HoOUR 9

Creating Relationships

A relationship exists between two tables when one or more key
fields from one table are matched to one or more key fields in

another table. The fields in both tables usually have the same name, data
type, and size. Relationships are a necessary by-product of the data normal-
ization process. Data normalization, introduced in Hour 7, “Designing
Databases,” is the process of eliminating duplicate information from a system
by splitting information into several tables, each containing a unique value
(that is, a primary key). Although data normalization brings many benefits, it
means you need to relate an application’s tables to each other so that users
can view the data in the system as a single entity. After you define relation-
ships between tables, you can build queries, forms, reports, and data access
pages that combine information from multiple tables. In this way, you can
reap all the benefits of data normalization while ensuring that a system pro-
vides users with all the information they need. Referential integrity is another
very important topic covered in this hour. Referential integrity consists of

a series of rules that the Jet Engine applies to ensure that Jet properly main-
tains relationships between tables. In this hour you’ll learn about the
following:

» Relational database design principles
* The types of relationships available
* Establishing relationships

Establishing referential integrity

|156 Hour 9

Introduction to Relational Database Design

Many people believe Access is such a simple product to use that database design is
something they don’t need to worry about. I couldn’t disagree more! Just as a poorly
planned vacation will generally not be very much fun, a database with poorly designed
tables and relationships will fail to meet the needs of its users.

The History of Relational Database Design

Dr. E. F. Codd first introduced formal relational database design in 1969

while he was at IBM. Relational theory, which is based on set theory and
predicate logic, applies to both databases and database applications. Codd developed 12
rules that determine how well an application and its data adhere to the relational model.
Since Codd first conceived these 12 rules, the number of rules has expanded into the
hundreds.

You should be happy to learn that, although Microsoft Access is not a perfect application
development environment, it measures up quite well as a relational database system.

Goals of Relational Database Design

The number-one goal of relational database design is to, as closely as possible, develop a
database that models some real-world system. This involves breaking the real-world sys-
tem into tables and fields and determining how the tables relate to each other. Although
on the surface this might appear to be a trivial task, it can be an extremely cumbersome
process to translate a real-world system into tables and fields.

A properly designed database has many benefits. The processes of adding, editing, delet-
ing, and retrieving table data are greatly facilitated in a properly designed database. In
addition, reports are easy to build. Most importantly, the database is easy to modify and
maintain.

Rules of Relational Database Design
To adhere to the relational model, you must follow certain rules. These rules determine
what you store in a table and how you relate the tables. These are the rules:

e The rules of tables

e The rules of uniqueness and keys

* The rules of foreign keys and domains

Creating Relationships 157 |

The Rules of Tables

Each table in a system must store data about a single entity. An entity usu-
ally represents a real-life object or event. Examples of objects are cus-

tomers, employees, and inventory items. Examples of events include orders,
appointments, and doctor visits.

The Rules of Uniqueness and Keys

Tables are composed of rows and columns. To adhere to the relational

model, each table must contain a unique identifier. Without a unique identi-
fier, it is programmatically impossible to uniquely address a row. You guarantee unique-
ness in a table by designating a primary key, which is a single column or a set of
columns that uniquely identifies a row in a table.

Each column or set of columns in a table that contains unique values is con-

sidered a candidate key. One candidate key becomes the primary key. The
remaining candidate keys become alternate keys. A primary key made up of one column
is considered a simple key. A primary key composed of multiple columns is considered a
composite key.

It is generally a good idea to choose a primary key that is

e Minimal (has as few columns as possible)
» Stable (rarely changes)

e Simple (is familiar to the user)

Following these rules greatly improves the performance and maintainability of a database
application, particularly if it deals with large volumes of data.

Consider the example of an employee table. An employee table is generally
composed of employee-related fields such as Social Security number, first

name, last name, hire date, salary, and so on. The combination of the first name and the
last name fields could be considered a primary key. This might work until the company
hires two employees who have the same name. Although the first and last names could
be combined with additional fields (for example, hire date) to constitute uniqueness, that
would violate the rule of keeping the primary key minimal. Furthermore, an employee
might get married, and her last name might change. This violates the rule of keeping a
primary key stable. Therefore, using a name as the primary key violates the principle of
stability. The Social Security number might be a valid choice for primary key, but a for-
eign employee might not have a Social Security number. This is a case in which a
derived, rather than a natural, primary key is appropriate. A derived key is an artificial
key that you create. A natural key is one that is already part of the database.

|158

Hour 9

In examples such as this, I suggest adding EmployeeID as an AutoNumber field. Although the
field would violate the rule of simplicity (because an employee number is meaningless to
the user), it is both small and stable. Because it is numeric, it is also efficient to process.
In fact, I use AutoNumber fields as primary keys for most of the tables that I build.

The Rules of Foreign Keys and Domains

A foreign key in one table is the field that relates to the primary key in a second table.
For example, the customer1D field may be the primary key in a customers table and the
foreign key in an orders table.

