
APPENDIX

B
Getting Started with ActiveX
Controls

IN THIS APPENDIX
• Working with ActiveX Controls 2

• Counting the Days with the Calendar 
Control 6

• Using a Standard Interface with the 
Common Dialog Control 13



Appendixes for Web Site

PART VI
2

ActiveX controls (called OLE controls before Access 97) provide a way for you to give users
advanced, yet standard, interfaces, including applications developed in different languages such
as VBA and xBase (FoxPro). For ActiveX controls, these languages provide containers in
which the separate ActiveX server applications (OCXs) can run.

ActiveX controls from Microsoft vary from the old OLE controls not only in name, 
but also in form. ActiveX controls are designed with the ActiveX control framework
and are called lightweight, which means that they require less memory, perform
faster, and are easier to distribute. Note that some third-party ActiveX controls are
built on older frameworks or use MFC (Microsoft Foundation Classes).

NOTE

The Access retail package provides you with six ActiveX controls:

• Calendar control

• Snapshot control

• PivotTable control

• Chart control

• Spreadsheet control

• Datasource control

The Calendar and Common Dialog controls, the latter supplied in the Microsoft Office
Developer (MOD), are discussed in this appendix. A more advanced discussion of the
Windows Common ActiveX controls can be found in Chapter 14, “Programming for Power
with ActiveX Controls.”

Working with ActiveX Controls
When working with ActiveX controls in Access, you will find that they’re similar to other
Access controls in that they’re programmed by using properties, methods, and events.

Not all ActiveX controls are data-bound like standard Access controls. The term data-bound
means that the controls have a Control Source property that refers to Access data or can use
Access record sources for row sources.

Some ActiveX controls, such as TabStrip, require little coding with VBA. Others, such as
TreeView, can be programmed to be data-driven and therefore made more versatile. Using
these controls to their fullest capabilities can take quite a bit of code.



Looking at the ActiveX Control Shipped with Access
In addition to other ActiveX controls, the following controls all ship with MOD:

Animation ImageList StatusBar

Common Dialog ListView TabStrip

FTP ProgressBar Toolbar

Gopher RichTextBox TreeView

HTTP Slider Winsock

In addition to these supported controls are unsupported controls available on various networks.

Getting Started with ActiveX Controls

APPENDIX B

B

G
ETTIN

G
S

TA
R

TED
W

ITH
A

C
TIV

EX
C

O
N

TR
O

LS

3

You can update ActiveX control properties, like standard Access object properties, 
at runtime. This way, you can manipulate an ActiveX control as much as any other
control.

TIP

Certain OCXs used internally by Access show up in the ActiveX control dialogs, but
you can’t use them. If you try to place these controls on your form, nothing happens.
Some controls in the Access main folder—namely, Flist32.ocx and Imxgrd32.ocx—don’t
even show up in the ActiveX control dialogs within Access.

NOTE

Placing an ActiveX Control on a Form
Although each ActiveX control varies from the next in how it’s used, they’re all placed on a
form in the same manner. To place a control on a form from the database container, follow
these steps:

1. Open an Access database.

2. Select the Forms tab. The list of forms appears.

3. Click the New button to the right of the form list. The New Form dialog appears.

4. Select the record source you want from the combo box on the bottom of the dialog.

5. Click OK. You now have a blank form, displayed in Design mode.

6. From the Insert menu, choose ActiveX Control. The Insert ActiveX Control dialog
appears. (You can also use the More Controls button in the Toolbox.)



7. Choose the Calendar Control 10.0 from the list of controls, similar to Figure B.1.

8. Click OK.

Appendixes for Web Site

PART VI
4

FIGURE B.1
You can insert all ActiveX controls from the Insert ActiveX Control dialog.

After the Calendar control is placed on Form1 (see Figure B.2), you must customize it for the
current application. Although this process changes for each control type—as well as for each
application—the method for changing the properties stays the same.

FIGURE B.2
Although you can see some ActiveX controls, such as the Calendar control, in Design mode, others display only a
message.

Setting Properties on an ActiveX Control at Design Time
You can set properties in two ways at design time. The first is the same way in which all
Access control properties are set—through the Access control property sheet. Figure B.3
shows the Access Control property sheet (opened by choosing Properties from the View menu)
for the Calendar object created on Form1.



FIGURE B.3
Find the properties specific to the ActiveX control on the Other tab, just below the Tag property.

When you move into an ActiveX control property in the property sheet, the status bar displays
the message ActiveX Control specific property because Access doesn’t necessarily know
what the property is without ActiveX interpreting, which happens during runtime.

