Kernel API Subset

IN THIS APPENDIX

e Tasks 450

e Threads 456

e Locking 460

e Signals 462

¢ Files and So On 465

450

Appendixes
PART V

This appendix lists all the manual pages of the kernel library and system calls that are not
directly related to sockets but are typically used in conjunction with sockets.

Tasks

Tasks include both processes and threads. Threads (pThreads) are defined in the next section;
this section covers processes and low-level tasks (clones).

fork()

Create a new process (independent task) at this call. This call creates a child process to run
with the parent. You must be careful that you capture the child and direct it to its assigned task;
otherwise, the child runs each statement the parent does (they run together).

Prototype
#include <unistd.h>
pid_t fork(void);

Return Value

0 The task that gets this is the child.

>0 The task that gets this is the parent.

<0 The parent failed to create a new child; check errno.
Parameters
(none)

Possible Errors
EAGAIN The fork() cannot allocate sufficient memory to copy the par-
ent’s page tables and allocate a task structure for the child.

ENOMEM The fork() failed to allocate the necessary kernel structures
because memory is tight.

Example
int PID;
if ((PID = fork()) == 0)
{ /*--- CHILD ---*/
/**** Run the child's assignment ***/
exit();
}
else if (PID > 0)
{ /*--- PARENT ---*/
int status;
[**** Do parent's work ****/

Kernel API Subset
APPENDIX C

wait(status); /* may be done in SIGCHLD signal handler */

}
else /*--- ERROR ---*/
perror("fork() failed");

__clone()

This is a low-level system call for creating tasks. You can directly control what is shared
between the parent and the child. This is not for amateur programmers; you can create very
unpredictable programs. (See Chapter 7, “Dividing the Load: Multitasking,” for a complete
description of this call.)

Prototype
#include <sched.h>

int _ clone(int (*fn)(void* arg), void* stacktop, int flags, void* arg);

Return Value

process ID If negative, errno has the exact error code.
Parameters
fn The home for the child task. Create a function (or procedure) that

accepts a void* parameter argument. When the routine attempts
to return, the operating system terminates the task for you.
stacktop You must create a stack for the child task. This parameter points
to the top of that stack (the highest address of the data block).
Because you provide the stack, the stack is fixed in size and can-
not grow like a normal task’s stacks.
flags Two types of information arithmetically ORed together; the VM
spaces to share and the termination signal. This flag supports all
signal types and, when the task terminates, the operating system
raises the signal you define.
The available VM spaces are as follows:

* CLONE_VM Share the data space between tasks. Use this
flag to share all static data, preinitialized data, and the allo-
cation heap. Otherwise, copy data space.

* CLONE_FS Share the file system information: current
working directory, root file system, and default file creation
permissions. Otherwise, copy settings.

* CLONE_FILES Share open files. When one task changes
the file pointer, the other tasks see the change. Likewise, if
the task closes the file, the other tasks are not able to
access the file any longer. Otherwise, create new references
to open inodes.

451

13sang
IdV T1IN¥I)|

452

Appendixes
PART V

* CLONE_SIGHAND Share signal tables. Individual tasks may
choose to ignore open signals (using sigprocmask()) with-
out affecting peers. Otherwise, copy tables.

* CLONE_PID Share Process ID. Use this flag carefully; not
all the existing tools support this feature. The PThreads
library does not use this option. Otherwise, allocate
new PID.

arg You can pass a pointer reference to any data value using this
parameter. When the operating system finishes creating the child
task, it calls the routine fn with the arg parameter. If you use this
feature, be sure to place the value arg points to in the shared data
region (CLONE_VM).

Possible Errors
EAGAIN The __clone() cannot allocate sufficient memory to copy the
parent’s page tables and allocate a task structure for the child.
ENOMEM The _ clone() failed to allocate the necessary kernel structures
because memory is tight.

Example
#define STACKSIZE 1024

void Child(void* arg)

{
/*---child's responsibility---*/
exit(0);

int main(void)
{ int cchild;
char *stack=malloc (STACKSIZE);

if ((cchild = __clone(&Child, stack+STACKSIZE-1,
SIGCHLD, 0) == 0)

exec()

Run an external program (either a binary or an executable script with #! <interpreter>

[arg] in the first line). This call replaces the currently running task with the external program’s
context. The new program keeps the caller’s PID and open files.

The calls execl(), execlp(), execle(), execv(), and execvp() are all front ends to
execve().

