

221

C H A P T E R 8

Remoting

The power of the passions, the force of the will,
 the creative energy of the imagination, these make life.

—The Princess of Tivoli (Disraeli)
in Paul Smith,

Disraeli: A Brief Life

Introduction

One of the splendid miseries of writing computer books is that you have to
go out and get some practical experience about the subject. Many times
this is possible, but occasionally it is not. Remoting is one of the few areas
in this book where my experience is limited to nonproduction code, that is,
sample applications. As I am writing this my colleagues and I are deliberat-
ing whether or not to use Web Services or .NET Remoting on a current
project. Because we will unlikely be able to deploy clients or servers on the
other end of the problem, Web Services will probably win. This brings us
to the subject at hand. What is .NET Remoting and why should you care?

Remoting is the technology used to get two applications to interchange
data. It is in the same category of problem and solution as CORBA and
DCOM. Clearly Microsoft thinks that .NET Remoting is a best-of-category
solution—otherwise, why would we need something other than DCOM?

To help you understand .NET Remoting in a general sense, I will share
a story with you that perhaps will help you understand the concept behind
.NET Remoting and its technology. Afterward I will include several exam-
ples that deal with the nuts and bolts of remoting.

Understanding .NET Remoting

Around the year my youngest son was born—about 1996—I was working on
a big project in Chicago. The problem was to manage information related to

KIMMEL.book Page 221 Thursday, June 12, 2003 8:37 AM

222

Chapter 8 Remoting

tracking labor in North America, which included Canada and Mexico. If
you recall, around that time we had whopping speeds of 9,600 baud on dial-
up connections. Our applications had to process huge amounts of data
through tiny connections over wide areas.

The application was to be implemented in Delphi, C, and DB2. At that
time C was used for stored procedures, IBM’s Universal database was still
called DB2, and there were no ODBC drivers for DB2. We had to write ev-
erything: stored procedures in C, client software for Windows, server soft-
ware, and connections to DB2 servers using a Software Development Kit
(SDK) from IBM. In essence we had to figure out how to write a rough sup-
plement for an absent connectivity layer to solve the business problem, and
we had to write a distributed application for Windows.

My smart friend Andrew Wozniewicz came up with a nice solution that
people had difficulty understanding but that worked in practice. The solu-
tion was to define abstract classes (remember that this was pretty early in
COM’s history, and I don’t recall that DCOM was a choice) and then share
those abstract classes on client and server. Implementations would exist only
on the server. The client would declare variables using the abstract classes,
and a factory method would return an actual object to the abstract variable
definition. Hence, we implemented thin clients containing only abstract
classes and fatter servers containing implementations for those classes. From
the server to the database server we used what Andrew referred to as “amor-
phous blobs of data.” These amorphous blobs represented data that we cre-
ated in a predetermined format to which the server application and server
applications on the database server had agreed. This is pretty good multitier
architecture considering the state of technology at the time. I am familiar
with all of this because I implemented the proof-of-concept vertical slice
from Andrew’s description.

When we were finished we had a client with abstract classes, a middle-
tier business layer with abstract classes, and completely implemented child
classes in the middle tier, which sent amorphous blobs of binary data to the
database server. On the database server the blobs were unpacked and the
DB2 SDK was used to invoke stored procedures.

To Andrew’s credit he figured some of this out by gleaning how Delphi’s
very advanced IDE—at the time—worked with the Visual Control Library
(VCL) at design time to get controls from the designer onto a form. As I
mentioned in Chapter 3, Anders Hejlsberg was instrumental to implement-
ing Borland’s Delphi and Microsoft’s .NET. History provides perspective,
and it is very likely that some ideas in .NET evolved from Anders’ dozen or
so years at Borland.

KIMMEL.book Page 222 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Reference

223

The problem Andrew and I and many others had still exists. How do we
get applications to share data on a LAN or WAN? Worse, the problem is ex-
acerbated now because the network includes the highly distributed, hetero-
geneous Internet. In addition to having to send data between client and
server on a LAN and WAN, now programmers are expected to send data
between multiple clients and multiple servers, potentially running different
operating systems and different language-based implementations, across
every kind of network. .NET Remoting is a solution to the problem of im-
plementing highly distributed applications.

Sadly, Andrew’s amorphous blobs aren’t completely sufficient as a pub-
lic standard. What Microsoft has done is to allow us to define interfaces or
abstract classes on the client and implement classes on the server, and in-
stead of amorphous blobs we get XML and SOAP. As open standards, XML
and SOAP can be deciphered by any platform. In addition, Microsoft’s
.NET Remoting technology takes care of packaging the XML and SOAP
blob back and forth—called

marshaling—

for us. For the most part we only
have to worry about writing the business solution; .NET takes care of the in-
frastructure.

Of course, as is true with any subject, if you dig deep enough you can
start customizing and extending the provided behavior. However, the ulti-
mate end result is that .NET Remoting was defined to support a highly dis-
tributed world of TCP and HTTP networks by building on open standards
and hiding the most difficult aspects of managing connections, marshaling
data, and reading and writing XML and SOAP. As a result, if you can under-
stand inheritance, declare and implement an interface, and use attributes,
you are ready to begin using .NET Remoting.

Marshaling Objects by Reference

Remoting handles data between client and server in two ways: (1) marshal-
ing the data by reference and (2) marshaling the data by value. Marshaling
by reference is analogous to having a pointer, and marshaling by value is
analogous to having a copy. If we change a reference object, the original is
changed, and changes to a copy have no effect on the original. To get your
feet wet let’s start with a quick marshal-by-reference example. (The Mar-
shaling Objects by Value section later in this chapter talks about the other
way data is moved back and forth.)

KIMMEL.book Page 223 Thursday, June 12, 2003 8:37 AM

224

Chapter 8 Remoting

NOTE:

Occasionally I will be accused of writing or saying something conde-
scending. That is never my intent. That said, depending on your level of com-
fort with technical jargon, words like

marshal

 may sound ominous. This is an
advanced book, but if you are not comfortable with COM and DCOM, the word

marshal

 may trouble you. An easier term might be

shepherd

, as in herding
sheep. Because remoting moves data across a network, the data must be
packaged and unpackaged in an agreed-upon format and shepherded between
the application that has the data (the server) and the application that wants
the data (the client).

Several graphics on the Web depict this relationship—marshaling between
client and server—but I am not sure if they aid understanding or add to confu-
sion. Rather than repeat those images, I encourage you to think of the code
that does the shepherding as the responsibility of .NET. These codified shep-
herds are referred to as

proxies

. The

Remoting

 namespace contains the proxy

code.

Hello, Remote World!

Rather than torture you with another Hello, World! application, I will use a
sample application with a little more meat (not much but a bit more).

Suppose you work in the information technology department of a large
insurance company. This company owns several broker dealers that sell
mutual funds. As a result you are tasked with tracking all customer pur-
chases of mutual funds, life and health products, and annuities. You can
cobble together a solution that requires the remote broker dealer offices to
run batch programs at night that upload data and combine the mutual fund
trades with Universal Life payments, mixing and matching the client PC’s
database programs with your UDB, SQL Server, or Oracle databases.
When you are finished you have VB6 applications on the client worksta-
tions running ObjectRexx dial-up scripts to FTP servers late at night. Or,
you can use remoting and .NET to get everybody working together. Throw
out the Perl,

.cmd

,

.bat

, and

.ftp

 scripts; toss the various and sundry im-
port and export utilities written in C, VB6, and Modula; and get everything
working in real time.

Okay. We won’t have enough time to tackle all of that in this section, but
we can create a client application that requests a customer and a server ap-
plication that simulates servicing that request. Because the code would take
up a lot of space, we will simulate the client reading from the database. How-

KIMMEL.book Page 224 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Reference

225

ever, after you read Chapters 11, 12, and 16 on ADO.NET, you will be able
to incorporate the code to read from the database too. Figure 8.1 shows a
UML model of the design we will be using here. (I used Rational XDE, inte-
grated into .NET, to create the UML class diagram.)

