
CHAPTER

6
Coding Standards Document

IN THIS CHAPTER
• Introduction 2

• General Source Code
Formatting Rules 2

• Object Pascal 3

• Files 12

• Forms and Data Modules 15

• Packages 17

• Components 18

• Coding Standards Document
Updates 19

08.65227_Ch06CDx 11/30/99 11:08 AM Page 1

Introduction
This document describes the coding standards for Delphi programming as used in Delphi 5
Developer’s Guide. In general, this document follows the often “unspoken” formatting guide-
lines used by Borland International with a few minor exceptions. The purpose for including
this document in Delphi 5 Developer’s Guide is to present a method by which development
teams can enforce a consistent style to the coding they do. The intent is to make it so that every
programmer on a team can understand the code being written by other programmers. This is
accomplished by making the code more readable by use of consistency.

This document by no means includes everything that might exist in a coding standard.
However, it does contain enough detail to get you started. Feel free to use and modify these
standards to fit your needs. We don’t recommend, however, that you deviate too far from the
standards used by Borland’s development staff. We recommend this because as you bring new
programmers to your team, the standards that they’re most likely to be most familiar with are
Borland’s. Like most coding standards documents, this document will evolve as needed.
Therefore, you’ll find the most updated version online at www.xapware.com/ddg.

This document does not cover user interface standards. This is a separate but equally impor-
tant topic. Enough third-party books and Microsoft documentation cover such guidelines that
we decided not to replicate this information but rather refer you to the Microsoft Developers
Network and other sources where that information is available.

General Source Code Formatting Rules

Indentation
Indenting shall be two spaces per level. Do not save tab characters to source files. The reason
for this is because tab characters are expanded to different widths with different users’ settings
and by different source management utilities (print, archive, version control, and so on).

You can disable saving tab characters by turning off the Use Tab Character and Optimal Fill
check boxes on the General page of the Editor Properties dialog box (accessed via Tools,
Editor Options).

Margins
Margins will be set to 80 characters. In general, source shall not exceed this margin, with the
exception to finish a word. However, this guideline is somewhat flexible. Wherever possible,
statements that extend beyond one line shall be wrapped after a comma or an operator. When a
statement is wrapped, it shall be indented two characters from the original statement line.

Essentials for Rapid Development

PART I
2

08.65227_Ch06CDx 11/30/99 11:08 AM Page 2

begin..end Pair
The begin statement appears on its own line. For example, the following first line is incorrect;
the second line is correct:

for I := 0 to 10 do begin // Incorrect, begin on same line as for

for I := 0 to 10 do // Correct, begin appears on a separate line
begin

An exception to this rule is when the begin statement appears as part of an else clause. Here’s
an example:

if some statement = then
begin
...
end
else begin
SomeOtherStatement;

end;

The end statement always appears on its own line.

When the begin statement is not part of an else clause, the corresponding end statement is
always indented to match its begin part.

Object Pascal

Parentheses
There shall never be white space between an open parenthesis and the next character. Likewise,
there shall never be white space between a closed parenthesis and the previous character. The
following example illustrates incorrect and correct spacing with regard to parentheses:

CallProc(AParameter); // incorrect
CallProc(AParameter); // correct

Never include extraneous parentheses in a statement. Parentheses shall only be used where
required to achieve the intended meaning in source code. The following examples illustrate
incorrect and correct usage:

if (I = 42) then // incorrect - extraneous parentheses
if (I = 42) or (J = 42) then // correct - parentheses required

Reserved Words and Key Words
Object Pascal language reserved words and key words shall always be completely lowercase.

Coding Standards Document

CHAPTER 6
3

6

C
O

D
IN

G
S

TA
N

D
A

R
D

S
D

O
C

U
M

EN
T

08.65227_Ch06CDx 11/30/99 11:08 AM Page 3

Procedures and Functions (Routines)
Naming/Formatting
Routine names shall always begin with a capital letter and be camel-capped for readability. The
following is an example of an incorrectly formatted procedure name:

procedure thisisapoorlyformattedroutinename;

This is an example of an appropriately capitalized routine name:

procedure ThisIsMuchMoreReadableRoutineName;

Routines shall be given names meaningful to their content. Routines that cause an action to
occur will be prefixed with the action verb. Here’s an example:

procedure FormatHardDrive;

Routines that set values of input parameters shall be prefixed with the word set:

procedure SetUserName;

Routines that retrieve a value shall be prefixed with the word get:

function GetUserName: string;

Formal Parameters
Formatting
Where possible, formal parameters of the same type shall be combined into one statement:

procedure Foo(Param1, Param2, Param3: Integer; Param4: string);

Naming
All formal parameter names shall be meaningful to their purpose and typically will be based
off the name of the identifier that was passed to the routine. When appropriate, parameter
names shall be prefixed with the character A:

procedure SomeProc(AUserName: string; AUserAge: integer);

The A prefix is a convention to disambiguate when the parameter name is the same as a prop-
erty or field name in the class.

Ordering of Parameters
The following formal parameter ordering emphasizes taking advantage of register calling con-
ventions calls.

Most frequently used (by the caller) parameters shall be in the first parameter slots. Less fre-
quently used parameters shall be listed after that in left-to-right order.

Essentials for Rapid Development

PART I
4

08.65227_Ch06CDx 11/30/99 11:08 AM Page 4

Input lists shall exist before output lists in left-to-right order.

Place most generic parameters before most specific parameters in left-to-right order. For exam-
ple: SomeProc(APlanet, AContinent, ACountry, AState, ACity).

Exceptions to the ordering rule are possible, such as in the case of event handlers, where a
parameter named Sender of type TObject is often passed as the first parameter.

Constant Parameters
When parameters of a record, array, ShortString, or interface type are unmodified by a rou-
tine, the formal parameters for that routine shall mark the parameter as const. This ensures
that the compiler will generate code to pass these unmodified parameters in the most efficient
manner.

Parameters of other types may optionally be marked as const if they’re unmodified by a rou-
tine. Although this will have no effect on efficiency, it provides more information about para-
meter use to the caller of the routine.

Name Collisions
When using two units that each contain a routine of the same name, the routine residing in the
unit appearing last in the uses clause will be invoked if you call that routine. To avoid these
uses clause–dependent ambiguities, always prefix such method calls with the intended unit
name. Here are two examples:

SysUtils.FindClose(SR);

and

Windows.FindClose(Handle);

Variables
Variable Naming and Formatting
Variables shall be given names meaningful to their purpose.

Loop control variables are generally given a single character name such as I, J, or K. It’s
acceptable to use a more meaningful name as well, such as UserIndex.

Boolean variable names must be descriptive enough so that the meanings of True and False
values will be clear.

Local Variables
Local variables used within procedures follow the same usage and naming conventions for all
other variables. Temporary variables shall be named appropriately.

Coding Standards Document

CHAPTER 6
5

6

C
O

D
IN

G
S

TA
N

D
A

R
D

S
D

O
C

U
M

EN
T

08.65227_Ch06CDx 11/30/99 11:08 AM Page 5

When necessary, initialization of local variables will occur immediately upon entry into the
routine. Local AnsiString variables are automatically initialized to an empty string, local
interface and dispinterface type variables are automatically initialized to nil, and local
Variant and OleVariant type variables are automatically initialized to Unassigned.

Use of Global Variables
Use of global variables is discouraged. However, they may be used when necessary. When this
is the case, you’re encouraged to keep global variables within the context in which they’re
used. For example, a global variable may be global only within the scope of a single unit’s
implementation section.

Global data that’s intended to be used by a number of units shall be moved into a common unit
used by all.

Global data may be initialized with a value directly in the var section. Bear in mind that all
global data is automatically zero initialized; therefore, do not initialize global variables to
“empty” values such as 0, nil, ‘’, Unassigned, and so on. One reason for this is because zero-
initialized global data occupies no space in the EXE file. Zero-initialized data is stored in a vir-
tual data segment that’s allocated only in memory when the application starts up. Nonzero
initialized global data occupies space in the EXE file on disk.

Types
Capitalization Convention
Type names that are reserved words shall be completely lowercase. Win32 API types are gener-
ally completely uppercase, and you shall follow the convention for a particular type name
shown in the Windows.pas or other API unit. For other variable names, the first letter shall be
uppercase, and the rest shall be camel-capped for clarity. Here are some examples:

var
MyString: string; // reserved word
WindowHandle: HWND; // Win32 API type
I: Integer; // type identifier introduced in System unit

Floating-Point Types
Use of the Real type is discouraged because it existed only for backward compatibility with
older Pascal code. Although it’s now the same as Double, this fact may be confusing to other
developers. Use Double for general-purpose floating-point needs. Also, Double is what the
processor instructions and busses are optimized for and is an IEEE-defined standard data for-
mat. Use Extended only when more range is required than that offered by Double. Extended is
an Intel-specified type and is not supported in Java. Use Single only when the physical byte
size of the floating-point variable is significant (such as when using other-language DLLs).

Essentials for Rapid Development

PART I
6

08.65227_Ch06CDx 11/30/99 11:08 AM Page 6

Enumerated Types
Names for enumerated types must be meaningful to the purpose of the enumeration. The type
name must be prefixed with the T character to annotate it as a type declaration. The identifier
list of the enumerated type must contain a lowercase two-to-three-character prefix that relates it
to the original enumerated type name. Here’s an example:

TSongType = (stRock, stClassical, stCountry, stAlternative, stHeavyMetal,
stRB);

Variable instances of an enumerated type will be given the same name as the type without the T
prefix (SongType) unless there’s a reason to give the variable a more specific name, such as
FavoriteSongType1, FavoriteSongType2, and so on.

Variant and OleVariant Types
The use of the Variant and OleVariant types is discouraged in general, but these types are
necessary for programming when data types are known only at runtime, as is often the case in
COM and database development. Use OleVariant for COM-based programming such as
Automation and ActiveX controls, and use Variant for non-COM programming. The reason is
that a Variant can store native Delphi strings efficiently (like a string var), but OleVariant
converts all strings to OLE strings (WideChar strings) and are not reference counted; instead,
they’re always copied.

Structured Types
Array Types
Names for array types must be meaningful to the purpose for the array. The type name must be
prefixed with a T character. If a pointer to the array type is declared, it must be prefixed with
the character P and declared immediately prior to the type declaration. Here’s an example:

type
PCycleArray = ^TCycleArray;
TCycleArray = array[1..100] of integer;

When practical, variable instances of the array type shall be given the same name as the type
name without the T prefix.

Record Types
A record type shall be given a name meaningful to its purpose. The type declaration must be
prefixed with the character T. If a pointer to the record type is declared, it must be prefixed
with the character P and declared immediately prior to the type declaration. The type declara-
tion for each element may be optionally aligned in a column to the right. Here’s an example:

type

Coding Standards Document

CHAPTER 6
7

6

C
O

D
IN

G
S

TA
N

D
A

R
D

S
D

O
C

U
M

EN
T

08.65227_Ch06CDx 11/30/99 11:08 AM Page 7

PEmployee = ^TEmployee;

TEmployee = record
EmployeeName: string
EmployeeRate: Double;

end;

Statements
if Statements
The most likely case to execute in an if/then/else statement shall be placed in the then
clause, with less likely cases residing in the else clause(s).

Try to avoid chaining if statements and use case statements instead if at all possible.

Do not nest if statements more than five levels deep. Create a clearer approach to the code.

Do not use extraneous parentheses in an if statement.

If multiple conditions are being tested in an if statement, conditions shall be arranged from
left to right in order of least to most computation intensive. This enables your code to take
advantage of short-circuit Boolean evaluation logic built into the compiler. For example, if
Condition1 is faster than Condition2, and Condition2 is faster than Condition3, then the if
statement shall be constructed as follows:

if Condition1 and Condition2 and Condition3 then

case Statements
General Topics
The individual cases in a case statement shall be ordered by the case constant either numeri-
cally or alphabetically.

The actions statements of each case shall be kept simple and generally shall not exceed four to
five lines of code. If the actions are more complex, the code shall be placed in a separate pro-
cedure or function.

The else clause of a case statement shall be used only for legitimate defaults or to detect
errors.

Formatting
case statements follow the same formatting rules as other constructs in regards to indentation
and naming conventions.

while Statements
The use of the Exit procedure to exit a while loop is discouraged; when possible, you shall
exit the loop using only the loop condition.

Essentials for Rapid Development

PART I
8

08.65227_Ch06CDx 11/30/99 11:08 AM Page 8

All initialization code for a while loop shall occur directly before entering the while loop and
shall not be separated by other nonrelated statements.

Any ending housekeeping shall be done immediately following the loop.

for Statements
for statements shall be used in place of while statements when the code must execute for a
known number of increments.

repeat Statements
repeat statements are similar to while loops and shall follow the same general guidelines.

with Statements
General Topics
The with statement shall be used sparingly and with considerable caution. Avoid overuse of
with statements and beware of using multiple objects, records, and so on in the with state-
ment. For example,

with Record1, Record2 do

can confuse the programmer and can easily lead to difficult-to-detect bugs.

Formatting
with statements follow the same formatting rules in regard to naming conventions and indenta-
tion as described previously in this document.

Structured Exception Handling
General Topics
Exception handling shall be used abundantly for both error correction and resource protection.
This means that in all cases where resources are allocated, a try..finally must be used to
ensure proper deallocation of the resource. The exception to this involves cases where
resources are allocated/freed in the initialization/finalization of a unit or the
constructor/destructor of an object.

Use of try..finally
Where possible, each allocation shall be matched with a try..finally construct. For example,
the following code could lead to possible bugs:

SomeClass1 := TSomeClass.Create;
SomeClass2 := TSomeClass.Create;
try

{ do some code }
finally

Coding Standards Document

CHAPTER 6
9

6

C
O

D
IN

G
S

TA
N

D
A

R
D

S
D

O
C

U
M

EN
T

08.65227_Ch06CDx 11/30/99 11:08 AM Page 9

SomeClass1.Free;
SomeClass2.Free;

end;

A safer approach to the preceding allocation would be this:

SomeClass1 := TSomeClass.Create
try
SomeClass2 := TSomeClass.Create;
try

{ do some code }
finally
SomeClass2.Free;

end;
finally
SomeClass1.Free;

end;

Use of try..except
Use try..except only when you want to perform some task when an exception is raised. In
general, you shall not use try..except to simply show an error message on the screen because
that will be done automatically in the context of an application by the Application object. If
you want to invoke the default exception handling after you’ve performed some task in the
except clause, use raise to reraise the exception to the next handler.

Use of try..except..else
The use of the else clause with try..except is discouraged because it will block all excep-
tions, even those for which you may not be prepared.

Classes
Naming/Formatting
Type names for classes shall be meaningful to the purpose of the class. The type name must
have the T prefix to annotate it as a type definition. Here’s an example:

type
TCustomer = class(TObject)

Instance names for classes will generally match the type name of the class without the T prefix:

var
Customer: TCustomer;

Essentials for Rapid Development

PART I
10

08.65227_Ch06CDx 11/30/99 11:08 AM Page 10

Fields
Naming/Formatting
Class field names follow the same naming conventions as variable identifiers, except they’re
prefixed with the F annotation to signify that they’re field names.

Visibility
All fields shall be private. Fields that are accessible outside the class scope shall be made
accessible through the use of a property.

Methods
Naming/Formatting
Method names follow the same naming conventions as described for procedures and functions
in this document.

Use of Static Methods
Use static methods when you do not intend for a method to be overridden by descendant
classes.

Use of Virtual/Dynamic Methods
Use virtual methods when you intend for a method to be overridden by descendant classes.
Dynamic methods shall only be used on classes of which there will be many descendants
(direct or indirect). For example, when working with a class that contains one infrequently
overridden method and 100 descendent classes, you shall make the method dynamic to reduce
the memory use by the 100 descendent classes.

Use of Abstract Methods
Do not use abstract methods on classes of which instances will be created. Use abstract meth-
ods only on base classes that will never be created.

Property-Access Methods
All access methods must appear in the private or protected sections of the class definition.

The naming conventions for property-access methods follow the same rules as for procedures
and functions. The read accessor method (reader method) must be prefixed with the word Get.

Coding Standards Document

CHAPTER 6
11

6

C
O

D
IN

G
S

TA
N

D
A

R
D

S
D

O
C

U
M

EN
T

NOTE

See the section “Component Type Naming Standards” for further information on
naming components.

08.65227_Ch06CDx 11/30/99 11:08 AM Page 11

The write accessor method (writer method) must be prefixed with the word Set. The parameter
for the writer method shall have the name Value, and its type shall be that of the property it
represents. Here’s an example:

TSomeClass = class(TObject)
private
FSomeField: Integer;

protected
function GetSomeField: Integer;
procedure SetSomeField(Value: Integer);

public
property SomeField: Integer read GetSomeField write SetSomeField;

end;

Properties
Naming/Formatting
Properties that serve as accessors to private fields will be named the same as the fields they
represent, without the F annotator.

Property names shall be nouns, not verbs. Properties represent data; methods represent actions.

Array property names shall be plural. Normal property names shall be singular.

Use of Access Methods
Although not required, it’s encouraged that you use, at a minimum, a write access method for
properties that represent a private field.

Files

Project Files
Naming
Project files shall be given descriptive names. For example, The Delphi 5 Developer’s Guide
Bug Manager is given the project name DDGBugs.dpr. A system information program shall be
given a name such as SysInfo.dpr.

Form Files
Naming
A form file shall be given a name descriptive of the form’s purpose, postfixed with the charac-
ters Frm. For example, an About form would have the filename AboutFrm.dpr, and a Main
form would have the filename MainFrm.dpr.

Essentials for Rapid Development

PART I
12

08.65227_Ch06CDx 11/30/99 11:08 AM Page 12

Data Module Files
Naming
A data module shall be given a name that’s descriptive of the data module’s purpose. The name
shall be postfixed with the characters DM. For example, a Customers data module will have the
form filename CustomersDM.dfm.

Remote Data Module Files
Naming
A remote data module shall be given a name that’s descriptive of the remote data module’s
purpose. The name shall be postfixed with the characters RDM. For example, a Customers
remote data module would have the form filename CustomersRDM.dfm.

Unit Files
General Unit Structure
Unit Name
Unit files shall be given descriptive names. For example, the unit containing an application’s
main form might be called MainFrm.pas.

The uses Clause
A uses clause in the interface section shall only contain units required by code in the inter-
face section. Remove any extraneous unit names that might have been automatically inserted
by Delphi.

A uses clause in the implementation section shall only contain units required by code in the
implementation section. Remove any extraneous unit names.

The interface Section
The interface section shall contain declarations for only those types, variables,
procedure/function forward declarations, and so on that are to be accessible by external units.
Otherwise, these declarations shall go into the implementation section.

The implementation Section
The implementation section shall contain any declarations for types, variables,
procedures/functions, and so on that are private to the containing unit.

The initialization Section
Do not place time-intensive code in the initialization section of a unit. This will cause the
application to seem sluggish upon startup.

Coding Standards Document

CHAPTER 6
13

6

C
O

D
IN

G
S

TA
N

D
A

R
D

S
D

O
C

U
M

EN
T

08.65227_Ch06CDx 11/30/99 11:08 AM Page 13

The finalization Section
Make sure you deallocate any items you allocated in the initialization section.

Form Units
Naming
A unit file for a form shall be given the same name as its corresponding form file. For exam-
ple, an About form would have the unit name AboutFrm.pas, and a Main form would have the
unit filename MainFrm.pas.

Data Module Units
Naming
Unit files or data modules shall be given the same names as their corresponding form files. For
example, a Customers data module unit would have the unit name CustomersDM.pas.

General-purpose Units
Naming
A general-purpose unit shall be given a name meaningful to the unit’s purpose. For example, a
utilities unit would be given the name BugUtilities.pas, and a unit containing global vari-
ables would be given the name CustomerGlobals.pas.

Keep in mind that unit names must be unique across all packages used by a project. Generic or
common unit names are not recommended.

Component Units
Naming
Component units shall be placed in a separate directory to distinguish them as units defining
components or sets of components. They shall never be placed in the same directory as the
project. The unit name must be meaningful to its content.

Essentials for Rapid Development

PART I
14

NOTE

See the section “User-Defined Components” for further information on component-
naming standards.

File Headers
Use of informational file headers is encouraged for all source files, project files, units, and so
on. A proper file header must contain the following information:

{
Copyright © YEAR by AUTHORS
}

08.65227_Ch06CDx 11/30/99 11:08 AM Page 14

Forms and Data Modules

Forms
Form Type Naming Standard
Form types shall be given names descriptive of the form’s purpose. The type definition shall be
prefixed with a T, and a descriptive name shall follow the prefix. Finally, Form shall postfix the
descriptive name. For example, the type name for an About form would be

TAboutForm = class(TForm)

A main form definition would be

TMainForm = class(TForm)

The customer entry form would have a name such as

TCustomerEntryForm = class(TForm)

Form Instance Naming Standard
Form instances shall be named the same as their corresponding types, without the T prefix. For
example, for the preceding form types, the instance names are as follows:

Type Name Instance Name

TAboutForm AboutForm

TMainForm MainForm

TCustomerEntryForm CustomerEntryForm

Auto-creating Forms
Only the main form shall be autocreated unless there’s a good reason to do otherwise. All other
forms must be removed from the Autocreate list in the Project Options dialog box. See the fol-
lowing section for more information.

Modal Form Instantiation Functions
All form units shall contain a form-instantiation function that creates, sets up, and shows the
form modally as well as frees the form. This function shall return the modal result returned by
the form. Parameters passed to this function shall follow the parameter-passing standard speci-
fied in this document. This functionality is to be encapsulated in this way to facilitate code
reuse and maintenance.

The form variable shall be removed from the unit and declared locally in the form-instantiation
function. (Note that this requires that the form be removed from the Autocreate list in the
Project Options dialog box. See “Autocreating Forms” earlier in this document.)

Coding Standards Document

CHAPTER 6
15

6

C
O

D
IN

G
S

TA
N

D
A

R
D

S
D

O
C

U
M

EN
T

08.65227_Ch06CDx 11/30/99 11:08 AM Page 15

For example, the following unit illustrates such a function for a GetUserData form:

unit UserDataFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TUserDataForm = class(TForm)
edtUserName: TEdit;
edtUserID: TEdit;

private
{ Private declarations }

public
{ Public declarations }

end;

function GetUserData(var aUserName: String; var aUserID: Integer): Word;

implementation
{$R *.DFM}

function GetUserData(var aUserName: String; var aUserID: Integer): Word;
var
UserDataForm: TUserDataForm;

begin
UserDataForm := TUserDataForm.Create(Application);
try
UserDataForm.Caption := ‘Getting User Data’;
Result := UserDataForm.ShowModal;
if (Result = mrOK) then begin
aUserName := UserDataForm.edtUserName.Text;
aUserID := StrToInt(UserDataForm.edtUserID.Text);

end;
finally
UserDataForm.Free;

end;
end;

end.

Essentials for Rapid Development

PART I
16

08.65227_Ch06CDx 11/30/99 11:08 AM Page 16

Data Modules
Data Module Naming Standard
A DataModule type shall be given a name descriptive of the data module’s purpose. The type
definition shall be prefixed with a T, and a descriptive name shall follow the prefix. Finally, the
name shall be postfixed with the word DataModule. For example, the type name for a
Customer data module would be something such as this:

TCustomerDataModule = class(TDataModule)

Similarly, an Orders data module might have the following name:

TOrdersDataModule = class(TDataModule)

Data Module Instance Naming Standard
Data module instances will be named the same as their corresponding types, without the T pre-
fix. For example, for the preceding form types, the instance names are as follows:

Type Name Instance Name

TCustomerDataModule CustomerDataModule

TOrdersDataModule OrdersDataModule

Packages

Use of Runtime Versus Design Packages
Runtime packages shall contain only units/components required by other components in that
package. Other units containing property/component editors and other design-only code shall
be placed into a design package. Registration units shall also be placed into a design package.

File Naming Standards
Packages shall be named according to the following templates:

• iiilibvv.dpk (design package)

• iiistdvv.dpk (runtime package)

Here, the characters iii signify a three-character identifying prefix. This prefix may be used to
identify a company, person, or any other identifying entity.

The characters vv signify a version for the package corresponding to the Delphi version for
which the package is intended.

Note that the package name contains either lib or std to signify it as a runtime or design-time
package.

