
APPENDIX

A
Debugging Code in
Access 2002

IN THIS APPENDIX
• Setting the Correct Module Options

for Maximum Debugging Power 2

• Using the Immediate Window 6

• Stopping Program Execution 10

• Debugging One Step at a Time 12

• Viewing the Order of Procedure Calls 14

• Watching Expressions During Program
Execution 15

• Controlling Code with Conditional
Compilation Commands 22

0672321025 AppA 10/24/01 3:53 PM Page 1

Appendixes for Web Site

PART VI
2

While creating an application, you can spend much time and effort trying to figure out those
bugs that creep into the system. These bugs can greatly slow down the completion of the appli-
cation.

This appendix discusses the Access 2002 tools that handle bugs and examine code while creat-
ing an application. Mainly because of the Visual Basic Editor (VBE), debugging changed in
Access 2000 from previous versions. Although the available commands remain the same as
they were in earlier versions (with new ones added as of Access 2000), the way to use the
commands changed.

Setting the Correct Module Options for Maximum
Debugging Power
The Access VBA environment includes the same editor as other Office products, as well as
Visual Basic. Because the VBE is in its own MDI space, you must go to the editor to set the
coding environment options.

To change or view the settings of the VBA environment, use the Options dialog for VBA. For
example, to change the color of a code line with a syntax error in it, follow these steps:

1. Create a new database, or open an existing one.

2. Press Alt+F11 to open the Visual Basic Editor.

3. From the Tools menu, choose Options. The VBA Options dialog appears, with the fol-
lowing tabbed pages: Editor, Editor Format, General, and Docking.

4. On the Editor Format page, select Syntax Error Text from the Code Colors list box (see
Figure A.1).

FIGURE A.1
The Editor Format page in the Options dialog contains a number of options used for debugging purposes.

0672321025 AppA 10/24/01 3:53 PM Page 2

Setting the color of code items is one of many ways to set up the application environment for
maximum debugging power. The advantage of coloring code is that you can tell what’s hap-
pening with different parts of the code. Red, for example, denotes a syntax error.

Table A.1 lists the various commands and their default color settings. The Foreground and
Background columns refer to the specific code line discussed. VBA uses color along the left
side of the module editor, called a margin indicator, to help point out various commands that
have been placed in the module editor.

TABLE A.1 Default Colors for Various Code Syntax

Text Area Foreground Background Indicator

Normal Automatic Automatic Automatic

Selection Automatic Automatic Automatic

Syntax Error Light Red Automatic Automatic

Execution Point Automatic Dark Yellow Dark Yellow

Breakpoint White Dark Red Dark Red

Comment Light Green Automatic Automatic

Keyword Dark Blue Automatic Automatic

Identifier Automatic Automatic Automatic

Bookmark Automatic Automatic Cyan

Call Return Automatic Automatic Light Green

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
3

When a color is set to Automatic, Access uses the setting for the default Windows
system colors.

NOTE

Notice that one of the colors is for Bookmark. Bookmarks are used to tag code lines
that you want to remember later for whatever reason. This feature is very useful in
big chunks of code. A square with rounded corners appears in the margin indicator
bar. You can use the selections on the Edit menu for Bookmark (toggle), Next
Bookmark, Previous Bookmark, and Clear All Bookmarks. Bookmarks disappear when
you close the database.

TIP

0672321025 AppA 10/24/01 3:53 PM Page 3

Other useful coding options are found on the different pages in the Options dialog. From the
Editor page, you have these code settings:

• Auto Syntax Check. When selected, this option makes Access generate an error with a
message box while you type code lines. The message box doesn’t appear unless an error
exists after you complete a line and press Enter. It’s recommended that you leave this
option set to its default (on) when starting out with VBA, and then turn it off when you
are comfortable with recognizing syntax errors.

• Require Variable Declaration. When enabled, this option places the Option Explicit
statement in the Declarations section of any new modules created. It doesn’t affect previ-
ously created modules. It’s recommended that you change this option from its default
(off) to on.

Appendixes for Web Site

PART VI
4

If you turn on Require Variable Declaration and use Option Explicit in each module,
you’ll save countless hours of searching for misspelled variables. For more information
on explicit versus implicit variable declarations, refer to the book’s Chapter 2,
“Coding in Access 2002 with VBA.”