Kernel API Subset

453
AppENDIX C
Prototype
#include <unistd.h>
int execve(const char* path, char* const argv[], char* const envp[]);
int execl(const char* path, const char* arg, ...);
int execlp(const char* file, const char* arg, ...);
int execle(const char* path, const char* arg, ..., char* const envp[]);
int execv(const char* path, char* const argv[]);
int execvp(const char* file, char* const argv[]);
Return Value
This call does not return if successful. If it fails, the return value is -1. C
Parameters =
file The program to execute. The call searches for the name in this v §
variable using the defined PATH. @ m
m
path The absolute path and filename of the program to execute. = %
argv The string array of command-line parameters. The first array ele-
ment value must be arg@ (or the name of the program). The last
array element is always zero (0).
arg A command-line parameter. This is followed by an ellipsis (...)
to indicate that there are several arguments. The first arg is
always the name of the program, and the last arg is always
zero (0).
envp The string array of environment parameters. Each parameter is in

the form <param>=<value> (for example, TERM=vt100). The last
array element is always zero (0).

Possible Errors
EACCES The file or a script interpreter is not a regular file, or execute per-
mission is denied for the file or a script interpreter, or the file
system is mounted noexec.

EPERM The file system is mounted nosuid, the user is not the superuser,
and the file has an SUID or SGID bit set.

EPERM The process is being traced, the user is not the superuser, and the
file has an SUID or SGID bit set.

E2BIG The argument list is too big.

ENOEXEC An executable is not in a recognized format, is for the wrong

architecture, or has some other format error that means it cannot
be executed.

EFAULT The filename points outside your accessible address space.
ENAMETOOLONG The filename is too long.

Appendixes

454
PART V
ENOENT The filename or a script or ELF interpreter does not exist.
ENOMEM Insufficient kernel memory was available.
ENOTDIR A component of the path prefix of filename, script, or ELF inter-
preter is not a directory.
EACCES Search permission is denied on a component of the path prefix of
filename or the name of a script interpreter.
ELOOP Too many symbolic links were encountered in resolving file-
name, the name of a script, or ELF interpreter.
ETXTBUSY Executable was open for writing by one or more processes.
EIO An I/O error occurred.
ENFILE The limit on the total number of files open on the system has
been reached.
EMFILE The process has the maximum number of files open.
EINVAL An ELF executable had more than one PT_INTERP segment.
EISDIR An ELF interpreter was a directory.
ELIBBAD An ELF interpreter was not in a recognized format.
Example
execl("/bin/1s", "/bin/1ls", "-al", "/home", "/boot", 0);

perror("execl() failed"); /* No IF needed here: if successful, no return */

char *args[]={"1ls", "-al", "/home", "/boot", 0};
execvp(args[@], args);
perror("execvp() failed");

sched_yield()

Relinquish control of the CPU without blocking. This routine tells the scheduler that the cur-
rently running task wants to give up the remains of its current timeslice. The call returns on the
next timeslice.

Prototype
#include <sched.h>
int sched_yield(void);

Return Value
Zero if all goes okay and control is transferred; otherwise, -1.

Parameters
(none)

Possible Errors
(none defined)

Kernel API Subset
APPENDIX C

Example
#include <sched.h>
sched_yield();

wait(), waitPID()

Wait for and acknowledge the termination of a child process. This is important to keep zombie
processes from lingering in the process table and to free up valuable resources. The wait ()
call waits for any process to terminate, and the waitPID() call permits you to specify a spe-
cific process or group. You can use the following macros to get the meaning from the status:

* WIFEXITED(status) is non-zero if the child exited normally.

e WEXITSTATUS(status) evaluates to the least significant eight bits of the return code of
the child that terminated, which may have been set as the argument to a call to exit() or
as the argument for a return statement in the main program. This macro can only be eval-
uated if WIFEXITED returned non-zero.

* WIFSIGNALED(status) returns true if the child process exited because of a signal that
was not caught.

* WTERMSIG(status) returns the number of the signal that caused the child process to ter-
minate. This macro can only be evaluated if WIFSIGNALED returned non-zero.

* WIFSTOPPED(status) returns true if the child process that caused the return is currently
stopped; this is only possible if the call was done using WUNTRACED.

* WSTOPSIG(status) returns the number of the signal that caused the child to stop. This
macro can only be evaluated if WIFSTOPPED returned non-zero.