Coding Standards Document

CHAPTER 6
17

6

C
O

D
IN

G
S

TA
N

D
A

R
D

S
D

O
C

U
M

EN
T

08.65227_Ch06CDx 11/30/99 11:08 AM Page 17

In cases where there are both design-time and runtime packages, the files shall be named simi-
larly. For example, packages for Delphi 5 Developer’s Guide are named as follows:

• DdgLib50.dpk (design package)

• DdgStd50.dpk (runtime package)

Components

User-Defined Components
Component Type Naming Standards
Components shall be named similarly to classes as defined in the “Classes” section, with the
exception that components are given a three-character identifying prefix. This prefix may be
used to identify a company, person, or any other entity. For example, a clock component writ-
ten for Delphi 5 Developer’s Guide would be defined as follows:

TddgClock = class(TComponent)

Note that the three-character prefix is in lowercase.

Component Units
Component units shall contain only one major component. A major component is any compo-
nent that appears on the Component Palette. Any ancillary components/objects may also reside
in the same unit as the major component.

Use of Registration Units
The registration procedure for components shall be removed from the component unit and
placed in a separate unit. This registration unit shall be used to register any components, prop-
erty editors, component editors, experts, and so on.

Component registering shall be done only in the design packages; therefore, the registration
unit shall be contained in the design package and not in the runtime package.

It’s suggested that registration units be named as follows:

XxxReg.pas

Here, Xxx is a three-character prefix used to identify a company, person, or any other entity.
For example, the registration unit for the components in the Delphi 5 Developer’s Guide would
be named DdgReg.pas.

Component Instance Naming Conventions
All componentsmust be given descriptive names. No components shall be left with the default
names assigned to them by Delphi. Components shall be named using a variation of the

Essentials for Rapid Development

PART I
18

08.65227_Ch06CDx 11/30/99 11:08 AM Page 18

Hungarian naming convention. According to this standard, the component name shall consist
of two parts: a component type prefix and qualifier name.

Component Type Prefixes
The component type prefix is a set of lower case letters that represent the component type. For
example, the following are valid component type prefixes for the components specified.

TButton btn

TEdit edt

TSpeedButton spdbtn

TListBox lstbx

As shown above, the component type prefix is created by modifying the component type name
(ie: TButton, TEdit) to a prefix. The following rules illustrate how to define a component type
prefix:

1. Remove any “T” prefixes from the components type name. For example, “TButton”
becomes “Button”

2. Remove any vowels from the name formed in step 1 with the exception of the first
vowel. For example, “Button” becomes “bttn” and “edit” becomes “edt.”

3. Suppress double consonants. For example, “bttn” becomes “btn.”

4. If a naming conflict occurs, start adding vowels to the prefix for one of the components.
For example, if a new component “TBatton” is added, it will conflict with “TButton.”
Therefore, the prefix for “TBatton” becomes “batn.”

Component Qualifier Name
The component qualifier name shall be a descriptive of the component’s purpose. For example, a
TButton component with the purpose of closing a form would have the name “btnClose.” A TEdit
component used for editing the first name of a person would have the name “edtFirstName.”

Coding Standards Document Updates
This document will be updated regularly to reflect changes and enhancements to the Object
Pascal language and Visual Component Library. You can retrieve updates at http://www.
xapware.com/ddg.

Coding Standards Document

CHAPTER 6
19

6

C
O

D
IN

G
S

TA
N

D
A

R
D

S
D

O
C

U
M

EN
T

08.65227_Ch06CDx 11/30/99 11:08 AM Page 19

CHAPTER

7
Using ActiveX Controls
with Delphi

IN THIS CHAPTER
• What Is an ActiveX Control? 22

• Deciding When To Use an
ActiveX Control 23

• Adding an ActiveX Control to
the Component Palette 23

• The Delphi Component Wrapper 26

• Using ActiveX Controls in Your
Applications 38

• Shipping ActiveX Control–Equipped
Applications 40

• ActiveX Control Registration 40

• BlackJack: An OCX Application
Example 40

• Summary 55

09.65227_Ch07CDx 11/30/99 11:15 AM Page 21

Delphi gives you the great advantage of easily integrating industry-standard ActiveX controls
(formerly known as OCX or OLE controls) into your applications. Unlike Delphi’s own custom
components, ActiveX controls are designed to be independent of any particular development
tool. This means that you can count on many vendors to provide a variety of ActiveX solutions
that open up a world of features and functionality.

ActiveX control support in 32-bit Delphi works similarly to the way VBX support works in
16-bit Delphi 1. You select an option to add new ActiveX controls from Delphi’s IDE main
menu or package editor, and Delphi builds an Object Pascal wrapper for the ActiveX control—
which is then compiled into a package and added to the Delphi Component Palette. Once
there, the ActiveX control seamlessly merges into the Component Palette along with your
other VCL and ActiveX components. From that point, you’re just a click and a drop away from
adding an ActiveX control to any of your applications. This chapter discusses integrating
ActiveX controls into Delphi, using an ActiveX control in your application, and shipping
ActiveX-equipped applications.

Essentials for Rapid Development

PART I
22

NOTE

Delphi 1 was the last version of Delphi to support VBX (Visual Basic Extension)
controls. If you have a Delphi 1 project that relies on one or more VBX controls,
check with the VBX vendors to see whether they supply a comparable ActiveX solu-
tion for use in your 32-bit Delphi applications.

What Is an ActiveX Control?
ActiveX controls are custom controls for 16-bit and 32-bit Windows applications that take
advantage of the COM-based OLE and ActiveX technologies. Unlike VBX controls, which are
designed for 16-bit Visual Basic (and therefore share Visual Basic’s limitations), ActiveX con-
trols were designed from the ground up with application independence in mind. Roughly
speaking, you can think of ActiveX controls as a merging of the easy-to-use VBX technology
with the open ActiveX standard. For the purposes of this chapter, you can think of OLE and
ActiveX as the same thing. If you’re looking for greater distinction between these terms, take a
look at Chapter 23, “COM and ActiveX.”

Under the skin, an ActiveX control is really an ActiveX server that, in one package, can pro-
vide all the power of ActiveX —including all OLE functions and services, visual editing, drag
and drop, and OLE Automation. Like all ActiveX servers, ActiveX controls are registered in
the System Registry. ActiveX controls can be developed using a variety of products, including
Delphi, Borland C++Builder, Visual C++, and Visual Basic.

09.65227_Ch07CDx 11/30/99 11:15 AM Page 22

Microsoft is actively promoting ActiveX controls as the choice medium for application-inde-
pendent custom controls; Microsoft has stated that VBX technology will not be directly sup-
ported in the Win32 operating systems and beyond. For this reason, developers should look to
ActiveX controls rather than VBX controls when developing 32-bit applications.

Using ActiveX Controls with Delphi

CHAPTER 7
23

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

NOTE

For a more complete description of ActiveX control technology, see Chapter 25,
“Creating ActiveX Controls.”

Deciding When To Use an ActiveX Control
There are typically two reasons why you would use an ActiveX control rather than a native
Delphi component. The first reason is that no Delphi component is available that fits your par-
ticular need. Because the ActiveX control market is larger than that for VCL controls, you’re
likely to find a greater variety of fully featured “industrial strength” controls, such as word
processors, World Wide Web browsers, and spreadsheets, as ActiveX controls. The second rea-
son you would use an ActiveX control instead of a native Delphi control is if you develop in
multiple programming languages and you want to leverage your expertise in some particular
control or controls across the multiple development platforms.

Although ActiveX controls integrate seamlessly into the Delphi IDE, keep in mind some inher-
ent disadvantages to using ActiveX controls in your applications. The most obvious issue is
that, although Delphi components are built directly into an application executable, ActiveX
controls typically require one or more additional runtime files that must be deployed with an
executable. Another issue is that ActiveX controls communicate with applications through the
COM layer, whereas Delphi components communicate directly with applications and other
components. This means that a well-written Delphi component typically performs better than a
well-written ActiveX control. A more subtle disadvantage of ActiveX controls is that they’re a
“lowest common denominator” solution, so they won’t exploit all the capabilities of the devel-
opment tool in which they’re used.

Adding an ActiveX Control to
the Component Palette
The first step in using a particular ActiveX control in your Delphi application is adding that
control to the Component Palette in the Delphi IDE. This places an icon for the ActiveX con-
trol on the Component Palette among your other Delphi and ActiveX controls. After you add a
particular ActiveX control to the Component Palette, you can drop it on any form and use it as
you would any other Delphi control.

09.65227_Ch07CDx 11/30/99 11:15 AM Page 23

To add an ActiveX control to the Component Palette, follow these steps:

1. Choose Component, Import ActiveX Control from the main menu. The Import ActiveX
dialog box appears (see Figure 7.1).

Essentials for Rapid Development

PART I
24

FIGURE 7.1
The Import ActiveX dialog box.

2. The Import ActiveX dialog box is divided into two parts: the top portion contains a list
box of registered ActiveX controls and provides Add and Remove buttons that enable
you to register and unregister controls. The bottom portion of the dialog box allows you
to specify parameters for creating a Delphi component and unit that encapsulates the
control.

3. If the name of the ActiveX control you want to use is listed in the top portion of the dia-
log box, proceed to step 4. Otherwise, click the Add button to register a new control with
the system. Clicking the Add button invokes the Register OLE Control dialog box (see
Figure 7.2). Select the name of the OCX or DLL file that represents the ActiveX control
you want to add to the system and click the Open button. This registers the selected
ActiveX control with the System Registry and dismisses the Register OLE Control dia-
log box.

4. In the upper portion of the Import ActiveX dialog box, select the name of the ActiveX
control you want to add to the Component Palette. The lower portion of the dialog box
contains edit controls for unit directory name, palette page, and search path as well as a
memo control that lists the classes contained within the OCX file. The pathname shown
in the Unit Dir Name edit box is the pathname of the Delphi wrapper component created
to interface with the ActiveX control. The filename defaults to the same name as the

09.65227_Ch07CDx 11/30/99 11:15 AM Page 24

FIGURE 7.2
The Register OLE Control dialog box.

5. The Palette Page edit control in the Import ActiveX dialog box contains the name of the
page on the Component Palette where you want this control to reside. The default is the
ActiveX page. You can choose another existing page; alternatively, if you make up a new
name, a corresponding page is created on the Component Palette.

6. The Class Names memo control in the Import ActiveX dialog box contains the names of
the new objects created in this control. You should normally leave these names set to the
default unless you have a specific reason for doing otherwise. For example, such a reason
would be if the default class name conflicts with another component already installed in
the IDE.

7. At this point, you can click either the Install or the Create Unit button in the Import
ActiveX dialog box. The Create Unit button will generate the source code for the unit for
the ActiveX control component wrapper. The Install button will generate the wrapper
code and then invoke the Install dialog box, which allows you to choose a package into
which you may install the component (see Figure 7.3).

Using ActiveX Controls with Delphi

CHAPTER 7
25

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

FIGURE 7.3
The Install dialog box.

OCX file (with a .pas extension); the path defaults to the \Delphi5\Imports subdirec-
tory. Although the default is fine to use, you can edit the directory path to your liking.

09.65227_Ch07CDx 11/30/99 11:15 AM Page 25

8. In the Install dialog box, you can choose to add the control to an existing package or cre-
ate a new package that will be installed to the Component Palette. Click OK in this dia-
log box, and the component will be installed to the palette.

Now your ActiveX control is on the Component Palette and ready to roll.

The Delphi Component Wrapper
Now is a good time to look into the Object Pascal wrapper created to encapsulate the ActiveX
control. Doing so can help shed some light on how Delphi’s ActiveX support works so that you
can understand the capabilities and limitations inherent in ActiveX controls. Listing 7.1 shows
the Card_TLB.pas unit generated by Delphi; this unit encapsulates the AxCard.ocx ActiveX
control.

Essentials for Rapid Development

PART I
26

NOTE

AxCard.ocx is an ActiveX control developed in Chapter 25, “Creating ActiveX
Controls.”

LISTING 7.1 The Delphi Component Wrapper Unit for AxCard.ocx.

unit AxCard_TLB;

// *** //
// WARNING
// ———-
// The types declared in this file were generated from data read from a
// Type Library. If this type library is explicitly or indirectly (via
// another type library referring to this type library) re-imported, or
// the ‘Refresh’ command of the Type Library Editor activated while
// editing the Type Library, the contents of this file will be
// regenerated and all manual modifications will be lost.
// ** //

// PASTLWTR : $Revision: 1.88 $
// File generated on 8/24/99 9:24:19 AM from Type Library described below

// **//
// NOTE:
// Items guarded by $IFDEF_LIVE_SERVER_AT_DESIGN_TIME are used by
// properties which return objects that may need to be explicitly created
// via a function call prior to any access via the property. These items

09.65227_Ch07CDx 11/30/99 11:15 AM Page 26

// have been disabled in order to prevent accidental use from within the
// object inspector. You may enable them by defining
// LIVE_SERVER_AT_DESIGN_TIME or by selectively removing them from the
// $IFDEF blocks. However, such items must still be programmatically
// created via a method of the appropriate CoClass before they can be
// used.
// ** //
// Type Lib: C:\work\d5dg\code\Ch25\AxCard\AxCard.tlb (1)
// IID\LCID: {7B33D940-0A2C-11D2-AE5C-04640BC10000}\0
// Helpfile:
// DepndLst:
// (1) v2.0 stdole, (C:\WINDOWS\SYSTEM\STDOLE2.TLB)
// (2) v4.0 StdVCL, (C:\WINDOWS\SYSTEM\STDVCL40.DLL)
// ** //
{$TYPEDADDRESS OFF} // Unit must be compiled without type-checked

// pointers.
interface

uses Windows, ActiveX, Classes, Graphics, OleServer, OleCtrls, StdVCL;

// **//
// GUIDS declared in the TypeLibrary. Following prefixes are used:
// Type Libraries : LIBID_xxxx
// CoClasses : CLASS_xxxx
// DISPInterfaces : DIID_xxxx
// Non-DISP interfaces: IID_xxxx
// **//
const
// TypeLibrary Major and minor versions
AxCardMajorVersion = 1;
AxCardMinorVersion = 0;

LIBID_AxCard: TGUID = ‘{7B33D940-0A2C-11D2-AE5C-04640BC10000}’;

IID_ICardX: TGUID = ‘{7B33D941-0A2C-11D2-AE5C-04640BC10000}’;
DIID_ICardXEvents: TGUID = ‘{7B33D943-0A2C-11D2-AE5C-04640BC10000}’;
CLASS_CardX: TGUID = ‘{7B33D945-0A2C-11D2-AE5C-04640BC10000}’;

// **//
// Declaration of Enumerations defined in Type Library
// **//
// Constants for enum TxDragMode
type
TxDragMode = TOleEnum;

const
dmManual = $00000000;
dmAutomatic = $00000001;

Using ActiveX Controls with Delphi

CHAPTER 7
27

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

continues

09.65227_Ch07CDx 11/30/99 11:15 AM Page 27

LISTING 7.1 Continued

// Constants for enum TxCardSuit
type
TxCardSuit = TOleEnum;

const
csClub = $00000000;
csDiamond = $00000001;
csHeart = $00000002;
csSpade = $00000003;

// Constants for enum TxCardValue
type
TxCardValue = TOleEnum;

const
cvAce = $00000000;
cvTwo = $00000001;
cvThree = $00000002;
cvFour = $00000003;
cvFive = $00000004;
cvSix = $00000005;
cvSeven = $00000006;
cvEight = $00000007;
cvNine = $00000008;
cvTen = $00000009;
cvJack = $0000000A;
cvQueen = $0000000B;
cvKing = $0000000C;

// Constants for enum TxMouseButton
type
TxMouseButton = TOleEnum;

const
mbLeft = $00000000;
mbRight = $00000001;
mbMiddle = $00000002;

// Constants for enum TxAlignment
type
TxAlignment = TOleEnum;

const
taLeftJustify = $00000000;
taRightJustify = $00000001;
taCenter = $00000002;

// Constants for enum TxBiDiMode
type

Essentials for Rapid Development

PART I
28

09.65227_Ch07CDx 11/30/99 11:15 AM Page 28

TxBiDiMode = TOleEnum;
const
bdLeftToRight = $00000000;
bdRightToLeft = $00000001;
bdRightToLeftNoAlign = $00000002;
bdRightToLeftReadingOnly = $00000003;

type

// ***//
// Forward declaration of types defined in TypeLibrary
// ***//
ICardX = interface;
ICardXDisp = dispinterface;
ICardXEvents = dispinterface;

// ***//
// Declaration of CoClasses defined in Type Library
// (NOTE: Here we map each CoClass to its Default Interface)
// ***//
CardX = ICardX;

// ***//
// Interface: ICardX
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {7B33D941-0A2C-11D2-AE5C-04640BC10000}
// ***//
ICardX = interface(IDispatch)
[‘{7B33D941-0A2C-11D2-AE5C-04640BC10000}’]
function Get_BackColor: OLE_COLOR; safecall;
procedure Set_BackColor(Value: OLE_COLOR); safecall;
function Get_Color: OLE_COLOR; safecall;
procedure Set_Color(Value: OLE_COLOR); safecall;
function Get_DragCursor: Smallint; safecall;
procedure Set_DragCursor(Value: Smallint); safecall;
function Get_DragMode: TxDragMode; safecall;
procedure Set_DragMode(Value: TxDragMode); safecall;
function Get_FaceUp: WordBool; safecall;
procedure Set_FaceUp(Value: WordBool); safecall;
function Get_ParentColor: WordBool; safecall;
procedure Set_ParentColor(Value: WordBool); safecall;
function Get_Suit: TxCardSuit; safecall;
procedure Set_Suit(Value: TxCardSuit); safecall;
function Get_Value: TxCardValue; safecall;
procedure Set_Value(Value: TxCardValue); safecall;

Using ActiveX Controls with Delphi

CHAPTER 7
29

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

continues

09.65227_Ch07CDx 11/30/99 11:15 AM Page 29

LISTING 7.1 Continued

function Get_DoubleBuffered: WordBool; safecall;
procedure Set_DoubleBuffered(Value: WordBool); safecall;
procedure FlipChildren(AllLevels: WordBool); safecall;
function DrawTextBiDiModeFlags(Flags: Integer): Integer; safecall;
function DrawTextBiDiModeFlagsReadingOnly: Integer; safecall;
function Get_Enabled: WordBool; safecall;
procedure Set_Enabled(Value: WordBool); safecall;
function GetControlsAlignment: TxAlignment; safecall;
procedure InitiateAction; safecall;
function IsRightToLeft: WordBool; safecall;
function UseRightToLeftAlignment: WordBool; safecall;
function UseRightToLeftReading: WordBool; safecall;
function UseRightToLeftScrollBar: WordBool; safecall;
function Get_BiDiMode: TxBiDiMode; safecall;
procedure Set_BiDiMode(Value: TxBiDiMode); safecall;
function Get_Visible: WordBool; safecall;
procedure Set_Visible(Value: WordBool); safecall;
function Get_Cursor: Smallint; safecall;
procedure Set_Cursor(Value: Smallint); safecall;
function ClassNameIs(const Name: WideString): WordBool; safecall;
procedure AboutBox; safecall;
property BackColor: OLE_COLOR read Get_BackColor write Set_BackColor;
property Color: OLE_COLOR read Get_Color write Set_Color;
property DragCursor: Smallint read Get_DragCursor write
Set_DragCursor;

property DragMode: TxDragMode read Get_DragMode write Set_DragMode;
property FaceUp: WordBool read Get_FaceUp write Set_FaceUp;
property ParentColor: WordBool read Get_ParentColor write
Set_ParentColor;

property Suit: TxCardSuit read Get_Suit write Set_Suit;
property Value: TxCardValue read Get_Value write Set_Value;
property DoubleBuffered: WordBool read Get_DoubleBuffered write
Set_DoubleBuffered;

property Enabled: WordBool read Get_Enabled write Set_Enabled;
property BiDiMode: TxBiDiMode read Get_BiDiMode write Set_BiDiMode;
property Visible: WordBool read Get_Visible write Set_Visible;
property Cursor: Smallint read Get_Cursor write Set_Cursor;

end;

// ***//
// DispIntf: ICardXDisp
// Flags: (4416) Dual OleAutomation Dispatchable
// GUID: {7B33D941-0A2C-11D2-AE5C-04640BC10000}
// ***//
ICardXDisp = dispinterface

Essentials for Rapid Development

PART I
30

09.65227_Ch07CDx 11/30/99 11:15 AM Page 30

[‘{7B33D941-0A2C-11D2-AE5C-04640BC10000}’]
property BackColor: OLE_COLOR dispid 1;
property Color: OLE_COLOR dispid -501;
property DragCursor: Smallint dispid 2;
property DragMode: TxDragMode dispid 3;
property FaceUp: WordBool dispid 4;
property ParentColor: WordBool dispid 5;
property Suit: TxCardSuit dispid 6;
property Value: TxCardValue dispid 7;
property DoubleBuffered: WordBool dispid 10;
procedure FlipChildren(AllLevels: WordBool); dispid 11;
function DrawTextBiDiModeFlags(Flags: Integer): Integer; dispid 14;
function DrawTextBiDiModeFlagsReadingOnly: Integer; dispid 15;
property Enabled: WordBool dispid -514;
function GetControlsAlignment: TxAlignment; dispid 16;
procedure InitiateAction; dispid 18;
function IsRightToLeft: WordBool; dispid 19;
function UseRightToLeftAlignment: WordBool; dispid 24;
function UseRightToLeftReading: WordBool; dispid 25;
function UseRightToLeftScrollBar: WordBool; dispid 26;
property BiDiMode: TxBiDiMode dispid 27;
property Visible: WordBool dispid 28;
property Cursor: Smallint dispid 29;
function ClassNameIs(const Name: WideString): WordBool; dispid 33;
procedure AboutBox; dispid -552;

end;

// ***//
// DispIntf: ICardXEvents
// Flags: (4096) Dispatchable
// GUID: {7B33D943-0A2C-11D2-AE5C-04640BC10000}
// ***//
ICardXEvents = dispinterface
[‘{7B33D943-0A2C-11D2-AE5C-04640BC10000}’]
procedure OnClick; dispid 1;
procedure OnDblClick; dispid 2;
procedure OnKeyPress(var Key: Smallint); dispid 7;

end;

// ***//
// OLE Control Proxy class declaration
// Control Name : TCardX
// Help String : CardX Control
// Default Interface: ICardX
// Def. Intf. DISP? : No

Using ActiveX Controls with Delphi

CHAPTER 7
31

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

continues

09.65227_Ch07CDx 11/30/99 11:15 AM Page 31

LISTING 7.1 Continued

// Event Interface: ICardXEvents
// TypeFlags : (34) CanCreate Control
// ***//
TCardXOnKeyPress = procedure(Sender: TObject; var Key: Smallint) of
object;

TCardX = class(TOleControl)
private
FOnClick: TNotifyEvent;
FOnDblClick: TNotifyEvent;
FOnKeyPress: TCardXOnKeyPress;
FIntf: ICardX;
function GetControlInterface: ICardX;

protected
procedure CreateControl;
procedure InitControlData; override;

public
procedure FlipChildren(AllLevels: WordBool);
function DrawTextBiDiModeFlags(Flags: Integer): Integer;
function DrawTextBiDiModeFlagsReadingOnly: Integer;
function GetControlsAlignment: TxAlignment;
procedure InitiateAction;
function IsRightToLeft: WordBool;
function UseRightToLeftAlignment: WordBool;
function UseRightToLeftReading: WordBool;
function UseRightToLeftScrollBar: WordBool;
function ClassNameIs(const Name: WideString): WordBool;
procedure AboutBox;
property ControlInterface: ICardX read GetControlInterface;
property DefaultInterface: ICardX read GetControlInterface;
property DoubleBuffered: WordBool index 10 read GetWordBoolProp write
SetWordBoolProp;

property Enabled: WordBool index -514 read GetWordBoolProp write
SetWordBoolProp;

property BiDiMode: TOleEnum index 27 read GetTOleEnumProp write
SetTOleEnumProp;

property Visible: WordBool index 28 read GetWordBoolProp write
SetWordBoolProp;

published
property TabStop;
property Align;
property ParentShowHint;
property PopupMenu;
property ShowHint;
property TabOrder;

Essentials for Rapid Development

PART I
32

09.65227_Ch07CDx 11/30/99 11:15 AM Page 32

property OnDragDrop;
property OnDragOver;
property OnEndDrag;
property OnEnter;
property OnExit;
property OnStartDrag;
property BackColor: TColor index 1 read GetTColorProp write
SetTColorProp stored False;

property Color: TColor index -501 read GetTColorProp write
SetTColorProp stored False;

property DragCursor: Smallint index 2 read GetSmallintProp write
SetSmallintProp stored False;

property DragMode: TOleEnum index 3 read GetTOleEnumProp write
SetTOleEnumProp stored False;

property FaceUp: WordBool index 4 read GetWordBoolProp write
SetWordBoolProp stored False;

property ParentColor: WordBool index 5 read GetWordBoolProp write
SetWordBoolProp stored False;

property Suit: TOleEnum index 6 read GetTOleEnumProp write
SetTOleEnumProp stored False;

property Value: TOleEnum index 7 read GetTOleEnumProp write
SetTOleEnumProp stored False;

property Cursor: Smallint index 29 read GetSmallintProp write
SetSmallintProp stored False;

property OnClick: TNotifyEvent read FOnClick write FOnClick;
property OnDblClick: TNotifyEvent read FOnDblClick write FOnDblClick;
property OnKeyPress: TCardXOnKeyPress read FOnKeyPress write
FOnKeyPress;

end;

procedure Register;

implementation

uses ComObj;

procedure TCardX.InitControlData;
const
CEventDispIDs: array [0..2] of DWORD = (
$00000001, $00000002, $00000007);

CControlData: TControlData2 = (
ClassID: ‘{7B33D945-0A2C-11D2-AE5C-04640BC10000}’;
EventIID: ‘{7B33D943-0A2C-11D2-AE5C-04640BC10000}’;
EventCount: 3;
EventDispIDs: @CEventDispIDs;
LicenseKey: nil (*HR:$00000000*);

Using ActiveX Controls with Delphi

CHAPTER 7
33

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

09.65227_Ch07CDx 11/30/99 11:15 AM Page 33

LISTING 7.1 Continued

Flags: $00000009;
Version: 401);

begin
ControlData := @CControlData;
TControlData2(CControlData).FirstEventOfs :=
Cardinal(@@FOnClick) - Cardinal(Self);

end;

procedure TCardX.CreateControl;

procedure DoCreate;
begin
FIntf := IUnknown(OleObject) as ICardX;

end;

begin
if FIntf = nil then DoCreate;

end;

function TCardX.GetControlInterface: ICardX;
begin
CreateControl;
Result := FIntf;

end;

procedure TCardX.FlipChildren(AllLevels: WordBool);
begin
DefaultInterface.FlipChildren(AllLevels);

end;

function TCardX.DrawTextBiDiModeFlags(Flags: Integer): Integer;
begin
Result := DefaultInterface.DrawTextBiDiModeFlags(Flags);

end;

function TCardX.DrawTextBiDiModeFlagsReadingOnly: Integer;
begin
Result := DefaultInterface.DrawTextBiDiModeFlagsReadingOnly;

end;

function TCardX.GetControlsAlignment: TxAlignment;
begin
Result := DefaultInterface.GetControlsAlignment;

end;

Essentials for Rapid Development

PART I
34

09.65227_Ch07CDx 11/30/99 11:15 AM Page 34

procedure TCardX.InitiateAction;
begin
DefaultInterface.InitiateAction;

end;

function TCardX.IsRightToLeft: WordBool;
begin
Result := DefaultInterface.IsRightToLeft;

end;

function TCardX.UseRightToLeftAlignment: WordBool;
begin
Result := DefaultInterface.UseRightToLeftAlignment;

end;

function TCardX.UseRightToLeftReading: WordBool;
begin
Result := DefaultInterface.UseRightToLeftReading;

end;

function TCardX.UseRightToLeftScrollBar: WordBool;
begin
Result := DefaultInterface.UseRightToLeftScrollBar;

end;

function TCardX.ClassNameIs(const Name: WideString): WordBool;
begin
Result := DefaultInterface.ClassNameIs(Name);

end;

procedure TCardX.AboutBox;
begin
DefaultInterface.AboutBox;

end;

procedure Register;
begin
RegisterComponents(‘ActiveX’,[TCardX]);

end;

end.

