
Linux Kernel Development

Copyright © 2004 by Sams Publishing

International Standard Book Number: 0-672-32512-8

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but
no warranty or fitness is implied. The information provided is on an "as is" basis. The
author and the publisher shall have neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from the information contained in this

book.

When reviewing corrections, always check the print number of your book. Corrections are
made to printed books with each subsequent printing. To determine the printing of your

book, view the copyright page. The print number is right-most number on the line below the
"First Printing" line. For example, the following indicates the 4th printing of a title.

First Printing: August 2003

06 05 04 03 10 9 8 7 6 5 4

Misprint Correction

Page 12, first paragraph

The kernel stack is neither large nor
dynamic; it is small and fixed in size. The
kernel stack is fixed at 4 KB on 32-bit
architectures and 8 KB on 64-bit
architectures.

The kernel stack is neither large nor
dynamic; it is small and fixed in size. The
kernel stack is fixed at 8 KB on 32-bit
architectures and 16 KB on most 64-bit
architectures.

Page 34, Figure 3.1

Bottom row of figure

Minimum Default Maximum

10 ms 150ms 300ms

Minimum Default Maximum

10 ms 100ms 200ms

Page 39, code snippet at bottom of page

struct prio_array array = rq->active; struct prio_array*array = rq->active;

Page 42, Table 3.1, last line

Maximum 3200ms high low Maximum 200ms high low

Page 44, first paragraph

Wait queues are created statically via
DECLARE_WAIT_QUEUE_HEAD() or dynamically via
init_waitqueue_head().

Wait queues are created statically via
DECLARE_WAITQUEUE() or dynamically via
init_waitqueue_head().

Page 48, last paragraph

The first change in supporting kernel
preemption was the addition of a preemption
counter, preempt_count, to each process's
task_struct. This counter begins...

The first change in supporting kernel
preemption was the addition of a preemption
counter, preempt_count, to each process's
thread_info structure. This counter begins...

page 49, first line after the "Real-Time"
heading

Linux provides two real-time scheduling
policies, SCHED_FF and SCHED_RR.

Linux provides two real-time scheduling
policies, SCHED_FIFO and SCHED_RR.

Page 50, Table 3.3: The descriptions for
sched_setaffinity() and sched_getaffinity() are
swapped.

Page 62, code snippet at bottom of page

#define NR_open 5 #define_NR_open 5

Page 63, last bullet on page

Chapter 13, "Virtual Filesystems," provides
more details.

Chapter 11, "Virtual Filesystems," provides
more details.

Page 67, text in "Top Halves Versus Bottom
Halves" section

The bottom half runs later, at a more
conventient time, with all interrupts
disabled…

The bottom half runs later, at a more
conventient time, with all interrupts
enabled…

Page 75, first paragraph

If so, it calls hardware_irq_event() to run
the installed interrupt handlers for the
line.

If so, it calls handle_irq_event() to run the
installed interrupt handlers for the line.

Page 77, second paragraph in "Interrupt
Control" section

Neither disabling interrrupt deliver nor
disabling kernel preemption provides any
protection from concurrent access from
another processor, however.

Neither disabling interrrupt delivery nor
disabling kernel preemption provides any
protection from concurrent access from
another processor, however.

Page 79, paragraph before "Status of the
Interrupt System"

Disabling the line disables interrupt
deliver for all devices on the line.

Disabling the line disables interrupt
delivery for all devices on the line.

Page 80, all occurences of deliver in Table
5.1 should be delivery

Page 83, fourth paragraph

The top half could mark whether the bottom
half would run by sitting a bit in a 32-bit
integer.

The top half could mark whether the bottom
half would run by setting a bit in a 32-bit
integer.

Page 89, last paragraph

Tasklets are represented by the
tasklist_struct structure.

Tasklets are represented by the tasklet_struct
structure.

Page 90, first paragraph in "Scheduling
Tasklets" section

Scheduled tasklets (the equivalent of raised
softirqs) are stored in two per-processor
structures: tasklist_vec (for regular
tasklets) and tasklet_hi_vec (for high-
prioirty tasklets).

Scheduled tasklets (the equivalent of raised
softirqs) are stored in two per-processor
structures: tasklet_vec (for regular tasklets)
and tasklet_hi_vec (for high-prioirty
tasklets).

Page 90, third bullet

Add the tasklet to-be-scheded to the head of
the tasklet_vec or tasklist_hi_vec linked
list, which is unique to each processor in
the system.

Add the tasklet to-be-scheded to the head of
the tasklet_vec or tasklet_hi_vec linked list,
which is unique to each processor in the
system.

Page 92, second paragraph

Both of these macros statically create a
struct tasklist_struct with the given name.

Both of these macros statically create a
struct tasklet_struct with the given name.