Prototype

#include <sys/types.h>

#include <sys/wait.h>

PID t wait(int *status);

PID t waitpid(PID_t PID, int *status, int options);

Return Value
Both calls return the PID of the child that terminated.

Parameters
status Returns the ending status of the child. If not zero or NULL, this
parameter picks up the child’s termination code and exit ()
value.
PID Indicates which process to wait for:

< -1 Wait for any child process whose process group ID is
equal to the absolute value of PID.

455

13sang
IdV T1IN¥I)|

456

Appendixes
PART V

== -1 Wait for any child process; this is the same behavior that
wait () exhibits.

== @ Wait for any child process whose process group ID is
equal to that of the calling process.

> @ Wait for the child whose process ID is equal to the value
of PID.

options WNOHANG Return immediately if no child has exited.

WUNTRACED Return for children who are stopped and whose sta-
tus has not been reported.

Possible Errors
ECHILD If the process specified in PID does not exist or is not a child of
the calling process. (This can happen for one’s own child if the
action for SIGCHLD is set to SIG_IGN.)

EINVAL If the options argument was invalid.

EINTR If WNOHANG was not set and an unblocked signal or a SIGCHLD was
caught. Just try again.

Example
void sig_child(int signum) /* This handler only gets one waiting zombie */
{ int status;
wait(&status);
if (WIFEXITED(status))
printf("Child exited with the value of %d\n", WEXITSTATUS(status));
if (WIFSIGNALED(status))
printf("Child aborted due to signal #%d\n", WTERMSIG(status));
if (WIFSTOPPED(status))
printf("Child stopped on signal #%d\n", WSTOPSIG(signal));

}

void sig_child(int signum) /* This handler removes all waiting zombies */

{
while (waitpid(-1, @, WNOHANG) > 0);
}

Threads

Threads are another kind of task. This section defines a few library calls from the pThreads
library.

pthread_create()
This call creates a lightweight kernel process (thread). The thread starts in the function that
start_fn points to using arg as the function’s parameter. When the function returns, the thread

Kernel API Subset
APPENDIX C

terminates. The function should return a void* value, but if it doesn’t, the thread still termi-
nates and the result is set to NULL.

Prototype

#include <pthread.h>

int pthread_create(pthread_t *tchild, pthread_attr_t *attr,
void (*start_fn)(void *), void *arg);

Return Value
This is a positive value if successful. If the thread-create call encountered any errors, the call
returns a negative value and sets errno to the error.

Parameters

thread The thread handle (passed by reference). If successful, the call
places the thread handle in this parameter.

attr The thread’s starting attributes. See pthread_attr_init for more
information.

start_fn The routine in which the thread is to start. This function should
return a void* value.

arg The parameter passed to start_fn. You should make this para-

meter a nonshared (unless you plan on locking it), nonstack
memory reference.

Possible Errors

EAGAIN Not enough system resources to create a process for the new
thread.
EAGAIN More than PTHREAD_THREADS_MAX threads are already active.
Example
void* child(void *arg)
{
[**** Do something! ****/
pthread_exit(arg); /* terminate and return arg */
}
int main()

{ pthread_t tchild;

if (pthread_create(&tchild, @, child, 0) < 0)
perror("Can't create thread!");

[**** Do something! ****/

if (pthread_join(tchild, @) != 0)
perror("Join failed");

457

13sang
IdV T1IN¥I)|

458

Appendixes
PART V

pthread_join()
Similar to the wait () system call, this call waits for and accepts the return value of the child
thread.

Prototype
#include <pthread.h>
int pthread_join(pthread_t tchild, void **retval);

Return Value
A positive value if successful. If the thread-create call encountered any errors, the call returns a
negative value and sets errno to the error.

Parameters
thread The thread handle to wait on
retval The pointer to the value passed back (passed by reference)

Possible Errors

ESRCH No thread could be found corresponding to that specified by
tchild.
EINVAL The tchild thread has been detached.
EINVAL Another thread is already waiting on termination of tchild.
EDEADLK The tchild argument refers to the calling thread.
Example

(see pthread_create())

pthread_exit()
Explicitly terminates the current thread, returning retval. You can use a simple return state-
ment as well.

Prototype
#include <pthread.h>
void pthread_exit(void *retval);

Return Value
(none)

Parameter
retval The void* value to return. Make sure that this value is non-stack
memory.

Kernel API Subset
APPENDIX C

Possible Errors
(none)

Example
(see pthread_create())

pthread_detach()

Detaches tchild thread from the parent. Normally, you need to join or wait for every process
and thread. This call lets you create several threads and ignore them. This is the same as set-
ting the thread’s attribute upon creation.