Now that you’ve seen the code generated by the type library editor, let’s look a little deeper at
the type library import mechanism.

Using ActiveX Controls with Delphi

CHAPTER 7
35

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

09.65227_Ch07CDx 11/30/99 11:15 AM Page 35

Where Do Wrapper Files Come From?
The first thing you might notice is that the filename ends in _TLB. More subtly, you might have
caught on to the fact that there are several references to “library” in the generated source file.
Both of these are clues as to the origin of the wrapper file: the control’s type library. An
ActiveX control’s type library is special information linked to the control as a resource that
describes the different elements of an ActiveX control. In particular, type libraries contain
information such as the interfaces supported by a control, the properties, methods, and events
of a control, and the enumerated types used by the control. The first entry in the wrapper file is
the GUID of the control’s type library.

Essentials for Rapid Development

PART I
36

NOTE

Type libraries are used more generally for any type of Automation object. Chapter
23, “COM and ActiveX,” contains more information on type libraries and their use.

Enumerations
Looking at the generated unit from the top down, immediately following the type library
GUID, are the enumerated types used by the control. Notice that the enumerations are declared
as simple constants rather than true enumerated types. This is done because type library enu-
merations, like those in the C language, do not need to start at zero, and the element ordinals
do not need to be contiguous. Because this type of declaration isn’t legal in Object Pascal, the
enumerations must be declared as constants.

Control Interfaces
Next in the wrapper file, the control’s primary interface is declared. Here, you’ll find all
the properties and methods of the ActiveX control. The properties are also redeclared in a
dispinterface, thus allowing the control to be used as a dual interface. The events are
declared separately next in a dispinterface. You definitely don’t need to know about inter-
faces to use ActiveX controls in your applications. What’s more, working with interfaces can
be a complicated topic, so we won’t go into too much detail right now. You’ll find more infor-
mation on interfaces in general in Chapter 23, “COM and ActiveX,” and information on inter-
faces with ActiveX controls in Chapter 25, “Creating ActiveX Controls.”

TOleControl Descendant
Next in the unit file comes the class definition for the control wrapper. By default, the name of
the ActiveX control wrapper object is TXX, where X is the name of the control’s coclass in the
type library. This object, like all ActiveX control wrappers, descends from the TOleControl

09.65227_Ch07CDx 11/30/99 11:15 AM Page 36

class. TOleControl is a window handle–bearing component that descends from TWinControl.
TOleControl encapsulates the complexities of mapping the functionality of ActiveX controls to
Delphi components so that ActiveX controls work seamlessly from Delphi. TOleControl is an
abstract class—meaning that you never want to create an instance of one but instead use it as a
starting place for other classes.

The Methods
The first procedure shown is the InitControlData() procedure. This procedure is introduced
in the TOleControl object and is overridden for all descendants. It sets up the unique OLE
class and event identification numbers in addition to other control-specific information. In par-
ticular, this method makes the TOleControl aware of important ActiveX control details such as
class IDs, control miscellaneous flags, and a license key if the control is licensed. This method
is found in the protected part of the class definition because it’s not useful to users of the
class—it only has meaning internal to the class.

The InitControlInterface() method is overridden to initialize the private FIntf interface
field with a pointer to the control’s ICardsX interface.

The CardX ActiveX control exposes only one other method: AboutBox(). It’s standard for
ActiveX controls to contain a method called AboutBox() that invokes a custom About dialog
box for the control. This method is called through the vTable interface using the
ControlInterface property, which is read from the FIntf field.

Using ActiveX Controls with Delphi

CHAPTER 7
37

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

NOTE

In addition to vTable calls using the ControlInterface property, Control methods
can also be invoked via Automation using TOleControl’s OleObject property. As
you’ll learn in Chapter 23, “COM and ActiveX,” it’s usually more efficient to call
methods via the vTable rather than through Automation.

The Properties
You might have noticed that the TCardX class has two distinct groups of properties. One group
does not have read and write values specified. These are standard Delphi component properties
and events inherited from the TWinControl and TComponent ancestor classes. The other group
of properties all have an index as well as get and set methods specified. This group of proper-
ties includes the ActiveX control properties being encapsulated by the TOleControl.

The specialized get and set methods for the encapsulated properties provide the magic that
bridges the gap between the ActiveX control properties and the Object Pascal component prop-
erties. Notice the read and write methods that get and set properties for every specific type

09.65227_Ch07CDx 11/30/99 11:15 AM Page 37

(such as GetBoolProp(), SetBoolProp(), GetStringProp(), SetStringProp(), and so on).
Although there are get and set methods for each property type, they all operate similarly. In
fact, the following code shows generic get and set methods for TOleControl that would work
given a property of type X:

function TOleControl.GetXProp(Index: Integer): X;
var
Temp: TVarData;

begin
GetProperty(Index, Temp);
Result := Temp.VX;

end;

procedure TOleControl.SetXProp(Index: Integer; Value: X);
var
Temp: TVarData;

begin
Temp.VType := varX;
Temp.VX := Value;
SetProperty(Index, Temp);

end;

In this code, the index of the property (as indicated by the index directive in the properties of
the TCardsCtrl component) is implicitly passed to the procedures. The variable of type X is
packaged into a TVarData (a record that represents a Variant) data record, and those parameters
are passed to the GetProperty() or SetProperty() method of TOleControl. Each property of
the ActiveX control has a unique index that acts as an identifier. Using this index and the
TVarData variable Temp, GetProperty() and SetProperty() use OLE Automation to get and
set the property values inside the ActiveX control.

If you’ve worked with other development packages before, you’ll appreciate that Delphi pro-
vides easy access not only to the ActiveX control’s own properties but also to normal
TWinControl properties and methods. This enables you to use an ActiveX control like other
handle-bearing controls in Delphi and makes it possible for you to use object-oriented princi-
ples to override the behavior of an ActiveX control by creating customized descendants of
ActiveX controls in the Delphi environment.

Using ActiveX Controls in Your Applications
After you link your ActiveX control wrapper into the component library, you’ve actually
fought most of the battle. After an ActiveX control has been placed on the Component Palette,
its usage is much the same as that of a regular Delphi component. Figure 7.4 shows the Delphi
environment with a TCardX focused in the Form Designer. Notice the TCardX properties listed
in the Object Inspector.

Essentials for Rapid Development

PART I
38

09.65227_Ch07CDx 11/30/99 11:15 AM Page 38

FIGURE 7.4
Working with an ActiveX control in Delphi.

In addition to an ActiveX control’s properties being set with the Object Inspector, some
ActiveX controls also provide a Properties dialog box that’s revealed by selecting the
Properties option from the context menu in the Delphi Form Designer. The context menu, also
shown in Figure 7.4, is revealed by right-clicking over a particular control. The Properties dia-
log box actually lives within the ActiveX control; its look, feel, and contents are determined
entirely by the control designer. Figure 7.5 shows the Properties dialog box for the TCardX
ActiveX control.

Using ActiveX Controls with Delphi

CHAPTER 7
39

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

FIGURE 7.5
The TCardX Properties dialog box.

As you can imagine, this particular control comes equipped with properties that enable you to
specify card suit, value, color and picture for card back as well as the standard properties that
refer to position, tab order, and so on. The card in Figure 7.4 has its Value property set to 1
(Ace) and its Suit property set to 3 (Spades).

09.65227_Ch07CDx 11/30/99 11:15 AM Page 39

Shipping ActiveX Control–Equipped Applications
When you’re ready to ship your ActiveX control–equipped application, there are some deploy-
ment issues to bear in mind as you prepare to send your ActiveX control and associated files to
your customers:

• You must ship the OCX or DLL file that contains the ActiveX controls you’re using in
your application. OCX files, being DLLs, are not linked into your application’s exe-
cutable. Additionally, before the user can use your application, the ActiveX control must
be registered in that user’s System Registry. ActiveX control registration is discussed in
the following section.

• Some ActiveX controls require one or more external DLLs or other files to operate.
Check the documentation for your third-party ActiveX controls to determine whether any
additional files must be deployed with your ActiveX control. See Chapter 25, “Creating
ActiveX Controls,” for information on what additional files might need to be deployed
along with your Delphi-written controls.

• Many ActiveX controls come with a license file that’s required if you want to use the
control at design time. This file comes from the ActiveX control vendor, and it prevents
your end users from designing applications with ActiveX controls you ship with your
applications. You should not ship these LIC files with your application unless you intend
for users of your application to use the licensed controls in a development tool and you
have the appropriate license for such redistribution.

ActiveX Control Registration
Before an ActiveX control can be used on any system (including those of customers or clients
who run your applications), it must be registered with the System Registry. Most commonly,
this is accomplished using the RegSvr32.exe application, which comes with most versions of
Windows. Alternatively, you can use the TRegSvr.exe command-line registration utility found
in the Delphi bin directory. Occasionally, you might want to register the control more transpar-
ently to give your application an integrated feel. Luckily, it’s not difficult to integrate ActiveX
control registration (and unregistration) into your application. Inprise provides the source code
for the TRegSvr utility as a sample application, and it provides an excellent demonstration for
how to register ActiveX servers and type libraries.

BlackJack: An OCX Application Example
The best way to demonstrate how to use an ActiveX control in an application is to show you
how to write a useful application that incorporates an ActiveX control. This example uses the
TCardX ActiveX control; what better way to demonstrate a card control than to make a black-
jack game? For the sake of argument, assume that all programmers are high rollers and don’t

Essentials for Rapid Development

PART I
40

09.65227_Ch07CDx 11/30/99 11:15 AM Page 40

need to be told the rules of the game (didn’t know this book was a comedy, did you?). This
way, you can concentrate on the programming job at hand.

As you can imagine, most of the code for this application deals with the logic of the game of
blackjack. All the code is provided in the listings later in this chapter; right now, the discussion
is narrowed to the individual portions of code that deal directly with managing and manipulat-
ing the ActiveX controls. The name of this project is BJ; to give you an idea of where the code
comes from, Figure 7.6 shows a game of DDG BlackJack in progress.

Using ActiveX Controls with Delphi

CHAPTER 7
41

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

FIGURE 7.6
Playing DDG BlackJack.

The Card Deck
Before writing the game itself, you must first write an object that encapsulates a deck of play-
ing cards. Unlike a real card deck (in which cards are picked from the top of a scrambled
deck), this card deck object contains an unscrambled card deck and uses pseudorandom num-
bers to pick a random card from the unscrambled deck. This is possible because each card has
a notion of whether it has been used. This greatly simplifies the shuffle procedure, too, because
all the object has to do is set each of the cards to unused. The code for the PlayCard.pas unit,
which contains the TCardDeck object, is shown in Listing 7.2.

LISTING 7.2 The PlayCard.pas Unit

unit PlayCard;

interface

uses SysUtils, Cards;

type

continues

09.65227_Ch07CDx 11/30/99 11:15 AM Page 41

LISTING 7.2 Continued

ECardError = class(Exception); // generic card exception

TPlayingCard = record // represents one card
Face: TCardValue; // card face value
Suit: TCardSuit; // card suit value

end;

{ an array of 52 cards representing one deck }
TCardArray = array[1..52] of TPlayingCard;

{ Object which represents a deck of 52 UNIQUE cards. }
{ This is a scrambled deck of 52 cards, and the }
{ object keeps track of how far throughout the deck }
{ the user has picked. }
TCardDeck = class
private
FCardArray: TCardArray;
FTop: integer;
procedure InitCards;
function GetCount: integer;

public
property Count: integer read GetCount;
constructor Create; virtual;
procedure Shuffle;
function Draw: TPlayingCard;

end;

{ GetCardValue returns the numeric value of any card }
function GetCardValue(C: TPlayingCard): Integer;

implementation

function GetCardValue(C: TPlayingCard): Integer;
{ returns a card’s numeric value }
begin
Result := Ord(C.Face) + 1;
if Result > 10 then Result := 10;

end;

procedure TCardDeck.InitCards;
{ initializes the deck by assigning a unique value/suit combination }
{ to each card. }
var
i: integer;

Essentials for Rapid Development

PART I
42

09.65227_Ch07CDx 11/30/99 11:15 AM Page 42

AFace: TCardValue;
ASuit: TCardSuit;

begin
AFace := cvAce; // start with ace
ASuit := csClub; // start with clubs
for i := 1 to 52 do // for each card in deck...
begin
FCardArray[i].Face := AFace; // assign face
FCardArray[i].Suit := ASuit; // assign suit
if (i mod 4 = 0) and (i <> 52) then // every four cards...
inc(AFace); // increment the face

if ASuit <> High(TCardSuit) then // always increment the suit
inc(ASuit)

else
ASuit := Low(TCardSuit);

end;
end;

constructor TCardDeck.Create;
{ constructor for TCardDeck object. }
begin
inherited Create;
InitCards;
Shuffle;

end;

function TCardDeck.GetCount: integer;
{ Returns a count of unused cards }
begin
Result := 52 - FTop;

end;

procedure TCardDeck.Shuffle;
{ Re-mixes cards and sets top card to 0. }
var
i: integer;
RandCard: TPlayingCard;
RandNum: integer;

begin
for i := 1 to 52 do
begin
RandNum := Random(51) + 1; // pick random number
RandCard := FCardArray[RandNum]; // swap next card with
FCardArray[RandNum] := FCardArray[i]; // random card in deck
FCardArray[i] := RandCard;

end;

Using ActiveX Controls with Delphi

CHAPTER 7
43

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

continues

09.65227_Ch07CDx 11/30/99 11:15 AM Page 43

LISTING 7.2 Continued

FTop := 0;
end;

function TCardDeck.Draw: TPlayingCard;
{ Picks the next card from the deck. }
begin
inc(FTop);
if FTop = 53 then
raise ECardError.Create(‘Deck is empty’);

Result := FCardArray[FTop];
end;

initialization
Randomize; // must seed random number generator

end.

The Game
The DDG BlackJack game’s interaction with the TCardX object occurs primarily in three proce-
dures. One procedure, called Hit(), is called when the player chooses to accept another card.
Another procedure, DealerHit(), is called when the dealer wants another card. Finally, the
FreeCards() procedure is called to dispose of all the cards on the screen to prepare for another
hand to be dealt.

The Hit() procedure works with the TCardX ActiveX control uniquely in a couple ways. First,
it creates all the controls dynamically rather than using controls dropped from the Component
Palette. Also, it never uses an instance variable of type TCardX—instead, it takes advantage of a
with..do construct to create and use the object in one step. The following code shows the
Hit() procedure:

procedure TMainForm.Hit;
{ Player hit }
begin
CurCard := CardDeck.Draw; // draw card
with TCardX.Create(Self) do // create card OCX
begin
Left := NextPlayerPos; // set position
Top := PYPos;
Suit := Ord(CurCard.Suit); // set suit
Value := Ord(CurCard.Face); // set value
Parent := Self; // assign parent
Inc(NextPlayerPos, Width div 2); // track position
Update; // Display card

Essentials for Rapid Development

PART I
44

09.65227_Ch07CDx 11/30/99 11:15 AM Page 44

end;
DblBtn.Enabled := False; // hit disables double down
if CurCard.Face = cvAce then PAceFlag := True; // set ace flag
Inc(PlayerTotal, GetCardValue(CurCard)); // keep running total
PlayLbl.Caption := IntToStr(PlayerTotal); // cheat
if PlayerTotal > 21 then // track bust
begin
ShowMessage(‘Busted!’);
ShowFirstCard;
ShowWinner;

end;
end;

In this procedure, a random card, called CurCard, is drawn from a TCardDeck object called
CardDeck. A TCardX ActiveX control is then created, and property values are assigned.
NextPlayerPos is a variable that keeps track of the position on the X-axis for the next card.
PYPos is a constant that dictates the Y-axis position of the player hand. The Suit and Value
properties are assigned values that correspond to the Suit and Face of CurCard. MainForm is
assigned to be the Parent of the control, and the NextPlayerPos variable is incremented by
half the width of a card. After all that, the PlayerTotal variable is incremented by the card
value to keep track of the player’s score.

The DealerHit() procedure works similarly to the Hit() procedure. The code from that proce-
dure is shown here:

procedure TMainForm.DealerHit(CardVisible: Boolean);
{ Dealer takes a hit }
begin
CurCard := CardDeck.Draw; // dealer draws a card
with TCardX.Create(Self) do // create the ActiveX control
begin
Left := NextDealerPos; // place card on form
Top := DYPos;
Suit := Ord(CurCard.Suit); // assign suit
FaceUp := CardVisible;
Value := Ord(CurCard.Face); // assign face
Parent := Self; // assign parent for OCX
Inc(NextDealerPos, Width div 2); // track where to place next card
Update; // Display card

end;
if CurCard.Face = cvAce then DAceFlag := True; // set Ace flag
Inc(DealerTotal, GetCardValue(CurCard)); // keep count
DealLbl.Caption := IntToStr(DealerTotal); // cheat
if DealerTotal > 21 then // track dealer bust
ShowMessage(‘Dealer Busted!’);

end;

Using ActiveX Controls with Delphi

CHAPTER 7
45

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

09.65227_Ch07CDx 11/30/99 11:15 AM Page 45

This method accepts a Boolean parameter called CardVisible, which indicates whether the
card should be dealt face up. This is because blackjack rules dictate that the dealer’s first card
must remain face down until the player has chosen to hold or has busted. Observing this rule,
the first call to DealerHit() will result in False being passed in CardVisible.

The FreeCards() procedure is responsible for removing all the TCardX controls on the main
form. Because the application doesn’t keep an array or a bunch of variables of type TCardX
around to manage the cards on the screen, this procedure iterates through the form’s Controls
array property looking for elements of type TCardX. When a control of that type is found, its
Free method is called to remove it from memory. The trick here is to be sure to go backward
through the array. If you don’t go backward, you run the risk of changing the order of controls
in the array while you’re traversing the array, which can cause errors. The code for the
FreeCards procedure is shown here:

procedure TMainForm.FreeCards;
{ frees all AX Ctl cards on the screen }
var
i: integer;

begin
for i := ControlCount - 1 downto 0 do // go backward!
if Controls[i] is TCardX then
Controls[i].Free;

end;

That completes the explanation of the main portions of the code that manipulates the ActiveX
controls. The complete listing for Main.pas, the main unit for this application, is shown in
Listing 7.3.