TIP

• Auto List Members. Selecting this option causes a list of possible options (that is, prop-
erties and methods) to appear when you’re building a statement in code.

• Auto Quick Info. With this option on, function syntax appears below the code line on
which you’re working. This will reflect the function, statement, or object you’re now
typing. This also includes user-defined procedures.

• Auto Data Tips. By setting this option to true, you will see the value of the variable you
have the cursor over when in a break of program execution.

The preceding three options have the dumb name of IntelliSense but are very hot.
Auto Data Tips in particular are great because you don’t have to highlight values and
click Quick Watch. All you do is place the cursor over the variable name to examine it
(see Figure A.2).

TIP

• Auto Indent. This option indents code automatically to enhance readability for debug-
ging and maintaining code. It’s recommended that you leave this option set to its default
(on).

0672321025 AppA 10/24/01 3:53 PM Page 4

FIGURE A.2
Looking at variables such as pstrBackEndPath is a breeze with the Auto Data Tips option.

The rest of the commands that affect the debugging environment are on the General page (see
Figure A.3):

• Notify Before State Loss. Enable this option to specify whether you want Access to tell
you when your variables will be reset at the module level when a running project is
halted.

• Error Trapping. These three options let you choose when you want Access to break on
errors that can occur in your code:

Break on All Has Access break on all errors that
Errors occur on the line where it occurs. This

includes whether error handlers are
active or the code is in a class module.

Break in Class Has Access break in class modules. If this option
Module isn’t specified, the line that calls a property or

method of the class module will display the error.

Break on Causes Access to break on errors that
Unhandled Errors don’t have an error handler already in use.

• Compile on Demand. This option, enabled by default, keeps Access from compiling the
entire potential call tree when you start up a form. VBA compiles only as you call vari-
ous functions.

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
5

0672321025 AppA 10/24/01 3:53 PM Page 5

• Background Compile. By selecting this option, Access will compile any uncompiled
code when Access’s processes are idle.

Appendixes for Web Site

PART VI
6

FIGURE WEB A.3
The options on the right side of this page can affect the debugging process.

To ensure that no compile errors are lurking in obscure forms, choose Compile
Project_Name from the Debug menu while in the module editor before distributing a
system. Also, because Access doesn’t have to compile the code during runtime while
in production, the application performs better. You should also select Save from the
File menu to save the project after compiling.

NOTE

Using the Immediate Window
The VBE Immediate window has a number of features that allow you to follow code and to
examine expressions in a number of different ways. By using the Immediate window, you can
print data and reassign values to variables and Access objects, which come in handy as you
debug your application. To bring the Immediate window up while in the VBE, open the View
menu and choose Immediate window.

Press Ctrl+G anywhere in your application to bring up the VBE Immediate window.

TIP

0672321025 AppA 10/24/01 3:53 PM Page 6

Printing Data to the Immediate Window From Your
Application
You can print information to the Immediate window by using the Print method available on
the Debug object. When a code line uses the Debug.Print method, it prints the data to the
Immediate window, even if the window isn’t open. The next time you open the window, the
text will be there. Figure A.4 shows how to include the Debug.Print method in your code, as
well as the output in the Immediate window.

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
7

FIGURE A.4
The Debug.Print method is useful for keeping track of expressions in your application.

Although you can’t see the code lines that contain the Debug.Print statement if the
Immediate window isn’t open, Access still has to take the time to parse the command
at runtime and print to the object. If you don’t want to include these code lines, use
the conditional compilation directives mentioned later in the section “Controlling
Code with Conditional Compilation Commands.”

NOTE

0672321025 AppA 10/24/01 3:53 PM Page 7

Displaying Data While in the Immediate Window
By using the ? (Print) statement, you can display all types of expressions while in an applica-
tion. Simply place a Stop statement or breakpoint in your application, open the Immediate
window, and then use the ? statement to print the information you’re interested in. (Stop state-
ments and breakpoints are discussed in detail later in the section “Setting Breakpoints and
Using the Stop Statement.”)

Suppose that you’re running a routine that runs through a recordset and checks a value for one
of the fields. By displaying the value of that field to the Immediate window, you could see
what the value is during execution for each record.