Getting Started with ActiveX Controls

APPENDIX B

B

G
ETTIN

G
S

TA
R

TED
W

ITH
A

C
TIV

EX
C

O
N

TR
O

LS

5

The other way to get to the properties specific to an ActiveX control is to open the
control’s own property sheet. To do so, double-click the control or use the control’s
right-click menu. Keep in mind that the double-click method works only with some
ActiveX controls. Others, like the current version of Calendar control, bring you to
different parts of the control when you double-click. Also, the double-click method
doesn’t work in Visual Basic and other Office Apps. So the best method is to use the
right-click menu.

TIP

The various ActiveX controls have different properties on their property sheets. Figure B.4
shows the property sheet for the Calendar control.

When changing properties of ActiveX controls at runtime, you can use either macros or VBA
code. This process is the same as changing properties on any other Access object. When
declaring the data type of the ActiveX control in VBA, use the Object data type. The following
example declares an Object data type for a Calendar control:

Dim ocxCalendar as Object



FIGURE B.4
Here’s the ActiveX control property sheet for the Calendar control.

If the control is referenced (as it is by default when you add it to a form), you can use early bind-
ing on the control’s .Object property to manipulate it, and you get all the advantages thereof:

Dim calCalendar as Calendar
Set calCalendar = Me!ocxCal.Object

By specifying the actual control type, Calendar, VBA knows how to handle it more specifi-
cally, and can give you Intellisense features for it.

Throughout the rest of this appendix, you see some of the different ActiveX controls available
to Access developers and how to use them in applications.

Counting the Days with the Calendar Control
The Calendar control (ocxCal) presents a graphical representation of a calendar. In Figure B.5,
the Calendar control used in the World Wide Video Application allows users to view when new
releases are due.

The frmNewReleases form not only displays movies for the different days as users move
through the calendar, but it also allows users to enter the name of the new release in which
they’re interested. The system then looks up the title in the tblNewReleases table and positions
the calendar on the date the title is due to be released.

Appendixes for Web Site

PART VI
6

The power behind this form is that the Calendar control’s value is a date and is actu-
ally used for the Link Master Fields property for the frmNewReleasesSubform sub-
form. This makes it easy to show tasks or activities for a given date. Value is the
default property, or the one bound to the underlying table field.

TIP



FIGURE B.5
The ActiveX Calendar control lets you create visual scheduling applications.

Figure B.6 shows the property sheet for the subform linked to the Calendar control. You can
find the frmNewReleases form in AppB.mdb, also on this Web site.

Getting Started with ActiveX Controls

APPENDIX B

B

G
ETTIN

G
S

TA
R

TED
W

ITH
A

C
TIV

EX
C

O
N

TR
O

LS

7

FIGURE B.6
Being able to link a subform to a Calendar control is very handy.

Before going into the sample code found in AppB.mdb, let’s look at some of the properties,
methods, and events found on the Calendar control.

Understanding the Calendar Control’s Properties
Throughout this appendix and Chapter 14, only select properties, methods, and events are
mentioned for each ActiveX control because there are too many to cover completely in two
chapters. The properties, methods, and events examined here are those deemed more impor-
tant—or more likely to be interesting—to you. For complete listings of the properties, meth-
ods, and events for each ActiveX control, examine each control’s help file.



Table B.1 lists some of more useful properties of the Calendar control. You can follow this
table by referring to the property sheet shown in Figure B.7. The next two sections list the
methods and events used within the Calendar control.

Appendixes for Web Site

PART VI
8

FIGURE B.7
The Calendar control has many of its own properties.

TABLE B.1 Important Calendar Controls and Their Functions

Property Description

DayFont and GridFont Set the font for the display of the day titles and grid text
(respectively) on the calendar. These two properties actu-
ally consist of other properties, such as Bold, Italic, and
so on. When the Builder button is clicked, the Calendar
control property sheet appears. When you address the
property in code—for example, the ocxCal Calendar con-
trol—uses the following syntax:

ocxCal.DayFont = NameOfFont

ocxCal.DayFont.Name = NameOfFont

ocxCal.DayFont.Size = SizeOfFont

ocxCal.DayFont.Bold = True|False

ocxCal.DayFont.Italic = True|False

ocxCal.DayFont.Underline = True|False

ocxCal.DayFont.Strikethrough = True|False

The same syntax can be used for GridFont.

DayFontColor and Set the colors for the display of the day
GridFontColor titles and the grid, respectively.



TABLE B.1 Continued

Property Description

ShowDateSelectors When set to True, displays combo boxes on the top of the
calendar, allowing users to pick the month and year.