The class diagram accurately depicts the code that resides in the client
and server. An assembly named

Interface

 contains the two interfaces:

IF-
actory

 and

ITrade

. The assembly named

Server

 implements (

realizes

 in
the vernacular of the UML)

IFactory

 and

ITrade

 in

Factory

 and

Trade

,
respectively, and the assembly named

Client

 is dependent on the two in-
terfaces. Note that there is no dependency on the actual implementations of

IFactory

 and

ITrade

 in

Client

. If all the code on the server were on the
client, then arguably the server would not be needed. (This isn’t precisely
true but logically makes sense.) Listings 8.1 and 8.2 contain the code for the

Interface

 and

Server

 assemblies, in that order.

Figure 8.1 The class diagram for our server application.

KIMMEL.book Page 225 Thursday, June 12, 2003 8:37 AM

226

Chapter 8 Remoting

Listing 8.1

The

Interface.vb

 File Containing the

IFactory

and

ITrade

 Interfaces

Public Interface IFactory

 Function GetTrade(ByVal customerId As Integer) As ITrade

End Interface

Public Interface ITrade

 Property NumberOfShares() As Double
 Property EquityName() As String
 Property EquityPrice() As Double
 ReadOnly Property Cost() As Double
 Property Commission() As Double
 Property RepId() As String

End Interface

Listing 8.2

The

ServerCode.vb

 File Containing the Implementation of

ITrade

and

IFactory

Imports System
Imports [Interface]
Imports System.Reflection

Public Class Factory
 Inherits MarshalByRefObject
 Implements IFactory

 Public Function GetTrade(_
 ByVal customerId As Integer) As ITrade _
 Implements IFactory.GetTrade
 Console.WriteLine("Factory.GetTrade called")

 Dim trade As Trade = New Trade()
 trade.Commission = 25
 trade.EquityName = "DYN"
 trade.EquityPrice = 2.22
 trade.NumberOfShares = 1000
 trade.RepId = "999"

KIMMEL.book Page 226 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Reference

227

 Return trade
 End Function

End Class

Public Class Trade
 Inherits MarshalByRefObject
 Implements ITrade

 Private FCustomerId As Integer
 Private FNumberOfShares As Double
 Private FEquityName As String
 Private FEquityPrice As Double
 Private FCommission As Double
 Private FRepId As String

 Public Property NumberOfShares() As Double _
 Implements ITrade.NumberOfShares
 Get
 Return FNumberOfShares
 End Get
 Set(ByVal Value As Double)
 FNumberOfShares = Value
 End Set
 End Property

 Public Property EquityName() As String _
 Implements ITrade.EquityName
 Get
 Return FEquityName
 End Get
 Set(ByVal Value As String)
 Console.WriteLine("EquityName was {0}", FEquityName)
 FEquityName = Value
 Console.WriteLine("EquityName is {0}", FEquityName)
 Console.WriteLine([Assembly].GetExecutingAssembly().FullName)

 End Set
 End Property

 Public Property EquityPrice() As Double _
 Implements ITrade.EquityPrice
 Get
 Return FEquityPrice

KIMMEL.book Page 227 Thursday, June 12, 2003 8:37 AM

228

Chapter 8 Remoting

 End Get
 Set(ByVal Value As Double)
 FEquityPrice = Value
 End Set
 End Property

 ReadOnly Property Cost() As Double _
 Implements ITrade.Cost
 Get
 Return FEquityPrice * _
 FNumberOfShares + FCommission
 End Get
 End Property

 Property Commission() As Double _
 Implements ITrade.Commission
 Get
 Return FCommission
 End Get
 Set(ByVal Value As Double)
 FCommission = Value
 End Set
 End Property

 Property RepId() As String _
 Implements ITrade.RepId
 Get
 Return FRepId
 End Get
 Set(ByVal Value As String)
 FRepId = Value
 End Set
 End Property

End Class

The code in both listings is pretty straightforward. Listing 8.1 defines
the two interfaces

IFactory

 and

ITrade

. Listing 8.2 provides an imple-
mentation for each of these interfaces.

After scanning the code you might assume that all we need to do is add
a reference in the client to each of the two assemblies containing the code
in Listings 8.1 and 8.2 and we’re finished. And you’d be right if we were

KIMMEL.book Page 228 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Reference

229

building a single application. However, we are building two applications: cli-
ent and server.

Suppose for a moment that we did add a reference to the

Interface

 and

Server

 assemblies. .NET would load all three assemblies—client, interface,
and server—into the same application domain (

AppDomain

), and the client
could create

Trade

 and

Factory

 objects directly or by using the interfaces.
This is a valid model of programming, but it is not distributed. It works be-
cause .NET uses

AppDomain

 for application isolation. All referenced assem-
blies run in the same

AppDomain

. However, when we run a client application
and a separate server, we have two applications, each running in its own

App-
Domain

. .NET Remoting helps us get data across application domains.
In our distributed example,

Client.exe

 is an executable with a refer-
ence to

Interface.dll

. Both of these assemblies run in the

AppDomain

for

Client.exe

.

Server.exe

 also has a reference to

Interface.dll

, and

Server.exe

 and

Interface.dll

 run in the

AppDomain

 for

Server.exe

.
The code we have yet to add is the code that creates the object on the client
by making a remote request to the server.

Getting Client and Server Talking

Thus far we have written vanilla interface and class code. To get the client
and server talking we have to use some code in the System.Runtime.Re-
moting namespace. The first step is to inherit from MarshalByRefObject.
Listing 8.2 shows that both Factory and Trade inherit from MarshalBy-
RefObject, which enables the classes to talk across application boundaries.
The second piece of the puzzle is to tell the server to start listening, permit-
ting the client to start making requests.

Listing 8.3 contains the code that instructs the server to start listening,
and Listing 8.4 contains the code to get the client to start making requests.
Both client and server are implemented as console applications (.exe) for
simplicity. You can use .NET Remoting with a variety of hosting styles. (Re-
fer to the Choosing a Host for Your Server subsection near the end of this
chapter for more information.)

Listing 8.3 Telling the Server Application to Begin Listening for Requests

1: Imports System.Runtime.Remoting
2: Imports System.Runtime.Remoting.Channels
3: Imports System.Runtime.Remoting.Channels.Http
4:
5: Public Class Main

KIMMEL.book Page 229 Thursday, June 12, 2003 8:37 AM

230 Chapter 8 Remoting

6:
7: Public Shared Sub Main(ByVal args() As String)
8:
9: Dim channel As HttpChannel = New HttpChannel(9999)
10: ChannelServices.RegisterChannel(channel)
11: RemotingConfiguration.RegisterWellKnownServiceType(_
12: GetType(Factory), "Factory.soap", _
13: WellKnownObjectMode.Singleton)
14:
15: RemotingConfiguration.RegisterWellKnownServiceType(_
16: GetType(Trade), "Trade.soap", _
17: WellKnownObjectMode.Singleton)
18:
19: Console.WriteLine("Server is running...")
20: Console.ReadLine()
21: Console.WriteLine("Server is shutting down...")
22: End Sub
23:
24: End Class

From the code and the shared Main method you can tell that Listing 8.3
comes from a .NET console application. Lines 1 through 3 import name-
spaces relevant to remoting.

The first thing we need to do is declare a channel. I elected to use the
HTTP protocol, and the HttpChannel constructor takes a port number.
This is the port number on which the server will listen. If you want the
server to automatically choose an available port, send 0 to the HttpChannel
constructor. There are about 65,500 ports. If you want to specify a port
number, just avoid obvious ports that are already in use like 80 (Web
server), 23 (Telnet), 20 and 21 (FTP), and 25 (mail). Picking a port that is
being used by another application will yield undesirable results. After we
have elected a channel we need to call the shared method RegisterChan-
nel (line 10).

Next we register the server as a well-known service type. (Inside the CLR
there is a check to make sure that the service inherits from MarshalByRef-
Object.) We pass the Type object of the type to register, the Uniform Re-
source Identifier (URI) for the service, and the way we want the service
instantiated. When you read URI, think URL. The URI identifies the service;
by convention we use the class name and .soap or .rem for the URI. You can
use any convention, but Internet Information Services (IIS) maps the .soap
and .rem extensions to .NET Remoting. This is important when hosting re-

KIMMEL.book Page 230 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Reference 231

mote servers in IIS. (Refer to the Choosing a Host for Your Server subsection
near the end of this chapter.) You can pass the WellKnownObjectMode.Sin-
gleton or WellKnownObjectMode.SingleCall enumerated values to the
registration method. Singleton is used to ensure that one object is used to
service requests, and SingleCall will cause a new object to be created to
service each request. (SingleCall causes a remoted server to respond like a
Web application. The server has no knowledge of previous calls.)