The following are some examples of different data types that you can display while in the
Immediate window:

Object Type Syntax

Control on a form ? Forms!FormName!ControlName

Property of a control ? Forms!FormName!ControlName.PropertyName

Variable ? VariableName

Variable in an expression ? VariableName * 20

Assigning Values to Variables and Objects in the
Immediate Window
The Immediate window also lets you assign values and perform commands right from the win-
dow. You also can perform actions such as closing recordsets manually.

Appendixes for Web Site

PART VI
8

Through the Immediate window, you can assign a new value to a variable, and then
use the Run menu’s Set Next Statement command to place the next line of execution
just before that value is used in the program. You can then use the Step commands
to walk through the code and view the results. The Step commands are discussed in
greater detail later in the section “Debugging One Step at a Time.”

TIP

Look at the following table. You can use similar syntax for assigning values:

Object Type Syntax

Control on a form Forms!FormName!ControlName = 1

Property of a control Forms!FormName!ControlName.PropertyName = “New

Name”

0672321025 AppA 10/24/01 3:53 PM Page 8

Object Type Syntax

Variable VariableName = 3

Variable in an expression VariableName = VariableName * 20

Running Code from the Immediate Window
One nice thing about the Immediate window is that it gives you the capability to test routines
without requiring a complete framework around the routine. You can call routines straight from
the Immediate window by simply typing the necessary syntax in the window. The syntax for
calling the two types of procedures is as follows:

• For a subroutine, the syntax is

SubName arg1,arg2...

or

Call SubName (arg1,arg2...)

• For a function, the syntax is as follows if you want to print the function’s return value:

? FunctionName(arg1,arg2...)

Or use this syntax if you’re just running the function and don’t care about the results:

FunctionName arg1,arg2...

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
9

The functionality of running functions on a line by themselves was new as of
Access 95. Before that, functions couldn’t be called on a line by themselves. This also
was true when calling functions at runtime.

NOTE

Figure A.5 shows an example of calling a subroutine and a function.

FIGURE A.5
Use the Immediate window to test subroutines and functions on-the-fly.

0672321025 AppA 10/24/01 3:53 PM Page 9

Stopping Program Execution
Bringing up the Immediate window during runtime is no problem. You can try to pause an
application programmatically with either a Stop statement or a breakpoint. When placed in
code, both methods will halt the execution of a piece of code and bring up the module editor,
with the code line containing the Stop statement or breakpoint highlighted. You can have as
many breakpoints and Stop statements in your code as you want.

Figure A.6 shows a Stop statement and a breakpoint set in the ap_AppInit() function, which
is in the modGlobalUtilities module.

Appendixes for Web Site

PART VI
10

Breakpoint

Stop statement

FIGURE A.6
Breakpoints and Stop statements are two ways to stop execution at a specific point in code.

You can’t place Stop statements or breakpoints in comments, variable declarations
(the Dim statement), blank lines, line labels, or line numbers.

NOTE

0672321025 AppA 10/24/01 3:53 PM Page 10

Using the Stop Statement
To place a Stop statement in a code line, simply type the command.

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
11

Stop statements, if saved with the module, remain in the code until you remove
them. Remember to remove all Stop statements from your code and forms modules
before distributing your application for production. To find all occurrences of Stop
statements, follow these steps:

1. Open a module.

2. From the Edit menu, choose Replace.

3. Type Stop in the Find What text box. (Leave the Replace With text box blank.)

4. Select Current Project in the Search section.

5. Click the Find Next button.

6. Click the Replace button if the text found is a legitimate Stop statement. If the text
is part of another line of code, such as comments or a text string, skip this step.

7. Repeat steps 5 and 6 until you see the message The specified region has been
searched.

Although it’s not required, if you turn on Find Whole Word Only in the Replace dia-
log, you’ll be less likely to get bogus occurrences of the string.

CAUTION

Using Breakpoints
The alternative to a Stop statement is a breakpoint. Breakpoints are useful because when the
database is closed, they go away. As a result, you don’t have to worry about breakpoints left in
your code when you distribute the application.

To set a breakpoint, first highlight the line on which you want to stop code execution. Then
you can toggle (set or unset) a breakpoint in one of a number of ways:

• Choose the Breakpoint toolbar button.

• Right-click, and then choose Breakpoint from the Toggle menu.

• Press F9.

• Click in the left margin next to the code line you want to set your breakpoint on. No
highlight is required.