A domain is a pool of values from which columns are drawn. A simple

example of a domain is the specific data range of employee hire dates. In
the case of the orders table, the domain of the customerid column is the range of values
for the customerID in the Customers table.

Normalization and Normal Forms

Some of the most difficult decisions that you face as a developer are what

tables to create and what fields to place in each table, as well as how to
relate the tables that you create. As you learned in Hour 7, Normalization is the process
of applying a series of rules to ensure that a database achieves optimal structure. Normal
forms are a progression of these rules. Each successive normal form achieves a better
database design than the previous form. Although there are several levels of normal
forms, it is generally sufficient to apply only the first three levels of normal forms. The
following sections describe the first three levels of normal forms.

First Normal Form

To achieve first normal form, all columns in a table must be atomic. This

means, for example, that you cannot store first name and last name in the
same field. The reason for this rule is that data becomes very difficult to manipulate and
retrieve if you store multiple values in a single field. Let’s use the full name as an exam-
ple. It would be impossible to sort by first name or last name independently if you stored
both values in the same field. Furthermore, you or the user would have to perform extra
work to extract just the first name or just the last name from the field.

Another requirement for first normal form is that the table must not contain repeating
values. An example of repeating values is a scenario in which Item1, Quantity1, Item2,
Quantity2, Item3, and auantity3 fields are all found within the orders table (see Figure
9.1). This design introduces several problems. What if the user wants to add a fourth item
to the order? Furthermore, finding the total ordered for a product requires searching sev-
eral columns. In fact, all numeric and statistical calculations on the table are extremely

Creating Relationships 159 |

cumbersome. Repeating groups make it difficult to summarize and manipulate table data.
The alternative, shown in Figure 9.2, achieves first normal form. Notice that each item
ordered is located in a separate row. All fields are atomic, and the table contains no
repeating groups.

FIGURE 9.1 [orcerspeoreinr 7o Lol
OrderlD CustomerlD | OrderDate Quantityl | Kem2 | Quantity2 | ltem3
A table that contains 5/1/2001 [Widget 2 Rammer 5| Diskslls
. 5/1/2001|Homn 4/ Car 8 Computer
repeating groups. 5/7/2001| Calendar 8 Painting 2|Baok

5/18/2001 Boat 2/ Leaf 3 Hat

0 0

Record: 14| 4 1 v |riir#|of 4

FIGURE 9.2 =10i x|
. OrderlD OrderltemnlD CustomerlD | OrderDate ltem Quantity
A table that achieves ¥ 1 1 1 5172001 Widget 2
1 2 1 5172001 Hom 4
first normal form. || 1 3 1 5/1/2001 Calendar 8
| 2 1 2 5/18/2001 Boat 2
| 2 2 2 5/18/2001 Car 1
|| 3 1 1 B/2/2001 Horse 2
| 3 2 1 B6/2/2001 Computer 5
|| 3 3 1 B/2/2001 Chair g
| 4 1 3 7/4/2001 Book 2
| 4 2 3 7/4/2001 Chair 3
|| 4 3 3 74402001 Widget 2
| 4 4 3 7/4/2001 Painting 3
* 1] 0 0 0
Recard: 14 ¢ | 1 [vi[r#] of 12

Second Normal Form

For a table to achieve second normal form, all non-key columns must be

fully dependent on the primary key. In other words, each table must store
data about only one subject. For example, the table shown in Figure 9.2 includes infor-
mation about the order (orderID, CustomerID, and OrderDate) and information about the
items the customer is ordering (Item and auantity). To achieve second normal form, you
must break this data into two tables—an order table and an order detail table. The
process of breaking the data into two tables is called decomposition. Decomposition is
considered to be non-loss decomposition because no data is lost during the decomposi-
tion process. After you separate the data into two tables, you can easily bring the data
back together by joining the two tables via a query. Figure 9.3 shows the data separated
into two tables. These two tables achieve second normal form because the fields in each
table pertain to the primary key of the table.

Third Normal Form

To attain third normal form, a table must meet all the requirements for first and second
normal forms, and all non-key columns must be mutually independent. This means that

|160

Hour 9

you must eliminate any calculations, and you must break out the data into lookup tables.
Lookup tables include tables such as inventory tables, course tables, state tables, and any
other table where you look up a set of values from which you select the entry that you
store in the foreign key field. For example, from the customer table, you look up within
the set of states in the state table to select the state associated with the customer.

FIGURE 9.3 [horder 2 oble (B
OrderlD CustomerlD | OrderDate
Tables that achieve 5172001 =Dl x|
5/18/2001 OrderlD | Orderltem|D Item Quantity
second normal form. et O i Wit]
7142001 [| 1 2 Homn 4
|| 1 3 Calendar E}
|| 2 1/ Boat 2
Record: [14] 4 T v [vi[v#] of 4 — g ?i::ae ;
: 3 2 Computer 5
B 3 3| Chair B
|| 4 1/ Book 2
B 4 2| Chair a
L 4 3 Widget 2
|| 4 4 Painting 3
* 0 0 1]
Record: 14| [T 1 v [viek|of 12

An example of a calculation stored in a table is the product of price multiplied by quan-
tity. Instead of storing the result of this calculation in the table, you would generate the
calculation in a query or in the control source of a control on a form or a report.