LISTING 7.3 The Main.pas Unit for the BJ Project

unit Main;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
OleCtrls, Card_TLB, Cards, PlayCard, StdCtrls, ExtCtrls, Menus;

type
TMainForm = class(TForm)
Panel1: TPanel;
MainMenu1: TMainMenu;
Play1: TMenuItem;
Deal1: TMenuItem;
Hit1: TMenuItem;

Essentials for Rapid Development

PART I
46

09.65227_Ch07CDx 11/30/99 11:15 AM Page 46

Hold1: TMenuItem;
DoubleDown1: TMenuItem;
N1: TMenuItem;
Close1: TMenuItem;
Help1: TMenuItem;
About1: TMenuItem;
Panel2: TPanel;
Label3: TLabel;
CashLabel: TLabel;
BetLabel: TLabel;
HitBtn: TButton;
DealBtn: TButton;
HoldBtn: TButton;
ExitBtn: TButton;
BetEdit: TEdit;
DblBtn: TButton;
CheatPanel: TPanel;
DealLbl: TLabel;
PlayLbl: TLabel;
Label4: TLabel;
Label6: TLabel;
Cheat1: TMenuItem;
N2: TMenuItem;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure About1Click(Sender: TObject);
procedure Cheat1Click(Sender: TObject);
procedure ExitBtnClick(Sender: TObject);
procedure DblBtnClick(Sender: TObject);
procedure DealBtnClick(Sender: TObject);
procedure HitBtnClick(Sender: TObject);
procedure HoldBtnClick(Sender: TObject);

private
CardDeck: TCardDeck;
CurCard: TPlayingCard;
NextPlayerPos: integer;
NextDealerPos: integer;
PlayerTotal: integer;
DealerTotal: integer;
PAceFlag: Boolean;
DAceFlag: Boolean;
PBJFlag: Boolean;
DBJFlag: Boolean;
DDFlag: Boolean;
Procedure Deal;
procedure DealerHit(CardVisible: Boolean);

Using ActiveX Controls with Delphi

CHAPTER 7
47

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

continues

09.65227_Ch07CDx 11/30/99 11:15 AM Page 47

LISTING 7.3 Continued

procedure DoubleDown;
procedure EnableMoves(Enable: Boolean);
procedure FreeCards;
procedure Hit;
procedure Hold;
procedure ShowFirstCard;
procedure ShowWinner;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

uses AboutU;

const
PYPos = 175; // starting y pos for player cards
DYPos = 10; // ditto for dealer’s cards

procedure TMainForm.FormCreate(Sender: TObject);
begin
CardDeck := TCardDeck.Create;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
CardDeck.Free;

end;

procedure TMainForm.About1Click(Sender: TObject);
{ Creates and invokes about box }
begin
with TAboutBox.Create(Self) do
try
ShowModal;

finally
Free;

end;
end;

procedure TMainForm.Cheat1Click(Sender: TObject);
begin

Essentials for Rapid Development

PART I
48

09.65227_Ch07CDx 11/30/99 11:15 AM Page 48

Cheat1.Checked := not Cheat1.Checked;
CheatPanel.Visible := Cheat1.Checked;

end;

procedure TMainForm.ExitBtnClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.DblBtnClick(Sender: TObject);
begin
DoubleDown;

end;

procedure TMainForm.DealBtnClick(Sender: TObject);
begin
Deal;

end;

procedure TMainForm.HitBtnClick(Sender: TObject);
begin
Hit;

end;

procedure TMainForm.HoldBtnClick(Sender: TObject);
begin
Hold;

end;

procedure TMainForm.Deal;
{ Deals a new hand for dealer and player }
begin
FreeCards; // remove any cards from screen
BetEdit.Enabled := False; // disable bet edit ctrl
BetLabel.Enabled := False; // disable bet label
if CardDeck.Count < 11 then // reshuffle deck if < 11 cards
begin
Panel1.Caption := ‘Reshuffling and dealing...’;
CardDeck.Shuffle;

end
else
Panel1.Caption := ‘Dealing...’;

Panel1.Show; // show “dealing” panel
Panel1.Update; // make sure it’s visible
NextPlayerPos := 10; // set horiz position of cards
NextDealerPos := 10;

Using ActiveX Controls with Delphi

CHAPTER 7
49

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

continues

09.65227_Ch07CDx 11/30/99 11:15 AM Page 49

LISTING 7.3 Continued

PlayerTotal := 0; // reset card totals
DealerTotal := 0;
PAceFlag := False; // reset flags
DAceFlag := False;
PBJFlag := False;
DBJFlag := False;
DDFlag := False;
Hit; // hit player
DealerHit(False); // hit dealer
Hit; // hit player
DealerHit(True); // hit dealer
Panel1.Hide; // hide panel
if (PlayerTotal = 11) and PAceFlag then
PBJFlag := True; // check player blackjack

if (DealerTotal = 11) and DAceFlag then
DBJFlag := True; // check dealer blackjack

if PBJFlag or DBJFlag then // if a blackjack occurred
begin
ShowFirstCard; // flip dealer’s card
ShowMessage(‘Blackjack!’);
ShowWinner; // determine winner

end
else
EnableMoves(True); // enable hit, hold double down

end;

procedure TMainForm.DealerHit(CardVisible: Boolean);
{ Dealer takes a hit }
begin
CurCard := CardDeck.Draw; // dealer draws a card
with TCardX.Create(Self) do // create the ActiveX control
begin
Left := NextDealerPos; // place card on form
Top := DYPos;
Suit := Ord(CurCard.Suit); // assign suit
FaceUp := CardVisible;
Value := Ord(CurCard.Face); // assign face
Parent := Self; // assign parent for AX Ctl
Inc(NextDealerPos, Width div 2); // track where to place next card
Update; // show card

end;
if CurCard.Face = cvAce then DAceFlag := True; // set Ace flag
Inc(DealerTotal, GetCardValue(CurCard)); // keep count
DealLbl.Caption := IntToStr(DealerTotal); // cheat
if DealerTotal > 21 then // track dealer bust

Essentials for Rapid Development

PART I
50

09.65227_Ch07CDx 11/30/99 11:15 AM Page 50

ShowMessage(‘Dealer Busted!’);
end;

procedure TMainForm.DoubleDown;
{ Called to double down on dealt hand }
begin
DDFlag := True; // set double down flag to adjust bet
Hit; // take one card
Hold; // let dealer take his cards

end;

procedure TMainForm.EnableMoves(Enable: Boolean);
{ Enables/disables moves buttons/menu items }
begin
HitBtn.Enabled := Enable; // Hit button
HoldBtn.Enabled := Enable; // Hold button
DblBtn.Enabled := Enable; // Double down button
Hit1.Enabled := Enable; // Hit menu item
Hold1.Enabled := Enable; // Hold menu item
DoubleDown1.Enabled := Enable; // Double down menu item

end;

procedure TMainForm.FreeCards;
{ frees all AX Ctl cards on the screen }
var
i: integer;

begin
for i := ControlCount - 1 downto 0 do // go backward!
if Controls[i] is TCardX then
Controls[i].Free;

end;

procedure TMainForm.Hit;
{ Player hit }
begin
CurCard := CardDeck.Draw; // draw card
with TCardX.Create(Self) do // create card AX Ctl
begin
Left := NextPlayerPos; // set position
Top := PYPos;
Suit := Ord(CurCard.Suit); // set suit
Value := Ord(CurCard.Face); // set value
Parent := Self; // assign parent
Inc(NextPlayerPos, Width div 2); // track position
Update; // Display card

end;

Using ActiveX Controls with Delphi

CHAPTER 7
51

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

continues

09.65227_Ch07CDx 11/30/99 11:15 AM Page 51

LISTING 7.3 Continued

DblBtn.Enabled := False; // hit disables double down
if CurCard.Face = cvAce then PAceFlag := True; // set ace flag
Inc(PlayerTotal, GetCardValue(CurCard)); // keep running total
PlayLbl.Caption := IntToStr(PlayerTotal); // cheat
if PlayerTotal > 21 then // track bust
begin
ShowMessage(‘Busted!’);
ShowFirstCard;
ShowWinner;

end;
end;

procedure TMainForm.Hold;
{ Player holds. This procedure allows dealer to draw cards. }
begin
EnableMoves(False);
ShowFirstCard; // show dealer card
if PlayerTotal <= 21 then // if player hasn’t busted...
begin
if DAceFlag then // if dealer has an Ace...
begin
{ Dealer must hit soft 17 }
while (DealerTotal <= 7) or ((DealerTotal >= 11) and
(DealerTotal < 17)) do
DealerHit(True);

end
else
// if no Ace, keep hitting until 17 is reached
while DealerTotal < 17 do DealerHit(True);

end;
ShowWinner; // Determine winner

end;

procedure TMainForm.ShowFirstCard;
var
i: integer;

begin
// make sure all cards are face-up
for i := 0 to ControlCount - 1 do
if Controls[i] is TCardX then
begin
TCardX(Controls[i]).FaceUp := True;
TCardX(Controls[i]).Update;

end;

Essentials for Rapid Development

PART I
52

09.65227_Ch07CDx 11/30/99 11:15 AM Page 52

end;

procedure TMainForm.ShowWinner;
{ Determines winning hand }
var
S: string;

begin
if DAceFlag then // if dealer has an Ace...
begin
if DealerTotal + 10 <= 21 then // figure best hand
inc(DealerTotal, 10);

end;
if PACeFlag then // if player has an Ace...
begin
if PlayerTotal + 10 <= 21 then // figure best hand
inc(PlayerTotal, 10);

end;
if DealerTotal > 21 then // set score to 0 if busted
DealerTotal := 0;

if PlayerTotal > 21 then
PlayerTotal := 0;

if PlayerTotal > DealerTotal then // if player wins...
begin
S := ‘You win!’;
if DDFlag then // pay 2:1 on double down
CashLabel.Caption := IntToStr(StrToInt(CashLabel.Caption) +
StrToInt(BetEdit.Text) * 2)

else // pay 1:1 normally
CashLabel.Caption := IntToStr(StrToInt(CashLabel.Caption) +
StrToInt(BetEdit.Text));

if PBJFlag then // pay 1.5:1 on blackjack
CashLabel.Caption := IntToStr(StrToInt(CashLabel.Caption) +
StrToInt(BetEdit.Text) div 2)

end
else if DealerTotal > PlayerTotal then // if dealer wins...
begin
S := ‘Dealer wins!’;
if DDFlag then // lose 2x on double down
CashLabel.Caption := IntToStr(StrToInt(CashLabel.Caption) -
StrToInt(BetEdit.Text) * 2)

else // normal loss
CashLabel.Caption := IntToStr(StrToInt(CashLabel.Caption) -
StrToInt(BetEdit.Text));

end
else
S := ‘Push!’; // push, no one wins

Using ActiveX Controls with Delphi

CHAPTER 7
53

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

continues

09.65227_Ch07CDx 11/30/99 11:15 AM Page 53

LISTING 7.3 Continued

if MessageDlg(S + #13#10’Do you want to play again with the same bet?’,
mtConfirmation, [mbYes, mbNo], 0) = mrYes then
Deal;

BetEdit.Enabled := True; // allow bet to change
BetLabel.Enabled := True;

end;

end.

Invoking an ActiveX Control Method
In Listing 7.3, you might have noticed that the main form contains a method that creates and
displays an About dialog box. Figure 7.7 shows what this About dialog box looks like when
invoked.

Essentials for Rapid Development

PART I
54

FIGURE 7.7
DDG BlackJack’s About dialog box.

This About dialog box is special because it contains a button that, when selected, shows an
About box for the CardX ActiveX control by calling its AboutBox() method. The About box for
the CardX control is shown in Figure 7.8.

The code that accomplishes this task follows. Looking ahead, the same technique used to make
vTable calls to OLE Automation servers in Chapter 23, “COM and ActiveX,” is used here.

procedure TAboutBox.CardBtnClick(Sender: TObject);
begin
Card.AboutBox;

end;

09.65227_Ch07CDx 11/30/99 11:15 AM Page 54

FIGURE 7.8
The Cards ActiveX control About dialog box.

Summary
After reading this chapter, you should understand all the important aspects of using ActiveX
controls in the Delphi environment. You learned about integrating an ActiveX control into
Delphi, how the Object Pascal ActiveX control wrapper works, how to deploy an ActiveX
control–equipped application, how to register an ActiveX control, and how to incorporate
ActiveX controls into an application. Because of their market presence, ActiveX controls often
can offer a blast of instant productivity. However, because ActiveX controls have some disad-
vantages, also remember to look for native VCL components when shopping for controls.

Using ActiveX Controls with Delphi

CHAPTER 7
55

7

U
SIN

G
A

C
TIV

EX
C

O
N

TR
O

LS
W

ITH
D

ELPH
I

09.65227_Ch07CDx 11/30/99 11:16 AM Page 55

CHAPTER

8
Graphics Programming with
GDI and Fonts

IN THIS CHAPTER
• Delphi’s Representation of Pictures:

TImage 58

• Saving Images 60

• Using the TCanvas Properties 62

• Using the TCanvas Methods 83

• Coordinate Systems and
Mapping Modes 95

• Creating a Paint Program 108

• Performing Animation with Graphics
Programming 124

• Advanced Fonts 134

• A Font-Creation Sample Project 138

• Summary 151

11.65227_Ch08CDx 11/30/99 11:22 AM Page 57

In previous chapters, you worked with a property called Canvas. Canvas is appropriately
named because you can think of a window as an artist’s blank canvas on which various
Windows objects are painted. Each button, window, cursor, and so on is nothing more than a
collection of pixels in which the colors have been set to give it some useful appearance. In fact,
think of each individual window as a separate surface on which its separate components are
painted. To take this analogy a bit further, imagine that you’re an artist who requires various
tools to accomplish your task. You need a palette from which to choose different colors. You’ll
probably use different styles of brushes, drawing tools, and special artist’s techniques as well.
Win32 makes use of similar tools and techniques—in the programming sense—to paint the
various objects with which users interact. These tools are made available through the Graphics
Device Interface, otherwise known as the GDI.

Win32 uses the GDI to paint or draw the images you see on your computer screen. Before
Delphi, in traditional Windows programming, programmers worked directly with the GDI
functions and tools. Now, the TCanvas object encapsulates and simplifies the use of these func-
tions, tools, and techniques. This chapter teaches you how to use TCanvas to perform useful
graphics functions. You’ll also see how you can create advanced programming projects with
Delphi 5 and Win32 GDI. We illustrate this by creating a paint program and animation program.

Delphi’s Representation of Pictures: TImage
The TImage component represents a graphical image that can be displayed anywhere on a form
and is available from Delphi 5’s Component Palette. With TImage, you can load and display a
bitmap file (.bmp), a 16-bit Windows metafile (.wmf), a 32-bit enhanced metafile (.emf), an
icon file (.ico), a JPEG file (.jpg, .jpeg) or other file formats handled by add-in TGraphic
classes. The image data actually is stored by TImage’s Picture property, which is of the type
TPicture.

Advanced Techniques

PART II
58

Graphic Images: Bitmaps, Metafiles, and Icons
Bitmaps

Win32 bitmaps are binary information arranged in a pattern of bits that represent a
graphical image. More specifically, these bits store color information items called pix-
els. There are two types of bitmaps: device-dependent bitmaps (DDB) and device-
independent bitmaps (DIB).

As a Win32 programmer, you probably won’t be dealing much with DDBs because
this format was kept solely for backward compatibility. Device-dependent bitmaps, as
the name implies, are dependent on the device in which they’re created. Bitmaps in
this format, when saved, do not store information regarding the color palette they
use nor do they store information regarding their resolution.

In contrast, device-independent bitmaps (DIBs) do store information to allow them to
be displayed on any device without radically changing their appearance.

11.65227_Ch08CDx 11/30/99 11:22 AM Page 58

Graphics Programming with GDI and Fonts

CHAPTER 8
59

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

In memory, both DDBs and DIBs are represented with the same structures, for the
most part. One key difference is that DDBs use the palette provided by the system,
whereas DIBs provide their own palette. To take this explanation further, DDBs are
simply native storage, handled by video driver routines and video hardware. DIBs are
standardized pixel formats, handled by GDI generic routines and stored in global
memory. Some video cards use DIB pixel formats as native storage, so you get
DDB=DIB. In general, DIB gives you more flexibility and simplicity, sometimes at a
slight performance cost. DDBs are always faster but not as convenient.

Metafiles

Unlike bitmaps, metafiles are vector-based graphical images. Metafiles are files in
which a series of GDI routines are stored, enabling you to save GDI function calls to
disk so that you can redisplay the image later. This also enables you to share your
drawing routines with other programs without having to call the specific GDI func-
tions in each program. Other advantages to metafiles are that they can be scaled to
arbitrary dimensions and still retain their smooth lines and arcs—bitmaps don’t do
this as well. In fact, this is one of the reasons the Win32 printing engine is built
around the enhanced metafile storage for print jobs.

There are two metafile formats: standard metafiles, typically stored in a file with a .wmf
extension, and enhanced metafiles, typically stored in a file with an .emf extension.

Standard metafiles are a holdover from the Win16 system. Enhanced metafiles are
more robust and accurate. Use EMFs if you’re producing metafiles for your own appli-
cations. If you’re exporting your metafiles to older programs that might not be able
to use the enhanced format, use the 16-bit WMFs. Know, however, that by stepping
down to the 16-bit WMFs, you’ll also lose several GDI primitives that EMFs support
but WMFs do not. Delphi 5’s TMetafile class knows about both types of metafiles.

Icons

Icons are Win32 resources that usually are stored in an icon file with an .ico exten-
sion. They may also reside in a resource file (.res). There are two typical sizes of icons
in Windows: large icons that are 32×32 pixels, and small icons that are 16×16 pixels.
All Windows applications use both icon sizes. Small icons are displayed in the applica-
tion’s upper-left corner of the main window and also in the Windows List view con-
trol. Delphi’s encapsulation of this control is the TListView component. This control
appears on the Win32 page of the Component Palette.

Icons are made up of two bitmaps. One bitmap, referred to as the image, is the
actual icon image as it is displayed. The other bitmap, referred to as the mask, makes
it possible to achieve transparency when the icon is displayed. Icons are used for a
variety of purposes. For example, icons appear on an application’s taskbar and in mes-
sage boxes where the question mark, exclamation point, or stop sign icons are used
as attention grabbers.

11.65227_Ch08CDx 11/30/99 11:22 AM Page 59

TPicture is a container class for the TGraphic abstract class. A container class means that
TPicture can hold a reference to and display a TBitmap, TMetafile, TIcon, or any other
TGraphic type, without really caring which is which. You use TImage.Picture’s properties and
methods to load image files into a TImage component. For example, use the following statement:

MyImage.Picture.LoadFromFile(‘FileName.bmp’);

Use a similar statement to load icon files or metafiles. For example, the following code loads a
Win32 metafile:

MyImage.Picture.LoadFromFile(‘FileName.emf’);

This code loads a Win32 icon file:

MyImage.Picture.LoadFromFile(‘FileName.ico’);

In Delphi 5, TPicture can now load JPEG images using the same technique for loading
bitmaps:

MyImage.Picture.LoadFromFile(‘FileName.jpeg’);

Saving Images
To save an image use the SaveToFile() method:

MyImage.Picture.SaveToFile(‘FileName.bmp’);

The TBitmap class encapsulates the Win32 bitmap and palette, and it provides the methods to
load, store, display, save, and copy the bitmapped images. TBitmap also manages palette real-
ization automatically. This means that the tedious task of managing bitmaps has been simpli-
fied substantially with Delphi 5’s TBitmap class, which enables you to focus on using the
bitmap and frees you from having to worry about all the underlying implementation details.

Advanced Techniques

PART II
60

NOTE

TBitmap isn’t the only object that manages palette realization. Components such as
TImage, TMetafile, and every other TGraphic descendant also realize their bitmaps’
palettes on request. If you build components that contain a TBitmap object that
might have 256-color images, you’ll need to override your component’s GetPalette()
method to return the color palette of the bitmap.

To create an instance of a TBitmap class and load a bitmap file, for example, you use the fol-
lowing commands:

MyBitmap := TBitmap.Create;

MyBitmap.LoadFromFile(‘MyBMP.BMP’);

11.65227_Ch08CDx 11/30/99 11:22 AM Page 60

To copy one bitmap to another, you use the TBitmap.Assign() method, as in this example:

Bitmap1.Assign(Bitmap2);

You also can copy a portion of a bitmap from one TBitmap instance to another TBitmap
instance or even to the form’s canvas by using the CopyRect() method:

var

R1: TRect;

begin

with R1 do

begin

Top := 0;

Left := 0;

Right := BitMap2.Width div 2;

Bottom := BitMap2.Height div 2;

end;

Bitmap1.Canvas.CopyRect(ClientRect, BitMap2.Canvas, R1);

end;

In the preceding code, you first calculate the appropriate values in a TRect record and then use
the TCanvas.CopyRect() method to copy a portion of the bitmap. A TRect is defined as fol-
lows:

TRect = record

case Integer of

0: (Left, Top, Right, Bottom: Integer);

1: (TopLeft, BottomRight: TPoint);

end;

This technique will be used in the paint program later in the chapter. CopyRect() automatically
stretches the copied portion of the source canvas to fill the destination rectangle.

Graphics Programming with GDI and Fonts

CHAPTER 8
61

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

CAUTION

Another method of loading bitmaps into an application is to load them from a
resource file. We’ll discuss this method shortly.

CAUTION

You should be aware of a significant difference in resource consumption for copying
bitmaps in the previous two examples. The CopyRect() technique doubles the memory

continues

11.65227_Ch08CDx 11/30/99 11:22 AM Page 61

Another method you can use to copy the entire bitmap to the form’s canvas so that it shrinks or
expands to fit inside the canvas’s boundaries is the StretchDraw() method. Here’s an example:

Canvas.StretchDraw(R1, MyBitmap);

We’ll discuss TCanvas’s methods later in this chapter.

Using the TCanvas Properties
Higher-level classes such as TForm and TGraphicControl descendants have a Canvas property.
The canvas serves as the painting surface for your form’s other components. The tools that
Canvas uses to do the drawing are pens, brushes, and fonts.

Using Pens
In this section, we first explain how to use the TPen properties and then show you some code in
a sample project that uses these properties.

Pens enable you to draw lines on the canvas and are accessed from the Canvas.Pen property.
You can change how lines are drawn by modifying the pen’s properties: Color, Width, Style,
and Mode.

The Color property specifies a pen’s color. Delphi 5 provides predefined color constants that
match many common colors. For example, the constants clRed and clYellow correspond to
the colors red and yellow. Delphi 5 also defines constants to represent the Win32 system screen
element colors such as clActiveCaption and clHighlightText, which correspond to the
Win32 active captions and highlighted text. The following line assigns the color blue to the
canvas’s pen:

Canvas.Pen.color := clblue;

This line shows you how to assign a random color to Canvas’s Pen property:

Pen.Color := TColor(RGB(Random(255),Random(255), Random(255)));

Advanced Techniques

PART II
62

use in that two separate copies of the image exist in memory. The Assign() technique
costs nothing because the two bitmap objects will share a reference to the same image
in memory. If you happen to modify one of the bitmap objects, VCL will clone the
image using a copy-on-write scheme.

RGB() and TColor

Win32 represents colors as long integers in which the lowest three bytes each signify
a red, green, and blue intensity level. The combination of the three values makes up
a valid Win32 color. The RGB(R, G, B) function takes three parameters for the red,

11.65227_Ch08CDx 11/30/99 11:22 AM Page 62

The pen can also draw lines with different drawing styles, as specified by its Style property.
Table 8.1 shows the different styles you can set for Pen.Style.

TABLE 8.1 Pen Styles

Style Draws

psClear An invisible line

psDash A line made up of a series of dashes

psDashDot A line made up of alternating dashes and dots

psDashDotDot A line made up of a series of dash-dot-dot combinations

psDot A line made up of a series of dots

psInsideFrame A line within a frame of closed shapes that specify a bounding rectangle

psSolid A solid line

Graphics Programming with GDI and Fonts

CHAPTER 8
63

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

green, and blue intensity levels. It returns a Win32 color as a long integer value. This
is represented as a TColor Delphi type. There are 255 possible values for each inten-
sity level and approximately 16 million colors that can be returned from the RGB()
function. RGB(0, 0, 0), for example, returns the color value for black, whereas
RGB(255, 255, 255) returns the color value for white. RGB(255, 0 ,0), RGB(0, 255,
0), and RGB(0, 0, 255) return the color values for red, green, and blue, respectively.
By varying the values passed to RGB(), you can obtain a color anywhere within the
color spectrum.

TColor is specific to VCL and refers to constants defined in the Graphics.pas unit.
These constants map to either the closest matching color in the system palette or to a
defined color in the Windows Control Panel. For example, clBlue maps to the color
blue whereas the clBtnFace maps to the color specified for button faces. In addition
to the three bytes to represent the color, TColor’s highest order byte specifies how a
color is matched. Therefore, if the highest order byte is $00, the represented color is
the closest matching color in the system palette. A value of $01 represents the closest
matching color in the currently realized palette. Finally, a color of $02 matches with
the nearest color in the logical palette of the current device context. You will find
additional information in the Delphi help file under “TColor type.”

TIP

Use the ColorToRGB() function to convert Win32 system colors, such as clWindow, to
a valid RGB color. The function is described in Delphi 5’s online help.

11.65227_Ch08CDx 11/30/99 11:22 AM Page 63

The following line shows how you would change the pen’s drawing style:

Canvas.Pen.Style := psDashDot;

Figure 8.1 shows how the different pen styles appear when drawn on the form’s canvas. One
thing to note: The “in between” colors in the stippled lines come from the brush color. If you
want to make a black dashed line run across a red square, you would need to set the
Canvas.Brush.Color to clRed or set the Canvas.Brush.Style to bsClear. Setting both the
pen and brush color is how you would draw, for example, a red and blue dashed line across a
white square.

Advanced Techniques

PART II
64

FIGURE 8.1
Different pen styles.

The Pen.Width property enables you to specify the width, in pixels, that the pen uses for draw-
ing. When this property is set to a larger width, the pen draws with thicker lines.

NOTE

The stipple line style applies only to pens with a width of 1. Setting the pen width to
2 will draw a solid line. This is a holdover from the 16-bit GDI that Win32 emulates
for compatibility. Windows 95/98 does not do fat stippled lines, but Windows
NT/2000 can if you use only the extended GDI feature set.

Three factors determine how Win32 draws pixels or lines to a canvas surface: the pen’s color,
the surface or destination color, and the bitwise operation that Win32 performs on the two-
color values. This operation is known as a raster operation (ROP). The Pen.Mode property
specifies the ROP to be used for a given canvas. Sixteen modes are predefined in Win32, as
shown in Table 8.2.

11.65227_Ch08CDx 11/30/99 11:22 AM Page 64

TABLE 8.2 Win32 Pen Modes on Source Pen.Color (S) and Destination (D) Color

Mode Result Pixel Color Boolean Operation

pmBlack Always black 0

pmWhite Always white 1

pmNOP Unchanged D

pmNOT Inverse of D color not D

pmCopy Color specified by S S

pmNotCopy Inverse of S not S

pmMergePenNot Combination S and inverse of D S or not D

pmMaskPenNot Combination of colors common S and not D

to S and inverse of D

pmMergeNotPen Combination of D and inverse not S or D

of S

pmMaskNotPen Combination of colors common not S and D

to D and inverse of S

pmMerge Combination of S and D S or D

pmNotMerge Inverse of pmMerge operation not (S or D)

on S and D

pmMask Combination of colors common S and D

to S and D

pmNotMask Inverse of pmMask operation not (S and D)

on S and D

pmXor Combination of colors in S XOR D

either S or D but not both

pmNotXor Inverse of pmXOR operation not (S XOR D)

on S and D

Pen.mode is pmCopy by default. This means that the pen draws with the color specified by its
Color property. Suppose that you want to draw black lines on a white background. If a line
crosses over a previously drawn line, it should draw white rather than black.