Prototype
#include <pthread.h>
int pthread_detach(thread_t tchild);

Return Value
A zero if successful. If the thread-create call encountered any errors, the call returns a negative
value and sets errno to the error.

Parameter
tchild The child thread to detach

Possible Errors

ESRCH No thread could be found corresponding to that specified by
tchild.
EINVAL The tchild thread has been detached.
EINVAL Another thread is already waiting on termination of tchild.
EDEADLK The tchild argument refers to the calling thread.
Example
void* child(void *arg)
{
[**** Do something! ****/
pthread_exit(arg); /* terminate and return arg */
}
int main()

{ pthread_t tchild;

if (pthread_create(&tchild, @0, child, 0) < 0)
perror("Can't create thread!");

else
pthread_detach(tchild);

[**** Do something! ****/

459

13sang
IdV T1IN¥I)|

460

Appendixes
PART V

Locking

The primary advantage of using threads is sharing data memory. Because the threads may try
to revise the memory at the same time, you need to lock the memory for exclusive access. This
section describes pThread calls that you can use (even with clones) to lock memory.

pthread_mutex_init(), pthread_mutex_destroy()

These calls create and destroy mutex semaphore variables. You may not need the initializer
because the defined variables are easier and faster to use. The destroy call normally frees up
any resources. However, the Linux implementation uses no allocated resources, so the call does
nothing more than check whether the resource is unlocked.

Prototype
#include <pthread.h>

/*---Predefined mutex settings---*/

pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t recmutex = PTHREAD RECURSIVE_MUTEX_INITIALIZER NP;
pthread_mutex_t errchkmutex = PTHREAD_ERRORCHECK MUTEX_INITIALIZER_NP;

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

Return Value
Always zero.

Parameters
mutex The mutex to create or destroy.
mutexattr Any attributes to set. If NULL, the call uses the default setting

(PTHREAD_MUTEX_INITIALIZER).

Possible Errors
(none)

pthread_mutex_lock(), pthread_mutex_trylock()

Lock or try to lock a semaphore for entering a critical section. The parameter is simply a vari-
able that acts like a reservation ticket. If another thread tries to lock a reserved spot, it blocks
until the reserving thread releases the semaphore.

Prototype

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);

Kernel API Subset
APPENDIX C

Return Value
The call returns zero on success and nonzero on error. You can find the exact code in errno.

Parameter
mutex The semaphore variable

Possible Errors
EINVAL The mutex has not been properly initialized.

EDEADLK (pthread_mutex_try_lock) The calling thread has already
locked the mutex (error-checking mutexes only).

EBUSY (pthread_mutex_lock) The calling thread can’t acquire because
it is currently locked.

Example
pthread_mutex_t mutex = fastmutex;

if (pthread_mutex_lock(&mutex) == 0)
{
/**** work on critical data ****/
pthread_mutex_unlock (&mutex);

}

pthread_mutex_t mutex = fastmutex;

/*---Do other processing while waiting for semaphore---*/
while (pthread_mutex_trylock(&mutex) != 0 && errno == EBUSY)
{

/**** Work on something else while waiting ****/

}
/*---Got the semaphore! Now work on the critical section---*/
if (errno != ENOERROR)

{
/**** work on critical data ****/
pthread_mutex_unlock (&mutex);

}

pthread_mutex_unlock()
Unlock a mutex semaphore.

Prototype
#include <pthread.h>
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Return Value
The call returns zero on success and nonzero on error. You can find the exact code in errno.

461

13sang
IdV T1IN¥I)|

462

Appendixes
PART V

Parameter
mutex The semaphore variable

Possible Errors
EINVAL The mutex has not been properly initialized.

EPERM The calling thread does not own the mutex (error-checking
mutexes only).

Example
(see pthread_mutex_lock())

Signals

When working with tasks, your program may get signals (or asynchronous notifications). This
section describes system calls that let you capture and process them.

signal()

Register the sig_fn routine to answer the signum signal. The default behavior is a single shot;
the signal handler reverts to the default after getting the first signal. Use sigaction() instead
if you want to control the behavior more.

Prototype

#include <signal.h>

void (*signal(int signum, void (*sig_fn) (int signum))) (int signum);
- O r‘ -

typedef void (*TSigFn) (int signum);

TSigFn signal(int signum, TSigFn sig_fn);

Return Value
A positive value if successful. If the thread-create call encountered any errors, the call returns a
negative value and sets errno to the error.