ShowTitle When set to True, displays the month and year in whatever
font and color are set by TitleFont and TitleFontColor.

DayLength Lets you specify how to display the Day title, and whether
to display it always in English (or whatever language the
system is set to use). For example, for August, English
(Medium) would be Mon and English would be Monday.
The other two choices are System and System (Medium).

MonthLength Affects the length displayed for the month in the title, and
whether to display it always in English (or whatever lan-
guage the system is set to use). For example, for August,
English (Medium) would be Aug and English would be
August. The other two choices are System and System
(Medium).

GridLinesFormat Specifies the format for the gridlines: Raised, Sunken, or
Flat.

GridLinesColor Specifies the color of the lines when GridLinesFormat is
set to Flat.

Day, Month, and Year When incremented or decremented by one, allows you to
cycle through a week, a month, or a year. These properties
are actually most useful to manipulate during runtime.

Value Retrieves the date highlighted or moves the highlight on
the calendar when set.

ValueIsNull Allows you to not have a date chosen on the calendar.

Getting Started with ActiveX Controls

APPENDIX B

B

G
ETTIN

G
S

TA
R

TED
W

ITH
A

C
TIV

EX
C

O
N

TR
O

LS

9

When set to True, the ShowDateSelectors property is useful as the title. However,
you then need to set the ShowTitle property to False to avoid redundancy. If you
don’t want users to be able to choose the year and month, set ShowDateSelectors to
False and ShowTitle to True.

TIP

A few more properties are available for use with the Calendar control. For a complete list of
properties for the Calendar control, look in the Object Browser. Follow these steps:



1. Open the VBE via Tools, Macro, Visual Basic Editor and choose View, Object Browser.

2. Select MSACAL for the library to examine.

3. Select the Calendar class from the list of classes.

Appendixes for Web Site

PART VI
10

ActiveX libraries aren’t loaded into the object browser unless your database/Project
uses that particular ActiveX control. So if you aren’t using the Calendar control and
haven’t specified a reference to its library, the object browser won’t have MSACAL
available.

NOTE

Understanding the Calendar Control’s Methods
The Calendar control actually uses a limited number of methods, all listed in Table B.2.

TABLE B.2 Calendar Methods and Their Functions

Method Description

AboutBox Displays the About box for the Calendar control

NextDay Increments the Value property by a day, taking care of the calendar
fixup for months and years (calendar fixup means that the calendar
graphic will show the correct month and year)

NextWeek Increments the Value property by a week, taking care of the
calendar fixup for months and years

NextMonth Increments the Value property by a month, taking care of the
calendar fixup for years

NextYear Increments the Value property by a year

PreviousDay Decrements the Value property by a day, taking care of the calendar
fixup for months and years

PreviousWeek Decrements the Value property by a week, taking care of the
calendar fixup for months and years

PreviousMonth Decrements the Value property by a month, taking care of the 
calendar fixup for years

PreviousYear Decrements the Value property by a year

Refresh Repaints the Calendar control

Today Sets the Value property to the current system date



When you use the Calendar control, forms that allow users to move around on the calendar
will use most of these methods.

On the frmNewReleases form, many methods listed here are used in event procedures. Four
methods—PreviousDay, NextDay, PreviousMonth, and NextMonth—are used with command
buttons. To see an example of using the PreviousDay method, follow these steps:

1. Open the frmNewReleases form in Design mode.

2. Choose Code from the View menu. The module editor appears with the Declarations sec-
tion of the frmNewReleases form module displayed.

3. From the Objects drop-down list, choose the cmdPreviousDay command button. The pro-
cedure, cmdPreviousDay_Click(), appears in the module editor, as follows:

Private Sub cmdPreviousDay_Click()
Me!ocxCal.PreviousDay

End Sub

By viewing a few of the command buttons’ OnClick events on the frmNewReleases form, you
also can see examples of the other methods. The following examples show the command but-
tons that use the Next methods:

Private Sub cmdNextDay_Click()
Me!ocxCal.NextDay

End Sub

Private Sub cmdNextMonth_Click()
Me!ocxCal.NextMonth

End Sub

You can see by these examples, and when you run the form, that the Calendar control does a
lot of the work by fixing up the months and years, thus repainting itself.

Understanding the Calendar Control’s Events
The Calendar control supports these standard Access events: Click, DblClick, GotFocus,
KeyDown, KeyPress, KeyUp, LostFocus, BeforeUpdate, and AfterUpdate. These events are
triggered in the same way other events are triggered. Two events specific to the Calendar con-
trol, NewMonth and NewYear, are triggered when the date in a new month or new year is
clicked.