One way to do this would be to check the color of the area you’re going to draw to—if it’s
white, set pen.Color to black; if it is black, set pen.Color to white. Although this approach
works, it would be cumbersome and slow. A better approach would be to set Pen.Color to
clBlack and Pen.Mode to pmNot. This would result in the pen drawing the inverse of the merg-
ing operation with the pen and surface color. Figure 8.2 shows you the result of this operation
when drawing with a black pen in a crisscross fashion.

Graphics Programming with GDI and Fonts

CHAPTER 8
65

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

11.65227_Ch08CDx 11/30/99 11:22 AM Page 65

FIGURE 8.2
The output of a pmNotMerge operation.

Listing 8.1 is an example of the project on the CD that illustrates the code that resulted in
Figures 8.1 and 8.2. You’ll find this demo on the CD.

LISTING 8.1 Illustration of Pen Operations

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms,

Dialogs, Menus, StdCtrls, Buttons, ExtCtrls;

type
TMainForm = class(TForm)
mmMain: TMainMenu;
mmiPens: TMenuItem;
mmiStyles: TMenuItem;
mmiPenColors: TMenuItem;
mmiPenMode: TMenuItem;
procedure mmiStylesClick(Sender: TObject);
procedure mmiPenColorsClick(Sender: TObject);
procedure mmiPenModeClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }
procedure ClearCanvas;
procedure SetPenDefaults;

end;

var

Advanced Techniques

PART II
66

11.65227_Ch08CDx 11/30/99 11:22 AM Page 66

MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.ClearCanvas;
var
R: TRect;

begin
// Clear the contents of the canvas
with Canvas do
begin
Brush.Style := bsSolid;
Brush.Color := clWhite;
Canvas.FillRect(ClientRect);

end;
end;

procedure TMainForm.SetPenDefaults;
begin
with Canvas.Pen do
begin
Width := 1;
Mode := pmCopy;
Style := psSolid;
Color := clBlack;

end;
end;

procedure TMainForm.mmiStylesClick(Sender: TObject);
var
yPos: integer;
PenStyle: TPenStyle;

begin
ClearCanvas; // First clear Canvas’s contents
SetPenDefaults;
// yPos represent the Y coordinate
YPos := 20;
with Canvas do
begin
for PenStyle := psSolid to psInsideFrame do
begin
Pen.Color := clBlue;
Pen.Style := PenStyle;
MoveTo(100, yPos);

Graphics Programming with GDI and Fonts

CHAPTER 8
67

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:22 AM Page 67

LISTING 8.1 Continued

LineTo(ClientWidth, yPos);
inc(yPos, 20);

end;

// Write out titles for the various pen styles
TextOut(1, 10, ‘ psSolid ‘);
TextOut(1, 30, ‘ psDash ‘);
TextOut(1, 50, ‘ psDot ‘);
TextOut(1, 70, ‘ psDashDot ‘);
TextOut(1, 90, ‘ psDashDotDot ‘);
TextOut(1, 110, ‘ psClear ‘);
TextOut(1, 130, ‘ psInsideFrame ‘);

end;
end;

procedure TMainForm.mmiPenColorsClick(Sender: TObject);
var
i: integer;

begin
ClearCanvas; // Clear Canvas’s contents
SetPenDefaults;
with Canvas do
begin
for i := 1 to 100 do
begin
// Get a random pen color draw a line using that color
Pen.Color := RGB(Random(256),Random(256), Random(256));
MoveTo(random(ClientWidth), Random(ClientHeight));
LineTo(random(ClientWidth), Random(ClientHeight));

end
end;

end;

procedure TMainForm.mmiPenModeClick(Sender: TObject);
var
x,y: integer;

begin
ClearCanvas; // Clear the Canvas’s contents
SetPenDefaults;
y := 10;
canvas.Pen.Width := 20;

Advanced Techniques

PART II
68

11.65227_Ch08CDx 11/30/99 11:23 AM Page 68

while y < ClientHeight do
begin
canvas.MoveTo(0, y);
// Draw a line and increment Y value
canvas.LineTo(ClientWidth, y);
inc(y, 30);

end;
x := 5;

canvas.pen.Mode := pmNot;
while x < ClientWidth do
begin
Canvas.MoveTo(x, 0);
canvas.LineTo(x, ClientHeight);
inc(x, 30);

end;
end;

end.

Listing 8.1 shows three examples of dealing with the canvas’s pen. The two helper functions,
ClearCanvas() and SetPenDefaults(), are used to clear the contents of the main form’s can-
vas and to reset the Canvas.Pen properties to their default values as these properties are modi-
fied by each of the three event handlers.

ClearCanvas() is a useful technique for erasing the contents of any component containing a
Canvas property. ClearCanvas() uses a solid white brush to erase whatever was previously
painted on the Canvas. FillRect() is responsible for painting a rectangular area as specified
by a TRect structure, ClientRect, which is passed to it.

The mmiStylesClick() method shows how to display the various TPen styles as shown in
Figure 8.1 by drawing horizontal lines across the form’s Canvas using a different TPen style.
Both TCanvas.MoveTo() and TCanvas.LineTo() enable you to draw lines on the canvas.

The mmiPenColorsClick() method illustrates drawing lines using a different TPen color. Here
you use the RGB() function to retrieve a color to assign to TPen.Color. The three values you
pass to RGB() are each random values within range of 0 to 255. The output of this method is
shown in Figure 8.3.

Finally, the mmiPenModeClick() method illustrates how to draw lines using a different pen
mode. Here you use the pmNot mode to perform the actions previously discussed, resulting in
the output shown in Figure 8.2.

Graphics Programming with GDI and Fonts

CHAPTER 8
69

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

11.65227_Ch08CDx 11/30/99 11:23 AM Page 69

FIGURE 8.3
Output from the mmiPenColorsClick() method.

Using TCanvas’s Pixels
The TCanvas.Pixels property is a two-dimensional array in which each element represents a
pixel’s TColor value on the form’s surface or client area. The upper-left corner of your form’s
painting surface is given by

Canvas.Pixels[0,0]

and the lower-right corner is

Canvas.Pixels[clientwidth, clientheight];

It’s rare that you’ll ever have to access individual pixels on your form. In general, you do not
want to use the Pixels property because it’s slow. Accessing this property uses the
GetPixel()/SetPixel() GDI functions, which Microsoft has acknowledged are flawed and
will never be efficient. This is because both functions rely on 24-bit RGB values. When not
working with 24-bit RGB device contexts, these functions must perform serious color-matching
gymnastics to convert the RGB into a device pixel format. For quick pixel manipulation, use
the TBitmap.ScanLine array property instead. To fetch or set one or two pixels at a time, using
Pixels is okay.

Using Brushes
This section discusses the TBrush properties and shows you some code in a sample project that
uses these properties.

Using the TBrush Properties
A canvas’s brush fills in areas and shapes drawn on the canvas. This differs from a TPen object,
which enables you to draw lines to the canvas. A brush enables you to fill an area on the can-
vas using various colors, styles, and patterns.

Canvas’s TBrush object has three important properties that specify how the brush paints on the
canvas’s surface: Color, Style, and Bitmap. Color specifies the brush’s color, Style specifies

Advanced Techniques

PART II
70

11.65227_Ch08CDx 11/30/99 11:23 AM Page 70

the pattern of the brush background, and Bitmap specifies a bitmap you can use to create cus-
tom patterns for the brush’s background.

Eight brush options are specified by the Style property: bsSolid, bsClear, bsHorizontal,
bsVertical, bsFDiagonal, bsBDiagonal, bsCross, and bsDiagCross. By default, the brush
color is clWhite with a bsSolid style and no bitmap. You can change the color and style to fill
an area with different patterns. The example in the following section illustrates using each of
the TBrush properties.

TBrush Code Example
Listing 8.2 shows you the unit for a project that illustrates the use of the TBrush properties just
discussed. You can load this project from the CD.

LISTING 8.2 TBrush Example

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms,

Dialogs, Menus, ExtCtrls;

type
TMainForm = class(TForm)
mmMain: TMainMenu;
mmiBrushes: TMenuItem;
mmiPatterns: TMenuItem;
mmiBitmapPattern1: TMenuItem;
mmiBitmapPattern2: TMenuItem;
procedure mmiPatternsClick(Sender: TObject);
procedure mmiBitmapPattern1Click(Sender: TObject);
procedure mmiBitmapPattern2Click(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);

private
FBitmap: TBitmap;

public
procedure ClearCanvas;

end;

var
MainForm: TMainForm;

implementation

Graphics Programming with GDI and Fonts

CHAPTER 8
71

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 71

LISTING 8.2 Continued

{$R *.DFM}

procedure TMainForm.ClearCanvas;
var
R: TRect;

begin
// Clear the contents of the canvas
with Canvas do
begin
Brush.Style := bsSolid;
Brush.Color := clWhite;
GetWindowRect(Handle, R);
R.TopLeft := ScreenToClient(R.TopLeft);
R.BottomRight := ScreenToClient(R.BottomRight);
FillRect(R);

end;
end;

procedure TMainForm.mmiPatternsClick(Sender: TObject);
begin
ClearCanvas;
with Canvas do
begin
// Write out titles for the various brush styles
TextOut(120, 101, ‘bsSolid’);
TextOut(10, 101, ‘bsClear’);
TextOut(240, 101, ‘bsCross’);
TextOut(10, 221, ‘bsBDiagonal’);
TextOut(120, 221, ‘bsFDiagonal’);
TextOut(240, 221, ‘bsDiagCross’);
TextOut(10, 341, ‘bsHorizontal’);
TextOut(120, 341, ‘bsVertical’);

// Draw a rectangle with the various brush styles

Brush.Style := bsClear;
Rectangle(10, 10, 100, 100);
Brush.Color := clBlack;

Brush.Style := bsSolid;
Rectangle(120, 10, 220, 100);

{ Demonstrate that the brush is transparent by drawing
colored rectangle, over which the brush style rectangle will
be drawn. }

Advanced Techniques

PART II
72

11.65227_Ch08CDx 11/30/99 11:23 AM Page 72

Brush.Style := bsSolid;
Brush.Color := clRed;
Rectangle(230, 0, 330, 90);

Brush.Style := bsCross;
Brush.Color := clBlack;
Rectangle(240, 10, 340, 100);

Brush.Style := bsBDiagonal;
Rectangle(10, 120, 100, 220);

Brush.Style := bsFDiagonal;
Rectangle(120, 120, 220, 220);

Brush.Style := bsDiagCross;
Rectangle(240, 120, 340, 220);

Brush.Style := bsHorizontal;
Rectangle(10, 240, 100, 340);

Brush.Style := bsVertical;
Rectangle(120, 240, 220, 340);

end;
end;

procedure TMainForm.mmiBitmapPattern1Click(Sender: TObject);
begin
ClearCanvas;
// Load a bitmap from the disk
FBitMap.LoadFromFile(‘pattern.bmp’);
Canvas.Brush.Bitmap := FBitmap;
try
{ Draw a rectangle to cover the form’s entire
client area using the bitmap pattern as the
brush with which to paint. }

Canvas.Rectangle(0, 0, ClientWidth, ClientHeight);
finally
Canvas.Brush.Bitmap := nil;

end;
end;

procedure TMainForm.mmiBitmapPattern2Click(Sender: TObject);
begin
ClearCanvas;
// Load a bitmap from the disk

Graphics Programming with GDI and Fonts

CHAPTER 8
73

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 73

LISTING 8.2 Continued

FBitMap.LoadFromFile(‘pattern2.bmp’);
Canvas.Brush.Bitmap := FBitmap;
try
{ Draw a rectangle to cover the form’s entire
client area using the bitmap pattern as the
brush with which to paint. }

Canvas.Rectangle(0, 0, ClientWidth, ClientHeight);
finally
Canvas.Brush.Bitmap := nil;

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
FBitmap := TBitmap.Create;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
FBitmap.Free;

end;

end.

Advanced Techniques

PART II
74

TIP

The ClearCanvas() method that you use here is a handy routine for a utility unit.
You can define ClearCanvas() to take TCanvas and TRect parameters to which the
erase code will be applied:

procedure ClearCanvas(ACanvas: TCanvas; ARect: TRect);

begin

// Clear the contents of the canvas

with ACanvas do

begin

Brush.Style := bsSolid;

Brush.Color := clWhite;

FillRect(ARect);

end;
end;

11.65227_Ch08CDx 11/30/99 11:23 AM Page 74

The mmiPatternsClick() method illustrates drawing with various TBrush patterns. First, you
draw out the titles and then, using each of the available brush patterns, draw rectangles on the
form’s canvas. Figure 8.4 shows the output of this method.

Graphics Programming with GDI and Fonts

CHAPTER 8
75

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

FIGURE 8.4
Brush patterns.

The mmiBitmapPattern1Click() and mmiBitmapPattern2Click() methods illustrate how to
use a bitmap pattern as a brush. The TCanvas.Brush property contains a TBitmap property to
which you can assign a bitmap pattern. This pattern will be used to fill the area painted by the
brush instead of the pattern specified by the TBrush.Style property. There are a few rules for
using this technique, however. First, you must assign a valid bitmap object to the property.
Second, you must assign nil to the Brush.Bitmap property when you’re finished with it
because the brush does not take ownership of the bitmap object when you assign a bitmap to it.
Figures 8.5 and 8.6 show the output of mmiBitmapPattern1Click() and
mmiBitmapPattern2Click(), respectively.

NOTE

Windows limits the size of pattern brush bitmaps to 8×8 pixels, and they must be
device-dependent bitmaps, not device-independent bitmaps. Windows will reject
brush pattern bitmaps larger than 8×8; NT will accept larger but will only use the
top-left 8×8 portion.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 75

FIGURE 8.5
Output from mmiBitmapPattern1Click().

Advanced Techniques

PART II
76

FIGURE 8.6
Output from mmiBitmapPattern2Click().

TIP

Using a bitmap pattern to fill an area on the canvas doesn’t only apply to the form’s
canvas but also to any component that contains a Canvas property. Just access the
methods and/or properties of the Canvas property of the component rather than the
form. For example, here’s how to perform pattern drawing on a TImage component:

Image1.Canvas.Brush.Bitmap := SomeBitmap;

try

11.65227_Ch08CDx 11/30/99 11:23 AM Page 76

Using Fonts
The Canvas.Font property enables you to draw text using any of the available Win32 fonts.
You can change the appearance of text written to the canvas by modifying the font’s Color,
Name, Size, Height, or Style property.

You can assign any of Delphi 5’s predefined colors to Font.Color. The following code, for
example, assigns the color red to the canvas’s font:

Canvas.Font.Color := clRed;

The Name property specifies the Window’s font name. For example, the following two lines of
code assign different typefaces to Canvas’s font:

Canvas.Font.Name := ‘New Times Roman’;

Canvas.Font.Size specifies the font’s size in points.

Canvas.Font.Style is a set composed of one style or a combination of the styles shown in
Table 8.3.

TABLE 8.3 Font Styles

Value Style

fsBold Boldface

fsItalic Italic

fsUnderline Underlined

fsStrikeOut A horizontal line through the font, giving it a strikethrough appearance

To combine two styles, use the syntax for combining multiple set values:

Canvas.Font.Style := [fsBold, fsItalic];

You can use TFontDialog to obtain a Win32 font and assign that font to the TMemo.Font property:

if FontDialog1.Execute then

Memo1.Font.Assign(FontDialog1.Font);

The same can be done to assign the font selected in TFontDialog to the Canvas’s font:

Canvas.Font.Assign(FontDialog1.Font);

Graphics Programming with GDI and Fonts

CHAPTER 8
77

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

Image1.Canvas.Rectangle(0, 0, Image1.Width, Image1.Height);

finally

Image1.Canvas.Brush.Bitmap := nil;

end;

11.65227_Ch08CDx 11/30/99 11:23 AM Page 77

Additionally, you can assign individual attributes from the selected font in TFontDialog to the
Canvas’s font:

Canvas.Font.Name := Font.Dialog1.Font.Name;

Canvas.Font.Size := Font.Dialog1.Font.Size;

We’ve quickly brushed over fonts here. A more thorough discussion on fonts appears at the end
of this chapter.

Using the CopyMode Property
The TCanvas.CopyMode property determines how a canvas copies an image from another can-
vas onto itself. For example, when CopyMode holds the value cmSrcCopy, this means that the
source image will be copied over the destination entirely. CmSrcInvert, however, causes the
pixels of both the source and destination images to be combined using the bitwise XOR opera-
tor. CopyMode is used for achieving different effects when copying from one bitmap to another
bitmap. A typical place where you would change the default value of CopyMode from
cmSrcCopy to another value is when writing animation applications. You learn how to write
animation later in this chapter.

To see how to use the CopyMode property, take a look at Figure 8.7.

Figure 8.7 shows a form that contains two images, both of which have an ellipse drawn on
them. You select a CopyMode setting from the TComboBox component, and you would get vari-
ous results when copying the one image over the other by clicking the Copy button. Figures
8.8 and 8.9 show what the effects would be by copying imgFromImage to imgToImage using the
cmSrcAnd and cmSrcInvert copy modes.

Advanced Techniques

PART II
78

CAUTION

Make sure to use the Assign() method when copying TBitMap, TBrush, TIcon,
TMetaFile, TPen, and TPicture instance variables. A statement such as

MyBrush1 := MyBrush2

might seem valid, but it performs a direct pointer copy so that both instances point
to the same brush object, which can result in a heap leak. By using Assign(), you
ensure that previous resources are freed.

This is not so when assigning between two TFont properties. Therefore, a statement
such as

Form1.Font := Form2.Font

is a valid statement because the TForm.Font is a property whose write method inter-
nally calls Assign() to copy the data from the given font object. Be careful, how-
ever; this is only valid with when assigning TFont properties, not TFont variables. As
a general rule, always use Assign().

11.65227_Ch08CDx 11/30/99 11:23 AM Page 78

FIGURE 8.7
A form that contains two images to illustrate CopyMode.

Graphics Programming with GDI and Fonts

CHAPTER 8
79

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
GFIGURE 8.8

A copy operation using the cmSrcAnd copy mode setting.

FIGURE 8.9
A copy operation using the cmSrcInvert copy mode setting.

Listing 8.3 shows the source code for the project, illustrating the various copy modes. You’ll
find this code on the CD.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 79

LISTING 8.3 Project Illustrating CopyMode Usage

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms,

Dialogs, StdCtrls, ExtCtrls;

type

TMainForm = class(TForm)
imgCopyTo: TImage;
imgCopyFrom: TImage;
cbCopyMode: TComboBox;
btnDrawImages: TButton;
btnCopy: TButton;
procedure FormShow(Sender: TObject);
procedure btnCopyClick(Sender: TObject);
procedure btnDrawImagesClick(Sender: TObject);

private
procedure DrawImages;
procedure GetCanvasRect(AImage: TImage; var ARect: TRect);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.GetCanvasRect(AImage: TImage; var ARect: TRect);
var
R: TRect;
R2: TRect;

begin
R := AImage.Canvas.ClipRect;
with AImage do begin
ARect.TopLeft := Point(0, 0);
ARect.BottomRight := Point(Width, Height);

end;
R2 := ARect;
ARect := R2;

end;

Advanced Techniques

PART II
80

11.65227_Ch08CDx 11/30/99 11:23 AM Page 80

procedure TMainForm.DrawImages;
var
R: TRect;

begin
// Draw an ellipse in img1
with imgCopyTo.Canvas do
begin
Brush.Style := bsSolid;
Brush.Color := clWhite;
GetCanvasRect(imgCopyTo, R);
FillRect(R);
Brush.Color := clRed;
Ellipse(10, 10, 100, 100);

end;

// Draw an ellipse in img2
with imgCopyFrom.Canvas do
begin
Brush.Style := bsSolid;
Brush.Color := clWhite;
GetCanvasRect(imgCopyFrom, R);
FillRect(R);
Brush.Color := clBlue;
Ellipse(30, 30, 120, 120);

end;

end;

procedure TMainForm.FormShow(Sender: TObject);
begin
// Initialize the combobox to the first item
cbCopyMode.ItemIndex := 0;
DrawImages;

end;

procedure TMainForm.btnCopyClick(Sender: TObject);
var
cm: Longint;
CopyToRect,
CopyFromRect: TRect;

begin
// Determine the copy mode based on the combo box selection
case cbCopyMode.ItemIndex of
0: cm := cmBlackNess;
1: cm := cmDstInvert;
2: cm := cmMergeCopy;

Graphics Programming with GDI and Fonts

CHAPTER 8
81

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 81

LISTING 8.3 Continued

3: cm := cmMergePaint;
4: cm := cmNotSrcCopy;
5: cm := cmNotSrcErase;
6: cm := cmPatCopy;
7: cm := cmPatInvert;
8: cm := cmPatPaint;
9: cm := cmSrcAnd;
10: cm := cmSrcCopy;
11: cm := cmSrcErase;
12: cm := cmSrcInvert;
13: cm := cmSrcPaint;
14: cm := cmWhiteness;
else
cm := cmSrcCopy;

end;

// Assign the selected copymode to Image1’s CopyMode property.
imgCopyTo.Canvas.CopyMode := cm;

GetCanvasRect(imgCopyTo, CopyToRect);
GetCanvasRect(imgCopyFrom, CopyFromRect);

// Now copy Image2 onto Image1 using Image1’s CopyMode setting
imgCopyTo.Canvas.CopyRect(CopyToRect, imgCopyFrom.Canvas, CopyFromRect);

end;

procedure TMainForm.btnDrawImagesClick(Sender: TObject);
begin
DrawImages;

end;

end.

This project initially paints an ellipse on the two TImage components: imgFromImage and
imgToImage. When the Copy button is clicked, imgFromImage is copied onto imgToImage1
using the CopyMode setting specified from cbCopyMode.

Other Properties
TCanvas has other properties that we’ll discuss more as we illustrate how to use them in coding
techniques. This section briefly discusses these properties.

TCanvas.ClipRect represents a drawing region of the canvas to which drawing can be per-
formed. You can use ClipRect to limit the area that can be drawn for a given canvas.

Advanced Techniques

PART II
82

11.65227_Ch08CDx 11/30/99 11:23 AM Page 82

TCanvas.Handle gives you access to the actual device context that the TCanvas instance encap-
sulates. Device contexts are discussed later in this chapter.

TCanvas.PenPos is simply an X,Y coordinate location of the canvas’s pen. You can change the
pen’s position by using the TCanvas methods—MoveTo(), LineTo(), PolyLine(), TextOut(),
and so on.

Using the TCanvas Methods
The TCanvas class encapsulates many GDI drawing functions. With TCanvas’s methods, you
can draw lines and shapes, write text, copy areas from one canvas to another, and even stretch
an area on the canvas to fill a larger area.

Drawing Lines with TCanvas
TCanvas.MoveTo() changes Canvas.Pen’s drawing position on the Canvas’s surface. The fol-
lowing code, for example, moves the drawing position to the upper-left corner of the canvas:

Canvas.MoveTo(0, 0);

TCanvas.LineTo() draws a line on the canvas from its current position to the position specified
by the parameters passed to LineTo(). Use MoveTo() with LineTo() to draw lines anywhere
on the canvas. The following code draws a line from the upper-left position of the form’s client
area to the form’s lower-right corner:

Canvas.MoveTo(0, 0);

Canvas.LineTo(ClientWidth, ClientHeight);

You already saw how to use the MoveTo() and LineTo() methods in the section covering the
TCanvas.Pen property.

Graphics Programming with GDI and Fonts

CHAPTER 8
83

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

CAUTION

Initially, ClipRect represents the entire Canvas drawing area. You might be tempted
to use the ClipRect property to obtain the bounds of a canvas. However, this could
get you into trouble. ClipRect will not always represent the total size of its compo-
nent. It can be less than the Canvas’s display area.