The Factory type is registered in lines 11 through 13 and the Trade
type in lines 15 through 17. After the server types are registered we use
Console.ReadLine to prevent the server from exiting. To quit the server
application, set the focus on the console running the server and hit the car-
riage return; the server will respond until then. Listing 8.4 contains the
code that prepares the client to send requests to the server.

Listing 8.4 Preparing the Client Application to Begin Making Requests

1: Private Sub Form1_Load(ByVal sender As System.Object, _
2: ByVal e As System.EventArgs) Handles MyBase.Load
3:
4: Dim channel As HttpChannel = New HttpChannel()
5: ChannelServices.RegisterChannel(channel)
6:
7: Dim instance As Object = _
8: Activator.GetObject(GetType(IFactory), _
9: "http://localhost:9999/Factory.soap")
10:
11: Dim factory As IFactory = _
12: CType(instance, IFactory)
13:
14: Dim trade As ITrade = _
15: factory.GetTrade(1234)
16:
17: End Sub

The client declares, creates, and registers a channel in lines 4 and 5. We
don’t need the port here when we register the channel; we will indicate the
port when we request an instance of the object from the server. Lines 7
through 9 use the shared Activator.GetObject class to request an in-
stance of the Factory class defined in the server. The URL (line 9) indi-
cates the domain and port of the server and the name we registered the

KIMMEL.book Page 231 Thursday, June 12, 2003 8:37 AM

232 Chapter 8 Remoting

server with. Lines 11 and 12 convert the instance type returned by Activa-
tor to the interface type we know it to be, and lines 14 and 15 use the fac-
tory instance to request a Trade object.

To see that the value of the trade object (line 14) is actually a proxy,
place a breakpoint in line 17 and use QuickWatch to examine the value of
the trade variable (Figure 8.2).

Using Server-Activated Objects

In the example above we created what is known as a server-activated object
(SAO). When you construct an SAO—for example, with Activator.Get-
Object—only a proxy of the object is created on the client. The actual ob-
ject on the server isn’t created until you invoke an operation on that type via
the proxy. (The proxy is transparent; thus the invocation occurs in the back-
ground when you call a method or access a property.) The lifetime of an
SAO is controlled by the server, and only default constructors are called.

In a production application it is more than likely that you will want to per-
mit the operator to manage the configuration of the server without having to
recompile the server application. This can be handled in an application con-
figuration file. Example3\Client.sln defines an application configuration

Figure 8.2 The local variable trade is an instance of the TransparentProxy
class, indicating the unusual remoted relationship between client and server.

KIMMEL.book Page 232 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Reference 233

file for server.vbproj. You can add an application configuration file by ac-
cessing the File|Add New Item menu in Visual Studio .NET and selecting the
Application Configuration File template from the Add New Item dialog. List-
ing 8.5 contains the externalized XML settings used to register the server.
The revision to the Main class in Listing 8.3, which accommodates the appli-
cation configuration file, is provided in Listing 8.6.

Listing 8.5 An Application Configuration That Externalizes Server
Registration Settings

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.runtime.remoting>
 <application>
 <channels>
 <channel ref="http" port="8080" />
 </channels>
 <service>
 <wellknown mode="Singleton"
 type="Server.Factory, Server"
 objectUri="Factory.soap" />
 </service>
 </application>
 </system.runtime.remoting>
</configuration>

The first statement describes the XML version and the text encoding
(8-bit Unicode in the example). The configuration element indicates this
is a configuration file. Typically, XML elements have an opening tag—for
example, <configuration>—and a matching closing tag with a whack (/)
inside the tag. Sometimes this is abbreviated to />, as demonstrated with
the wellknown element in Listing 8.5.

The third element indicates the relevant namespace, system.run-
time.remoting. The channel element indicates the channel type and port.
The wellknown element indicates the WellKnownObjectMode (Singleton
in the example), the type information for the type we are registering
(Server.Factory, in Listing 8.6), and the URI (Factory.soap). This is
precisely the same information we provided in Listing 8.3, programmati-
cally. Now, however, if we find that port 8080 is in use by a proxy server or
another HTTP server, we can reconfigure the channel without recompiling.

KIMMEL.book Page 233 Thursday, June 12, 2003 8:37 AM

234 Chapter 8 Remoting

Having modified the server application to store the server registration
information in the .config file, we can modify Listing 8.3 to simplify the
registration of WellKnownServiceType. Listing 8.6 shows the shorter, re-
vised code.

Listing 8.6 Revised Code after Moving Registration Settings
to Server.exe.config

Imports System.Runtime.Remoting
Imports System.Runtime.Remoting.Channels
Imports System.Runtime.Remoting.Channels.Http

Public Class Main

 Public Shared Sub Main(ByVal args() As String)

 RemotingConfiguration.Configure("Server.exe.config")

 Console.WriteLine("Server is running...")
 Console.ReadLine()
 Console.WriteLine("Server is shutting down...")
 End Sub

End Class

In the example we have removed the channel construction and calls to
the shared method RemotingConfiguration.RegisterWellKnownSer-
viceType that appeared in Listing 8.3. All we need to do now is pass the
name of our .config file to the RemotingConfiguration.Configure
method in Listing 8.6.

Keep in mind that when you add the Application Configuration File
template to your project you will see an App.config file in the Solution Ex-
plorer with the rest of your source. When you compile your application, the
applicationname.exe.config file is written to the directory containing
the executable. While in the debug configuration mode, for example, you
will see the Server.exe.config file written to the .\bin directory.

Using Client-Activated Objects

Client-activated objects (CAOs) are registered and work a bit differently
than server-activated objects. A CAO is created on the server as soon as you

KIMMEL.book Page 234 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Reference 235

create an instance of the CAO, which you can do by using Activator.Cre-
ateInstance or the New constructor. The biggest difference between SAOs
and CAOs is that CAOs do not use shared interfaces; rather, a copy of the
shared code must exist on both the client and the server. Deploying code to
client and server will mean more binaries on the clients, a more challenging
deployment, and possible versioning problems.

To preclude re-reading all the code, I have reused the same Factory
and Trade classes for our CAO example. However, I have gotten rid of the
interfaces, placed the Factory class in the client (since we don’t really need
two server-side classes to demonstrate CAO), and shared the Trade class
between client and server. Instead of literally sharing the Trade class in a
third DLL assembly, I defined the Trade class in the Server assembly and
used soapsuds.exe (a utility that ships with VS .NET) to generate the
shared DLL. We’ll go through each of these steps in the remaining parts of
this section. (The code for this section can be found in the Example2\Cli-
ent.sln solution.)

Implementing the Server for the CAO Example

The Server.vbproj file contains the same Trade class shown in Listing 8.3,
so I won’t relist that code here. The Factory class has been moved to the cli-
ent (see the Implementing the Client subsection below). What’s different
about the server is how we register it. The revision to the Main class is shown
in Listing 8.7.

Listing 8.7 Registering a Server for Client Activation

1: Imports System.Runtime.Remoting
2: Imports System.Runtime.Remoting.Channels
3: Imports System.Runtime.Remoting.Channels.Http
4:
5: Public Class Main
6:
7: Public Shared Sub Main(ByVal args() As String)
8:
9: Dim channel As HttpChannel = New HttpChannel(9999)
10: ChannelServices.RegisterChannel(channel)
11:
12: ' Code needed for client activation
13: RemotingConfiguration.ApplicationName = "Server"
14: RemotingConfiguration. _
15: RegisterActivatedServiceType(GetType(Trade))

KIMMEL.book Page 235 Thursday, June 12, 2003 8:37 AM

236 Chapter 8 Remoting

16:
17: Console.WriteLine("Server is running...")
18: Console.ReadLine()
19: Console.WriteLine("Server is shutting down...")
20: End Sub
21:
22: End Class

Registration for client activation is much simpler. We provide a name
for the application and register the type we will be remoting. The applica-
tion name is provided in line 13 and the Trade class is registered in lines 14
and 15 using the shared method RemotingConfiguration.RegisterAc-
tivatedServiceType, passing the type of the class to register. Recall that
we actually have the implementation of the type—Trade—defined on the
server.