Getting Started with ActiveX Controls

APPENDIX B

B

G
ETTIN

G
S

TA
R

TED
W

ITH
A

C
TIV

EX
C

O
N

TR
O

LS

11

All methods except AboutBox cause the calendar to repaint.

NOTE



Programming VBA with the Calendar Control
Some VBA code has already been shown with the events displayed. Another example of pro-
gramming the Calendar control is the New Title to Find text box on the bottom of the
frmNewReleases form. The actual manipulation of the Calendar control ocxCal is performed in
this single line of code:

Me!ocxCal.Value = snpNewReleases!DateDueOut

Listing B.1 shows the complete code attached to the txtTitleToFind text box.

LISTING B.1 WebB.mdb: Updating ocxCal with the Date of the Title Found

Private Sub txtTitleToFind_AfterUpdate()
Dim dbLocal As Database, snpNewReleases As Recordset
On Error GoTo Error_txtTitleToFind_AfterUpdate
Set dbLocal = CurrentDb()
Set snpNewReleases = dbLocal.OpenRecordset(“tblNewReleases”, _

dbOpenSnapshot)

snpNewReleases.FindFirst “[Title] = ‘“ & txtTitleToFind & “‘“
If snpNewReleases.NoMatch Then

Beep
MsgBox “New Title not found!”, acCritical, “Find Title Error”

Else
Me!ocxCal.Value = snpNewReleases!DateDueOut

End If

snpNewReleases.Close
dbLocal.Close

Exit_txtTitleToFind_AfterUpdate:
Exit Sub

Error_txtTitleToFind_AfterUpdate:
MsgBox Error$
Resume Exit_txtTitleToFind_AfterUpdate

End Sub

The code in Listing B.1 performs these steps:

1. The routine opens the current database.

2. It opens the tblNewReleases table as a snapshot recordset.

3. The routine looks for the text entered in txtTitleToFind.

Appendixes for Web Site

PART VI
12



4. It displays an error message if the text isn’t found; otherwise, it sets the Value property
of the Calendar control ocxCal to the DateDueOut field for the title.

5. It closes the variables.

Figure B.8 shows the frmNewReleases form just after a title is found.

Getting Started with ActiveX Controls

APPENDIX B

B

G
ETTIN

G
S

TA
R

TED
W

ITH
A

C
TIV

EX
C

O
N

TR
O

LS

13

FIGURE B.8
It’s easy to perform impressive tasks with very few steps by using the Calendar control.

You can use the Calendar control in several other ways. This is just one simple but powerful
example, because you can control a subform with the Calendar control by using very little
programming.

Using a Standard Interface with the Common
Dialog Control
One ActiveX control included in the MOD is the Common Dialog. With this control, you can
create the standard dialogs used for various Windows system tasks, including the following:

• Opening a file

• Saving a file under a new name

• Choosing a color

• Choosing a font

• Printing a file

• Running Winhelp.exe

You formerly had to use Windows API calls to access the Common Dialog control. As of
Access 95, ActiveX controls allow you to access the same functionality without the hassle of
setting up for the API call.



Let’s take an overview of how to use the Common Dialog control, and then examine the fol-
lowing examples:

• Using the ActiveX control to locate the back end to the World Wide Video Application
(Open File dialog)

• Setting a new default printer for the World Wide Video Application (Printer dialog)

After it’s placed on a form, the Common Dialog control isn’t very impressive visually. The
Calendar control, on the other hand, looks great because you can actually see a calendar in
Design mode. You can see in Figure B.9 the Common Dialog control in the upper-left corner
of the frmWindowsCommonControlsRichTextbox form in the Chap14.mdb database, which you
can find on this Web site. Even worse, at runtime you can’t even see the control until it’s acti-
vated with one of the Show methods (discussed shortly).

Appendixes for Web Site

PART VI
14

To use the Common Dialog control, you must have the Microsoft Office Developer,
Visual Basic 5 or 6, or Visual InterDev, Enterprise Edition. This control isn’t available in
the standard Microsoft Access. When you install the MOD, this control and others are
registered automatically.

NOTE

Common Dialog control

FIGURE B.9
As simple as this control looks in Design mode, the Common Dialog ActiveX control is very powerful.



You can also see from Figure B.9 that quite a few properties are specific to the Common
Dialog control. Before you panic, keep in mind that different dialogs use the various proper-
ties. A better way to look at the properties is through the specific Common Dialog properties
sheet. To access this property sheet, double-click the control. Figure B.10 shows a view of the
tabs on the Common Dialog control-specific property sheet. You can even see the different tabs
that represent the types of dialogs available. Because so many properties are available to use,
specific properties are covered for two examples later in this appendix.