Parameters
signum The signal number to capture
sig_fn The program routine that the schedule calls

Possible Error
(errno not set)

Kernel API Subset
APPENDIX C

Example
void sig_handler(int signum)
{
switch (signum)
{
case SIGFPE:

if (signal(SIGFPE, sig_handler) == 0)
perror("signal() failed");

sigaction()

Similar to signal(), sigaction() establishes the receiver of certain signals. Unlike signal(),
however, this call gives you a lot more control over how the signaling notification behaves. It
is also a little more complicated to use.

Prototype

#include <signal.h>

int sigaction(int signum, const struct sigaction *sigact,
struct sigaction *oldsigact);

Return Value
Zero upon success; otherwise, nonzero.

Parameters
signum The signal to capture.
sigact The desired behavior and signal handler, using the following
structure:
struct sigaction
{
void (*sa_handler) (int);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer) (void);
b
sa_handler Signal handler function pointer.
sa_mask The set of signals to block while servicing a signal in the signal

handler.

463

13sang
IdV T1IN¥I)|

464

Appendixes
PART V

sa_restorer Obsolete; do not use.

sa_flags How to handle the signals. You can use the following flags:

SA_NOCLDSTOP If the signal is SIGCHLD, ignore cases when
the child stops or pauses.

SA_ONESHOT or SA_RESETHAND Reset the handler to the
default after getting the first signal.

SA_RESTART Try to restart an interrupted system call.
Normally, system calls that are interrupted return an EINTR
error. This option tries to restart the call and avoid EINTR
eITors.

SA_NOMASK or SA_NODEFER Allow like signals to interrupt
the handler. Normally, if your handler is responding to a
particular signal like SIGCHLD, the kernel suspends other
SIGCHLD signals. This can lead to lost signals. Using this
option permits your handler to be interrupted. Be careful
using this option.

oldsigact A repository of the old behaviors. You can copy the old settings

here.

Possible Errors

EINVAL An invalid signal was specified. This will also be generated if an
attempt is made to change the action for SIGKILL or SIGSTOP that
cannot be caught.

EFAULT The sigact or oldsigact parameter points to memory that is not
a valid part of the process address space.
EINTR System call was interrupted.
Example

void sig_handler(int signum)
{
switch (signum)

{
case SIGCHLD:

struct sigaction sigact;
bzero(&sigact, sizeof(sigact))

)

sigact.sa_handler = sig_handler; /* set the handler */
sigact.sa_flags = SA_NOCLDSTOP | SA_RESTART; /* set options */
if (sigaction(SIGCHLD, &sigact, @) == 0)

perror("sigaction() failed");

Kernel API Subset

AppENDIX C
sigprocmask()
Sets which signals are permitted to interrupt while servicing a signal.
Prototype
#include <signal.h>
int sigprocmask(int how, const sigset_t *sigset, sigset_t *oldsigset);
Return Value
Nonzero upon error; otherwise, zero.
Parameters
how The following are how the interrupting signals are treated while
servicing a signal:

e SIG_BLOCK The set of blocked signals is the union of the
current set and the sigset argument.

* SIG_UNBLOCK The signals in sigset are removed from
the current set of blocked signals. It is legal to attempt to
unblock a signal that is not blocked.

e SIG_SETMASK The set of blocked signals is set to the
argument sigset.

sigset The destination signal-set.
Oldsigset If non-NULL, the call places a copy of the old values in here.

Possible Errors
EFAULT The sigset or oldsigset parameter points to memory that is not
a valid part of the process address space.

EINTR System call was interrupted.

Files and So On

This section describes a few library and system calls for file management.

bzero(), memset()
bzero() initializes the specified block to zeros. This call is deprecated, so you might want to
use memset () instead.

memset () sets the specified block to val.

Prototype

#include <string.h>

void bzero(void *mem, int bytes);

void* memset(void *mem, int val, size_t bytes);

465

13sang
IdV T1IN¥I)|

466

Appendixes
PART V

Return Value
bzero() returns no value.

memset () returns the reference mem.

Parameters
mem The memory segment to initialize
val The value to fill the segment with
bytes The number of bytes to write (the size of the memory segment)

Possible Errors
(none)

Example
bzero(&addr, sizeof(addr));

memset (&addr, 0, sizeof(addr));

fentl()
Manipulate the file or socket handle.