That’s all we need to do to the server’s Main class—change the registra-
tion code.

Exporting the Server Metadata for the Trade Class

To construct an instance of a class in the client using the new operator, we
need a class. Calling New on an interface—as in Dim T As ITrade = New
ITrade()—won’t work because interfaces don’t have code. You can create a
third assembly and share that code in both the client and server, or you can
use the soapsuds.exe utility to generate a C# source code or a DLL that
can be referenced in your client application. I implemented a batch file my-
soapsuds.bat in the Example2\Server\bin directory that will create a
DLL named server_metadata.dll. Here is the single command in that
batch file.

soapsuds -ia:server -nowp -oa:server_metadata.dll

In this code, soapsuds is the name of the executable. The –ia switch is
the name of the input assembly. (Note that the assembly extension—.exe
for this example—is left off.). The –nowp switch causes soapsuds to stub
out the implementations, permitting a dynamic transparent proxy to handle
the method calls. The –oa switch indicates the output assembly name. In
the example an assembly named server_metadata.dll will be generated.
Next we will add a reference to this assembly in our client application.

KIMMEL.book Page 236 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Reference 237

Implementing the Client

The client application needs a definition of the interface and the type for
client activation. We can actually share the code between client and server
and use parameterized constructors for client activation; or, in our example,
we use soapsuds.exe to generate a metadata DLL and give up parameter-
ized constructors for remoted objects.

On the user’s PC we need some kind of application as well as remoting
registration code, and we can use a factory on the client to simulate con-
structor parameterization (if we are using soapsuds-generated metadata.)
As a general rule it is preferable to use soapsuds to generate metadata and
a factory for convenience, as opposed to shipping the server executable to
every client. Listing 8.8 shows a Windows Forms implementation of the
CAO client and a factory for the Trade class.

Listing 8.8 Implementing a Client-Activated Object and a Factory

1: Imports System
2: Imports System.Runtime.Remoting
3: Imports System.Runtime.Remoting.Channels
4: Imports System.Runtime.Remoting.Channels.Http
5: Imports System.Runtime.Remoting.Activation
6: Imports System.Reflection
7: Imports Server
8:
9: Public Class Form1
10: Inherits System.Windows.Forms.Form
11:
12: [Windows Form Designer generated code]
13:
14: Private Generator As Generator
15:
16: Private Sub Form1_Load(ByVal sender As System.Object, _
17: ByVal e As System.EventArgs) Handles MyBase.Load
18:
19: Dim channel As HttpChannel = New HttpChannel()
20: ChannelServices.RegisterChannel(channel)
21:
22: ' Client-activated object code
23: RemotingConfiguration.RegisterActivatedClientType(_
24: GetType(Trade), _
25: "http://localhost:9999/Server")
26:

KIMMEL.book Page 237 Thursday, June 12, 2003 8:37 AM

238 Chapter 8 Remoting

27: Dim Factory As Factory = New Factory()
28: Dim Trade As Trade = Factory.GetTrade(5555)
29: Trade.Commission = 25
30: Trade.EquityName = "CSCO"
31: Trade.EquityPrice = 11.0
32: Trade.NumberOfShares = 2000
33: Trade.RepId = 999
34:
35: Generator = New Generator(Me, _
36: GetType(Trade), Trade)
37: Generator.AddControls()
38:
39: End Sub
40:
41: End Class
42:
43: Public Class Factory
44:
45: Public Function GetTrade(_
46: ByVal customerId As Integer) As Trade
47: Console.WriteLine("Factory.GetTrade called")
48:
49: Dim trade As Trade = New Trade()
50: trade.CustomerId = 555
51: trade.Commission = 25
52: trade.EquityName = "DYN"
53: trade.EquityPrice = 2.22
54: trade.NumberOfShares = 1000
55: trade.RepId = "999"
56:
57: Return trade
58: End Function
59:
60: End Class

Listing 8.8 contains two classes: the Windows Forms class Form1 and the
Factory class. The Form1 class creates and registers a channel in lines 19 and
20. Instead of using the Activator class to create the remote object, we call
the shared method RemotingConfiguration.RegisterActivatedCli-
entType, passing the type to register and the URI of the server-registered
type (lines 23 through 25).

KIMMEL.book Page 238 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Value 239

After the type that can be activated on the server is registered, we use
the Factory class to create an instance of that type (lines 27 and 28). To
provide you with additional calls to the server, I changed the values set by
the Factory class. There is no requirement here, just extra code.

The Generator class used on lines 35 through 37 is extra code I added
to create a Windows user interface. This code is included with the down-
loadable remoting example and creates a simple user interface comprised of
text boxes and labels, created by reflecting the remote type.

Marshaling Objects by Value

Marshal-by-value objects are not remote objects. By-value objects are
marked with the SerializableAttribute or implement the ISerializ-
able interface. When a serializable object is requested from a remote
server, the object is serialized into an XML or binary format and transmit-
ted to the requester. Only data is shipped. Thus, if the serialized object has
methods that need to be invoked, the code must exist on the recipient de-
vice. This is similar to how Web Services work. A Web Service returns an
XML representation of an object that is comprised of data only. If you want
to invoke operations on the data, you need the assembly that contains the
methods. (This approach is used to return serialized data sets from an XML
Web Service.)

In this section I offer another example using the Factory and Trade
classes. The Factory class is a MarshalByRefObject that returns a by-
value object, an instance of the serialized Trade class. In this example I
need to share the implementation of the Trade class between client and
server. The server will serialize a representation of the Trade class, and the
client will deserialize the representation. Implicitly the deserialized data
will be mapped to the shared implementation of the Trade class. The end
result is that we get the data from the server—passing just the data—and
reconstitute the actual object on the client.

On top of the basic example, I will provide an example of a customer
version of the Trade class that implements ISerializable.

Employing By-Value Classes

In our revised example the Factory class is a marshal-by-reference class.
(Recall this means that it inherits from MarshalByRefObject.) Further, I

KIMMEL.book Page 239 Thursday, June 12, 2003 8:37 AM

240 Chapter 8 Remoting

have converted the implementation of the Trade class to be a marshal-by-
value class. Both classes inherit from their respective interfaces: Trade im-
plements ITrade, and Factory implements IFactory. Interface.dll,
containing the interfaces ITrade and IFactory, is shared by both client
and server. On the server we configure and register the Factory class as re-
motable by using a .config file (as demonstrated in Listing 8.6) to manage
registration of the server-activated class. As a result, only the Trade class
contains modification. Listing 8.9 shows the complete, revised listing of the
Trade class as defined on the server. The absence of MarshalByRefObject
inheritance and the SerializableAttribute indicates that the Trade
class is a by-value object in this listing.

Listing 8.9 Implementing the Trade Class as a By-Value Object

1: <Serializable()>_
2: Public Class Trade
3:
4: Private FCustomerId As Integer
5: Private FNumberOfShares As Double
6: Private FEquityName As String
7: Private FEquityPrice As Double
8: Private FCommission As Double
9: Private FRepId As String
10:
11: Public Property CustomerId() As Integer
12: Get
13: Return FCustomerId
14: End Get
15: Set(ByVal Value As Integer)
16: FCustomerId = Value
17: End Set
18: End Property
19:
20: Public Property NumberOfShares() As Double
21: Get
22: Return FNumberOfShares
23: End Get
24: Set(ByVal Value As Double)
25: FNumberOfShares = Value
26: End Set
27: End Property
28:

KIMMEL.book Page 240 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Value 241

29: Public Property EquityName() As String
30: Get
31: Return FEquityName
32: End Get
33: Set(ByVal Value As String)
34: Console.WriteLine("EquityName was {0}", FEquityName)
35: FEquityName = Value
36: Console.WriteLine("EquityName is {0}", FEquityName)
37: Console.WriteLine([Assembly].GetExecutingAssembly().FullName)
38:
39: End Set
40: End Property
41:
42: Public Property EquityPrice() As Double
43: Get
44: Return FEquityPrice
45: End Get
46: Set(ByVal Value As Double)
47: FEquityPrice = Value
48: End Set
49: End Property
50:
51: ReadOnly Property Cost() As Double
52: Get
53: Return FEquityPrice * _
54: FNumberOfShares + FCommission
55: End Get
56: End Property
57:
58: Property Commission() As Double
59: Get
60: Return FCommission
61: End Get
62: Set(ByVal Value As Double)
63: FCommission = Value
64: End Set
65: End Property
66:
67: Property RepId() As String
68: Get
69: Return FRepId
70: End Get
71: Set(ByVal Value As String)
72: FRepId = Value

KIMMEL.book Page 241 Thursday, June 12, 2003 8:37 AM

242 Chapter 8 Remoting

73: End Set
74: End Property
75:
76: End Class

After a quick observation you will see that only the first couple of lines
have changed and all the interface implementation code has been removed.
Line 1 shows the use of the SerializableAttribute (defined in the Sys-
tem namespace), and I removed the statement Inherits MarshalByRef-
Object. This is all you need to do to indicate that an object can be sent back
and forth in a serialized form, such as an XML document.

