that is, accepting user input and sending it to the
network—is the next stage to consider.

Quirks such as streaming HTML are common tricks that you should know.
Always keep yourself informed about such things.

04 9971 CH03 10/11/00 1:05 PM Page 104

105Interfacing the Network

Here’s the hard part:We can’t send data to the IRC network from just any process.
Why not? Because IRC is a state-sensitive protocol, communication is bound to a
specific client connection. PHP doesn’t allow taking over foreign sockets from other
processes; thus, the main process that also handles downstream communication (the
process that acts as IRC client) runs isolated from all other processes.The question
now is how we can open a door to pass data into the main client.

How would you implement upstream communication? Make at least a
theoretical approach. Draw the dataflow on paper. If you haven’t done so
already, write down at least three possibilities for runtime data exchange.

The downstream process must keep running and may not be terminated.We can’t
simply reinvoke it using a POST or a GET for passing data, since that would mean
launching another process, with the need to re-login, re-setup, etc. Using such an
approach would result in constant login/quit sequences that would be extremely
disturbing in a chat.And it would result in data loss, since during the time between a
logout and a login, lots of messages could be transmitted (which would be invisible to
the newly logging-in client).

The chat could be based on a single bot that stayed online all the time and
recorded all messages for all users into a database.The user interface would then
only need to extract all meaningful data from the database. However, two
problems stand against this possibility: a) The chat would be mainly database-
backed (something we wanted to avoid); and b) It wouldn’t make the clients
visible to other IRC clients, as the bot would be the only “real” client on the
network.This would make usage of the IRC network ridiculous.

Thus, we need at least two independent processes: one that handles the IRC
communication and can’t be interrupted, and another to accept incoming messages
from the user. Some sort of “container” must then be used to interface between the
two processes. Figure 3.7 illustrates this problem.

04 9971 CH03 10/11/00 1:05 PM Page 105

106 Chapter 3 Application Design: A Real-Life Example

Input field Data exchange container ("door") Main process

Figure 3.7 Upstream communication.

The situation can be compared to a car race.The driver racing on the track is the
“main client” and the racing team in the pit is the user input field.The driver is
bound to the race he’s in; he can’t just leave the track and stop to see what’s going on.
Whenever the racing team flags him in for a pit stop, they “interface” to him—giving
him a signal to make a break after the next lap.

What’s being done is (leaving radio communication aside) to signal every time the
driver passes the finish line.This signal works as the “interface” to the driver. Basically
this is what we need to do, too—signal to our main process. Since the main process is
event-based, we frequently get the chance to take control over the application and do
what we want to do.This means that we can install a handler that “looks” frequently
for a signal from the outside.The method to periodically stop and check for incoming
data is called polling and will be the preferred method for phpChat. phpIRC features
idle callbacks, which get invoked every time phpIRC has nothing to do and simply
waits for something to happen on the network.Tagging a handler to this event enables
us to watch out for a signal. Now, how are we going to signal something? This is
actually pretty easy, using one of the following methods:

n Set a flag in a database.
n Create a lockfile in the file system.
n Use semaphores.
n Set a flag in shared memory.

These are basically the methods that we have with PHP to “leave a message.”
The following sections describe each method.

Pipes can’t be used for interprocess communication here, because a pipe
requires two processes to be running at the same time. Our situation requires
interfacing one constantly running process from other, short-term processes.

Note: Of course, more exotic methods are available, such as sending emails between
processes.We’ve seen people doing this, but we won’t go into that option here, as the
disadvantages should be clear to the reader.

Setting a Flag in a Database

Setting a flag in a database is probably the de facto standard method for PHP users:
Connect to a database, leave some data in it, let it be processed further by other
processes.This method is extremely easy to implement and is available on all systems,
but has a disadvantage. Can you tell what the disadvantage is?