• From the Debug menu, choose Toggle Breakpoint.

0672321025 AppA 10/24/01 3:53 PM Page 11

If the breakpoint didn’t exist before, you’ll see it at this time, highlighted in whatever color
you set the Breakpoint Text color code to be. (The default color is dark red for the background,
white for the foreground.) You’ll also see a red dot if the margin indicator bar is on. To unset a
breakpoint, follow the same steps that were performed to set it. (For information on how to set
the breakpoint text color, refer to the earlier section “Setting the Correct Module Options for
Maximum Debugging Power.”)

To remove all breakpoints in an application, open the Debug menu and choose Clear All
Breakpoints while in the VBE.

Appendixes for Web Site

PART VI
12

Inserting a breakpoint in your code can really help you track down an error in your
code when a variable is returning a Null value when it shouldn’t be. You could place
a breakpoint just after the point in the code where the variable is being assigned,
and examine the environment with some of the other commands listed later in the
section “Watching Expressions During Program Execution.”

TIP

Using Debug.Assert
The Debug object’s Assert method stops execution of an application based on criteria. The
syntax looks like this:

Debug.Assert booleanexpression

The assertion stops execution with the last statement executed, the Debug.Assert line.

Debugging One Step at a Time
To work through some debugging situations, you need to be able to walk a program line by
line while it’s executing. VBA provides four Step commands to accomplish this: Step Into,
Step Over, Step Out, and Run to Cursor. You can use these commands after a program halts
execution by choosing the appropriate command from the Debug menu.

All four Step commands skip over the same type of code lines that don’t allow break-
points: comments, declaring variables (the Dim statement), blank lines, and line labels
or line numbers.

NOTE

0672321025 AppA 10/24/01 3:53 PM Page 12

Stepping into Code Line by Line
The Step Into command steps through code lines one by one. When a code line has a call to
another procedure, the editor then follows the code into it. This includes user-created functions
and subroutines, but not intrinsic VBA functions such as Date() and Mid(). Calls into DLLs
and OLE servers are also omitted.

First, halt program execution by pressing Ctrl+Break when the routine is executing, by setting
a breakpoint, or by using a Stop statement. Then you can step through the code line by line,
with the program pausing on each line, by either choosing the Step Into button of the Visual
Basic toolbar, opening the Debug menu and then choosing Step Into, or pressing F8.

Stepping Through Code with Step Over
Similar to the Step Into command, the Step Over command takes you line by line through pro-
gram execution. The difference comes when you’re on a function or subroutine being called
from within the original routine. Step Over is useful when you have a number of thoroughly
debugged routines that can therefore be skipped.

To use the Step Over command, simply press Shift+F8. When you use Step Over, rather than
drop into the new routine, the program will

1. Execute the new routine without displaying the code.

2. Begin displaying the code line by line following the procedure call.

Bailing Out of a Routine with Step Out
Sometimes when the going gets too tough, it’s best just to bail out of the current routine and
resume with the calling routine, in the line of code that follows the call.

The Step Out command allows you to leave a routine that might be messed up. You also can
use Step Out if you don’t need to bother with a particular routine, but accidentally went into it
with the Step Into command.

You can use the Step Out command by pressing Ctrl+Shift+F8.

Skipping Tested Code with Run to Cursor
Think of when you’re debugging the beginning of a routine. After the section of the code is
tested, you find that you need to jump to the end of the routine. The method for doing this is
Run to Cursor.

To perform a Run to Cursor from within the halted program, place the cursor where you want
Access to execute the code to without stopping. Then press Ctrl+F8. The execution highlight
will now be on the line of code in which you placed the cursor.

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
13

0672321025 AppA 10/24/01 3:53 PM Page 13

When you want the program to continue with regular execution, press F5.

One more debug/code option is Set Next Statement, which sets the code execution to whatever
code line you select. You can set the cursor on a line and then choose Set Next Statement from
the Debug menu, or right-click a code line and select Set Next Statement. This is useful if you
are quickly testing a particular piece of code and are feeding it different values “manually” by
setting it in the Immediate, Locals window, or Watches windows. You can continue executing
the same line(s) of code to test different values.

Appendixes for Web Site

PART VI
14

Unlike the Step options, Set Next Statement does exactly what it says—it goes to the
statement you select without executing any code at all. Keep this in mind when using
Set Next Statement.