Additionally, the IFactory interface (not shown here, see Listing 8.1)
has been modified to return a Trade value rather than the ITrade inter-
face, and the ITrade interface—no longer required—has been removed
from the Interface.vb source file.

Revising the Client to Use the By-Value Object

The client has to change very little to accommodate the marshal-by-value
object. Factory is the remote object and it returns the Trade type, which
we have referenced in both the client and the server. Because we are using
a server-activated object—Factory—we only need to get an instance of the
factory and invoke the GetTrade method. .NET automatically serializes the
Trade object, and our locally declared Trade variable can handle the dese-
rialized instance. We do not have to manage serialization on the server or
deserialization on the client; this is automatic. Listing 8.10 contains the cli-
ent code for the marshal-by-value Trade object.

Listing 8.10 Client Code for the By-Value Trade Object

1: Imports System
2: Imports System.Runtime.Remoting
3: Imports System.Runtime.Remoting.Channels
4: Imports System.Runtime.Remoting.Channels.Http
5: Imports System.Reflection
6: Imports [Interface]
7:
8: Public Class Form1
9: Inherits System.Windows.Forms.Form
10:

KIMMEL.book Page 242 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Value 243

11: [Windows Form Designer generated code]
12:
13: Private Generator As Generator
14: Private trade As Trade
15:
16: Private Sub Form1_Load(ByVal sender As System.Object, _
17: ByVal e As System.EventArgs) Handles MyBase.Load
18:
19: Dim channel As HttpChannel = New HttpChannel()
20: ChannelServices.RegisterChannel(channel)
21:
22: Dim Instance As Object = _
23: Activator.GetObject(GetType(IFactory), _
24: "http://localhost:8080/Factory.soap")
25:
26: Dim Factory As IFactory = CType(Instance, IFactory)
27: trade = Factory.GetTrade(1234)
28:
29: trade.EquityName = "MSFT"
30: Debug.WriteLine(trade.Cost.ToString())
31: Generator = New Generator(Me, _
32: GetType(Trade), trade)
33: Generator.AddControls()
34:
35: End Sub
36:
37: End Class

Note that in the example the trade variable (line 14) is declared as a
Trade type. We are actually getting a serialized form of the Trade object
from the server, and the client is automatically deserializing the object re-
turned by the Factory method and reconstituting it as a Trade object. Be-
cause we have an implementation of the Trade class shared between client
and server, this works nicely.

The balance of the code registers the server-activated Factory and uses
the Generator class I defined to create a user interface. You can download
Example4\Client.sln to experiment with this code.

Implementing ISerializable
The default behavior of the SerializableAttribute is to serialize all
public properties. In a serialized form they are transmitted as public fields.

KIMMEL.book Page 243 Thursday, June 12, 2003 8:37 AM

244 Chapter 8 Remoting

However, because we have the binary code on both the client and the server,
the deserialized object can be reconstituted as a complete object. Complete-
ness, here, means that we have properties, fields, methods, attributes, and
events.

Generally this default behavior is sufficient. However, it may be insuffi-
cient if you want to serialize additional data that may not be part of the pub-
lic properties but is beneficial to the class or intensive to calculate.
Whenever you need extra data serialized you can get it by implementing the
System.Runtime.Serialization.ISerializable interface. The help
documentation tells you that you need to implement GetObjectData,
which is the serialization method. What is implied is that you need the sym-
metric deserialization behavior. Deserialization is contrived in the form of a
constructor that initializes an object based on serialized data.

In order to demonstrate custom serialization in the Example4\Cli-
ent.sln file I added a contrived value to the Trade class used for debug-
ging purposes. This contrived field, DateTime, holds the date and time
when the object was serialized. When a Trade object is serialized, I include
the current DateTime value. When the object is deserialized, the DateTime
value is written to the Debug window. To affect the custom serialization I
needed to change only the shared class we have been using all along. The
complete listing of the Trade class is shown in Listing 8.11 with the revi-
sions (compared with Listing 8.9) in bold font. (The actual source is con-
tained in Example4\Interface\Interface.vb.)

Listing 8.11 Implementing Custom Serialization for .NET Remoting

1: <Serializable()>_
2: Public Class Trade
3: Implements ISerializable
4:
5: Private FCustomerId As Integer
6: Private FNumberOfShares As Double
7: Private FEquityName As String
8: Private FEquityPrice As Double
9: Private FCommission As Double
10: Private FRepId As String
11:
12: Public Sub New()
13: End Sub
14:
15: Public Sub New(ByVal info As SerializationInfo, _

KIMMEL.book Page 244 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Value 245

16: ByVal context As StreamingContext)
17:
18: Debug.WriteLine("Started deserializing Trade")
19: FCustomerId = CType(info.GetValue("CustomerId", _
20: GetType(Integer)), Integer)
21: FNumberOfShares = CType(info.GetValue("NumberOfShares", _
22: GetType(Double)), Double)
23:
24: FEquityName = CType(info.GetValue("EquityName", _
25: GetType(String)), String)
26:
27: FEquityPrice = CType(info.GetValue("EquityPrice", _
28: GetType(Double)), Double)
29:
30: FCommission = CType(info.GetValue("Commission", _
31: GetType(Double)), Double)
32:
33: FRepId = CType(info.GetValue("RepId", _
34: GetType(String)), String)
35:
36: Dim SerializedAt As DateTime _
37: = CType(info.GetValue("SerializedAt", _
38: GetType(DateTime)), DateTime)
39:
40: Debug.WriteLine(String.Format(_
41: "{0} was serialized at {1}", _
42: Me.GetType.Name(), SerializedAt))
43:
44: Debug.WriteLine("Finished deserializing Trade")
45: End Sub
46:
47: Protected Sub GetObjectData(_
48: ByVal info As SerializationInfo, _
49: ByVal context As StreamingContext _
50:) Implements ISerializable.GetObjectData
51:
52: Console.WriteLine("Started serializing Trade")
53:
54: info.AddValue("CustomerId", FCustomerId)
55: info.AddValue("NumberOfShares", FNumberOfShares)
56: info.AddValue("EquityName", FEquityName)
57: info.AddValue("EquityPrice", FEquityPrice)
58: info.AddValue("Commission", FCommission)
59: info.AddValue("RepId", FRepId)

KIMMEL.book Page 245 Thursday, June 12, 2003 8:37 AM

246 Chapter 8 Remoting

60: info.AddValue("SerializedAt", DateTime.Now)
61:
62: Console.WriteLine("Finished serializing Trade")
63: End Sub
64:
65:
66: Public Property CustomerId() As Integer
67: Get
68: Return FCustomerId
69: End Get
70: Set(ByVal Value As Integer)
71: FCustomerId = Value
72: End Set
73: End Property
74:
75: Public Property NumberOfShares() As Double
76: Get
77: Return FNumberOfShares
78: End Get
79: Set(ByVal Value As Double)
80: FNumberOfShares = Value
81: End Set
82: End Property
83:
84: Public Property EquityName() As String
85: Get
86: Return FEquityName
87: End Get
88: Set(ByVal Value As String)
89: Console.WriteLine("EquityName was {0}", FEquityName)
90: FEquityName = Value
91: Console.WriteLine("EquityName is {0}", FEquityName)
92: Console.WriteLine([Assembly].GetExecutingAssembly().FullName)
93: End Set
94: End Property
95:
96: Public Property EquityPrice() As Double
97: Get
98: Return FEquityPrice
99: End Get
100: Set(ByVal Value As Double)
101: FEquityPrice = Value
102: End Set
103: End Property

KIMMEL.book Page 246 Thursday, June 12, 2003 8:37 AM

Marshaling Objects by Value 247

104:
105: ReadOnly Property Cost() As Double
106: Get
107: Return FEquityPrice * _
108: FNumberOfShares + FCommission
109: End Get
110: End Property
111:
112: Property Commission() As Double
113: Get
114: Return FCommission
115: End Get
116: Set(ByVal Value As Double)
117: FCommission = Value
118: End Set
119: End Property
120:
121: Property RepId() As String
122: Get
123: Return FRepId
124: End Get
125: Set(ByVal Value As String)
126: FRepId = Value
127: End Set
128: End Property
129:
130: End Class

TIP: You need to include the SerializableAttribute even when you are im-
plementing the ISerializable interface. Remember to add an Imports state-
ment for System.Runtime.Serialization, or use the completely qualified
name for the ISerializable interface when performing custom serialization.