The example in Figure 9.3 does not achieve third normal form because the description of
the inventory items is stored in the order Details table. If the description changes, all
rows with that inventory item need to be modified. The order Details table, shown in
Figure 9.4, shows the item descriptions broken into an Inventory table. This design
achieves third normal form. We have moved the description of the inventory items to the
Inventory table, and ItemID is stored in the order Details table. All fields are mutually
independent. You can modify the description of an inventory item in one place.

Denormalization: Purposely Violating the Rules

Although a developer’s goal is normalization, there are many times when it
makes sense to deviate from normal forms. This process is called denormal-
ization. The primary reason for applying denormalization is to enhance performance.

An example of when denormalization might be the preferred tact could involve an open
invoices table and a summarized accounting table. It might be impractical to calculate
summarized accounting information for a customer when you need it. Instead, you can
maintain the summary calculations in a summarized accounting table so that you can
easily retrieve them as needed. Although the upside of this scenario is improved

Creating Relationships 161 |

performance, the downside is that you must update the summary table whenever you
make changes to the open invoices. This imposes a definite trade-off between perfor-
mance and maintainability. You must decide whether the trade-off is worth it.

FIGURE 9.4 1 hrderbetadson s Toble _iglx]
. OrderlD [OrderltemiD ternlD Quantity -1o] x|
A table (on the right)

that achieves third ang 8
normal form.

3 Calendar
4/ Boat

5 Car

6 Harse

7| Computer
8 Chair

9 Book

10 Painting
0

[TTTTTTTI=

0D—= owo~onnewn=

Oele e e wwwnn = -
oelwn=lwn=n ==
Own W mmk = o e

] I Y I I I 2

Record: 14| 4 1 v |eiir#]|of 10

Record: 14| 4 1 v |riir#]of 12

If you decide to denormalize, you should document your decision. You should make sure
that you make the necessary application adjustments to ensure that you properly main-
tain the denormalized fields. Finally, you need to test to ensure that the denormalization
process actually improves performance.

Integrity Rules

Although integrity rules are not part of normal forms, they are definitely part of the data-
base design process. Integrity rules are broken into two categories: overall integrity rules
and database-specific integrity rules.

Overall Integrity Rules

The two types of overall integrity rules are referential integrity rules and
entity integrity rules. Referential integrity rules dictate that a database does

not contain any orphan foreign key values. This means that

* Child rows cannot be added for parent rows that do not exist. In other words, an
order cannot be added for a nonexistent customer.

* A primary key value cannot be modified if the value is used as a foreign key in a
child table. This means that a CustomerID in the Customers table cannot be changed
if the orders table contains rows with that CustomerIDb.

* A parent row cannot be deleted if child rows have that foreign key value. For
example, a customer cannot be deleted if the customer has orders in the orders
table.

Entity integrity dictates that the primary key value cannot be nNu1l. This rule applies not
only to single-column primary keys, but also to multicolumn primary keys. In fact, in a

|162

Hour 9

multicolumn primary key, no field in the primary key can be nul1. This makes sense
because if any part of the primary key can be null, the primary key can no longer act as a
unique identifier for the row. Fortunately, the Jet Engine does not allow a field in a pri-
mary key to be Null.

Database-Specific Integrity Rules

Database-specific integrity rules are not applicable to all databases, but are, instead, dic-
tated by business rules that apply to a specific application. Database-specific rules are as
important as overall integrity rules. They ensure that the user enters only valid data into a
database. An example of a database-specific integrity rule is requiring the delivery date
for an order to fall after the order date.

The Types of Relationships

Three types of relationships can exist between tables in a database: one-to-many, one-to-
one, and many-to-many. Setting up the proper type of relationship between two tables in
a database is imperative. The right type of relationship between two tables ensures

e Data integrity
* Optimal performance

¢ Ease of use in designing system objects

The reasons behind these benefits are covered throughout this hour. Before you can
understand the benefits of relationships, though, you must understand the types of rela-
tionships available.

One-to-Many Relationships

A one-to-many relationship is by far the most common type of relationship.
In a one-to-many relationship, a record in one table can have many related

records in another table. A common example is a relationship set up between a customers
table and an orders table. For each customer in the customers table, you want to have
more than one order in the orders table. On the other hand, each order in the orders table
can belong to only one customer. The customers table is on the “one” side of the relation-
ship, and the orders table is on the “many” side. In order for you to implement this rela-
tionship, the field joining the two tables on the “one” side of the relationship must be
unique.