NOTE

Another option is Show Next Statement, which brings you back to the code line that is executed
next (the line that’s highlighted yellow). This is useful if you are stepping through the code and
paging through different modules and code windows to do your debugging, and need to get back
to the executing code. You can find Show Next Statement on the Debug and right-click menus.

Viewing the Order of Procedure Calls
Another necessary debugging tool that Access provides is the capability to view procedure
calls. You can get to the Calls dialog through a couple of different routes, but this section
focuses on the Immediate window.

One reason for viewing the procedure calls is that sometimes you need to verify how a routine
was called. This is especially true if you have more than one way to get into a routine.

To view the procedure call stack from the VBE, follow these steps:

1. Open the modGlobalUtilities module.

2. Go to the ap_AppInit() function.

3. Place a Stop statement in the first line of code following the function declaration. Then
close the module.

4. Execute the function by running the AutoExec macro. When the code reaches the Stop
statement, the module window opens with that code displayed.

5. By using the Step Into command (F8), step through the code until you reach the line that
reads

pstrAppPath = CurrentProject.Path

0672321025 AppA 10/24/01 3:53 PM Page 14

6. Press Shift+F8 to step over this line of code. You’ll now be on the line of code that reads

pstrBackendName = ap_GetDatabaseProp(“BackEndName”)

7. Press F8 to step into the ap_GetDatabaseProp() function.

8. From the View menu, choose Call Stack. (You also can open the Call Stack dialog by
pressing Ctrl+L or by using the Call Stack dialog toolbar button.) Your dialog should
resemble Figure A.7.

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
15

FIGURE A.7
Use the Call Stack dialog to verify which functions are being called correctly.

The Call Stack dialog lists the procedure calls from top to bottom, with the most recent on top.
To see any of the procedures, highlight the procedure name in the Project.Module.Function
list, and then click Show. The editor then displays the chosen routine.

Watching Expressions During Program Execution
One very necessary feature in programming is the capability to watch expressions throughout
execution and have the debugger react accordingly. In the past, you might have done this by
using a message box to display the value of an expression (see Figure A.8).

You also can use the Debug.Print method all over the code. However, a better way to keep an
eye on different expressions is to use the Locals and Watches windows. You can use these win-
dows to see how your variables are doing and—more importantly—what they’re doing.

Keeping in Touch with the Locals
By using the Locals window, you can view the local variables not only for the current routine
you are in, but also for the module level and for the Data Access Objects variable properties.

Figure A.9 illustrates the variables assigned in the declaration section for the
modGlobalUtilities module. (They’re actually global-type variables, so the term local in this
sense means where they’re declared.) Figure A.9 also shows the variables declared in
ap_AppInit, including ADO variables, which at this point are collapsed. This will also work
on ADO variables displayed on the Watches window.

0672321025 AppA 10/24/01 3:53 PM Page 15

FIGURE A.8
Using a message box to display expressions is a common debugging method.

Appendixes for Web Site

PART VI
16

FIGURE A.9
To see the current setting of collapsed routines or variables, click the variable or routine name.

The Locals window displays three columns:

• Expression. As with the earlier section “Printing Data to the Immediate Window,” an
expression can be anything from a variable to a control value on a form.

0672321025 AppA 10/24/01 3:53 PM Page 16

• Value. This column shows the displayed value. If the expression isn’t declared in the
given procedure and module, the Value column in the Watches window will say
Expression not defined in context.

• Type. This column displays the expression’s data type.

Another quick way to view expressions when the program is executing through the Step com-
mands is by using a Quick Watch (discussed next). Other commands included in the
Immediate window and the Edit Watch dialog are discussed later.

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
17

A good way to learn about objects’ properties, what they contain when, and to view
a hierarchy, is to set watches on them and expand. You also can directly change many
values right in the Watches/Locals windows by clicking and typing.