Prototype
#include <unistd.h>
#include <fcntl.h>

int fentl(int fd, int cmd);
int fentl(int fd, int cmd, long arg);
int fentl(int fd, int cmd, struct flock *flock);

Return Value
On error, -1 is returned and errno is set appropriately. For a successful call, the return value
depends on the operation:
F_DUPFD The new descriptor
F_GETFD Value of flag
F_GETFL Value of flags
F_GETOWN Value of descriptor owner
F_GETSIG Value of signal sent when read or write becomes possible, or zero for tradi-
tional SIGIO behavior

All other commands return zero.

Parameters
fd

cmd

arg
flock

Possible errors
EACCES

EAGAIN

EBADF
EDEADLK

EFAULT

Kernel API Subset
APPENDIX C

The descriptor to manipulate.

The operation to perform. Some operations are duplicates of
existing functions. Some operations require an operand (arg or
flock). Each operation is grouped into specific functions:

e Duplicate descriptor (F_DUPFD) Same as dup2(arg, fd),
this operation replaces fd with a copy of the descriptor
in arg.

* Manipulate close-on-exec (F_GETFD, F_SETFD) The kernel
does not pass all file descriptors to the exec-child process.
With this parameter, you can test or set the close-on-exec.

* Manipulate descriptor flags (F_GETFL, F_SETFL) Using
these commands, you can get the flags (set by the open ()
system call) of the descriptor. You can only set O_APPEND,
0_NONBLOCK, and 0_ASYNC.

* Manipulate file locks (F_GETLK, F_SETLK, F_SETLKW)
GETLK retrieves the lock structure that currently holds the
file. If the file is not locked

* Determine who owns I/O signals (F_GETOWN,

F_SETOWN)—Return or set the PID of the current

owner of the SIGIO signal.

e Determine the kind of signal to send (F_GETSIG,

F_SETSIG)—Gets or sets the signal type when more

I/O operations can be performed. Default is SIGIO.
The value to set.

The locking key.

Operation is prohibited by locks held by other processes.

Operation is prohibited because the file has been memory-
mapped by another process.

fd is not an open file descriptor.

It was detected that the specified F_SETLKW command would
cause a deadlock.

lock is outside your accessible address space.

467

13sang
IdV T1IN¥I)|

Appendixes

468
PART V

EINTR For F_SETLKW, the command was interrupted by a signal. For
F_GETLK and F_SETLK, the command was interrupted by a signal
before the lock was checked or acquired—most likely when lock-
ing a remote file (locking over NFS), but it can sometimes hap-
pen locally.

EINVAL For F_DUPFD, arg is negative or is greater than the maximum
allowable value. For F_SETSIG, arg is not an allowable signal
number.

EMFILE For F_DUPFD, the process already has the maximum number of
file descriptors open.

ENOLCK Too many segment locks open, lock table is full, or a remote
locking protocol failed (locking over NFS, for example).

EPERM Attempted to clear the 0_APPEND flag on a file that has the
append-only attribute set.

Example

#include <unistd.h>
#include <fnctl.h>

printf ("PID which owns SIGIO: %d",
fnctl(fd, F_GETOWN));

#include <unistd.h>
#include <fnctl.h>

if (fnctl(fd, F_SETSIG, SIGKILL) != 0)
perror("Can't set signal");

#include <unistd.h>
#include <fnctl.h>

if ((fd_copy = fcntl(fd, F_DUPFD)) < 0)
perror("Can't dup fd");

pipe()

Creates a pipe that points to itself. Each file descriptor in fd[] coincides with input (fd[0])
and output (fd[1]). If you write to fd[1], you can read the data on fd[@]. Used mostly with
fork().

Prototype
#include <unistd.h>
int pipe(fd[2]);

Return Value
Zero if okay; -1 on error.

Kernel API Subset

AppENDIX C

Parameter

fd An array of two integers to receive the new file descriptor values
Possible Errors

EMFILE Too many file descriptors are already in use by the current

process.
ENFILE The system’s file table is full.
EFAULT The process does not own the memory that fd points to (invalid

memory reference).

Example
int fd[2];
pipe(fd); /* create pipe */

poll()

Similar to select (), this call waits on any one of several I/O channels for changes. Instead of
using macros for managing and controlling the descriptor list, the programmer uses structure
entries.