Serialization and deserialization in Listing 8.11 are constrained to lines 15
through 63. The recurring pattern is a constructor and a method named Get-
ObjectData. Both the constructor and GetObjectData take Serializa-
tionInfo and StreamingContext arguments. The constructor reads the
streamed field values, and the serialization method, GetObjectData, writes
the fields to be streamed. Since you will be writing both the serializer and de-
serializer you will know the order and type of the arguments streamed.

KIMMEL.book Page 247 Thursday, June 12, 2003 8:37 AM

248 Chapter 8 Remoting

To serialize an object, write the fields using the SerializationInfo ob-
ject in the GetObjectData method. Call SerializationInfo.SetValue,
passing a name for the value and the value itself. For example, line 59 passes
the literal "RepId" and the value of the field FRepId. When you deserialize
the object in the constructor, use the SerializationInfo argument and call
GetValue. Pass the name used to serialize the object and the type informa-
tion for that value. It is a good practice to perform an explicit type conversion
on the return value since GetValue returns an Object type. For example,
lines 33 and 34 of Listing 8.11 call GetValue, passing the literal "RepId" and
the Type object for the String class, and perform the cast to String.

Line 60 demonstrates how we can serialize an arbitrary value, Serial-
izedAt. Lines 36 through 38 demonstrate how we can deserialize that same
value, perform the type conversion, and assign the value to a local variable
(or a field). In lines 40 through 42 I use the value SerializedAt to indicate
when the client was serialized. Perhaps such a value could be used as a
rough measure of latency. If you compared the SerializedAt time with
the current time, you would know how long the serialization and deserial-
ization behavior took in a single instance.

Comparing By-Reference to By-Value Objects

There are two ways to pass objects around: by value and by reference. By-
reference objects are remoted objects that inherit from MarshalByRefOb-
ject. This means that they actually exist on the remote server. By-value ob-
jects are copied to the client and use the SerializableAttribute. It’s
important to decide when to use either technique.

Pass objects by reference to prevent a large object from clogging net-
work bandwidth. You will also have to pass objects by reference when the
object refers to resources that exist in the server domain. For example,
C:\winnt\system32 on the client is a completely different folder than
C:\winnt\system32 on the server.

Consider passing objects by value when the data on the client does not
need to be maintained on the server. For example, if we are simply report-
ing on trade information, we don’t necessarily need a reference to a Trade
object on the server. Using a by-value Trade object will reduce round-trips
to the server since the code resides on the client.

Think of by-value objects as similar to the data returned by a Web appli-
cation: It is disconnected. Think of by-reference objects as the connected
model of programming.

KIMMEL.book Page 248 Thursday, June 12, 2003 8:37 AM

Handling Remote Events 249

Writing to the Event Log

Thus far I have been using console applications to simplify the examples.
However, you are more likely to use .NET Remoting for WinForms, Web-
Forms, or NT Service applications. For debugging and tracing information
for these applications you can use the event log. Chapter 17 gives more in-
formation on using the EventLog class for logging application events, but
I’ll mention it here briefly.

The easiest way to log application events is to invoke the shared method
EventLog.WriteEntry, passing the event source and message to write.
The event source is a unique name across all event logs, and the message is
whatever text you want to appear in the log entry. By default, information
will be written to the Application log. (Refer to Chapter 17 to read about
creating custom logs and writing log entries to remote machines.)

Handling Remote Events

Microsoft included an example of using events in .NET Remoting in the
help documentation at ms-help://MS.VSCC/MS.MSDNVS/cpguide/html/
cpconremotingexampledelegatesevents.htm. (You can open this help
topic by browsing to the referenced link in Internet Explorer or the URL
control of the Web toolbar in the VS .NET IDE.) The example is a simple
console-based, chat example that permits clients to communicate through a
Singleton object. Rather than repeat that code here (and because I
thought the example was fun), I include a WinForms-based version that is
slightly more advanced and a lot of fun to play with. Here is the basic idea.

Recall that we talked about Singleton remoted objects. When we cre-
ate a Singleton MarshalByRefObject, every client will get a transparent
proxy—think “super pointer”—to the exact same object on the server. By
exposing an event each client can add an event handler to the event. Now
mix in delegates. Delegates are multicast in .NET. This means that the
event is sent to all handlers. Thus, if one client raises an event, every client
that has a handler in that object’s invocation list will receive an event mes-
sage. Combined with a Singleton Remote object reference, each client
will be adding a handler to one object’s multicast delegate invocation list.
Voilà! A simplified chat application.

KIMMEL.book Page 249 Thursday, June 12, 2003 8:37 AM

250 Chapter 8 Remoting

Understanding Remote Event Behavior

We have thought of remoting so far as clients having transparent proxy ref-
erence to an object on the server. However, when we need to raise an event
on the server, the server is actually calling back to the client; the client han-
dler becomes a server, and the server becomes the client. Consequently the
client has a reference to the server, and when the roles are reversed, the
server needs a reference to the client. We can solve this predicament by
sharing code between client and server.

Invoking Remote Events

The example is comprised of three projects all contained in the \Chapter
8\Events\Chat\Chat.sln file. The solution includes the Chat.vbproj
client, ChatServer.vbproj, and the shared class library General. The
ChatServer.exe is a console application that has a reference to Gen-
eral.dll and configures ChatServer.ChatMessage as a well-known
Singleton object using an application configuration file. The Chat.exe
server is a Windows Forms application (see Figure 8.3) that has a refer-
ence to General.dll. Each instance of Chat.exe requests a reference to

Figure 8.3 The simple instant messaging example.

KIMMEL.book Page 250 Thursday, June 12, 2003 8:37 AM

Handling Remote Events 251

the ChatMessage object created on the remote server. The server returns
the same instance to every client that requests a ChatMessage object on
the same channel from the same server. After the client gets the ChatMes-
sage wrapper back, it assigns one of its event handlers to an event defined
by the wrapper class. When any particular client sends a message to the
server, a ChatMessage object raises an event and all clients get the event.
As a result we can selectively echo the original message (or not) to the
sender and notify each client of a message.

The server class simply uses a configuration file to register a Single-
ton instance of a ChatMessage wrapper object. You can see the code for
the server in \Chapter 8\Events\Server\Server.vb. The shared Gen-
eral.dll assembly (which contains the wrapper) and the client that sends
and handles events provide the most interesting functionality. We will go
over most of that code next.

Implementing the Shared Event Wrapper

The code containing the shared event wrapper class is defined in \Chapter
8\Events\General\Class1.vb. Class1.vb defines three classes and a
delegate. Listing 8.12 contains all the code for Class1.vb; a synopsis of the
code follows the listing.