In the customers and orders tables example, the customerID field that joins the two tables
must be unique within the customers table. If more than one customer in the customers
table has the same customer ID, it is not clear which customer belongs to an order in the
orders table. For this reason, the field that joins the two tables on the “one” side of the
one-to-many relationship must be a primary key or have a unique index. In almost all

Creating Relationships 163 |

cases, the field relating the two tables is the primary key of the table on the “one” side of
the relationship. The field relating the two tables on the “many” side of the relationship
is the foreign key.

One-to-One Relationships

In a one-to-one relationship, each record in the table on the “one” side of

the relationship can have only one matching record in the table on the
“many”’ side of the relationship. This relationship is not common and is used only in spe-
cial circumstances. Usually, if you have set up a one-to-one relationship, you should have
combined the fields from both tables into one table. The following are the most common
reasons to create a one-to-one relationship:

e The number of fields required for a table exceeds the number of fields allowed in
an Access table.

¢ Certain fields that are included in a table need to be much more secure than other
fields in the same table.

 Several fields in a table are required for only a subset of records in the table.

The maximum number of fields allowed in an Access table is 255. There are very few
reasons a table should ever have more than 255 fields. In fact, before you even get close
to 255 fields, you should take a close look at the design of the system. On the rare occa-
sion when having more than 255 fields is appropriate, you can simulate a single table by
moving some of the fields to a second table and creating a one-to-one relationship
between the two tables.

The second reason to separate into two tables data that logically would

belong in the same table involves security. An example is a table that con-
tains employee information. Certain information, such as employee name, address, city,
state, zip code, home phone, and office extension, might need to be accessed by many
users of the system. Other fields, including the hire date, salary, birth date, and salary
level, might be highly confidential. Field-level security is not available in Access. You
can simulate field-level security by using a special attribute of queries called Run with
Owner’s Permissions. The alternative to this method is to place the fields that all users
can access in one table and the highly confidential fields in another. You give only a spe-
cial Admin user (that is, a user with special security privileges—not one actually named
Admin) access to the table that contains the confidential fields.

The last situation in which you would want to define one-to-one relationships is when
you will use certain fields in a table for only a relatively small subset of records. An
example is an Employees table and a vesting table. Certain fields are required only for
employees who are vested. If only a small percentage of a company’s employees are

|164

Hour 9

FIGURE 9.5 - -Relationships : i
The Relationships win-

dOW, which enables CompanyNam I ProductiD CustomerID
Contactiame = |supplier UnitPrice EmployesID
CategarylD Quantity OrderDate

you to view, add, mod- ContactTite

. _ City LinitPrice shippedDate
lfy’ and remove rela Region = UritsTnStock Shiptia
; ; UnitsOnOrder Freight.
tionships between] ooty =12 ehiphiame
! i | Discontinued Lasthame shipaddress

vested, it is not efficient, in terms of performance or disk space, to place all the fields
containing information about vesting in the Employees table. This is especially true if the
vesting information requires a large number of fields. By breaking the information into
two tables and creating a one-to-one relationship between the tables, you can reduce
disk-space requirements and improve performance. This improvement is particularly pro-
nounced if the Employees table is large.

Many-to-Many Relationships

In a many-to-many relationship, records in two tables have matching
records. You cannot directly define a many-to-many relationship in Access;

you must develop this type of relationship by adding a table called a junction table. You
relate the junction table to each of the two tables in one-to-many relationships. For exam-
ple, with an orders table and a Products table, each order will probably contain multiple
products, and each product is likely to be found on many different orders. The solution is
to create a third table, called orderDetails. You relate the orderDetails table to the orders
table in a one-to-many relationship based on the orderip field. You relate it to the
Products table in a one-to-many relationship based on the productIp field.

Establishing Relationships in Access

You use the Relationships window to establish relationships between Access tables, as
shown in Figure 9.5. To open the Relationships window, you click Relationships on the
toolbar with the Database window active or you choose Tools|Relationships. If you have
not established any relationships, the Show Table dialog box appears. The Show Table
dialog box allows you to add tables to the Relationships window.

OrderID

ProductMame

Address QuantityPerUnit Discount RequiredDate.

CategoryD FirstName ShipClty
CategaryName Title shipRegion
Description THeOFCourts ShipPostalCoc |
Plctre BirthDate
HireDate
address
iy =l

CompanyName
Phone

KI| Mz

By looking at the Relationships window, you can see the types of relationships for each
table. All the one-to-many and one-to-one relationships defined in a database are

Creating Relationships 165 |

represented with join lines. If you enforce referential integrity between the tables
involved in a one-to-many relationship, the join line between the tables appears with the
number 7 on the “one” side of the relationship and with a link symbol (ec) on the “many’
side of the relationship. A one-to-one relationship appears with a 7 on each end of the
join line.

i

Establishing a Relationship Between Two Tables

To establish a relationship between two tables, you follow these steps:

1. Open the Relationships window.

2. If this is the first time that you’ve opened the Relationships window of a particular
database, the Show Table dialog box appears. Select each table you want to relate
and click Add.