04 9971 CH03 10/11/00 1:05 PM Page 106

107Interfacing the Network

The disadvantage doesn’t come from the database stuffer (the process that inserts
user messages) but rather from the database reader (the main process that retrieves all
user messages from the database).To achieve a good “chat feeling,” we need as little
latency as possible—and thus a very good response time.The response time is crucial
for Web-based chat, as this is how the user will actually feel “integrated” into the
action.When the messages come slower and slower, users quickly become frustrated
and quit. Our testing showed that a latency of more than a second is too much.To stay
below this value, the poll frequency in which the main process has to read messages
from the database must be very short; the default value in phpChat is 0.5 seconds (two
checks within a second). Now, as soon as a lot of clients have to be handled by the
chat system, the database gets quite busy and takes up more and more resources.At
about 40-50 queries per second, our test server spent about one third of its processing
time simply executing database queries. Even if this was a disqualifying benchmark for
the database system (it should have been able to process many more queries), some
optimization is obviously necessary, and this isn’t the ideal setup.

Creating Lockfiles

Our next idea was that, if the database took up too many resources when handling
interprocess communication, a file system might be more efficient.

But the file system clearly lost the race.Again, the stuffer wasn’t the problem—
creation of the lockfiles worked smoothly.To detect whether a lock was set, however,
lots of calls to clearstatcache() had to be done in order to correctly determine
whether a lockfile had been deleted or was still present. clearstatcache() had such a
hard impact on the system performance that we didn’t try to look further into this
option; the chat only worked at a quarter of the performance it reached using the
database-backed approach.

Create your own benchmarks. Make test scripts accessing the database and the
file system at high frequency.Write down your results and compare them.This
is always a good idea when evaluating data-exchange methods—never trust
theoretical descriptions of what the systems can be capable of ! In practice, most
things will look different.

Using Semaphores

Of course, the reasons for the poor performance of the former approaches are easily
recognized.

04 9971 CH03 10/11/00 1:05 PM Page 107

108 Chapter 3 Application Design: A Real-Life Example

When using a database, the bottleneck is the database: the time required to invoke the
database, let it execute the (relatively small) query, retrieve the result, and determine
what to do next (called the overhead) is pretty long compared to the result we’re
getting. In other words, we’re using a huge software system designed for complex data
storage to exchange simple, Boolean values—if there’s something a database was not
designed for, it’s this. No wonder it didn’t perform optimally; the bottleneck is the
overhead, the time required for setup and deinitialization.

The file system performed badly because it was not designed for this usage, and
because of other limitations: PHP doesn’t include optimal file-system access methods.
Determining the existence of a file requires constant cache invalidations and
recaching—again, large overhead for a trivial task.

So why not use something completely different? We’re surely not the first people
having to deal with interprocess communication; others must have come up with
good solutions for this already.And so we reach the next possibility: semaphores.

Semaphores do exactly what we want to do:They work as signals. Semaphores are
counters stored in shared memory.You can “acquire” a semaphore and thus increase its
counter, and you can “release” a semaphore, decreasing its counter.Additionally, there’s
the possibility of waiting for a semaphore to become free, meaning that its counter
falls back to zero.This option has one drawback, however: Semaphores were meant to
lock resources, to create some kind of scheduling mechanism allowing many processes
to wait for available time on a device, or something similar.Whenever you’re waiting
for a semaphore to become free, the process that’s waiting is put to sleep and cannot
perform other tasks. If the main process was waiting for the user-input field to signal a
new message, it would sleep and couldn’t process the incoming network traffic.

No reason to give up yet; people have come up with still other solutions.

Setting Flags in Shared Memory

Shared memory is similar to semaphores, but a bit more versatile; shared memory is
memory that’s available to every process in a system. Multitasking systems are usually
designed in such a way that each process is running completely isolated from other
processes for security reasons. Different processes can share data by setting up and
connecting to special memory blocks, namely shared memory blocks.These blocks can
then contain variables (or any other kind of data, but PHP only supports storage of
concrete variables).

What are the reasons? Try to find and write them down.Try to find the critical
points—this is crucial when having to optimize later on.“A chain is only as
strong as its weakest link,” and software is only as fast as its slowest inner loop.The
process of finding these bottlenecks is called profiling and is extremely important.

04 9971 CH03 10/11/00 1:05 PM Page 108

109Interfacing the Network

This is exactly what we want: the ability to store a Boolean value in a place in
memory where every process can look at it. Since shared memory works (as the name
suggests) only in RAM, it’s extremely fast and requires almost no overhead.With this
option, every chat process looks for its own variable in shared memory and only issues
a query to the database whenever it finds that variable set by the user-input field.

Why is the data exchange still based on a database at the very end? Try to find
some answers.