NOTE

Delphi now supports right-to-left-oriented text and control layouts; some controls
(such as the grid) change the canvas coordinate system to flip the X axis. Therefore, if
you’re running Delphi on a Middle East version of Windows, MoveTo(0,0) may go to
the top-right corner of the window.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 83

Drawing Shapes with TCanvas
TCanvas offers various methods for rendering shapes to the canvas: Arc(), Chord(),
Ellipse(), Pie(), Polygon(), PolyLine(), Rectangle(), and RoundRect(). To draw an
ellipse in the form’s client area, you would use Canvas’s Ellipse() method, as shown in the
following code:

Canvas.Ellipse(0, 0, ClientWidth, ClientHeight);

You also can fill an area on the canvas with a brush pattern specified in the
Canvas.Brush.Style property. The following code draws an ellipse and fills the ellipse inte-
rior with the brush pattern specified by Canvas.Brush.Style:

Canvas.Brush.Style := bsCross;

Canvas.Ellipse(0, 0, ClientWidth, ClientHeight);

Additionally, you saw how to add a bitmap pattern to the TCanvas.Brush.Bitmap property,
which it uses to fill an area on the canvas. You can also use a bitmap pattern for filling in
shapes. We’ll demonstrate this later.

Some of Canvas’s other shape-drawing methods take additional or different parameters to
describe the shape being drawn. The PolyLine() method, for example, takes an array of
TPoint records that specify positions, or pixel coordinates, on the canvas to be connected by a
line—sort of like connect the dots. A TPoint is a record in Delphi 5 that signifies an X,Y coor-
dinate. A TPoint is defined as

TPoint = record

X: Integer;

Y: Integer;

end;

A Code Example for Drawing Shapes
Listing 8.4 illustrates using the various shape-drawing methods of TCanvas. You can find this
project on the CD.

LISTING 8.4 An Illustration of Shape-Drawing Operations

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics,
Controls, Forms, Dialogs, Menus;

type
TMainForm = class(TForm)

Advanced Techniques

PART II
84

11.65227_Ch08CDx 11/30/99 11:23 AM Page 84

mmMain: TMainMenu;
mmiShapes: TMenuItem;
mmiArc: TMenuItem;
mmiChord: TMenuItem;
mmiEllipse: TMenuItem;
mmiPie: TMenuItem;
mmiPolygon: TMenuItem;
mmiPolyline: TMenuItem;
mmiRectangle: TMenuItem;
mmiRoundRect: TMenuItem;
N1: TMenuItem;
mmiFill: TMenuItem;
mmiUseBitmapPattern: TMenuItem;
mmiPolyBezier: TMenuItem;
procedure mmiFillClick(Sender: TObject);
procedure mmiArcClick(Sender: TObject);
procedure mmiChordClick(Sender: TObject);
procedure mmiEllipseClick(Sender: TObject);
procedure mmiUseBitmapPatternClick(Sender: TObject);
procedure mmiPieClick(Sender: TObject);
procedure mmiPolygonClick(Sender: TObject);
procedure mmiPolylineClick(Sender: TObject);
procedure mmiRectangleClick(Sender: TObject);
procedure mmiRoundRectClick(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure mmiPolyBezierClick(Sender: TObject);

private
FBitmap: TBitmap;

public
procedure ClearCanvas;
procedure SetFillPattern;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.ClearCanvas;
begin
// Clear the contents of the canvas
with Canvas do

Graphics Programming with GDI and Fonts

CHAPTER 8
85

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 85

LISTING 8.4 Continued

begin
Brush.Style := bsSolid;
Brush.Color := clWhite;
FillRect(ClientRect);

end;
end;

procedure TMainForm.SetFillPattern;
begin
{ Determine if shape is to be draw with a bitmap pattern in which
case load a bitmap. Otherwise, use the brush pattern. }
if mmiUseBitmapPattern.Checked then
Canvas.Brush.Bitmap := FBitmap

else
with Canvas.Brush do
begin
Bitmap := nil;
Color := clBlue;
Style := bsCross;

end;
end;

procedure TMainForm.mmiFillClick(Sender: TObject);
begin
mmiFill.Checked := not mmiFill.Checked;
{ If mmiUseBitmapPattern was checked, uncheck it set the
brush’s bitmap to nil. }

if mmiUseBitmapPattern.Checked then
begin
mmiUseBitmapPattern.Checked := not mmiUseBitmapPattern.Checked;
Canvas.Brush.Bitmap := nil;

end;
end;

procedure TMainForm.mmiUseBitmapPatternClick(Sender: TObject);
begin
{ Set mmiFil1.Checked mmiUseBitmapPattern.Checked. This will cause
the SetFillPattern procedure to be called. However, if
mmiUseBitmapPattern is being set, set Canvas.Brush.Bitmap to
nil. }

mmiUseBitmapPattern.Checked := not mmiUseBitmapPattern.Checked;
mmiFill.Checked := mmiUseBitmapPattern.Checked;
if not mmiUseBitmapPattern.Checked then
Canvas.Brush.Bitmap := nil;

end;

Advanced Techniques

PART II
86

11.65227_Ch08CDx 11/30/99 11:23 AM Page 86

procedure TMainForm.mmiArcClick(Sender: TObject);
begin
ClearCanvas;
with ClientRect do
Canvas.Arc(Left, Top, Right, Bottom, Right, Top, Left, Top);

end;

procedure TMainForm.mmiChordClick(Sender: TObject);
begin
ClearCanvas;
with ClientRect do
begin
if mmiFill.Checked then
SetFillPattern;

Canvas.Chord(Left, Top, Right, Bottom, Right, Top, Left, Top);
end;

end;

procedure TMainForm.mmiEllipseClick(Sender: TObject);
begin
ClearCanvas;
if mmiFill.Checked then
SetFillPattern;

Canvas.Ellipse(0, 0, ClientWidth, ClientHeight);
end;

procedure TMainForm.mmiPieClick(Sender: TObject);
begin
ClearCanvas;
if mmiFill.Checked then
SetFillPattern;

Canvas.Pie(0, 0, ClientWidth, ClientHeight, 50, 5, 300, 50);
end;

procedure TMainForm.mmiPolygonClick(Sender: TObject);
begin
ClearCanvas;
if mmiFill.Checked then
SetFillPattern;

Canvas.Polygon([Point(0, 0), Point(150, 20), Point(230, 130),
Point(40, 120)]);

end;
procedure TMainForm.mmiPolylineClick(Sender: TObject);
begin
ClearCanvas;

Graphics Programming with GDI and Fonts

CHAPTER 8
87

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 87

LISTING 8.4 Continued

Canvas.PolyLine([Point(0, 0), Point(120, 30), Point(250, 120),
Point(140, 200), Point(80, 100), Point(30, 30)]);

end;

procedure TMainForm.mmiRectangleClick(Sender: TObject);
begin
ClearCanvas;
if mmiFill.Checked then
SetFillPattern;

Canvas.Rectangle(10 , 10, 125, 240);
end;

procedure TMainForm.mmiRoundRectClick(Sender: TObject);
begin
ClearCanvas;
if mmiFill.Checked then
SetFillPattern;

Canvas.RoundRect(15, 15, 150, 200, 50, 50);
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
FBitmap := TBitmap.Create;
FBitMap.LoadFromFile(‘Pattern.bmp’);
Canvas.Brush.Bitmap := nil;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
FBitmap.Free;

end;

procedure TMainForm.mmiPolyBezierClick(Sender: TObject);
begin
ClearCanvas;
Canvas.PolyBezier([Point(0, 100), Point(100, 0), Point(200, 50),
Point(300, 100)]);

end;

end.

The main menu event handlers perform the shape-drawing functions. Two public methods,
ClearCanvas() and SetFillPattern(), serve as helper functions for the event handlers. The

Advanced Techniques

PART II
88

11.65227_Ch08CDx 11/30/99 11:23 AM Page 88

first eight menu items result in a shape-drawing function being drawn on the form’s canvas.
The last two items, “Fill” and “Use Bitmap Pattern,” specify whether the shape is to be filled
with a brush pattern or a bitmap pattern, respectively.

You should already be familiar with the ClearCanvas() functionality. The SetFillPattern()
method determines whether to use a brush pattern or a bitmap pattern to fill the shapes drawn by
the other methods. If a bitmap is selected, it’s assigned to the Canvas.Brush.Bitmap property.

All the shape-drawing event handlers call ClearCanvas() to erase what was previously drawn
on the canvas. They then call SetFillPattern() if the mmiFill.Checked property is set to
True. Finally, the appropriate TCanvas drawing routine is called. The comments in the source
discuss the purpose of each function. One method worth mentioning here is
mmiPolylineClick().

When you’re drawing shapes, an enclosed boundary is necessary for filling an area with a
brush or bitmap pattern. Although it’s possible to use PolyLine() and FloodFill() to create
an enclosed boundary filled with a pattern, this method is highly discouraged. PolyLine() is
used specifically for drawing lines. If you want to draw filled polygons, call the
TCanvas.Polygon() method. A one-pixel imperfection in where the Polyline() lines are
drawn will allow the call to FloodFill() to leak out and fill the entire canvas. Drawing filled
shapes with Polygon() uses math techniques that are immune to variations in pixel placement.

Painting Text with TCanvas
TCanvas encapsulates Win32 GDI routines for drawing text to a drawing surface. The follow-
ing sections illustrate how to use these routines as well as how to use Win32 GDI functions
that are not encapsulated by the TCanvas class.

Using the TCanvas Text-Drawing Routines
You used Canvas’s TextOut() function to draw text to the form’s client area in previous chap-
ters. Canvas has some other useful methods for determining the size, in pixels, of text con-
tained in a string using Canvas’s rendered font. These functions are TextWidth() and
TextHeight(). The following code determines the width and height for the string “Delphi 5
-- Yes!”:

var

S: String;

w, h: Integer;

begin

S := ‘Delphi 5 -- Yes!’;

w := Canvas.TextWidth(S);

h := Canvas.TextHeight(S);

end.

Graphics Programming with GDI and Fonts

CHAPTER 8
89

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

11.65227_Ch08CDx 11/30/99 11:23 AM Page 89

The TextRect() method also writes text to the form but only within a rectangle specified by a
TRect structure. The text not contained within the TRect boundaries is clipped. In the line

Canvas.TextRect(R,0,0,’Delphi 3.0 Yes!’);

the string “Delphi 5 Yes!” is written to the canvas at location 0,0. However, the portion of
the string that falls outside the coordinates specified by R, a TRect structure, gets clipped.

Listing 8.5 illustrates using some of the text-drawing routines.

LISTING 8.5 A Unit That Illustrates Text-Drawing Operations

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Menus;

const
DString = ‘Delphi 5 YES!’;
DString2 = ‘Delphi 5 Rocks!’;

type

TMainForm = class(TForm)
mmMain: TMainMenu;
mmiText: TMenuItem;
mmiTextRect: TMenuItem;
mmiTextSize: TMenuItem;
mmiDrawTextCenter: TMenuItem;
mmiDrawTextRight: TMenuItem;
mmiDrawTextLeft: TMenuItem;
procedure mmiTextRectClick(Sender: TObject);
procedure mmiTextSizeClick(Sender: TObject);
procedure mmiDrawTextCenterClick(Sender: TObject);
procedure mmiDrawTextRightClick(Sender: TObject);
procedure mmiDrawTextLeftClick(Sender: TObject);

public
procedure ClearCanvas;

end;

var
MainForm: TMainForm;

implementation

Advanced Techniques

PART II
90

11.65227_Ch08CDx 11/30/99 11:23 AM Page 90

{$R *.DFM}

procedure TMainForm.ClearCanvas;
begin
with Canvas do
begin
Brush.Style := bsSolid;
Brush.Color := clWhite;
FillRect(ClipRect);

end;
end;

procedure TMainForm.mmiTextRectClick(Sender: TObject);
var
R: TRect;
TWidth, THeight: integer;

begin
ClearCanvas;
Canvas.Font.Size := 18;
// Calculate the width/height of the text string
TWidth := Canvas.TextWidth(DString);
THeight := Canvas.TextHeight(DString);

{ Initialize a TRect structure. The height of this rectangle will
be 1/2 the height of the text string height. This is to
illustrate clipping the text by the rectangle drawn }

R := Rect(1, THeight div 2, TWidth + 1, THeight+(THeight div 2));
// Draw a rectangle based on the text sizes
Canvas.Rectangle(R.Left-1, R.Top-1, R.Right+1, R.Bottom+1);
// Draw the Text within the rectangle
Canvas.TextRect(R,0,0,DString);

end;

procedure TMainForm.mmiTextSizeClick(Sender: TObject);
begin
ClearCanvas;
with Canvas do
begin
Font.Size := 18;
TextOut(10, 10, DString);
TextOut(50, 50, ‘TextWidth = ‘+IntToStr(TextWidth(DString)));
TextOut(100, 100, ‘TextHeight = ‘+IntToStr(TextHeight(DString)));

end;
end;

procedure TMainForm.mmiDrawTextCenterClick(Sender: TObject);

Graphics Programming with GDI and Fonts

CHAPTER 8
91

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 91

LISTING 8.5 Continued

var
R: TRect;
begin
ClearCanvas;
Canvas.Font.Size := 10;
R := Rect(10, 10, 80, 100);
// Draw a rectangle to surround the TRect boundaries by 2 pixels }
Canvas.Rectangle(R.Left-2, R.Top-2, R.Right+2, R.Bottom+2);
// Draw text centered by specifying the dt_Center option
DrawText(Canvas.Handle, PChar(DString2), -1, R, dt_WordBreak or dt_Center);

end;

procedure TMainForm.mmiDrawTextRightClick(Sender: TObject);
var
R: TRect;
begin
ClearCanvas;
Canvas.Font.Size := 10;
R := Rect(10, 10, 80, 100);
// Draw a rectangle to surround the TRect boundaries by 2 pixels
Canvas.Rectangle(R.Left-2, R.Top-2, R.Right+2, R.Bottom+2);
// Draw text right-aligned by specifying the dt_Right option
DrawText(Canvas.Handle, PChar(DString2), -1, R, dt_WordBreak or dt_Right);

end;

procedure TMainForm.mmiDrawTextLeftClick(Sender: TObject);
var
R: TRect;
begin
ClearCanvas;
Canvas.Font.Size := 10;
R := Rect(10, 10, 80, 100);
// Draw a rectangle to surround the TRect boundaries by 2 pixels
Canvas.Rectangle(R.Left-2, R.Top-2, R.Right+2, R.Bottom+2);
// Draw text left-aligned by specifying the dt_Left option
DrawText(Canvas.Handle, PChar(DString2), -1, R, dt_WordBreak or dt_Left);

end;

end.

Like the other projects, this project contains the ClearCanvas() method to erase the contents
of the form’s canvas.

The various methods of the main form are event handlers to the form’s main menu.

Advanced Techniques

PART II
92

11.65227_Ch08CDx 11/30/99 11:23 AM Page 92

The mmiTextRectClick() method illustrates how to use the TCanvas.TextRect() method. It
determines the text width and height and draws the text inside a rectangle the height of the
original text size. Its output is shown in Figure 8.10.

Graphics Programming with GDI and Fonts

CHAPTER 8
93

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

FIGURE 8.10
The output of mmiTextRectClick().

mmiTextSizeClick() shows how to determine the size of a text string using the
TCanvas.TextWidth() and TCanvas.TextHeight() methods. Its output is shown in Figure 8.11.

FIGURE 8.11
The output of mmiTextSizeClick().

Using Non-TCanvas GDI Text Output Routines
In the sample project, the mmiDrawTextCenter(), mmiDrawTextRight(), and mmiDrawTextLeft()
methods all illustrate using the Win32 GDI function DrawText(). DrawText() is a GDI function
not encapsulated by the TCanvas class.

This code illustrates how Delphi 5’s encapsulation of Win32 GDI through the TCanvas class
doesn’t prevent you from making use of the abundant Win32 GDI functions. Instead, TCanvas
really just simplifies using the more common routines while still enabling you to call any
Win32 GDI function you might need.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 93

If you look at the various GDI functions such as BitBlt() and DrawText(), you’ll find that
one of the required parameters is a DC, or device context. The device context is accessible
through the canvas’s Handle property. TCanvas.Handle is the DC for that canvas.

Advanced Techniques

PART II
94

Device Contexts
Device contexts (DCs) are handles provided by Win32 to identify a Win32 application’s
connection to an output device such as a monitor, printer, or plotter through a device
driver. In traditional Windows programming, you’re responsible for requesting a DC
whenever you need to paint to a window’s surface; then, when done, you have to
return the DC back to Windows. Delphi 5 simplifies the management of DCs by
encapsulating DC management in the TCanvas class. In fact, TCanvas even caches your
DC, saving it for later so that requests to Win32 occur less often—thus, speeding up
your program’s overall execution.

To see how to use TCanvas with a Win32 GDI function, you used the GDI routine DrawText() to
output text with advanced formatting capabilities. DrawText takes the following five parameters:

Parameter Description

DC Device context of the drawing surface.

Str Pointer to a buffer containing the text to be drawn. This must be a
null-terminated string if the Count parameter is -1.

Count Number of bytes in Str. If this value is -1, Str is a pointer to a
null-terminated string.

Rect Pointer to a TRect structure containing the coordinates of the
rectangle in which the text is formatted.

Format A bit field that contains flags specifying the various formatting
options for Str.

In the example, you initialize a TRect structure using the Rect() function. You’ll use the struc-
ture to draw a rectangle around the text drawn with the DrawText() function. Each of the three
methods passes a different set of formatting flags to the DrawText() function. The
dt_WordBreak and dt_Center formatting flags are passed to the DrawText() function to center
the text in the rectangle specified by the TRect variable R. dt_WordBreak, OR’ed with
dt_Right, is used to right-justify the text in the rectangle. Likewise, dt_WordBreak, OR’ed with
dt_Left, left-justifies the text. The dt_WordBreak specifier word-wraps the text within the
width given by the rectangle parameter and modifies the rectangle height to bind the text after
being word-wrapped.

The output of mmiDrawTextCenterClick() is shown in Figure 8.12.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 94

FIGURE 8.12
The output of mmiDrawTextCenterClick().

TCanvas also has the methods Draw(), Copy(), CopyRect(), and StretchDraw(), which enable
you to draw, copy, expand, and shrink an image or a portion of an image to another canvas.
You’ll use CopyRect() when we show you how to create a paint program later in this chapter.
Also, Chapter 16, “MDI Applications,” shows you how to use the StretchDraw() method to
stretch a bitmap image onto the client area of a form.

Coordinate Systems and Mapping Modes
Most GDI drawing routines require a set of coordinates that specify the location where draw-
ing is to occur. These coordinates are based on a unit of measurement, such as the pixel.
Additionally, GDI routines assume an orientation for the vertical and horizontal axis—that is,
how increasing or decreasing the values of the X,Y coordinates moves the position at which
drawing occurs. Win32 relies on two factors to perform drawing routines. These are the Win32
coordinates system and the mapping mode of the area that’s being drawn to.

Win32 coordinates systems are, generally, no different from any other coordinates system. You
define a coordinate for an X,Y axis, and Win32 plots that location to a point on your drawing
surface based on a given orientation. Win32 uses three coordinates systems to plot areas on
drawing surfaces called the device, logical, and world coordinates. Windows 95 doesn’t sup-
port world transformations (bitmap rotation, shearing, twisting, and so on). We’ll cover the first
two modes in this chapter.

Device Coordinates
Device coordinates, as the name implies, refer to the device on which Win32 is running. Its
measurements are in pixels, and the orientation is such that the horizontal and vertical axes
increase from left to right and top to bottom. For example, if you’re running Windows on a
640×480 pixel display, the coordinates at the top-left corner on your device are (0,0), whereas
the bottom-right coordinates are (639,479).

Graphics Programming with GDI and Fonts

CHAPTER 8
95

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

11.65227_Ch08CDx 11/30/99 11:23 AM Page 95

Logical Coordinates
Logical coordinates refer to the coordinates system used by any area in Win32 that has a
device context or DC such as a screen, a form, or a form’s client area. The difference between
device and logical coordinates is explained in a moment. The screen, form window, and form
client-area coordinates are explained first.

Screen Coordinates
Screen coordinates refer to the display device; therefore, it follows that coordinates are based
on pixel measurements. On a 640×480 display, Screen.Width and Screen.Height are also 640
and 480 pixels, respectively. To obtain a device context for the screen, use the Win32 API func-
tion GetDC(). You must match any function that retrieves a device context with a call to
ReleaseDC(). The following code illustrates this:

var

ScreenDC: HDC;

begin

Screen DC := GetDC(0);

try

{ Do whatever you need to do with ScreenDC }

finally

ReleaseDC(0, ScreenDC);

end;

end;

Form Coordinates
Form coordinates are synonymous with the term window coordinates and refer to an entire
form or window, including the caption bar and borders. Delphi 5 doesn’t provide a DC to the
form’s drawing area through a form’s property, but you can obtain one by using the Win32 API
function GetWindowDC(), as follows:

MyDC := GetWindowDC(Form1.Handle);

This function returns the DC for the window handle passed to it.

Advanced Techniques

PART II
96

NOTE

You can use a TCanvas object to encapsulate the device contexts obtained from the
calls to GetDC() and GetWindowDC(). This enables you to use the TCanvas methods
against those device contexts. You just need to create a TCanvas instance and then
assign the result of GetDC() or GetWindowDC() to the TCanvas.Handle property. This

11.65227_Ch08CDx 11/30/99 11:23 AM Page 96

A form’s client-area coordinates refer to a form’s client area whose DC is the Handle property
of the form’s Canvas and whose measurements are obtained from Canvas.ClientWidth and
Canvas.ClientHeight.

Coordinate Mapping
So why not just use device coordinates instead of logical coordinates when performing draw-
ing routines? Examine the following line of code:

Form1.Canvas.TextOut(0, 0, ‘Upper Left Corner of Form’);

This line places the string at the upper-left corner of the form. The coordinates (0,0) map to the
position (0,0) in the form’s device context—logical coordinates. However, the position (0,0) for
the form is completely different in device coordinates and depends on where the form is
located on your screen. If the form just happens to be located at the upper-left corner of your
screen, the form’s coordinates (0,0) may in fact map to (0,0) in device coordinates. However,
as you move the form to another location, the form’s position (0,0) will map to a completely
different location on the device.

Graphics Programming with GDI and Fonts

CHAPTER 8
97

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

works because the TCanvas object takes ownership of the handle you assign to it,
and it will release the DC when the canvas is freed. The following code illustrates this
technique:

var

c: TCanvas;

begin

c := TCanvas.Create;

try

c.Handle := GetDC(0);

c.TextOut(10, 10, ‘Hello World’);

finally

c.Free;

end;

end;

TIP

You can obtain a point based on device coordinates from the point as it’s repre-
sented in logical coordinates, and vice versa, using the Win32 API functions
ClientToScreen() and ScreenToClient(), respectively. These are also TControl
methods. Note that this works only with screen DCs associated with a visible control.

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 97

Underneath the call to Canvas.TextOut(), Win32 does actually use device coordinates. For
Win32 to do this, it must “map” the logical coordinates of the DC being drawn to, to device
coordinates. It does this using the mapping mode associated with the DC.

Another reason for using logical coordinates is that you might not want to use pixels to per-
form drawing routines. Perhaps you want to draw using inches or millimeters. Win32 enables
you to change the unit with which you perform your drawing routines by changing its mapping
mode, as you’ll see in a moment.

Mapping modes define two attributes for the DC: the translation that Win32 uses to convert
logical units to device units, and the orientation of the X,Y axis for the DC.

Advanced Techniques

PART II
98

For printer or metafile DCs that are not screen based, convert logical pixels to device
pixels by using the LPtoDP() Win32 function. Also see DPtoLP() in the Win32
online help.

NOTE

It might not seem apparent that drawing routines, mapping modes, orientation, and
so on are associated with a DC because, in Delphi 5, you use the canvas to draw.
Remember that TCanvas is a wrapper for a DC. This becomes obvious when compar-
ing Win32 GDI routines to their equivalent Canvas routines. Here are examples:

Canvas routine: Canvas.Rectangle(0, 0, 50, 50));

GDI routine: Rectangle(ADC, 0, 0, 50, 50);

When you’re using the GDI routine, a DC is passed to the function, whereas the can-
vas’s routine uses the DC that it encapsulates.

Win32 enables to you define the mapping mode for a DC or TCanvas.Handle. In fact, Win32
defines eight mapping modes you can use. These mapping modes, along with their attributes,
are shown in Table 8.4. The sample project in the next section illustrates more about mapping
modes.

TABLE 8.4 Win32 Mapping Modes

Mapping Mode Logical Unit Size Orientation (X,Y)

MM_ANISOTROPIC Arbitrary (x <> y) Definable/definable
or (x = y)

MM_HIENGLISH 0.001 inch Right/up

11.65227_Ch08CDx 11/30/99 11:23 AM Page 98

Mapping Mode Logical Unit Size Orientation (X,Y)

MM_HIMETRIC 0.01 mm Right/up

MM_ISOTROPIC arbitrary (x = y) Definable/definable

MM_LOENGLISH 0.01 inch Right/up

MM_LOMETRIC 0.1 mm Right/up

MM_TEXT 1 pixel Right/down

MM_TWIPS 1⁄1440 inch Right/up

Win32 defines a few functions that enable you to change or retrieve information about the
mapping modes for a given DC. Here’s a summary of these functions:

• SetMapMode(). Sets the mapping mode for a given device context.