3. If you have already established relationships in the current database, the
Relationships window appears. If the tables you want to include in the relationship
do not appear, click the Show Table button on the toolbar or choose Relationships|
Show Table. To add the desired tables to the Relationships window, select a table
and then click Add. Repeat this process for each table you want to add. To select
multiple tables at once, press Shift while clicking to select contiguous tables or
press Ctrl while clicking to select noncontiguous tables; then click Add. Click
Close when you are finished.

4. Click and drag the field from one table to the matching field in the other table. The
Edit Relationships dialog box appears.

5. Determine whether you want to establish referential integrity and whether you
want to cascade update related fields or cascade delete related records by enabling
the appropriate check boxes (see Figure 9.6). These topics are covered later in this
hour, in the section “Establishing Referential Integrity.”

FiGURE 9.6 x4

The Edlt Relationships Table/Query: Related Tablz/Query:
Custs > J|ord: 7

dialog box, which fcuwcners o =l Cancel
CustomerID ;I CustomerlD -

enables you to view } Join Type..

and modify the rela- ad

f:y [I¥ Enforce Referential Integrity wl

tionships between the

. V¥ Cascade Update Related Fields
tables in a database.

[Cascade Delete Related Records

Relationship Type: One-To-Many

6. Click OK. The dialog box closes, and you return to the Relationships window.

|166 Hour 9

Following Guidelines for Establishing Relationships

You must remember a few important things when establishing relationships. If you are
not aware of these important gotchas, you could find yourself in some pretty hairy situa-
tions:

e It is important to understand the correlation between the Relationships window and
the actual relationships established within a database. The Relationships window
lets you view and modify the existing relationships. When you establish relation-
ships, Access creates the relationship the moment you click OK. You can delete the
tables from the Relationships window (by selecting them and pressing Delete), but
the relationships still exist. (The “Modifying an Existing Relationship” section of
this hour covers the process of permanently removing relationships.) The
Relationships window provides a visual blueprint of the relationships that are
established. If you modify the layout of the window by moving around tables,
adding tables to the window, or removing tables from the window, Access prompts
you to save the layout after you close the Relationships window. Access is not ask-
ing whether you want to save the relationships you have established; it is simply
asking whether you want to save the visual layout of the window.

* When you’re adding tables to the Relationships window by using the Show Tables
dialog box, it is easy to accidentally add a table to the window many times. This is
because the tables you are adding can hide behind the Show Tables dialog box, or
they can appear below the portion of the Relationships window that you are view-
ing. If this occurs, you see multiple occurrences of the same table when you close
the Show Tables dialog box. Access gives each occurrence of the table a different
alias, and you must remove the extra occurrences.

* You can add queries to the Relationships window by using the Show Tables dialog
box. Although this method is rarely used, it might be useful if you regularly
include the same queries within other queries and want to permanently establish
relationships between them.

* If you remove tables from the Relationships window (remember that this does not
delete the relationships) and you want to once again show all relationships that
exist in the database, you can click Show All Relationships on the toolbar or
choose Relationships|Show All. All existing relationships are then shown.

» To delete a relationship, you can click the join line and press Delete.

Modifying an Existing Relationship
Modifying an existing relationship is easy. Access gives you the capability to delete an
existing relationship or to simply modify the nature of the relationship.

Creating Relationships

167|

To permanently remove a relationship between two tables, you follow these steps:

1. With the Database window active, click Relationships on the toolbar.

2. Click the line joining the two tables whose relationship you want to delete.

3. Press Delete. Access prompts you to verify your actions. Click Yes.
You often need to modify the nature of a relationship rather than remove it. To modify a
relationship, you follow these steps:

1. With the Database window active, click Relationships on the toolbar.

2. Double-click the line joining the two tables whose relationship you want to modify.

3. Make the required changes.

4. Click OK. All the normal rules regarding the establishment of relationships apply.

Task: Establishing Relationships

Relationships are an extremely important aspect of any database that you build. Let’s
practice the process of creating a brand-new database. We’ll add tables and then establish
relationships between them. To begin, you create a new database and add a table called
tblcCustomers, another called tblorders, and a third called tblorderbetails. The tables
should have the following fields:

<To Do

tblCustomers : CustomerID, CompanyName, Address, City, State, ZipCode
tblOrders: OrderID, CustomerID, OrderDate, ShipVIA
tblOrderDetails : OrderID, LineNumber, ItemID, Quantity, Price

After you’ve built the necessary tables, you’re ready to establish the relationships
between them. First you need to set some important properties of the fields that you just
added. Then you’ll be ready to establish the actual relationships between the tables.
Here’s how this works:

1. In the tblcustomers table, make the customerID field a Text field. Designate the
customer1D field as the primary key. Set the size of the field to 5. Make all other
fields Text fields and leave their default property values.