The database is still being used for one main reason. Shared memory is not supported
by default in PHP; you need to specifically compile support for it into PHP. However,
many people with access to a PHP-enabled server don’t have the option of
recompiling PHP because they only rented space on the server, because they don’t
have sufficient rights, or maybe because others depend on a certain setup of PHP.
Leaving the database in as the final data-exchange path makes use of shared memory as
an optional optimization. People who can’t use it can simply disable it and still have a
fully working version of the chat server—operating at suboptimal performance, but
operating.

When creating an application designed for widespread distribution, keep in
mind that not everyone will have the same setup as you—and probably not the
possibility of re-creating your very special setup. Even though PHP is 99%
system-independent, some things do depend on the system. Carefully calculate
whether enforcing certain circumstances is worth a potentially huge loss of
customers.

Interface to the User
Now that we moved all the tricky parts with the data exchange out of the way, the
actual HTML interface to the user is trivial.We know how to accept input from the
user and how to deal with network communication.The last “problem” is packaging
the generated output for the user in a convenient way. HTML offers only one way
to have different windows act independently in one browser view: framesets.The
interface typically consists of the user-input field; the chat output field; a nickname list
(or just nick list), which shows other participating clients in the same room; and an
action panel to allow one-click control over the chat for actions such as nickname
changes, joins, parts, quits, and so on.These activities can all be handled by single
processes whose output will be integrated into a frameset.

04 9971 CH03 10/11/00 1:05 PM Page 109

110 Chapter 3 Application Design: A Real-Life Example

The main process, also responsible for the chat-output streaming, will keep state
information updated in a database that all other interface components can access,
retrieve, and display in a suitable fashion (see Figure 3.8).

User input

via shared memory

via database

Outgoing
network

data

Main IRC process

Incoming
network

data

via database

via frameset

HTML output
to user

Interface
components

(nick list, etc.)

Figure 3.8 The final application layout.

Interface to the Developer
An interface for developers? What does this have to do with chat? And how is it
supposed to work? Typically, most applications suffer from the disability of being
“solid,” meaning being either completely unmodifiable or difficult to modify by
foreign developers. In terms of end-user-oriented software (for example, desktop
environments such as Windows, KDE, MacOS, etc.), hardly anyone will ever find the
ideal solution. Similar to a chat system, most people who download it say,“Hey, great,
but it lacks this and that,” or “Cool, but I don’t like the way it does xyz.”

Without an easy, clearly exposed path for modification by anyone using it, most
applications end up in the trash. Most people won’t even try to work on a program
they didn’t develop themselves if the ease of doing so doesn’t hit them right in the face.

This means that for the chat application to consistently enforce independence of
code and interface layout (allowing an interface to HTML developers) and to
consistently enforce independence of data-processing steps, we need to create a solid
application core (the part of the application that nobody should ever need to change)
which interfaces to a distributed set of plug-ins (the part of the application that most
people will want to change somehow).

Think again about the importance of these enforcements.Would you like an
application to be designed like this? Would you even need it? Think about how
this could be realized.

04 9971 CH03 10/11/00 1:05 PM Page 110

111Interfacing the Network

Interface to HTML Developers
In terms of the HTML interface, abstraction of code and layout is done using
templates.This is the easiest possibility for tweaking an application to your needs, yet
it’s also the most powerful.Within seconds, you can change the look and feel—
without having to modify a single line of code. Everyone with basic HTML
knowledge could completely restructure the way the application would show itself to
a user.As this method is discussed elsewhere in this book, we won’t go deeper into it
here.To find more details about using templates, please read Chapter 5,“Basic Web
Application Strategies.”

Interface to Code Developers
Providing an interface to other developers is usually associated with the term API
(Application Programming Interface).APIs are normally provided by libraries (such as
phpIRC), but not by complete applications. But applications that have the capacity to
be extended by a programmer are much more successful than applications that must
be used “as is.” Of course, in terms of PHP applications, anyone can modify the source
code, but many people refrain from analyzing a complex system and applying
modifications to it.Thus, the application itself needs to expose certain ways of being
extended.

Note: We’re differentiating here between applications and libraries. Libraries are meant
to be used by applications, cannot be run stand-alone, and are generally much easier to
extend than applications.Applications consist of a full, closed system.