TIP

Taking a Quick Look with the Quick Watch Dialog
The Quick Watch dialog is a convenient way to examine an expression with a click (or two) of
a button. This is very useful when you have a routine that just doesn’t seem to be acting the
way it should. You can look at the return value for the routine anywhere in the program that
you think would be pertinent. To invoke Quick Watch and view the answer for the routine
ap_LogOutCheck, for example, follow these steps:

1. Open the ap_AppInit() function in the modGlobalUtilities module.

2. Place a Stop statement in the first line of code after the line of code that reads

pstrBackEndPath = ap_GetDatabaseProp(“LastBackEndPath”)

3. Open the Immediate window and enter Ap_AppInit(). The editor appears with the Stop
statement highlighted.

4. Place the cursor on the function call ap_LogOutCheck(pstrBackEndPath).

5. From the Debug menu, choose Quick Watch.

Your screen should now look very similar to Figure A.10.

In the Quick Watch dialog, you’re one click away from adding the expression to the Watches
window.

Adding and Viewing Expressions in the Watches Window
If you’re examining a variable, such as pstrAppPath, you can add it to the Watches window
by clicking the Add button in the Quick Watch dialog. After you do this, you can then see the

0672321025 AppA 10/24/01 3:53 PM Page 17

FIGURE A.10
Quick Watch is a quick way to view an expression while an application is executing, without putting additional com-
mands in the code.

The Watches window displays four columns, three of which are the same as for the Locals
page:

• Expression. As in the earlier section “Printing Data to the Immediate Window,” an
expression can be anything from a variable to a control value on a form.

• Value. This column shows the displayed value. If the expression isn’t declared in the
given procedure and module, this column will say Expression not defined in con-
text. If you open the Watches window when an application isn’t running, or the Module
and Procedure of the watch are out-of-scope, this column will say Out of Context.

• Type. This column displays the expression’s data type.

• Context. This is the scope in which you want to view the expression. This can be for a
particular routine in a module or be throughout the whole database.

Appendixes for Web Site

PART VI
18

Watches window added to the other windows in the VBE (see Figure A.11). Remember that
you can bring the VBE to the front if it isn’t already open by pressing Ctrl+G.

0672321025 AppA 10/24/01 3:53 PM Page 18

FIGURE A.11
Add expressions to the Watches window so you can follow the status without having to manually display them all the
time or hunt them down on the Locals page.

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
19

Watches
window

When you add an expression to the Watches window through the Quick Watch dia-
log or the menu, the Context column defaults to the current procedure and module
(context is where the code is now running).

NOTE

Another way to add an expression to the Watches window (without using the Quick Watch dia-
log) is by choosing Add Watch from the Debug menu. You can use this method anywhere in
the VBE.

By watching an expression, you’re using the Watches window in its simplest form, without
any of the additional options mentioned in the next section. Because Access allows you to
keep the VBE and Watches window open wherever the application is, you can watch expres-
sions at any time.

After adding an expression and following it throughout the application, you’ll soon find that
you have uses for the other capabilities in the Watches window. These include having the pro-
gram break when the value of an expression is true or even changes.

0672321025 AppA 10/24/01 3:53 PM Page 19

Setting Break Conditions and Editing Expressions
Add a couple more expressions to the Watches window. Wherever you are in the VBE, follow
these steps:

1. From the Debug menu, choose Add Watch.

2. Type flgLeaveApplication in the Expression column.

3. Click OK in the Add Watch dialog.

4. Repeat steps 1 through 3 for the lngCurrError and pstrBackEndPath variables.

If you’re still on the same line as the previous example, the Watches window should look like
Figure A.12.

Appendixes for Web Site

PART VI
20

FIGURE A.12
You can view as many expressions in the Watches window as necessary.

There are two reasons for placing variables that can be found in the Locals window in
the Watches window:

• You don’t have to search through all the existing locals to monitor the specific
variables you’re interested in.

• You can set the watch variables to be different types, which is discussed following
this tip.

TIP

You can now change the type of the watch variables and control execution of the program
through them. To halt the program on a certain condition, you must edit the expressions. To
edit the flgLeaveApplication expression in the Watches window, highlight the line, and
choose Edit Watch from the Debug menu. You’re now in the Edit Watch dialog (see Figure
A.13), which consists of the following:

0672321025 AppA 10/24/01 3:53 PM Page 20

• Expression. This text box contains the name of the variable/expression to watch.

• Context Group. With this set of controls, you can specify the context—in other words,
in which specific procedure/module you want to watch the expressions. You can also
specify (All Procedures)/(All Modules) accordingly if you want to follow a variable
that’s declared global, or at module level. If the expression isn’t declared in the given
procedure and module, the Value field in the Watches window will say Expression not
defined in context. For more information on variable scoping, refer to Chapter 2.