2. In the tblorders table, set orderID to the AutoNumber field type. Make order1b the
primary key field. Make the customerID field a Text field with the field size of 5. Set
the field type of the orderDate field to pate and the field type of the shipvia field to
Number, with a size of Long Integer.

3. In the tblorderDetails table, set the field type of the orderip field to Number and
v make sure that the size is Long Integer. Set the field type of the LineNumber field to

|168

Hour 9

A

Number, with a size of Long Integer. Base the primary key of the table on the combi-
nation of the order1D and LineNumber fields. Set the field type of the 1temId and
quantity fields to number, with a size of Long Integer, and set the field type of the
price field to currency.

4. Open the Relationships window. With the tbicustomers table in the Show Table dia-

log box selected, hold down the Shift key and click to select the tblorders table.
Click Add. All three tables appear in the Relationships window. Click Close. Click
and drag from the customerID field in the tblCustomers table to the customerID field
in the tblorders table. After the Edit Relationships dialog box appears, click OK.
Repeat the process, clicking and dragging the order1p field from the tblorders table
to the orderID field in the tblorderDetails table.

Establishing Referential Integrity

As you can see, establishing a relationship is quite easy. Establishing the right kind of
relationship is a little more difficult. When you attempt to establish a relationship
between two tables, Access makes some decisions based on a few predefined factors:

* Access establishes a one-to-many relationship if one of the related fields is a pri-
mary key or has a unique index.

* Access establishes a one-to-one relationship if both of the related fields are pri-
mary keys or have unique indexes.

e Access creates an indeterminate relationship if neither of the related fields is a pri-
mary key and neither has a unique index. You cannot establish referential integrity
in this case.

As discussed earlier in this hour, referential integrity consists of a series of rules that the
Jet Engine applies to ensure that Jet properly maintains the relationships between tables.
At the most basic level, referential integrity rules prevent the creation of orphan records
in the table on the “many” side of the one-to-many relationship. After you establish a
relationship between a customers table and an orders table, for example, all orders in

the orders table must be related to a particular customer in the customers table. Before
you can establish referential integrity between two tables, the following conditions must
be met:

e The matching field on the “one” side of the relationship must be a primary key
field or must have a unique index.

e The matching fields must have the same data types. (For linking purposes,
AutoNumber fields match Long Integer fields.) With the exception of Text fields, the

Creating Relationships 169 |

matching fields also must have the same size. Number fields on both sides of the
relationship must have the same size (for example, Long Integer).

* Both tables must be part of the same Access database.

e Both tables must be stored in the proprietary Access file (.mp8) format. (They can-
not be external tables from other sources.)

» The database that contains the two tables must be open.

o Existing data within the two tables cannot violate any referential integrity rules. All

orders in the orders table must relate to existing customers in the Customers table,
for example.

Although Text fields involved in a relationship do not have to be the same
size, it is prudent to make them the same size. Otherwise, you degrade per-
formance as well as risk the chance of unpredictable results when you create
queries based on the two tables.

=
Z

7
0
¢

After you establish referential integrity between two tables, the Jet Engine applies the
following rules:

* You cannot enter in the foreign key of the related table a value that does not exist
in the primary key of the primary table. For example, you cannot enter in the
customeriD field of the orders table a value that does not exist in the CustomerID
field of the customers table.

* You cannot delete a record from the primary table if corresponding records exist in
the related table. For example, you cannot delete a customer from the Customers
table if related records (for example, records with the same value in the customeriD
field) exist in the orders table.

* You cannot change the value of a primary key on the “one” side of a relationship if
corresponding records exist in the related table. For example, you cannot change
the value in the customerID field of the customers table if corresponding orders exist
in the orders table.

If you attempt to violate any of these three rules and you have enforced referential
integrity between the tables, Access displays an appropriate error message, as shown in
Figure 9.7.

The Jet Engine’s default behavior is to prohibit the deletion of parent records that have
associated child records and to prohibit the change of a primary key value of a parent

|170

Hour 9

record when that parent has associated child records. You can override these restrictions
by using the Cascade Update Related Fields and Cascade Delete Related Records check
boxes that are available in the Relationships dialog box when you establish or modify a

relationship.
FIGURE 9.7 x|
Al’l error message [hal Q :g:n:zilwd cannot be deleted or changed because table 'tblOrders' includes related
appears when you o ek

attempt to delete a cus-
tomer who has orders.