Try to find out how common applications can be extended. For example, for
your favorite text-processing tool, see whether the developers provided the
capacity to extend the tool’s functionality.

Two primary possibilities of extending applications have evolved: Either the
application provides scripting capabilities (similar to macros), or the application is able
to use plug-ins.As for PHP, implementing a script language in a time-critical part
of a system…we don’t need to think any further. On top of that, the complexity of
creating a full-fledged parser is way too much to ask. But plug-ins are much easier to
implement and have many advantages.A plug-in is a little piece of code that can
register itself with the application and catch certain events from it, get access to
internal data, and so forth.While integrating seamlessly with the main system, plug-ins
still remain isolated files that can be detached and spread separately.They can be
attached to the system without having to modify a line of code, which allows a system
administrator without any knowledge of PHP to extend the application by using
foreign code. Concretely, this is realized as shown in Figure 3.9.

04 9971 CH03 10/11/00 1:05 PM Page 111

112 Chapter 3 Application Design: A Real-Life Example

Figure 3.9 Chat system with plug-ins.

Plug-in A

registers itself

receives data from
Main system Plug-in B

registers itself

receives data from

Design your own plug-in-system, at least theoretically. Create a minimal
application that’s able to register plug-ins with itself and execute them.

When starting up, phpChat includes an include file, which in turn includes all wanted
plug-ins. Listing 3.3 shows how this include file works:

Listing 3.3 The plug-in includer.

//
//
// Plug-in Integrator
//
//

include(“chat_plugin_out_htmlspecialchars.php3”);

include(“chat_plugin_out_link_transform.php3”);

include(“chat_plugin_out_colorcodes.php3”);

include(“chat_plugin_clock.php3”);

include(“chat_plugin_cmd_basic.php3”);
include(“chat_plugin_out_basic.php3”);

//

Each of the plug-ins is built up in the same way, consisting of a main part and an
event part.The main part calls two functions in phpChat, with the following names:
chat_register_plugin_init() and chat_register_plugin_deinit(). Each function
takes as a parameter the name of another function, which should be called for plug-in
initialization and plug-in deinitialization, respectively.

phpChat adds these function names to an internal table. Upon initialization of the
chat, as soon as phpChat is fully set up, it makes a run through the initialization table
and calls the initialization function of every plug-in that registered itself. Similarly,
upon shutdown, it runs through the deinitialization table.This method allows signaling
the plug-ins to activate and deactivate themselves.

04 9971 CH03 10/11/00 1:05 PM Page 112

113Interfacing the Network

To be useful in the application, phpChat offers a set of events to which each plug-
in can attach itself. During plug-in initialization, each plug-in tells phpChat to send a
set of desired events. Events might include the chat being idle, the user submitting a
new message, the user clicking on a nickname in the nick list, an incoming message
from the network, and so on.

At runtime, the plug-ins can intercept these events and perform certain tasks.The
clock plug-in, for example, registers itself to the “idle” event and checks the current
system time frequently.After a predefined number of minutes, it announces the time
to the user.

For most events, phpChat also sends parameters (such as the message texts for
incoming messages), which the plug-ins are allowed to change. For example, the
list of plug-ins in Listing 3.3 includes plug-ins named htmlspecialchars and
link_transform.These plug-ins change the output of messages; htmlspecialchars
applies a call to htmlspecialchars() to all printed text (for security reasons, so that no
one can insert malicious HTML code into the chat), and the link transformer detects
all URLs and email addresses and prefixes them with or mailto:,
respectively, so that users can click links right in the chat window (see Figure 3.10).

Figure 3.10 The plug-ins at work.

04 9971 CH03 10/11/00 1:05 PM Page 113

114 Chapter 3 Application Design: A Real-Life Example

As you can see, plug-ins offer an extremely powerful way of extending a complex
system. Consequently, phpChat has abstracted most of its own internals into plug-ins
as well.The complete command interpreter has been moved into a plug-in, as well
as the complete set of text formatting/printing procedures.This means that there is
only a solid kernel that doesn’t have to be changed because there’s simply nothing in
there that would require changing—the rest can be freely modified, extended, even
removed, without any impact on system performance or operability. Have you ever
seen an application that doesn’t complain about someone deleting its files? Using this
technique, an application won’t complain—and will even dynamically adapt to it.