• Watch Type. This is where you specify the type of watch variable: Watch Expression,
Break When Value Is True, or Break When Value Changes. Each option is useful,
depending on the circumstances.

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
21

FIGURE A.13
Modifying how a variable is watched is easy with the Edit Watch dialog.

Change the Watch Type of flgLeaveApplication to Break When Value Is True by clicking
the radio button next to the label. As the code is executing, this will allow you to know
whether the variable has been set to true without walking through the code line by line.

Next, highlight the lngCurrError expression in the Watches window; then choose Edit Watch
from the Debug menu. Now change the Watch Type to Break When Value Changes. This way,
if an error occurs, the program will halt right away.

In the Local and Watches windows, you also can change variable values by clicking a value
and changing it.

In Figure A.14, you can see that the watch expression (at the bottom) is denoted by a pair of
glasses. The Watch Type choice Break When Value Is True is denoted by a hand with a piece
of paper in it (the top expression). Finally, the Watch Type choice Break When Value Changes
is denoted with an icon of a hand holding a triangle (the middle expression).

0672321025 AppA 10/24/01 3:53 PM Page 21

FIGURE A.14
You not only can watch expressions, but also can set them to cause the application to halt under certain conditions.

Controlling Code with Conditional Compilation
Commands
Although Access doesn’t create true executables, it does compile the VBA code to a level
lower than the Visual Basic language the developer works with. This compiled code is called
pseudocode (also known as P-code). When compiling P-code, certain commands, such as com-
ments, are stripped out to optimize the code.

By using conditional compilation directives, you can include or exclude code sections in the
final compiled code. This is different from using just If..Endif to skip over parts of code
while it’s running. Access literally strips the section of code that’s surrounded by the directives.
This means that you must know which lines of code you won’t need at runtime.

One way to use the conditional compilation directives would be to follow the example in the
sample application. World Wide Video could have three versions of the system:

• A video kiosk, so customers can view current and upcoming movies

• A turn-key retail system, so salespeople can rent movies and sell merchandise

• An administrative system for management, with accounting and reporting capabilities

By having the conditional compilation directives in the code, you can use the same code base
but include only the code used for the particular system, thus saving memory.

Although this last example could work, it’s not necessarily practical because the number of
forms, reports, and other objects necessary to run each version, and the number of places to put
the compiler directives, would be enormous. A more practical example—and how most devel-
opers use conditional compilation directives—is to use them for debugging purposes. There’s
only one conditional compilation directive: #If..#ElseIf..#Else..#End If.

Figure A.15 shows code that prints three variables to the Immediate window if the ccDebug
variable is set to True.

Appendixes for Web Site

PART VI
22

0672321025 AppA 10/24/01 3:53 PM Page 22

FIGURE A.15
Conditional compilation commands are useful for excluding debugging commands from distributed applications.

ccDebug is a conditional compiler constant, a special constant that can be used only with the
conditional compiler directive. You can declare conditional compiler constants in two ways:

• Through the user interface on the Project_Name Properties sheet (choose Project_Name
Properties from the Tools menu in the VBE). You can see ccDebug in the Conditional
Compilation Arguments text box in Figure A.16.

Debugging Code in Access 2002

APPENDIX A

A

D
EB

U
G

G
IN

G
C

O
D

E
IN

A
C

C
ESS

2002
23

FIGURE A.16
You can specify a conditional compiler constant through the Project Properties sheet.

0672321025 AppA 10/24/01 3:53 PM Page 23

• Through the #Const command. Conditional compiler constants are visible only at the
module level and—unlike those declared through the UI—can be different data types.
The #Const statement looks a lot like the standard Const statement. Here’s an example
using the ccDebug constant:

#Const ccDebug = 1

Appendixes for Web Site

PART VI
24

Conditional compiler constants declared through the UI are scoped globally. This type
of constant can be only of data type Integer, and can’t be a variable, standard con-
stant, or even another conditional compiler constant.

NOTE

A conditional compiler constant declared with #Const must be a literal, any data
type, or another conditional compiler constant. It can’t be a variable or standard
constant.

NOTE

0672321025 AppA 10/24/01 3:53 PM Page 24