The Cascade Update Related Fields Option

The Cascade Update Related Fields option is available only if you have established refer-
ential integrity between tables. When this option is selected, the user can change the pri-
mary key value of the record on the “one” side of the relationship. When the user
attempts to modify the field joining the two tables on the “one” side of the relationship,
the Jet Engine cascades the change down to the foreign key field on the “many” side of
the relationship. This is useful if the primary key field is modifiable. For example, a pur-
chase number on a purchase order master record might be updateable. If the user modi-
fies the purchase order number of the parent record, you would want to cascade the
change to the associated detail records in the purchase order detail table.

o There is no need to select the Cascade Update Related Fields option when
/ the related field on the “one” side of the relationship is an AutoNumber field.
== You can never modify an AutoNumber field. The Cascade Update Related

Fields option has no effect on AutoNumber fields. In fact, this is why, in the
preceding Task, you make the CustomerID a Text field. It provides an exam-
ple that you can later use with a cascade update.

It is very easy to accidentally introduce a loophole into a system. If you create a one-to-
many relationship between two tables but forget to set the Required property of the for-
eign key field to Yes, you allow the addition of orphan records. Figure 9.8 illustrates this
point. In this example, I added an order to tblorders without entering a customer ID.
This record is an orphan record because no records in tblCustomers have CustomerID set to
Null. To eliminate the problem, you set the Required property of the foreign key field

to Yes.

Creating Relationships 171 |

Null
FIGURE 9.8 & thiOrders : Table
. OrderlD QustomerlD OrderDate ShipWIA
An orphan record with B 2 Fooos /11998 FEDEX
g 7 + 3 3171998 UPS
Null in Zhe forelgn key + 4/ ABCDE 44111998 UPS

field,

Record: 14| 4 1k [rrlre|of 3

The Cascade Delete Related Records Option

The Cascade Delete Related Records option is available only if you have established ref-
erential integrity between tables. When this option is selected, the user can delete a
record on the “one” side of a one-to-many relationship, even if related records exist in
the table on the “many” side of the relationship. A user can delete a customer even if the
customer has existing orders, for example. The Jet Engine maintains referential integrity
between the tables because it automatically deletes all related records in the child table.

If you attempt to delete a record from the table on the “one” side of a one-to-many rela-
tionship and no related records exist in the table on the “many” side of the relationship,
you get the usual warning message, as shown in Figure 9.9. On the other hand, if you
attempt to delete a record from the table on the “one” side of a one-to-many relationship
and related records exist in the child table, Access warns you that you are about to delete
the record from the parent table as well as any related records in the child table (see

Figure 9.10).

FIGURE 9.9 x
bout to delete 1 record(s).
A message that Youare
g ! If you dlick Yes, you won't be able to undo this Delete operation.
appears after the user fire you sure you wart to delats these records?
attempts to delete a B _w |

parent record that
does not has related
child records.

FiGUure 9.10 x|
Relationships that if; ding delet: bout t 1

A message that _,5 record(s) in this table and in relatad tables to be defeted,

appears after the user *= are you sure you want to deets these records?

attempts to delete a Ve o Help

parent record that has
related child records.

|172

Hour 9

The Cascade Delete Related Records option is not always appropriate. It is
an excellent feature, but you should use it prudently. Although it is usually
appropriate to cascade delete from an Orders table to an Order Details
table, for example, it generally is not appropriate to cascade delete from a
Customers table to an Orders table. This is because you generally do not
want to delete all your order history from the oOrders table if for some rea-
son you want to delete a customer. Deleting the order history causes impor-
tant information, such as the profit and loss history, to change. It is
therefore appropriate to prohibit this type of deletion and handle the cus-
tomer in some other way, such as marking him or her as inactive or archiv-
ing his or her data. On the other hand, if you delete an order because the
customer cancelled it, you probably want to remove the corresponding
order detail information as well. In this case, the Cascade Delete Related
Records option is appropriate. You need to make the most prudent decision
in each situation, based on business needs. You need to carefully consider
the implications of each option before you make a decision.

D

Task: Working with Referential Integrity

In this task you enforce referential integrity between the tblcustomers table and the
tblorders table you created earlier in this hour. It illustrates how enforcing referential
integrity between the tables affects the process of adding and deleting records. You need
to follow these steps:

4 To Do

1. Open the Relationships window. Double-click the join line between tblCustomers
and tblorders. Enable the Enforce Referential Integrity check box. Click OK.
Repeat this process for the relationship between tblorders and tblorderDetails.

2. Go into tblcustomer and add a couple records. Take note of the customer IDs. Go
into tblorders. Add a couple records, taking care to assign customer IDs of cus-
tomers that exist in the tblCustomers table. Now try to add an order for a customer
whose customer ID does not exist in tblCustomers. You should get an error mes-
sage.

3. Attempt to delete from tblCustomers a customer who does not have any orders. You
should get a warning message, but Access should allow you to complete the
process. Now try to delete a customer who does have orders. The Jet Engine
should prohibit you from deleting the customer. Attempt to change the customer ID

A of a customer who has orders. You should not be able to do this.