Plug-ins can be used in many ways, not just for chat programs. For example,
you could also build a portal site consisting of the traditional news page, an
email interface, etc. Using plug-ins, you can design a “site kernel” that handles
all basic issues such as providing page layout, database back end, sessioning, and
so on. Based on the site kernel, you can then create plug-ins for displaying
news, sending and receiving email, even for providing different methods of
logging in. Even if it’s quite an effort, we encourage you to create a plug-in-
based application as an exercise. It will be worth the work.

Listing 3.4 shows a plug-in template implementing a “dummy” plug-in as code base
for new plug-ins.

Listing 3.4 A plug-in template.

<?

//
// Use these variables to tell the plug-in installer how you named your
// initialization and deinitialization functions. This is done to eliminate
// the need for changing the installer code, which would ask for errors.
//
$plugin_init_function = “myplugin_init”;
$plugin_deinit_function = “myplugin_deinit”;
//
//
//

//
//
// myplugin_idle_callback(int code, mixed parameter) - example callback
//
//
//

04 9971 CH03 10/11/00 1:05 PM Page 114

115Interfacing the Network

// This is an example for a callback function. See below on how to register
// and remove it from the call chain.
//
// $code specifies the reason for invocation, $parameter contains all callback
// information.
//
// The return value should always consist of a modified or unmodified version
// of the input parameter $parameter. The return value is used as input
// parameter for the next callback. This allows for multi-stage message
// processing and such.
//
//

function myplugin_idle_callback($code, $parameter)
{

return($parameter);

}

//
//
// myplugin_init() - initializes this plug-in
//
//
//
// Put all your initialization code in here. This code will be called as soon
// as the main bot is all set up with connecting and callback installation;
// thus, you can rely on a safe environment.
//
// Although the return value is currently not used, “0” should indicate
// initialization failure and “1” initialization success. This might be used
// later on to enable plug-ins to stop the current chat session right after
// login.
//
//
//
// Return value:
// 0 - error
// 1 - success
//
//

function myplugin_init()
{

// register callbacks here
chat_register_callback(CHATCB_IDLE, “myplugin_idle_callback”);

return(1);

continues

04 9971 CH03 10/11/00 1:05 PM Page 115

116 Chapter 3 Application Design: A Real-Life Example

}

//
//
// myplugin_deinit() - deinitializes this plug-in
//
//
//
// All deinitialization code should go here. This function is called before
// the bot goes down; thus, all network connections are still active.
//
// Although the return value is currently not used, “0” should indicate
// deinitialization failure and “1” deinitialization success. This might be
// used later on to force delayed shutdowns.
//
//

function myplugin_deinit()
{

// remove callbacks here
chat_remove_callback(CHATCB_IDLE, “myplugin_idle_callback”);

return(1);

}

//
//
// NOTE: DO NOT CHANGE ANYTHING BELOW THIS POINT!
//
//

// installer code starts here

// register initialization function
chat_register_plugin_init($plugin_init_function);

// register deinitialization function
chat_register_plugin_deinit($plugin_deinit_function);

// installer code done

//

?>

Listing 3.4 Continued

04 9971 CH03 10/11/00 1:05 PM Page 116

117Administration and Security

The main code registers the initialization and deinitialization routines for this plug-
in.The plug-in initializer then installs the callbacks this plug-in wants to intercept,
and the deinitializer removes them.

Administration and Security
No system is a good system if it can’t be administered.The days when “Netiquette”
made it a point of honor to be polite and integrate oneself into the community are
long gone. Nowadays it’s common to be exposed to hacks, harassment, and other
forms of attacks—and unfortunately, most of them don’t stay at the verbal level.There’s
hardly anything to say against digging for security leaks and other holes in an
application or network system. Constantly exploiting them, however, is worthy of
condemnation, yet a lot of people consider it “fun.”This demands an external
interface, running independently of the main system, which allows full control over all
of the application’s data and users. In terms of a chat system, this means that we need
to be able to kick users, moderate their messages, and secure chat rooms.

Note: Not all features listed here are implemented into the code on the CD-ROM.
The basic administration system is complete and fully functional, but we’d like you to
exercise and extend the code base with the features you feel appropriate. If you haven’t
made significant extensions to larger applications, we honestly urge you to gain the
experience now.