Getting Started with ActiveX Controls

APPENDIX B

B

G
ETTIN

G
S

TA
R

TED
W

ITH
A

C
TIV

EX
C

O
N

TR
O

LS

15

FIGURE B.10
Dealing with properties on the control’s property sheet is easier with the Common Dialog control.

You can’t activate the control except when using the Show methods, including ShowOpen,
ShowSave, ShowColor, ShowFont, ShowPrint, and ShowHelp. In generic terms, these steps set
up a Common Dialog ActiveX control, with the following section showing a specific example
of these steps:

1. Place a Common Dialog control on the form by using the method described earlier in the
section “Placing an ActiveX Control on a Form.”

2. By using either the Access property sheet or the control’s property sheet, set the neces-
sary properties for the dialog type you want to use. You can also use code to set the prop-
erties so that a control can be used for more than one purpose (discussed in the next
section).

3. In an event procedure, call the Show method of your choice.

Locating a File with the Common Dialog Control
Locating a file with the Common Dialog control is very straightforward. You can see this in the
following code for the click event of the cmdLoad command button (with the label “Load
File”), on the frmWindowsCommonControlsRichText form.

Private Sub cmdLoad_Click()
Me!ocxCommon.Filter = “Rich Text Format files|*.rtf”



Me!ocxCommon.ShowOpen
Me!ocxRichText.LoadFile Me!ocxCommon.Filename, 0

End Sub

The filter property is the only property being set. You can add more filters just by adding the
pipe (|) symbol to the end of the current filter string, followed by the additional description
and skeleton. The following are some other properties that you can use with the Common
Dialog’s ShowOpen method:

Property Description

FileName Contains the name of the file you want to locate. This
property also contains the full path of the file located with
the control.

InitDir Sets the initial folder at which you want the dialog to point.

DialogTitle Displays the title at the top of the dialog.

Filter Uses the skeletons (such as *.* or ???.doc) that DOS uses,
including wildcards.

CancelError Causes an error to occur when Cancel is clicked—or not
clicked. Err.Number is set to 32755 when Cancel is
clicked.

Figure B.11 shows the dialog in action. This process is just one of many of an unending num-
ber of ways to use the Common Dialog ActiveX control, even with just the ShowOpen method.

Appendixes for Web Site

PART VI
16

FIGURE B.11
Use the Common Dialog ActiveX control to create standard user interfaces to locate files.



Changing the Default System Printer with the Common
Dialog Control
Usually when you create a report, you want it to use the default Windows printer. You can
switch default printers in a number of ways. Some applications, such as Microsoft Word, allow
you to change the default printer when you choose the Print command. Another way to change
the default printer is by choosing Settings, Printers off the Start menu.

When dealing with users, you don’t want to make them perform these other steps. The ideal
way to deal with setting the printer is to have users either set a new default printer at report
time or just go to a system utilities form once to handle it. Figure B.12 shows the latter choice
in Design mode. This particular utility form, ap_SystemUtilities, is found in
VideoApp.mdb(ADO) on this Web site. (A system utility form contains various utilities used
for the system or the current application.) This example requires no setting of properties and
has only one method call: ShowPrinter.

Getting Started with ActiveX Controls

APPENDIX B

B

G
ETTIN

G
S

TA
R

TED
W

ITH
A

C
TIV

EX
C

O
N

TR
O

LS

17

FIGURE B.12
This form contains both the command button and Common Dialog control used for changing the default printer.

By looking at the event procedure behind the cmdChangePrinter OnClick event, you see the
following code:

Private Sub cmdChangePrinter_Click()
Me!ocxChangePrinter.ShowPrinter

End Sub

That’s all there is. You place the control on the form, create an event procedure on the com-
mand button’s OnClick event, and place the preceding code lines. Figure B.13 shows the Print
dialog that appears when you click the command button.



FIGURE B.13
The Common Dialog ActiveX control displays the Print dialog with just one method.

Although properties aren’t needed for this example, Figure B.14 shows the Common Dialog
control property sheet’s Print page.

Appendixes for Web Site

PART VI
18

FIGURE B.14
The printer-specific properties allow users to specify how they want to set up their printer at runtime.

Now that you’ve seen two ways of using the Common Dialog ActiveX control, try the other
Show methods mentioned on your own, including ShowSave, ShowColor, and ShowFont.