Prototype
#include <sys/poll.h>
int poll(struct pollfd *ufds, unsigned int nfds, int timeout);

Return Value
If less than zero, an error occurred; a zero returned means that the call timed out. Otherwise,
the call returns the number of descriptor records that changed.

Parameters
ufds The following is an array of pollfd structures. Each record
tracks a different file descriptor.

struct pollfd

{
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */
}s

The fd field is the file descriptor to check. The events and
revents fields indicate the events to check and the events that
occurred, respectively. The bit-values available are as follows:

POLLIN There is data to read.
POLLPRI There is urgent data to read.
POLLOUT Writing now will not block.

469

13sang
IdV T1IN¥I)|

Appendixes

470
PART V
POLLERR Error condition.
POLLHUP Hung up.
POLLNVAL Invalid request; fd not open.
POLLRDNORM Normal read (Linux only).
POLLRDBAND Read out-of-band (Linux only).
POLLWRNORM Normal write (Linux only).
POLLWRBAND Write out-of-band (Linux only).
nfds The number of records to check during the call.
timeout The timeout in milliseconds. If timeout is negative, the call waits
forever.
Possible Errors
ENOMEM There was no space to allocate file descriptor tables.
EFAULT The array given as argument was not contained in the calling
program’s address space.
EINTR A signal occurred before any requested event.
Example

int fd_count=0;

struct pollfd fds[MAXFDs];

fds[fd_count].fd = socket(PF_INET, SOCK_STREAM, 0);
/*** pbind() and listen() socket ***/
fds[fd_count++].events = POLLIN;

for (53)

{

if (poll(fds, fd_count, TIMEOUT MS) > 0)

{

int i;

if ((fds[0Q].revents & POLLIN) != 0)

{
fds[fd_count].events = POLLIN | POLLHUP;
fds[fd_count++].fd = accept(fds[0].fd, @, 0);

}
for (1 =1; i < fd_count; i++)
{
if ((fds[i].revents & POLLHUP) != 0)
{
close(fds[i].fd);
/*** Move up FDs to fill empty slot ***/
fd_count--;
}

else if ((fds[i].revents & POLLIN) != 0)

Kernel API Subset
APPENDIX C

/*** Read and process data ***/

}

read()

Read buf_len bytes from the fd file descriptor into the buffer. You can use this system call for
sockets as well as files, but this call does not provide as much control as the recv() system

call.

Prototype

#include <unistd.h>

int read(int fd, char *buffer, size_t buf_len);

Return Value

The number of bytes actually read.

Parameters
fd

buffer
buf_len

Possible Errors
EINTR

EAGAIN

EIO

EISDIR
EBADF

EINVAL
EFAULT

Example

int sockfd;

int bytes_read;
char buffer[1024];

File (or socket) descriptor
The memory buffer to accept the read data

The number of bytes to read and the number of legal bytes in the
buffer

The call was interrupted by a signal before any data was read.

Non-blocking I/0 has been selected using 0_NONBLOCK and no
data was immediately available for reading.

I/O error. This will happen when the process is in a background
process group, tries to read from its controlling tty, is either
ignoring or blocking SIGTTIN, or its process group is orphaned. It
can also occur when there is a low-level I/O error while reading
from a disk or tape.

fd refers to a directory.
fd is not a valid file descriptor or is not open for reading.
fd is attached to an object that is unsuitable for reading.

buf is outside your accessible address space.

/*---create socket & connect to server---*/
if ((bytes_read = read(sockfd, buffer, sizeof(buffer))) < 0)

perror("read");

471
C
&
i x
c2
o m
w r
i
-

472

Appendixes
PART V

select()

Wait for any I/O status changes from the file descriptor sets. When any of the specified sets
changes, the call returns. You have four macros to help construct and manage the file
descriptor sets:

* FD_CLR Remove a descriptor from the set.

* FD_SET Add a descriptor to a set.

e FD_ISSET Test if specified descriptor is ready for I/O.
e FD_ZERO Initialize the set to empty.

Prototype

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int hi_fd, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

FD_CLR(int fd, fd_set *set);

FD_ISSET(int fd, fd_set *set);

FD_SET(int fd, fd_set *set);

FD_ZERO(fd_set *set);

Return Value
The number of descriptors that have changed states. If an error occurred, the return value is
negative. If the timeout expired, the return value is zero.