Listing 8.12 The Shared Classes That Manage Events between Client and Server

1: Option Strict On
2: Option Explicit On
3:
4: Imports System
5: Imports System.Runtime.Remoting
6: Imports System.Runtime.Remoting.Channels
7: Imports System.Runtime.Remoting.Channels.Http
8: Imports System.Runtime.Remoting.Messaging
9:
10: Imports System.Collections
11:
12: <Serializable()>_
13: Public Class ChatEventArgs
14: Inherits System.EventArgs
15:
16: Private FSender As String
17: Private FMessage As String
18:

KIMMEL.book Page 251 Thursday, June 12, 2003 8:37 AM

252 Chapter 8 Remoting

19: Public Sub New()
20: MyBase.New()
21: End Sub
22:
23: Public Sub New(ByVal sender As String, _
24: ByVal message As String)
25: MyClass.New()
26: FSender = sender
27: FMessage = message
28: End Sub
29:
30: Public ReadOnly Property Sender() As String
31: Get
32: Return FSender
33: End Get
34: End Property
35:
36: Public ReadOnly Property Message() As String
37: Get
38: Return FMessage
39: End Get
40: End Property
41: End Class
42:
43: Public Delegate Sub MessageEventHandler(ByVal Sender As Object, _
44: ByVal e As ChatEventArgs)
45:
46: Public Class ChatMessage
47: Inherits MarshalByRefObject
48:
49: Public Event MessageEvent As MessageEventHandler
50:
51: Public Overrides Function InitializeLifetimeService() As Object
52: Return Nothing
53: End Function
54:
55: <OneWay()> _
56: Public Sub Send(ByVal sender As String, _
57: ByVal message As String)
58:
59: Console.WriteLine(New String("-"c, 80))
60: Console.WriteLine("{0} said: {1}", sender, message)
61: Console.WriteLine(New String("-"c, 80))
62:

KIMMEL.book Page 252 Thursday, June 12, 2003 8:37 AM

Handling Remote Events 253

63: RaiseEvent MessageEvent(Me, _
64: New ChatEventArgs(sender, message))
65: End Sub
66:
67: End Class
68:
69:
70: Public Class Client
71: Inherits MarshalByRefObject
72:
73: Private FChat As ChatMessage = Nothing
74:
75: Public Overrides Function InitializeLifetimeService() As Object
76: Return Nothing
77: End Function
78:
79: Public Sub New()
80: RemotingConfiguration.Configure("Chat.exe.config")
81:
82: FChat = New ChatMessage()
83:
84: AddHandler FChat.MessageEvent, _
85: AddressOf Handler
86: End Sub
87:
88: Public Event MessageEvent As MessageEventHandler
89:
90: Public Sub Handler(ByVal sender As Object, _
91: ByVal e As ChatEventArgs)
92: RaiseEvent MessageEvent(sender, e)
93: End Sub
94:
95: Public Sub Send(ByVal Sender As String, _
96: ByVal Message As String)
97: FChat.Send(Sender, Message)
98: End Sub
99:
100: Public ReadOnly Property Chat() As ChatMessage
101: Get
102: Return FChat
103: End Get
104: End Property
105:
106: End Class

KIMMEL.book Page 253 Thursday, June 12, 2003 8:37 AM

254 Chapter 8 Remoting

Lines 12 through 41 define a new type of event argument, ChatEvent-
Args. ChatEventArgs inherits from System.EventArgs and introduces
two new members: Message and Sender. Message is the content of the
message sent by a client, and Sender is a user name. ChatEventArgs is an
example of an object that the client needs for information purposes only;
hence it was designated as a by-value object.

Lines 43 and 44 define a new delegate named MessageEventHandler.
Its signature accepts the new event argument ChatEventArgs.

Lines 46 through 67 define the by-reference object ChatMessage that is
the Singleton object shared by all clients. Every client on the same channel
and originating from the same server will be referring to the same instance of
this class. The class itself is easy enough, but it demonstrates some old con-
cepts and introduces some new ones. Line 47 indicates that ChatMessage is
a by-reference type. Line 49 exposes a public event; this is how all clients
attach their event handlers to the ChatMessage Singleton. Lines 51
through 53 override the MarshalByRefObject.InitializeLifetimeSer-
vice method. InitializeLifetimeService can be overridden to change
the lifetime of a Remote object. Return Nothing sets the lifetime to infinity.
(Refer to the Managing a Remoted Object’s Lifetime subsection later in this
chapter for more information.) Lines 55 through 65 define the Send message.
Clients use Send to broadcast messages. All Send does is raise Message-
Event. Note that Send is adorned with the OneWayAttribute, which causes
the server to treat Send as a “fire and forget” method. Send doesn’t care
whether the recipients receive the message or not. This handles the case of a
client dropping off without disconnecting its handler. (Send also displays
trace information on the server application; see Figure 8.4.) That’s all the
ChatMessage class is: a class shared between client and server that wraps the
message invocation.

Finally, we come to the Client class in lines 70 through 106. The Cli-
ent class plays the role of the executable code that is remotable and shared
between client and server. If you examine it closely you will see that it mir-
rors the ChatMessage class except that Client is responsible for allowing
the server to call back into the client application. The Client class in Gen-
eral.dll plays the role of client-application-on-the-server when the roles
between client and server are reversed. If we didn’t have a remotable class
shared between client and server, we would need to copy the client applica-
tion into the directory of the server application. Remember that for clients
to run code defined on a server, we need an interface or shared code in or-
der to have something to assign the shared object to. When the roles be-
tween client and server are reversed—client becomes server during the
callback—the server would need an interface or shared code to the client to

KIMMEL.book Page 254 Thursday, June 12, 2003 8:37 AM

Handling Remote Events 255

talk back to it. Thus for the same reason that we share code between client
and server, we also share code between server and client.

TIP: For a comprehensive discussion of event sinks and .NET Remoting, Ingo
Rammer [2002] has written a whole book, Advanced .NET Remoting.

Listing 8.13 contains the Chat.exe.config file that describes the con-
figuration information to the well-known object registered on the server
and the back channel to the client used when the client calls the server
back.

Listing 8.13 The Configuration File for the Client Application

1: <?xml version="1.0" encoding="utf-8" ?>
2: <configuration>
3: <system.runtime.remoting>
4: <application>
5: <channels>
6: <channel
7: ref="http"
8: port="0"

Figure 8.4 Trace information being written to the server console.

KIMMEL.book Page 255 Thursday, June 12, 2003 8:37 AM

256 Chapter 8 Remoting

9: />
10: </channels>
11: <client>
12: <wellknown
13: type="ChatServer.ChatMessage, General"
14: url="http://localhost:6007/ChatMessage.soap"
15: />
16: </client>
17: </application>
18: </system.runtime.remoting>
19:
20: <appSettings>
21: <add key="user" value="Your Name Here!" />
22: <add key="echo" value="true" />
23: </appSettings>
24: </configuration>

The <channels> element describes the back channel used by server to
client. By initializing the port attribute with 0 we allow the port to be dy-
namically selected. The <client> element registers the reference to the
well-known ChatMessage class on the client. This allows us to create an in-
stance of the ChatMessage class on the client using the New operator, get-
ting a transparent proxy instance rather than the literal ChatMessage class
also defined in the client. Without the <client> element we would need to
use the Activator or we’d end up with a local instance of ChatMessage
rather than the remote instance.

Finally, the <appSettings> element is used by the ConfigurationSet-
tings.AppSettings shared property to externalize general, nonremoting
configuration information.

Implementing the Client Application

The client application creates an instance of the Client class. Client rep-
resents the assembly shared by both client and server, allowing server to talk
back to client. The client application (shown in Figure 8.3) actually registers
its events with the Client class. Listing 8.14 provides the relevant code for
the client application that responds to events raised by the remote Chat-
Message object. (The Client.vb source contains about 400 lines of Win-
dows Forms code not specifically related to remoting. Listing 8.14 contains
only that code related to interaction with the remote object. For the com-
plete listing, download \Chapter 8\Events\Client\Client.vb.)