The question for our chat program is this:Where do we fit in the administration?
We have a few possibilities:

n At network level: We could filter users connecting to the server.
n At PHP level: We could prevent users from logging into the chat.
n At database level: We could discard messages from users from the database.
n At IRC level: We could use IRC’s native network administration features.

Network Level
Securing at network level only allows two possibilities: letting a connection through or
not.This could be realized using a firewall or other possibilities of IP masking.This
method is limited, complicated, insecure, and in general not what we want.

PHP/Web Server Level
Securing at the Web server level basically allows connection to the server but restricts
clients from logging in using password protection (or different methods of authen-
tication). Basically it again boils down to letting a connection through or not, which is
not really satisfying.

04 9971 CH03 10/11/00 1:05 PM Page 117

118 Chapter 3 Application Design: A Real-Life Example

However, this method can be used to emulate user bans.The common bans for
IRC, namely K-lines and G-lines (local and global bans of users), cannot be used with
a Web-based chat system, as all connections originate from the Web server.The only
ban-able address would be the address of the Web server, which would completely ban
the whole interface from the network.To still be able to filter out special users,
connections should be evaluated at the PHP level.

Database Level
The database level is a totally different approach. Clients are allowed to log in and
chat, but their messages and session information are filtered in the database. Either an
external tool or the chat code itself would check for the user to be allowed to say or
do something and, based on this info, allow his/her messages to be inserted into the
database—or not. But this strategy requires a very tight integration into the main chat
code, is not very flexible (and kind of clumsy), and is inelegant to implement.

IRC Level
IRC provides native administration features built into the server code and network
protocol (we hope you read the RFC and are familiar with these possibilities).
Administration can even be done by regular users.Three levels are available:

n Channel operators. These operators have administrative control over channels.
They can kick users,“mute” them, ban them, make other users into operators,
and such (this level is available to all users).

n IRC operators. These operators have administrative control over the network
(but not channels).They can kill users from the net, ban them, establish network
links, and so on (this level is only available to special users).

n Services. Services have administrative control over channels but no control over
the network, and are not able to perform like regular users.They also require a
special login procedure (this level is only available to special users and is meant
for automated clients).

As you can see, administration at IRC level can be done using a client running
separately from the main chat system.A separate client with IRC operator and
channel operator status would give the ideal combination of features that we need an
administration system to have. Basically, only IRC operator status is needed initially,
since as soon as the administration client has gained IRC operator status, it can gain
channel operator status everywhere by killing all users from a channel.This is not a
very nice method, but more effective and versatile than patching the IRC server code
to give IRC operators equal rights to channel operators.

04 9971 CH03 10/11/00 1:05 PM Page 118

119Summary

Implementation
The implementation of the chat administration is designed to be quite similar to the
main chat script.A bot is launched, which, with the help of phpIRC, logs into IRC
and tries to register itself as IRC operator.Then it waits for further commands from a
Web interface.These commands are issued like those in a database-backed RPC
(remote procedure call).The bot will frequently query a table in the database that
contains input commands for it.The commands are put into the database by the Web
interface and consist of a function name, a session ID, and a parameter array.Whenever
the bot finds a new command in the database, it executes it and writes the command
results in an output table along with the session ID.Thus, the Web interface just has to
write a command with a self-generated session ID and then only needs to wait until a
result dataset with the same session ID pops up in the output table (see Figure 3.11).

This method allows flexible remote control over the bot.

Web interface

send command via database

answers via database
Bot process

User input
Perform actions on the network
according to instructions received
from the database

Figure 3.11 Database-backed RPC control over the administration bot.

Summary
In this chapter, you’ve learned from a real-life example how to plan a development
project.We’ve outlined the typical stages of development:

n Analyzing the requirements.
n Choosing an appropriate technology.
n Defining interfaces and APIs.
n Implementation.

You’ve followed us through the whole development phase, and we’ve drawn
conclusions from our example that are applicable in most software projects.With this
background, you’re ready for the next part of this book, and we’ll introduce you to
some important concepts of Web applications in the next chapter.

04 9971 CH03 10/11/00 1:05 PM Page 119

04 9971 CH03 10/11/00 1:05 PM Page 120