Page 99, last paragraph

To create the structure statically at run-
time:

To create the structure statically at
compile-time:

page 125, second paragraph below the "Spin
Locks and Bottom Halves" heading

Because a bottom half may preempt process
context code, if data is shared between a
bottom half process context, you must
protect the data in process context with
both a lock and the disabling of bottom
halves.

Because a bottom half may preempt process
context code, if data is shared between a
bottom half and process context, you must
protect the data in process context with both
a lock and the disabling of bottom halves.

Page 128, first paragraph

…one of the tasks on the wait queue will be
awakened up so that it can acquire the
semaphore.

…one of the tasks on the wait queue will be
woken up so that it can acquire the
semaphore.

Page 128, middle paragraph, next-to-last
sentence

Additionally, unlike spin locks, semaphores
do not disable kernel preemption and,
consequently, code holding a spin lock can
be preempted.

Additionally, unlike spin locks, semaphores
do not disable kernel preemption and,
consequently, code holding a semaphore can be
preempted.

Page 132, paragraph before Table 8.7

After the event has occurred, calling
complete() signals all waiting tasks to wake
up.

After the event has occurred, calling
complete() signals a waiting task to wake up.

Page 133, Table 8.7

Signals any waiting tasks to wake up Signals a waiting task to wake up

Page 153, paragraph in middle of page

The xtime.v_nsec value stores the number of
nanoseconds that have elapsed in the last
second.

The xtime.tv_nsec value stores the number of
nanoseconds that have elapsed in the last
second.

Page 165, paragraph after second bulleted
list

The actual use and layout of the memory
zones is architecture independent.

The actual use and layout of the memory zones
is architecture dependent.

Page 172, Table 10.5, entry for GFP_HIGHUSER

This is an allocation from ZOME_HIGHMEM and
might block.

This is an allocation from ZONE_HIGHMEM and
might block.

Page 173, second paragraph

On the far other end of the spectrum is the
GFP_ATOMIC flag.

On the far other end of the spectrum is the
GTP_ATOMIC flag.

page 181, first line on the page

This creates a cache named task_struct, which
stores objects of type struct task_struct.

This creates a cache named task_struct_cachep,
which stores objects of type struct
task_struct.

Page 194, third line

/* file creation timestamp */ /* inode change time */

Page 208, second paragraph in "Data
Structures Associated with a Process"
section

The address of this table is pointed to by
the files entry in the processor descriptor.

The address of this table is pointed to by
the files entry in the process descriptor.

Page 215, paragraph before "The bio
structure"

…into many multiple buffer_head structures.
…into multiple buffer_head structures.

Page 217, first paragraph after first code
snippet

In each given block I/O operation, there are
bi_vcnt vectors in the bio_vec array starting
with bi_io_vecs.

In each given block I/O operation, there are
bi_vcnt vectors in the bio_vec array starting
with bi_io_vec.

Page 217, paragraph in middle of page

Table 12.3 is a diagram of the relationship
between the bio structure, the bio_vec
structure, and the page structure.

Figure 12.2 is a diagram of the relationship
between the bio structure, the bio_vec
structure, and the page structure.

page 226, footnote 3 at the bottom of the
page

Newer versions of glibc implement malloc()
via mmap() and not brk().

Newer versions of glibc implement malloc()
via mmap() and brk().

Page 230, next-to-last paragraph

Thus, vm_end - vm_start is the size (length)
in bytes of the interval.

Thus, vm_end - vm_start+1 is the size (length)
in bytes of the interval.

page 231, 8th entry in Table 13.1

VM_MAYSHARE The VM_SHARE flag can be
set

VM_MAYSHARE The VM_SHARED flag can be
set

Page 244, first paragraph in "The
address_space Object" section

Checking the page cache to see if certain
data has been cached is rendered more
difficult because of the noncontinguous
nature of the blocks that can up each page.

Checking the page cache to see if certain
data has been cached is rendered more
difficult because of the noncontinguous
nature of the blocks that can make up each
page.

page 245, second to last line of code

struct address_space *assoc_mapping; /*
associated buffres */

struct address_space *assoc_mapping; /*
associated buffers */

Page 257, first paragraph

The lone disadvantage of a circular
buffer—the possibility of loosing
messages—is a small price to pay for the
simplicity and robustness it affords.

The lone disadvantage of a circular
buffer—the possibility of losing messages—is
a small price to pay for the simplicity and
robustness it affords.

Page 276, first paragraph in "Byte Order"
section

The byte ordering is called big-endian if
the most significant byte is encoding first
with the remaining bytes decreasing in
significance.

The byte ordering is called big-endian if the
most significant byte is encoded first with
the remaining bytes decreasing in
significance.

Page 278, first line of code

u23 __cpu_to_be32(u32); u32 __cpu_to_be32(u32);

This errata sheet is intended to provide updated technical information. Spelling and
grammar misprints are updated during the reprint process, but are not listed on this

errata sheet.