• GetMapMode(). Gets the mapping mode for a given device context.

• SetWindowOrgEx(). Defines an window origin (point 0,0) for a given DC.

• SetViewPortOrgEx(). Defines a viewport origin (point 0,0) for a given DC.

• SetWindowExtEx(). Defines the X,Y extents for a given window DC. These values are
used in conjunction with the viewport X,Y extents to perform translation from logical
units to device units.

• SetViewPortExtEx(). Defines the X,Y extents for a given viewport DC. These values
are used in conjunction with the window X,Y extents to perform translation from logical
units to device units.

Notice that these functions contain either the word Window or ViewPort. The window or view-
port is simply a means by which Win32 GDI can perform the translation from logical to device
units. The functions with Window refer to the logical coordinate system, whereas those with
ViewPort refer to the device coordinates system. With the exception of the MM_ANISOTROPIC
and MM_ISOTROPIC mapping modes, you don’t have to worry about this much. In fact, Win32
uses the MM_TEXT mapping mode by default.

Graphics Programming with GDI and Fonts

CHAPTER 8
99

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

NOTE

MM_TEXT is the default mapping mode, and it maps logical coordinates 1:1 with
device coordinates. So, you’re always using device coordinates on all DCs, unless you
change the mapping mode. There are some API functions where this is significant:
Font heights, for example, are always specified in device pixels, not logical pixels.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 99

Setting the Mapping Mode
You’ll notice that each mapping mode uses a different logical unit size. In some cases, it might
be convenient to use a different mapping mode for that reason. For example, you might want to
display a line 2 inches wide, regardless of the resolution of your output device. In this instance,
MM_LOENGLISH would be a good candidate for a mapping mode to use.

As an example of drawing a 1-inch rectangle to the form, you first change the mapping mode
for Form1.Canvas.Handle to MM_HIENGLISH or MM_LOENGLISH:

SetMapMode(Canvas.Handle, MM_LOENGLISH);

Then you draw the rectangle using the appropriate units of measurement for a 1-inch rectangle.
Because MM_LOENGLISH uses 1⁄100 inch, you simply pass the value 100, as follows (this will be
illustrated further in a later example):

Canvas.Rectangle(0, 0, 100, 100);

Because MM_TEXT uses pixels as its unit of measurement, you can use the Win32 API function
GetDeviceCaps() to retrieve the information you need to perform translation from pixels to
inches or millimeters. Then you can do your own calculations if you want. This is demon-
strated in Chapter 10, “Printing in Delphi 5.” Mapping modes are a way to let Win32 do the
work for you. Note, however, that you’ll most likely never be able to get exact measurements
for screen displays. There are a few reasons for this: Windows cannot record the display size of
the screen—it must guess. Also, Windows typically inflates display scales to improve text read-
ability on relatively chunky monitors. So, for example, a 10-point font on a screen is about as
tall as a 12- to 14-point font on paper.

Setting the Window/Viewport Extents
The SetWindowExtEx() and SetViewPortExtEx() functions enable you to define how Win32
translates logical units to device units. These functions have an effect only when the window’s
mapping mode is either MM_ANISOTROPIC or MM_ISOTROPIC. They are ignored otherwise.
Therefore, the following lines of code mean that one logical unit requires two device units
(pixels):

SetWindowExtEx(Canvas.Handle, 1, 1, nil)

SetViewportExtEx(Canvas.Handle, 2, 2, nil);

Likewise, these lines of code mean that five logical units require 10 device units:

SetWindowExtEx(Canvas.Handle, 5, 5, nil)

SetViewportExtEx(Canvas.Handle, 10, 10, nil);

Notice that this is exactly the same as the previous example. Both have the same effect of hav-
ing a 1:2 ratio of logical to device units. Here’s an example of how this may be used to change
the units for a form:

Advanced Techniques

PART II
100

11.65227_Ch08CDx 11/30/99 11:23 AM Page 100

SetWindowExtEx(Canvas.Handle, 500, 500, nil)

SetViewportExtEx(Canvas.Handle, ClientWidth, ClientHeight, nil);

Graphics Programming with GDI and Fonts

CHAPTER 8
101

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

NOTE

Changing the mapping mode for a device context represented by a VCL canvas is not
“sticky,” which means that it may revert back to its original mode. Generally, the
map mode must be set within the handler doing the actual drawing.

This enables to you work with a form whose client width and height are 500×500 units (not
pixels) despite any resizing of the form.

The SetWindowOrgEx() and SetViewPortOrgEx() functions enable you to relocate the origin
or position (0,0), which, by default, is at the upper-left corner of a form’s client area in the
MM_TEXT mapping mode. Typically, you just modify the viewport origin. For example, the fol-
lowing line sets up a four-quadrant coordinate system like the one illustrated in Figure 8.13:

SetViewportOrgEx(Canvas.Handle, ClientWidth div 2, ClientHeight div 2, nil);

–y

–x +x

+y

FIGURE 8.13
A four-quadrant coordinate system.

Notice that we pass a nil value as the last parameter in the SetWindowOrgEx(),
SetViewPortOrgEx(), SetWindowExtEx(), and SetViewPortExtEx() functions. The
SetWindowOrgEx() and SetViewPortOrgEx() functions take a TPoint variable that gets
assigned the last origin value so that you can restore the origin for the DC, if necessary. The
SetWindowExtEx() and SetViewPortExtEx() functions take a TSize structure to store the orig-
inal extents for the DC for the same reason.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 101

Mapping Mode Example Project
Listing 8.6 shows you the unit for a project. This project illustrates how to set mapping modes,
window and viewport origins, and windows and viewport extents. It also illustrates how to
draw various shapes using TCanvas methods. You can load this project from the CD.

LISTING 8.6 An Illustration of Mapping Modes

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Menus, DB, DBCGrids, DBTables;

type
TMainForm = class(TForm)
mmMain: TMainMenu;
mmiMappingMode: TMenuItem;
mmiMM_ISOTROPIC: TMenuItem;
mmiMM_ANSITROPIC: TMenuItem;
mmiMM_LOENGLISH: TMenuItem;
mmiMM_HIINGLISH: TMenuItem;
mmiMM_LOMETRIC: TMenuItem;
mmiMM_HIMETRIC: TMenuItem;
procedure FormCreate(Sender: TObject);
procedure mmiMM_ISOTROPICClick(Sender: TObject);
procedure mmiMM_ANSITROPICClick(Sender: TObject);
procedure mmiMM_LOENGLISHClick(Sender: TObject);
procedure mmiMM_HIINGLISHClick(Sender: TObject);
procedure mmiMM_LOMETRICClick(Sender: TObject);
procedure mmiMM_HIMETRICClick(Sender: TObject);

public
MappingMode: Integer;
procedure ClearCanvas;
procedure DrawMapMode(Sender: TObject);

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.ClearCanvas;
begin

Advanced Techniques

PART II
102

11.65227_Ch08CDx 11/30/99 11:23 AM Page 102

with Canvas do
begin
Brush.Style := bsSolid;
Brush.Color := clWhite;
FillRect(ClipRect);

end;
end;

procedure TMainForm.DrawMapMode(Sender: TObject);
var
PrevMapMode: Integer;

begin
ClearCanvas;
Canvas.TextOut(0, 0, (Sender as TMenuItem).Caption);

// Set mapping mode to MM_LOENGLISH and save the previous mapping mode
PrevMapMode := SetMapMode(Canvas.Handle, MappingMode);
try
// Set the viewport org to left, bottom
SetViewPortOrgEx(Canvas.Handle, 0, ClientHeight, nil);
{ Draw some shapes to illustrate drawing shapes with different
mapping modes specified by MappingMode }

Canvas.Rectangle(0, 0, 200, 200);
Canvas.Rectangle(200, 200, 400, 400);
Canvas.Ellipse(200, 200, 400, 400);
Canvas.MoveTo(0, 0);
Canvas.LineTo(400, 400);
Canvas.MoveTo(0, 200);
Canvas.LineTo(200, 0);

finally
// Restore previous mapping mode
SetMapMode(Canvas.Handle, PrevMapMode);

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
MappingMode := MM_TEXT;

end;

procedure TMainForm.mmiMM_ISOTROPICClick(Sender: TObject);
var
PrevMapMode: Integer;

begin
ClearCanvas;
// Set mapping mode to MM_ISOTROPIC and save the previous mapping mode
PrevMapMode := SetMapMode(Canvas.Handle, MM_ISOTROPIC);

Graphics Programming with GDI and Fonts

CHAPTER 8
103

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 103

LISTING 8.6 Continued

try
// Set the window extent to 500 x 500
SetWindowExtEx(Canvas.Handle, 500, 500, nil);
// Set the Viewport extent to the Window’s client area
SetViewportExtEx(Canvas.Handle, ClientWidth, ClientHeight, nil);
// Set the ViewPortOrg to the center of the client area
SetViewportOrgEx(Canvas.Handle, ClientWidth div 2,

ClientHeight div 2, nil);
// Draw a rectangle based on current settings
Canvas.Rectangle(0, 0, 250, 250);
{ Set the viewport extent to a different value, and
draw another rectangle. continue to do this three
more times so that a rectangle is draw to represent
the plane in a four-quadrant square }

SetViewportExtEx(Canvas.Handle, ClientWidth, -ClientHeight, nil);
Canvas.Rectangle(0, 0, 250, 250);

SetViewportExtEx(Canvas.Handle, -ClientWidth, -ClientHeight, nil);
Canvas.Rectangle(0, 0, 250, 250);

SetViewportExtEx(Canvas.Handle, -ClientWidth, ClientHeight, nil);
Canvas.Rectangle(0, 0, 250, 250);
// Draw an ellipse in the center of the client area
Canvas.Ellipse(-50, -50, 50, 50);

finally
// Restore the previous mapping mode
SetMapMode(Canvas.Handle, PrevMapMode);

end;
end;

procedure TMainForm.mmiMM_ANSITROPICClick(Sender: TObject);
var
PrevMapMode: Integer;

begin
ClearCanvas;
// Set the mapping mode to MM_ANISOTROPIC and save the
// previous mapping mode
PrevMapMode := SetMapMode(Canvas.Handle, MM_ANISOTROPIC);
try
// Set the window extent to 500 x 500
SetWindowExtEx(Canvas.Handle, 500, 500, nil);
// Set the Viewport extent to that of the Window’s client area
SetViewportExtEx(Canvas.Handle, ClientWidth, ClientHeight, nil);
// Set the ViewPortOrg to the center of the client area
SetViewportOrgEx(Canvas.Handle, ClientWidth div 2,

ClientHeight div 2, nil);

Advanced Techniques

PART II
104

11.65227_Ch08CDx 11/30/99 11:23 AM Page 104

// Draw a rectangle based on current settings
Canvas.Rectangle(0, 0, 250, 250);
{ Set the viewport extent to a different value, and
draw another rectangle. continue to do this three
more times so that a rectangle is draw to represent
the plane in a four-quadrant square }

SetViewportExtEx(Canvas.Handle, ClientWidth, -ClientHeight, nil);
Canvas.Rectangle(0, 0, 250, 250);

SetViewportExtEx(Canvas.Handle, -ClientWidth, -ClientHeight, nil);
Canvas.Rectangle(0, 0, 250, 250);

SetViewportExtEx(Canvas.Handle, -ClientWidth, ClientHeight, nil);
Canvas.Rectangle(0, 0, 250, 250);
// Draw an ellipse in the center of the client area
Canvas.Ellipse(-50, -50, 50, 50);

finally
//Restore the previous mapping mode
SetMapMode(Canvas.Handle, PrevMapMode);

end;
end;

procedure TMainForm.mmiMM_LOENGLISHClick(Sender: TObject);
begin
MappingMode := MM_LOENGLISH;
DrawMapMode(Sender);

end;

procedure TMainForm.mmiMM_HIINGLISHClick(Sender: TObject);
begin
MappingMode := MM_HIENGLISH;
DrawMapMode(Sender);

end;

procedure TMainForm.mmiMM_LOMETRICClick(Sender: TObject);
begin
MappingMode := MM_LOMETRIC;
DrawMapMode(Sender);

end;

procedure TMainForm.mmiMM_HIMETRICClick(Sender: TObject);
begin
MappingMode := MM_HIMETRIC;
DrawMapMode(Sender);

end;

end.

Graphics Programming with GDI and Fonts

CHAPTER 8
105

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

11.65227_Ch08CDx 11/30/99 11:23 AM Page 105

The main form’s field MappingMode is used to hold the current mapping mode that’s initialized in
the FormCreate() method to MM_TEXT. This variable gets set whenever the MMLOENGLISH1Click(),
MMHIENGLISH1Click(), MMLOMETRIC1Click(), and MMHIMETRIC1Click() methods are invoked
from their respective menus. These methods then call the method DrawMapMode(), which sets the
main form’s mapping mode to that specified by MappingMode. It then draws some shapes and
lines using constant values to specify their sizes. When different mapping modes are used when
drawing the shapes, they’ll be sized differently on the form because the measurements used are
used in the context of the specified mapping mode. Figures 8.14 and 8.15 illustrate
DrawMapMode()’s output for the MM_LOENGLISH and MM_LOMETRIC mapping modes.

Advanced Techniques

PART II
106

FIGURE 8.14
DrawMapMode() output using MM_LOENGLISH mapping mode.

FIGURE 8.15
DrawMapMode() output using MM_LOMETRIC mapping mode.

The mmiMM_ISOTROPICClick() method illustrates drawing with the form’s canvas in the
MM_ISOTROPIC mode. This method first sets the mapping mode and then sets the canvas’s view-
port extent to that of the form’s client area. The origin is then set to the center of the form’s
client area, which allows all four quadrants of the coordinate system to be viewed.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 106

The method then draws a rectangle in each plane and an ellipse in the center of the client area.
Notice how you can use the same values in the parameters passed to Canvas.Rectangle() yet
draw to different areas of the canvas. This is accomplished by passing negative values to the X
parameter, Y parameter, or both parameters passed to SetViewPortExt().

The mmiMM_ANISOTROPICClick() method performs the same operations except it uses the
MM_ANISOTROPIC mode. The purpose of showing both is to illustrate the principle difference
between the MM_ISOTROPIC and MM_ANISOTROPIC mapping modes.

Using the MM_ISOTROPIC mode, Win32 ensures that the two axes use the same physical size
and makes the necessary adjustments to see this is the case. The MM_ANISOTROPIC mode, how-
ever, uses physical dimensions that might not be equal. Figures 8.16 and 8.17 illustrate this
more clearly. You can see that the MM_ISOTROPIC mode ensures equality with the two axes,
whereas the same code using the MM_ANISOTROPIC mode does not ensure equality. In fact, the
MM_ISOTROPIC mode further guarantees that the square logical coordinates will be mapped to
device coordinates such that squareness will be preserved, even if the device coordinates sys-
tem is not square.

Graphics Programming with GDI and Fonts

CHAPTER 8
107

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

FIGURE 8.16
MM_ISOTROPIC mapping mode output.

FIGURE 8.17
MM_ANISOTROPIC mapping mode output.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 107

Creating a Paint Program
The paint program shown here uses several advanced techniques in working with GDI and
graphics images. You can find this project on the CD as DDGPaint.dpr. Listing 8.7 shows the
source code for this project.

LISTING 8.7 The Paint Program: DDGPaint

unit MainFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Buttons, ExtCtrls, ColorGrd, StdCtrls, Menus,
ComCtrls;

const
crMove = 1;

type

TDrawType = (dtLineDraw, dtRectangle, dtEllipse, dtRoundRect,
dtClipRect, dtCrooked);

TMainForm = class(TForm)
sbxMain: TScrollBox;
imgDrawingPad: TImage;
pnlToolBar: TPanel;
sbLine: TSpeedButton;
sbRectangle: TSpeedButton;
sbEllipse: TSpeedButton;
sbRoundRect: TSpeedButton;
pnlColors: TPanel;
cgDrawingColors: TColorGrid;
pnlFgBgBorder: TPanel;
pnlFgBgInner: TPanel;
Bevel1: TBevel;
mmMain: TMainMenu;
mmiFile: TMenuItem;
mmiExit: TMenuItem;
N2: TMenuItem;
mmiSaveAs: TMenuItem;
mmiSaveFile: TMenuItem;
mmiOpenFile: TMenuItem;
mmiNewFile: TMenuItem;
mmiEdit: TMenuItem;

Advanced Techniques

PART II
108

11.65227_Ch08CDx 11/30/99 11:23 AM Page 108

mmiPaste: TMenuItem;
mmiCopy: TMenuItem;
mmiCut: TMenuItem;
sbRectSelect: TSpeedButton;
SaveDialog: TSaveDialog;
OpenDialog: TOpenDialog;
stbMain: TStatusBar;
pbPasteBox: TPaintBox;
sbFreeForm: TSpeedButton;
RgGrpFillOptions: TRadioGroup;
cbxBorder: TCheckBox;
procedure FormCreate(Sender: TObject);
procedure sbLineClick(Sender: TObject);
procedure imgDrawingPadMouseDown(Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);

procedure imgDrawingPadMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

procedure imgDrawingPadMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure cgDrawingColorsChange(Sender: TObject);
procedure mmiExitClick(Sender: TObject);
procedure mmiSaveFileClick(Sender: TObject);
procedure mmiSaveAsClick(Sender: TObject);
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
procedure mmiNewFileClick(Sender: TObject);
procedure mmiOpenFileClick(Sender: TObject);
procedure mmiEditClick(Sender: TObject);
procedure mmiCutClick(Sender: TObject);
procedure mmiCopyClick(Sender: TObject);
procedure mmiPasteClick(Sender: TObject);
procedure pbPasteBoxMouseDown(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure pbPasteBoxMouseMove(Sender: TObject; Shift: TShiftState; X,
Y: Integer);

procedure pbPasteBoxMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

procedure pbPasteBoxPaint(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure RgGrpFillOptionsClick(Sender: TObject);

public
{ Public declarations }
MouseOrg: TPoint; // Stores mouse information
NextPoint: TPoint; // Stores mouse information
Drawing: Boolean; // Drawing is being performed flag
DrawType: TDrawType; // Holds the draw type information: TDrawType
FillSelected, // Fill shapes flag

Graphics Programming with GDI and Fonts

CHAPTER 8
109

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 109

LISTING 8.7 Continued

BorderSelected: Boolean; // Draw Shapes with no border flag
EraseClipRect: Boolean; // Specifies whether or not to erase the

// clipping rectangle
Modified: Boolean; // Image modified flag
FileName: String; // Holds the filename of the image
OldClipViewHwnd: Hwnd; // Holds the old clipboard view window
{ Paste Image variables }
PBoxMoving: Boolean; // PasteBox is moving flag
PBoxMouseOrg: TPoint; // Stores mouse coordinates for PasteBox
PasteBitMap: TBitmap; // Stores a bitmap image of the pasted data
Pasted: Boolean; // Data pasted flag
LastDot: TPoint; // Hold the TPoint coordinate for performing

// free line drawing
procedure DrawToImage(TL, BR: TPoint; PenMode: TPenMode);
{ This procedure paints the image specified by the DrawType field
to imgDrawingPad }

procedure SetDrawingStyle;
{ This procedure sets various Pen/Brush styles based on values
specified by the form’s controls. The Panels and color grid is
used to set these values }

procedure CopyPasteBoxToImage;
{ This procedure copies the data pasted from the Windows clipboard
onto the main image component imgDrawingPad }

procedure WMDrawClipBoard(var Msg: TWMDrawClipBoard);
message WM_DRAWCLIPBOARD;

{ This message handler captures the WM_DRAWCLIPBOARD messages
which is sent to all windows that have been added to the clipboard
viewer chain. An application can add itself to the clipboard viewer
chain by using the SetClipBoardViewer() Win32 API function as
is done in FormCreate() }

procedure CopyCut(Cut: Boolean);
{ This method copies a portion of the main image, imgDrawingPad,

to the Window’s clipboard. }
end;

var
MainForm: TMainForm;

implementation
uses ClipBrd, Math;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
{ This method sets the form’s field to their default values. It then

Advanced Techniques

PART II
110

11.65227_Ch08CDx 11/30/99 11:23 AM Page 110

creates a bitmap for the imgDrawingPad. This is the image on which
drawing is done. Finally, it adds this application as part of the
Windows clipboard viewer chain by using the SetClipBoardViewer()
function. This makes enables the form to get WM_DRAWCLIPBOARD messages
which are sent to all windows in the clipboard viewer chain whenever
the clipboard data is modified. }

begin
Screen.Cursors[crMove] := LoadCursor(hInstance, ‘MOVE’);

FillSelected := False;
BorderSelected := True;

Modified := False;
FileName := ‘’;
Pasted := False;
pbPasteBox.Enabled := False;

// Create a bitmap for imgDrawingPad and set its boundaries
with imgDrawingPad do
begin
SetBounds(0, 0, 600, 400);
Picture.Graphic := TBitMap.Create;
Picture.Graphic.Width := 600;
Picture.Graphic.Height := 400;

end;
// Now create a bitmap image to hold pasted data
PasteBitmap := TBitmap.Create;
pbPasteBox.BringToFront;
{ Add the form to the Windows clipboard viewer chain. Save the handle
of the next window in the chain so that it may be restored by the
ChangeClipboardChange() Win32 API function in this form’s
FormDestroy() method. }

OldClipViewHwnd := SetClipBoardViewer(Handle);
end;

procedure TMainForm.WMDrawClipBoard(var Msg: TWMDrawClipBoard);
begin
{ This method will be called whenever the clipboard data
has changed. Because the main form was added to the clipboard
viewer chain, it will receive the WM_DRAWCLIPBOARD message
indicating that the clipboard’s data was changed. }

inherited;
{ Make sure that the data contained on the clipboard is actually
bitmap data. }

if ClipBoard.HasFormat(CF_BITMAP) then
mmiPaste.Enabled := True

Graphics Programming with GDI and Fonts

CHAPTER 8
111

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 111

LISTING 8.7 Continued

else
mmiPaste.Enabled := False;

Msg.Result := 0;
end;

procedure TMainForm.DrawToImage(TL, BR: TPoint; PenMode: TPenMode);
{ This method performs the specified drawing operation. The
drawing operation is specified by the DrawType field }

begin
with imgDrawingPad.Canvas do
begin
Pen.Mode := PenMode;

case DrawType of
dtLineDraw:
begin
MoveTo(TL.X, TL.Y);
LineTo(BR.X, BR.Y);

end;
dtRectangle:
Rectangle(TL.X, TL.Y, BR.X, BR.Y);

dtEllipse:
Ellipse(TL.X, TL.Y, BR.X, BR.Y);

dtRoundRect:
RoundRect(TL.X, TL.Y, BR.X, BR.Y,
(TL.X - BR.X) div 2, (TL.Y - BR.Y) div 2);

dtClipRect:
Rectangle(TL.X, TL.Y, BR.X, BR.Y);

end;
end;

end;

procedure TMainForm.CopyPasteBoxToImage;
{ This method copies the image pasted from the Windows clipboard onto
imgDrawingPad. It first erases any bounding rectangle drawn by PaintBox
component, pbPasteBox. It then copies the data from pbPasteBox onto
imgDrawingPad at the location where pbPasteBox has been dragged
over imgDrawingPad. The reason we don’t copy the contents of
pbPasteBox’s canvas and use PasteBitmap’s canvas instead, is because
when a portion of pbPasteBox is dragged out of the viewable area,
Windows does not paint the portion pbPasteBox not visible. Therefore,
it is necessary to the pasted bitmap from the off-screen bitmap }

var

Advanced Techniques

PART II
112

11.65227_Ch08CDx 11/30/99 11:23 AM Page 112

SrcRect, DestRect: TRect;
begin
// First, erase the rectangle drawn by pbPasteBox
with pbPasteBox do
begin
Canvas.Pen.Mode := pmNotXOR;
Canvas.Pen.Style := psDot;
Canvas.Brush.Style := bsClear;
Canvas.Rectangle(0, 0, Width, Height);
DestRect := Rect(Left, Top, Left+Width, Top+Height);
SrcRect := Rect(0, 0, Width, Height);

end;
{ Here we must use the PasteBitmap instead of the pbPasteBox because
pbPasteBox will clip anything outside if the viewable area. }

imgDrawingPad.Canvas.CopyRect(DestRect, PasteBitmap.Canvas, SrcRect);
pbPasteBox.Visible := false;
pbPasteBox.Enabled := false;
Pasted := False; // Pasting operation is complete

end;

procedure TMainForm.imgDrawingPadMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
Modified := True;
// Erase the clipping rectangle if one has been drawn
if (DrawType = dtClipRect) and EraseClipRect then
DrawToImage(MouseOrg, NextPoint, pmNotXOR)

else if (DrawType = dtClipRect) then
EraseClipRect := True; // Re-enable cliprect erasing