Creating Relationships

173|

Task: Working with Cascade Update Related Fields and Cascade
Delete Related Records

With the Cascade Update Related Fields feature enabled, you are able to update the pri-
mary key value of a record that has associated child records. With the Cascade Delete
Related Records feature enabled, you can delete a parent record that has associated child
records. To see how to use Cascade Update Related Fields and Cascade Delete Related
Records, follow these steps:

<To Do

1. Modify the relationship between the tblCustomers and tblorders tables you created
earlier in this hour. Open the Relationships window. Double-click the join line
between tblcustomers and tblorders. Enable the Cascade Update Related Fields
check box. Modify the relationship between tblorders and tblorderDetails. Enable
the Cascade Delete Related Records check box. There is no need to enable
Cascade Update Related Fields because the orderIp field in tblorders is an
AutoNumber field.

2. Attempt to delete a customer who has orders. The Jet Engine should prohibit you
from doing this because Cascade Delete Related Records is not enabled. In
tblcustomers, change the customer ID of a customer who has orders. The Jet
Engine should allow this change. Take a look at tb1lorders. The Jet Engine should
have updated the customer ID of all corresponding records in the table to reflect
the change in the parent record.

3. Add some order details to tblorderbetails. Try to delete any order that has details
within tblorderDetails. You should receive a warning, but the Jet Engine should
A allow you to complete the process.

The Benefits of Relationships

The primary benefit of relationships is the data integrity they provide. Without the estab-
lishment of relationships, users are free to add records to child tables without regard to
entering required parent information. After you establish referential integrity, you can
enable Cascade Update Related Fields or Cascade Delete Related Records, as appropri-
ate, which saves you quite a bit of code in maintaining the integrity of the data in the
system. Most relational database management systems require that you write the code to
delete related records when the user deletes a parent record or to update the foreign key
in related records when the user modifies the primary key of the parent. When you
enable the Cascade Update Related Fields and Cascade Delete Related Fields check
boxes, you are sheltered from having to write a single line of code to perform these tasks
when they are appropriate.

|174

Hour 9

Access automatically carries relationships into your queries. This means that each time
you build a new query, Access automatically establishes the relationships between the
tables within the query, based on the relationships that are set up in the Relationships
window. Furthermore, each time you build a form or report, Access uses relationships
between the tables included on the form or report to assist with the design process.
Whether you delete or update data by using a datasheet or a form, all referential integrity
rules automatically apply, even if you establish the relationship after you build the form.

Summary

Relationships enable you to normalize a database. By using relationships, you can divide
data into separate tables and then once again combine the data at runtime. This hour
begins by explaining relational database design principles. It describes the types of rela-
tionships that you can define. It also covers the details of establishing and modifying
relationships between tables and describes all the important aspects of establishing rela-
tionships.

The capability to easily establish and maintain referential integrity between tables is an
important strength of Microsoft Access. This hour describes the referential integrity
options and highlights when each option is appropriate. Finally, this hour summarizes the
benefits of relationships.

Q&A

Q Name three benefits of relationships.

A The right type of relationship ensures data integrity, optimal performance, and ease
of use in designing system objects.

Q Explain the concept of a foreign key.

A A foreign key in one table is the field that relates to the primary key in a second
table. For example, whereas customerID is the primary key in the customers table, it
may be the foreign key in the orders table.

Q Explain referential integrity.

A With referential integrity, a database cannot contain any orphan foreign key values.
This means that you cannot add child rows for parents that don’t exist, you cannot
modify the parent key value if that parent has children (unless the Cascade Update
Related Fields option is selected), and you cannot delete parents that have children
(unless the Cascade Delete Related Fields option is selected).

Creating Relationships 175 |

Q Explain the Cascade Update Related Fields option and the Cascade Delete
Related Fields option.

A With the Cascade Update Related Fields option enabled, if the user tries to update
the primary key of a parent record that has children, Access updates the foreign
key of each of the child rows. With the Cascade Delete Related Fields option
enabled, if the user tries to delete a parent record that has children, Access attempts
to delete all the associated children rows.

Workshop

The Workshop includes quiz questions that are designed to help you test your under-
standing of the material covered and activities to help put what you’ve learned to prac-
tice. You can find the answers to the questions in the section immediately following the
quiz.

Quiz

1. Name three types of relationships.

2. Name the types of relationship that you cannot directly create in Access.
3. Name the three attributes that constitute a good primary key.

4. Denormalization slows down performance (True/False).
5

. The Relationships window always reflects the relationships that are in place in a
database (True/False).

Quiz Answers
1. One-to-many, one-to-one, and many-to-many.
2. Many-to-many.
3. Minimal, stable, and simple.
4

. False. The primary reason for denormalization is generally to improve perfor-
mance.

5. False. The Relationships window provides a visual layout of the relationships that
are included within the window. This may or may not represent all the relation-
ships in the database.

|176 Hour 9

Activities

Build three related tables. Don’t forget to set their primary keys. Establish relationships
between them. Set referential integrity. Attempt to add, remove, and modify data.
Practice using the Cascade Update Related Fields and Cascade Delete Related Fields
options. See how this affects the process of inserting, updating, and deleting data.