Parameters

hi_fd This is the highest file descriptor number + 1. For example, if
you have four files open plus the stdio, your descriptors could
be o, 1, 2, 3, 5, 6, and 8. The highest is 8. If you include fd(8) in
your select statement, hi_fd would equal 9. If the highest fd
were 5, this parameter would be 6.

readfds The set of descriptors to test for readability.

writefds The set of descriptors to test for writing.

exceptfds The set of descriptors to test for out-of-band data.

timeout The maximum time to wait for data to arrive in microseconds.
This is a pointer to a number. If the number is zero (not the
pointer), the call returns immediately after checking all the
descriptors. If the pointer is NULL (zero), the select’s timeout fea-
ture is disabled.

fd The file descriptor to add, remove, or test.

set The file descriptor set.

Kernel API Subset

AppENDIX C
Possible Errors
EBADF An invalid file descriptor was given in one of the sets.
EINTR A non-blocked signal was caught.
EINVAL n is negative.
ENOMEM select was unable to allocate memory for internal tables.
Example

int i, ports[]={9001, 9002, 9004, -1};

int sockfd, max=0;

fd_set set;

struct sockaddr_in addr;

struct timeval timeout={2,500000}; /* 2.5 sec. */

FD_ZERO(&set);

bzero(&addr, sizeof(addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
for (i = 0@; ports[i] > 0; i++)

{
sockfd = socket (PF_INET, SOCK_STREAM, 0);
addr.sin_port = htons(ports[i]);
if (bind(sockfd, &addr, sizeof(addr)) != 0)
perror("bind() failed");
else
{
FD_SET(sockfd, &set);
if (max < sockfd)
max = sockfd;
}
}
if (select(max+1, &set, 0, &set, &timeout) > 0)
{
for (1 =0; i <= max; i++)
if (FD_ISSET(i, &set))
{ int client = accept(i, 0, 0);
/**** process the client's requests ****/
}
}
write()

Write msg_len bytes to fd field descriptor from buffer. You can use a socket descriptor as
well, but it does not provide you with as much control as the send() system call.

473

13sang
IdV T1IN¥I)|

Appendixes
PART V

474

Prototype
#include <unistd.h>
int write(int fd, const void *buffer, size_t msg_len);

Return Value

Number of bytes written. The byte count can be less than msg_1len. If the call does not succeed
in writing all required bytes, you can use a loop for successive writes. If negative, the call
stores the error detail in errno.

Parameters
fd File descriptor (can be a socket descriptor)
buffer The message to write
msg_len The length of the message

Possible Errors

EBADF fd is not a valid file descriptor or is not open for writing.
EINVAL fd is attached to an object that is unsuitable for writing.

EFAULT buf is outside your accessible address space.

EPIPE fd is connected to a pipe or socket whose reading end is closed.

When this happens, the writing process will receive a SIGPIPE
signal; if it catches, blocks, or ignores the error, EPIPE is
returned.

EAGAIN Non-blocking I/0 has been selected using 0_NONBLOCK and there
was no room in the pipe or socket connected to fd to write the
data immediately.

EINTR The call was interrupted by a signal before any data was written.
ENOSPC The device containing the file referred to by fd has no room for
the data.
EIO A low-level I/O error occurred while modifying the inode.
Example
/*** Write a message (TCP, UDP or Raw) ***/
int sockfd;
int bytes, bytes_wrote=0;
/*--- Create socket, connect to server ---*/

while ((bytes = write(sockfd, buffer, msg_len)) > 0)
if ((bytes_wrote += bytes) >= msg_len)
break;
if (bytes < 0)
perror("write");

Kernel API Subset
APPENDIX C

close()

Closes all descriptors (file or socket). If the socket is connected to a server or client, it requests
a close (). The channel actually remains active after the close until the channel empties or
times out. Every process has a limit to the number of open descriptors it can have.
getdtablesize() returns 1024 in Linux 2.2.14, and the /usr/include/linux/limits.h file
defines this limit with NR_OPEN. Also, the first three descriptors default to stdin (@), stdout
(1), and stderr (2).

Prototype
#include <unistd.h>
int close(int fd);

Return Value
Zero if everything goes well. If an error occurs, you can find the cause in errno.

Parameter
fd The file or socket descriptor

Possible Error
EBADF fd isn’t a valid open file descriptor.

Example
int sockfd;
sockfd = socket(PF_INET, SOCK_RAW, htons(99));
if (sockfd < 0)
PANIC("Raw socket create failed");

if (close(sockfd) != 0)
PANIC("Raw socket close failed");

475

13sang
IdV T1IN¥I)|