KIMMEL.book Page 256 Thursday, June 12, 2003 8:37 AM

Handling Remote Events 257

Listing 8.14 An Excerpt from the Client Application Related to Remoting

1: Option Strict On
2: Option Explicit On
3:
4: Imports System
5: Imports System.Runtime.Remoting
6: Imports System.Runtime.Remoting.Channels
7: Imports System.Runtime.Remoting.Channels.Http
8: Imports Microsoft.VisualBasic
9: Imports System.Configuration
10:
11: Public Class Form1
12: Inherits System.Windows.Forms.Form
13: . . .
284:
285: Public Sub Handler(ByVal sender As Object, _
286: ByVal e As ChatEventArgs)
287:
288: If (e.Sender <> User) Then
289: Received = GetSenderMessage(e.Sender, e.Message) + Received
290: ElseIf (Echo) Then
291: Received = GetSendeeMessage(e.Message) + Received
292: End If
293:
294: End Sub
295:
296: Private ChatClient As Client
297:
298: Private Sub Form1_Load(ByVal sender As Object, _
299: ByVal e As System.EventArgs) Handles MyBase.Load
300:
301: Init()
302:
303: ChatClient = New Client()
304:
305: AddHandler ChatClient.MessageEvent, _
306: AddressOf Handler
307: End Sub
308:
309: Private Sub Send()
310: If (ChatClient Is Nothing = False) Then
311: ChatClient.Send(User, Sent)
312: Sent = ""

KIMMEL.book Page 257 Thursday, June 12, 2003 8:37 AM

258 Chapter 8 Remoting

313: End If
314: End Sub
315:
316: Private Sub Button1_Click(ByVal sender As System.Object, _
317: ByVal e As System.EventArgs) Handles ButtonSend.Click, _
318: MenuItemSend.Click
319:
320: Send()
321:
322: End Sub
323:
324: Private Sub Form1_Closed(ByVal sender As Object, _
325: ByVal e As System.EventArgs) Handles MyBase.Closed
326:
327: If (ChatClient Is Nothing) Then Return
328: RemoveHandler ChatClient.MessageEvent, _
329: AddressOf Handler
330: End Sub
331: . . .
344:
345: Private Sub Init()
346: User = ConfigurationSettings.AppSettings("user")
347: Echo = (ConfigurationSettings.AppSettings("echo") = "true")
348: End Sub
349: . . .
396: End Class

Listing 8.14 contains snippets from Client.vb. Parts that are basic to
Windows Forms or programming in general were removed to shorten the
listing. Lines 285 through 294 define an event handler named Handler. As
you can see from the listing, this handler looks like any other event handler.
Note that there are no special considerations made for remoting (although
there should be; more on this in a moment).

Line 296 declares the shared instance of the Client object. Client is
the remotable object that the server treats like a server when it needs to
communicate back with us.

Lines 298 through 307 define the form’s Load event handler. Load initial-
izes the application settings (line 301), creates a new instance of the Client
class, and associates the form’s event handler with the Client class’s event
handler. Client is the actual object called back by ChatMessage.

Button1_Click in lines 316 through 322 calls a local Send method that
invokes Client.Send. Form1_Closed (lines 324 through 330) removes the

KIMMEL.book Page 258 Thursday, June 12, 2003 8:37 AM

Other Remoting Subjects 259

event handler. If for some reason this code isn’t called, the server will try to
call this instance of the client application for as long as the server is running.
If we hadn’t used the OneWayAttribute, removing the client application
without removing the event would cause exceptions. Using the OneWayAt-
tribute avoids the exceptions but could potentially send out tons of calls to
dead clients. (An alternative is to skip using the OneWayAttribute on the
server and remove delegates that cause an exception on the server.) The
Init method (lines 345 through 348) demonstrates how to read configura-
tion settings from an application .config file.

Remoting and Threads

.NET Remoting is easier than DCOM and other technologies, but writing
distributed applications is still not a trivial exercise. Recall that reference to
something missing from the event handler in Listing 8.14 in lines 285
through 294? What’s missing is a discussion of threads.

When the event handler is called, it actually comes back on a different
thread than the one that Windows Forms controls are in. Recall that in
Chapter 6, Multithreading, I said that Windows Forms is not thread-safe.
This means that it is not safe to interact with Windows Forms controls
across threads. To resolve this predicament we need to perform a synchro-
nous invocation to marshal the call to the event handler—a thread used by
remoting—to the same thread the Windows Forms controls are on. In
short, we need to add a delegate and call Form.Invoke to move the data
out of the event handler onto the same thread that the form and its controls
are on.

Other Remoting Subjects

Writing distributed applications well is one of those things that rests at the
upper echelon of advanced topics. This chapter will get you started. How-
ever, if you are going to deploy a distributed application that employs re-
moting, you should explore in detail such other subjects as management of a
remoted object’s lifetime, asynchronous behavior and remoting, security is-
sues related to remoting, and implementation of Remote behavior for a va-
riety of host applications. This material will ultimately reside in several
books. Ingo Rammer [2002] wrote one of the more comprehensive books
currently available on remoting. I have included below a quick overview of
these subjects to help guide further exploration.

KIMMEL.book Page 259 Thursday, June 12, 2003 8:37 AM

260 Chapter 8 Remoting

Managing a Remoted Object’s Lifetime

DCOM managed object lifetime by pinging the client to see if the client
was still hanging out. This causes a lot of extra network traffic. .NET Re-
moting uses an approach similar to Java by supplying an object a lease. The
basic idea is that an object has a default amount of five minutes of time to
live (TTL). After five minutes the object is destroyed. If a remote object is
accessed, the TTL is reset to the lease time (in the case of the default set-
ting, five minutes). As long as the object is accessed within the TTL, it stays
alive.

You can adjust the lifetime by adding a <lifetime> element to the .con-
fig file or implementing a sponsor. The sponsor answers the question, “My
lease time is up; should I go away?” Whereas the lifetime is a static value, the
sponsor can be dynamic, based on some programmatic logic. You implement a
sponsor as a remotable object by implementing the System.Runtime.Re-
moting.Lifetime.ISponsor interface, by programmatically returning an
ILease object from an overridden InitializeLifetimeService method,
or by codifying the lifetime in a .config file. Listing 8.15 offers an example
lease.

Listing 8.15 Changing the Default Lifetime by Using the Configuration File

<lifetime
 leaseTime="2M"
 sponsorshipTimeout="2M"
 renewOnCallTime="2M"
 leaseManagerPollTime="5S"
/>

This example sets the lease time, sponsor time-out, and renew time to
two minutes. The polling interval is set to five seconds. (The units of mea-
sure are D for days, H for hours, M for minutes, S for seconds, and MS for mil-
liseconds.) You cannot combine intervals. For example, you cannot define a
lease time of "2M5S".

In Listing 8.15, leaseTime represents the object’s lease on life; spon-
sorshipTimeout represents the time-out period of a sponsor; and renew-
OnCallTime represents the extended amount of lease time on an object
(this value is not accumulative). Finally, leaseManagerPollTime specifies
how long the lease manager waits between polling intervals.

KIMMEL.book Page 260 Thursday, June 12, 2003 8:37 AM

Summary 261

Asynchronous Remoting

.NET Remoting supports both synchronous and asynchronous method in-
vocation. Use the BeginInvoke and EndInvoke methods combined with
delegates to invoke remote operations asynchronously. Read Chapter 6 for
more information on asynchronous processing.

Remoting Security Issues

You can employ authentication and encryption with .NET Remoting and
use secure HTTP (HTTPS) to make distributed applications more secure.
For secure HTTP you need a certificate. You can acquire a certificate from
VeriSign (http://www.netsol.com) for free. For more information on remot-
ing and security, read information on HTTPS, certificates, encryption, and
authentication.

Choosing a Host for Your Server

The examples in this chapter host all the server applications as console appli-
cations, but you are not limited to console applications. You can also use .NET
Remoting in Windows Forms, Web (hosting the remote server in IIS), and
Service (Windows NT Service) applications. To create a remote server using
any of these host types, use the project template to create the project for the
particular type. Each style of host will have individuated requirements.

Summary

.NET Remoting is probably one of the most advanced subjects. In addition
to replacing DCOM and being relevant to distributed application develop-
ment (which you may not do every day) remoting involves threading, Sin-
gletons, security, networking, Reflection, AppDomains, the differences
between marshaling by reference and by value, SOAP, XML, serialization,
interfaces, and more.

Chapter 8 introduced .NET Remoting fundamentals. We discussed the
difference between marshaling objects by value and by reference, server-
activated objects and client-activated objects, Singleton and SingleCall
remote objects, configuration files, custom serialization, and how to raise
events from remote objects. These are the key elements of all .NET Remot-
ing and will aid you in experimenting with distributed applications and fur-
ther exploration.

KIMMEL.book Page 261 Thursday, June 12, 2003 8:37 AM

KIMMEL.book Page 262 Thursday, June 12, 2003 8:37 AM