{ If an bitmap was pasted from the clipboard, copy it to the
image and remove the PaintBox. }

if Pasted then
CopyPasteBoxToImage;

Drawing := True;
// Save the mouse information
MouseOrg := Point(X, Y);
NextPoint := MouseOrg;
LastDot := NextPoint; // Lastdot is updated as the mouse moves
imgDrawingPad.Canvas.MoveTo(X, Y);

end;

procedure TMainForm.imgDrawingPadMouseMove(Sender: TObject;
Shift: TShiftState; X, Y: Integer);

{ This method determines the drawing operation to be performed and

Graphics Programming with GDI and Fonts

CHAPTER 8
113

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 113

LISTING 8.7 Continued

either performs free form line drawing, or calls the
DrawToImage method which draws the specified shape }

begin
if Drawing then
begin
if DrawType = dtCrooked then
begin
imgDrawingPad.Canvas.MoveTo(LastDot.X, LastDot.Y);
imgDrawingPad.Canvas.LineTo(X, Y);
LastDot := Point(X,Y);

end
else begin
DrawToImage(MouseOrg, NextPoint, pmNotXor);
NextPoint := Point(X, Y);
DrawToImage(MouseOrg, NextPoint, pmNotXor)

end;
end;
// Update the status bar with the current mouse location
stbMain.Panels[1].Text := Format(‘X: %d, Y: %D’, [X, Y]);

end;

procedure TMainForm.imgDrawingPadMouseUp(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
if Drawing then
{ Prevent the clipping rectangle from destroying the images already
on the image }
if not (DrawType = dtClipRect) then
DrawToImage(MouseOrg, Point(X, Y), pmCopy);

Drawing := False;
end;

procedure TMainForm.sbLineClick(Sender: TObject);
begin
// First erase the cliprect if current drawing type
if DrawType = dtClipRect then

DrawToImage(MouseOrg, NextPoint, pmNotXOR);

{ Now set the DrawType field to that specified by the TSpeedButton
invoking this method. The TSpeedButton’s Tag values match a
specific TDrawType value which is why the typecasting below
successfully assigns a valid TDrawType value to the DrawType field. }

if Sender is TSpeedButton then
DrawType := TDrawType(TSpeedButton(Sender).Tag);

Advanced Techniques

PART II
114

11.65227_Ch08CDx 11/30/99 11:23 AM Page 114

// Now make sure the dtClipRect style doesn’t erase previous drawings
if DrawType = dtClipRect then begin
EraseClipRect := False;

end;
// Set the drawing style
SetDrawingStyle;

end;

procedure TMainForm.cgDrawingColorsChange(Sender: TObject);
{ This method draws the rectangle representing fill and border colors
to indicate the users selection of both colors. pnlFgBgInner and
pnlFgBgBorder are TPanels arranged one on to of the other for the
desired effect }

begin
pnlFgBgBorder.Color := cgDrawingColors.ForeGroundColor;
pnlFgBgInner.Color := cgDrawingColors.BackGroundColor;
SetDrawingStyle;

end;

procedure TMainForm.SetDrawingStyle;
{ This method sets the various drawing styles based on the selections

on the pnlFillStyle TPanel for Fill and Border styles }
begin
with imgDrawingPad do
begin
if DrawType = dtClipRect then
begin
Canvas.Pen.Style := psDot;
Canvas.Brush.Style := bsClear;
Canvas.Pen.Color := clBlack;

end

else if FillSelected then
Canvas.Brush.Style := bsSolid

else
Canvas.Brush.Style := bsClear;

if BorderSelected then
Canvas.Pen.Style := psSolid

else
Canvas.Pen.Style := psClear;

if FillSelected and (DrawType <> dtClipRect) then
Canvas.Brush.Color := pnlFgBgInner.Color;

Graphics Programming with GDI and Fonts

CHAPTER 8
115

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 115

LISTING 8.7 Continued

if DrawType <> dtClipRect then
Canvas.Pen.Color := pnlFgBgBorder.Color;

end;
end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close; // Terminate application

end;

procedure TMainForm.mmiSaveFileClick(Sender: TObject);
{ This method saves the image to the file specified by FileName. If
FileName is blank, however, SaveAs1Click is called to get a filename.}

begin
if FileName = ‘’ then
mmiSaveAsClick(nil)

else begin
imgDrawingPad.Picture.SaveToFile(FileName);
stbMain.Panels[0].Text := FileName;
Modified := False;

end;
end;

procedure TMainForm.mmiSaveAsClick(Sender: TObject);
{ This method launches SaveDialog to get a file name to which
the image’s contents will be saved. }

begin
if SaveDialog.Execute then
begin
FileName := SaveDialog.FileName; // Store the filename
mmiSaveFileClick(nil)

end;
end;

procedure TMainForm.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

{ If the user attempts to close the form before saving the image, they
are prompted to do so in this method. }

var
Rslt: Word;

begin
CanClose := False; // Assume fail.
if Modified then begin
Rslt := MessageDlg(‘File has changed, save?’,
mtConfirmation, mbYesNOCancel, 0);

Advanced Techniques

PART II
116

11.65227_Ch08CDx 11/30/99 11:23 AM Page 116

case Rslt of
mrYes: mmiSaveFileClick(nil);
mrNo: ; // no need to do anything.
mrCancel: Exit;

end
end;
CanClose := True; // Allow use to close application

end;

procedure TMainForm.mmiNewFileClick(Sender: TObject);
{ This method erases any drawing on the main image after prompting the
user to save it to a file in which case the mmiSaveFileClick event handler
is called. }

var
Rslt: Word;

begin
if Modified then begin
Rslt := MessageDlg(‘File has changed, save?’, mtConfirmation,

mbYesNOCancel, 0);
case Rslt of
mrYes: mmiSaveFileClick(nil);
mrNo: ; // no need to do anything.
mrCancel: Exit;

end
end;

with imgDrawingPad.Canvas do begin
Brush.Style := bsSolid;
Brush.Color := clWhite; // clWhite erases the image
FillRect(ClipRect); // Erase the image
FileName := ‘’;
stbMain.Panels[0].Text := FileName;

end;
SetDrawingStyle; // Restore the previous drawing style
Modified := False;

end;

procedure TMainForm.mmiOpenFileClick(Sender: TObject);
{ This method opens a bitmap file specified by OpenDialog.FileName. If
a file was already created, the user is prompted to save
the file in which case the mmiSaveFileClick event is called. }

var
Rslt: Word;

begin

if OpenDialog.Execute then

Graphics Programming with GDI and Fonts

CHAPTER 8
117

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 117

LISTING 8.7 Continued

begin

if Modified then begin
Rslt := MessageDlg(‘File has changed, save?’,
mtConfirmation, mbYesNOCancel, 0);

case Rslt of
mrYes: mmiSaveFileClick(nil);
mrNo: ; // no need to do anything.
mrCancel: Exit;

end
end;

imgDrawingPad.Picture.LoadFromFile(OpenDialog.FileName);
FileName := OpenDialog.FileName;
stbMain.Panels[0].Text := FileName;
Modified := false;

end;

end;

procedure TMainForm.mmiEditClick(Sender: TObject);
{ The timer is used to determine if an area on the main image is
surrounded by a bounding rectangle. If so, then the Copy and Cut
menu items are enabled. Otherwise, they are disabled. }

var
IsRect: Boolean;

begin
IsRect := (MouseOrg.X <> NextPoint.X) and (MouseOrg.Y <> NextPoint.Y);
if (DrawType = dtClipRect) and IsRect then
begin
mmiCut.Enabled := True;
mmiCopy.Enabled := True;

end
else begin
mmiCut.Enabled := False;
mmiCopy.Enabled := False;

end;
end;

procedure TMainForm.CopyCut(Cut: Boolean);
{ This method copies a portion of the main image to the clipboard.
The portion copied is specified by a bounding rectangle
on the main image. If Cut is true, the area in the bounding rectangle
is erased. }

var

Advanced Techniques

PART II
118

11.65227_Ch08CDx 11/30/99 11:23 AM Page 118

CopyBitMap: TBitmap;
DestRect, SrcRect: TRect;
OldBrushColor: TColor;

begin
CopyBitMap := TBitMap.Create;
try
{ Set CopyBitmap’s size based on the coordinates of the
bounding rectangle }

CopyBitMap.Width := Abs(NextPoint.X - MouseOrg.X);
CopyBitMap.Height := Abs(NextPoint.Y - MouseOrg.Y);
DestRect := Rect(0, 0, CopyBitMap.Width, CopyBitmap.Height);
SrcRect := Rect(Min(MouseOrg.X, NextPoint.X)+1,

Min(MouseOrg.Y, NextPoint.Y)+1,
Max(MouseOrg.X, NextPoint.X)-1,
Max(MouseOrg.Y, NextPoint.Y)-1);

{ Copy the portion of the main image surrounded by the bounding
rectangle to the Windows clipboard }

CopyBitMap.Canvas.CopyRect(DestRect, imgDrawingPad.Canvas, SrcRect);
{ Previous versions of Delphi required the bitmap’s Handle property
to be touched for the bitmap to be made available. This was due to
Delphi’s caching of bitmapped images. The step below may not be
required. }

CopyBitMap.Handle;
// Assign the image to the clipboard.
ClipBoard.Assign(CopyBitMap);
{ If cut was specified the erase the portion of the main image
surrounded by the bounding Rectangle }

if Cut then
with imgDrawingPad.Canvas do
begin
OldBrushColor := Brush.Color;
Brush.Color := clWhite;
try
FillRect(SrcRect);

finally
Brush.Color := OldBrushColor;

end;
end;

finally
CopyBitMap.Free;

end;
end;

procedure TMainForm.mmiCutClick(Sender: TObject);
begin
CopyCut(True);

Graphics Programming with GDI and Fonts

CHAPTER 8
119

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 119

LISTING 8.7 Continued

end;

procedure TMainForm.mmiCopyClick(Sender: TObject);
begin
CopyCut(False);

end;

procedure TMainForm.mmiPasteClick(Sender: TObject);
{ This method pastes the data contained in the clipboard to the
paste bitmap. The reason it is pasted to the PasteBitmap, an off-

image elsewhere on to the main image. This is done by having the pbPasteBox,
a TPaintBox component, draw the contents of PasteImage. When the
user if done positioning the pbPasteBox, the contents of TPasteBitmap
is drawn to imgDrawingPad at the location specified by pbPasteBox’s
location.}

begin
{ Clear the bounding rectangle }

pbPasteBox.Enabled := True;
if DrawType = dtClipRect then
begin
DrawToImage(MouseOrg, NextPoint, pmNotXOR);
EraseClipRect := False;

end;

PasteBitmap.Assign(ClipBoard); // Grab the data from the clipboard
Pasted := True;
// Set position of pasted image to top left
pbPasteBox.Left := 0;
pbPasteBox.Top := 0;
// Set the size of pbPasteBox to match the size of PasteBitmap
pbPasteBox.Width := PasteBitmap.Width;
pbPasteBox.Height := PasteBitmap.Height;

pbPasteBox.Visible := True;
pbPasteBox.Invalidate;

end;

procedure TMainForm.pbPasteBoxMouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

{ This method set’s up pbPasteBox, a TPaintBox for being moved by the
user when the left mouse button is held down }

begin
if Button = mbLeft then

Advanced Techniques

PART II
120

11.65227_Ch08CDx 11/30/99 11:23 AM Page 120

begin
PBoxMoving := True;
Screen.Cursor := crMove;
PBoxMouseOrg := Point(X, Y);

end
else
PBoxMoving := False;

end;

procedure TMainForm.pbPasteBoxMouseMove(Sender: TObject; Shift: TShiftState;
X, Y: Integer);

{ This method moves pbPasteBox if the PBoxMoving flag is true indicating
that the user is holding down the left mouse button and is dragging
PaintBox }

begin
if PBoxMoving then
begin
pbPasteBox.Left := pbPasteBox.Left + (X - PBoxMouseOrg.X);
pbPasteBox.Top := pbPasteBox.Top + (Y - PBoxMouseOrg.Y);

end;
end;

procedure TMainForm.pbPasteBoxMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);

begin
{ This method disables moving of pbPasteBox when the user lifts the left
mouse button }
if PBoxMoving then
begin

PBoxMoving := False;
Screen.Cursor := crDefault;

end;
pbPasteBox.Refresh; // Redraw the pbPasteBox.

end;

procedure TMainForm.pbPasteBoxPaint(Sender: TObject);
{ The paintbox is drawn whenever the user selects the Paste option
form the menu. pbPasteBox draws the contents of PasteBitmap which
holds the image gotten from the clipboard. The reason for drawing
PasteBitmap’s contents in pbPasteBox, a TPaintBox class, is so that
the user can also move the object around on top of the main image.
In other words, pbPasteBox can be moved, and hidden when necessary. }

var
DestRect, SrcRect: TRect;

begin
// Display the paintbox only if a pasting operation occurred.

Graphics Programming with GDI and Fonts

CHAPTER 8
121

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 121

LISTING 8.7 Continued

if Pasted then
begin
{ First paint the contents of PasteBitmap using canvas’s CopyRect
but only if the paintbox is not being moved. This reduces
flicker }

if not PBoxMoving then
begin
DestRect := Rect(0, 0, pbPasteBox.Width, pbPasteBox.Height);
SrcRect := Rect(0, 0, PasteBitmap.Width, PasteBitmap.Height);
pbPasteBox.Canvas.CopyRect(DestRect, PasteBitmap.Canvas, SrcRect);

end;
{ Now copy a bounding rectangle to indicate that pbPasteBox is
a moveable object. We use a pen mode of pmNotXOR because we
must erase this rectangle when the user copies PaintBox’s
contents to the main image and we must preserve the original
contents. }

pbPasteBox.Canvas.Pen.Mode := pmNotXOR;
pbPasteBox.Canvas.Pen.Style := psDot;
pbPasteBox.Canvas.Brush.Style := bsClear;
pbPasteBox.Canvas.Rectangle(0, 0, pbPasteBox.Width,
pbPasteBox.Height);

end;
end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
// Remove the form from the clipboard chain
ChangeClipBoardChain(Handle, OldClipViewHwnd);
PasteBitmap.Free; // Free the PasteBitmap instance

end;

procedure TMainForm.RgGrpFillOptionsClick(Sender: TObject);
begin
FillSelected := RgGrpFillOptions.ItemIndex = 0;
BorderSelected := cbxBorder.Checked;
SetDrawingStyle;

end;

end.

How the Paint Program Works
The paint program is actually quite a bit of code. Because it would be difficult to explain how
it works outside of the code, we’ve added ample comments to the source. We’ll describe the
general functionality of the paint program here. The main form is shown in Figure 8.18.

Advanced Techniques

PART II
122

11.65227_Ch08CDx 11/30/99 11:23 AM Page 122

FIGURE 8.18
The main form for the paint program.

Graphics Programming with GDI and Fonts

CHAPTER 8
123

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

NOTE

Notice that a TImage component is used as a drawing surface for the paint program.
Keep in mind that this can only be the case if the image uses a TBitmap object.

The main form contains a main image component, imgDrawingPad, which is placed on a
TScrollBox component. imgDrawingPad is where the user performs drawing. The selected
speed button on the form’s toolbar specifies the type of drawing that the user performs.

The user can draw lines, rectangles, ellipses, and rounded rectangles as well as perform free-
form drawing. Additionally, a portion of the main image can be selected and copied to the
Windows Clipboard so that it can be pasted into another application that can handle bitmap
data. Likewise, the paint program can accept bitmap data from the Windows Clipboard.

TPanel Techniques
The fill style and border type are specified by the Fill Options radio group. The fill and border
colors are set using the color grid in the ColorPanel shown in Figure 8.18.

Clipboard Pasting of Bitmap Data
To paste data from the Clipboard, you use an offscreen bitmap, PasteBitMap, to hold the
pasted data. A TPaintBox component, pbPasteBox, then draws the data from PasteBitMap.
The reason for using a TPaintBox component for drawing the contents of PasteBitMap is so
the user can move pbPasteBox to any location on the main image to designate where the
pasted data is to be copied to the main image.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 123

Attaching to the Win32 Clipboard Viewer Chain
Another technique shown by the paint program is how an application can attach itself to the
Win32 Clipboard viewer chain. This is done in the FormCreate() method by the call to the
Win32 API function SetClipboardViewer(). This function takes the handle of the window
attaching itself to the chain and returns the handle to the next window in the chain. The return
value must be stored so that when the application shuts down, it can restore the previous state
of the chain using ChangeClipboardChain(), which takes the handle being removed and the
saved handle. The paint program restores the chain in the main form’s FormDestroy() method.
When an application is attached to the Clipboard viewer chain, it receives the WM_DRAWCLIP-
BOARD messages whenever the data on the Clipboard is modified. You take advantage of this by
capturing this message and enabling the Paste menu item if the changed data in the Clipboard
is bitmap data. This is done in the WMDrawClipBoard() method.

Bitmap Copying
Bitmap copy operations are performed in the CopyCut(), pbPasteBoxPaint(), and
CopyPasteBoxToImage() methods. The CopyCut() method copies a portion of the main image
selected by a bounding rectangle to the Clipboard and then erases the bounded area if the Cut
parameter passed to it is True. Otherwise, it leaves the area intact.

PbPasteBoxPaint() copies the contents of the offscreen bitmap to pbPasteBox.Canvas but
only when pbPasteBox is not being moved. This helps reduce flicker as the user moves
pbPasteBox.

CopyPasteBoxToImage() copies the contents of the offscreen bitmap to the main image
imgDrawingPad at the location specified by pbPasteBox.

Paint Program Comments
As mentioned earlier, much of the functionality of the paint program is documented in the
code’s commentary. It would be a good idea to read through the source and comments and step
through the code so that you can gain a good understanding of what’s happening in the pro-
gram.

Performing Animation with Graphics Programming
This section demonstrates how you can achieve simple sprite animation by mixing Delphi 5
classes with Win32 GDI functions. The animation project resides on the CD as Animate.dpr.
Listing 8.8 shows the main form, which contains the main form functionality.

LISTING 8.8 The Animation Project’s Main Form

unit MainFrm;

interface

Advanced Techniques

PART II
124

11.65227_Ch08CDx 11/30/99 11:23 AM Page 124

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Menus, Stdctrls, AppEvnts;

{$R SPRITES.RES } // Link in the bitmaps

type

TSprite = class
private
FWidth: integer;
FHeight: integer;
FLeft: integer;
FTop: integer;
FAndImage, FOrImage: TBitMap;

public
property Top: Integer read FTop write FTop;
property Left: Integer read FLeft write FLeft;
property Width: Integer read FWidth write FWidth;
property Height: Integer read FHeight write FHeight;
constructor Create;
destructor Destroy; override;

end;

TMainForm = class(TForm)
mmMain: TMainMenu;
mmiFile: TMenuItem;
mmiSlower: TMenuItem;
mmiFaster: TMenuItem;
N1: TMenuItem;
mmiExit: TMenuItem;
appevMain: TApplicationEvents;
procedure FormCreate(Sender: TObject);
procedure FormPaint(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure mmiExitClick(Sender: TObject);
procedure mmiSlowerClick(Sender: TObject);
procedure mmiFasterClick(Sender: TObject);
procedure appevMainIdle(Sender: TObject; var Done: Boolean);

private
BackGnd1, BackGnd2: TBitMap;
Sprite: TSprite;
GoLeft,GoRight,GoUp,GoDown: boolean;
FSpeed, FSpeedIndicator: Integer;
procedure DrawSprite;

end;

Graphics Programming with GDI and Fonts

CHAPTER 8
125

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 125

LISTING 8.8 Continued

const

BackGround = ‘BACK2.BMP’;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

constructor TSprite.Create;
begin
inherited Create;
{ Create the bitmaps to hold the sprite images that will
be used for performing the AND/OR operation to create animation }

FAndImage := TBitMap.Create;
FAndImage.LoadFromResourceName(hInstance, ‘AND’);

FOrImage := TBitMap.Create;
FOrImage.LoadFromResourceName(hInstance, ‘OR’);

Left := 0;
Top := 0;
Height := FAndImage.Height;
Width := FAndImage.Width;

end;

destructor TSprite.Destroy;
begin
FAndImage.Free;
FOrImage.Free;

end;

procedure TMainForm.FormCreate(Sender: TObject);
begin
// Create the original background image
BackGnd1 := TBitMap.Create;
with BackGnd1 do
begin
LoadFromResourceName(hInstance, ‘BACK’);
Parent := nil;
SetBounds(0, 0, Width, Height);

end;

Advanced Techniques

PART II
126

11.65227_Ch08CDx 11/30/99 11:23 AM Page 126

// Create a copy of the background image
BackGnd2 := TBitMap.Create;
BackGnd2.Assign(BackGnd1);

// Create a sprite image
Sprite := TSprite.Create;

// Initialize the direction variables
GoRight := true;
GoDown := true;
GoLeft := false;
GoUp := false;

FSpeed := 0;
FSpeedIndicator := 0;

{ Set the application’s OnIdle event to MyIdleEvent which will start
the sprite moving }

// Adjust the form’s client width/height
ClientWidth := BackGnd1.Width;
ClientHeight := BackGnd1.Height;

end;

procedure TMainForm.FormDestroy(Sender: TObject);
begin
// Free all objects created in the form’s create constructor
BackGnd1.Free;
BackGnd2.Free;
Sprite.Free;

end;

procedure TMainForm.DrawSprite;
var
OldBounds: TRect;

begin

// Save the sprite’s bounds in OldBounds
with OldBounds do
begin
Left := Sprite.Left;
Top := Sprite.Top;
Right := Sprite.Width;

Graphics Programming with GDI and Fonts

CHAPTER 8
127

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 127

LISTING 8.8 Continued

Bottom := Sprite.Height;
end;

{ Now change the sprites bounds so that it moves in one direction
or changes direction when it comes in contact with the form’s
boundaries }

with Sprite do
begin
if GoLeft then
if Left > 0 then

Left := Left - 1
else begin

GoLeft := false;
GoRight := true;

end;

if GoDown then
if (Top + Height) < self.ClientHeight then

Top := Top + 1
else begin
GoDown := false;
GoUp := true;

end;

if GoUp then
if Top > 0 then

Top := Top - 1
else begin
GoUp := false;
GoDown := true;

end;

if GoRight then
if (Left + Width) < self.ClientWidth then
Left := Left + 1

else begin
GoRight := false;
GoLeft := true;

end;
end;

{ Erase the original drawing of the sprite on BackGnd2 by copying
a rectangle from BackGnd1 }

with OldBounds do
BitBlt(BackGnd2.Canvas.Handle, Left, Top, Right, Bottom,

BackGnd1.Canvas.Handle, Left, Top, SrcCopy);

Advanced Techniques

PART II
128

11.65227_Ch08CDx 11/30/99 11:23 AM Page 128

{ Now draw the sprite onto the off-screen bitmap. By performing the
drawing in an off-screen bitmap, the flicker is eliminated. }
with Sprite do
begin
{ Now create a black hole where the sprite first existed by And-ing
the FAndImage onto BackGnd2 }

BitBlt(BackGnd2.Canvas.Handle, Left, Top, Width, Height,
FAndImage.Canvas.Handle, 0, 0, SrcAnd);

// Now fill in the black hole with the sprites original colors
BitBlt(BackGnd2.Canvas.Handle, Left, Top, Width, Height,

FOrImage.Canvas.Handle, 0, 0, SrcPaint);
end;

{ Copy the sprite at its new location to the form’s Canvas. A
rectangle slightly larger than the sprite is needed
to effectively erase the sprite by over-writing it, and draw the
new sprite at the new location with a single BitBlt call }

with OldBounds do
BitBlt(Canvas.Handle, Left - 2, Top - 2, Right + 2, Bottom + 2,

BackGnd2.Canvas.Handle, Left - 2, Top - 2, SrcCopy);

end;

procedure TMainForm.FormPaint(Sender: TObject);
begin
// Draw the background image whenever the form gets painted
BitBlt(Canvas.Handle, 0, 0, ClientWidth, ClientHeight,

BackGnd1.Canvas.Handle, 0, 0, SrcCopy);
end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.mmiSlowerClick(Sender: TObject);
begin
Inc(FSpeedIndicator, 100);

end;

procedure TMainForm.mmiFasterClick(Sender: TObject);
begin
if FSpeedIndicator >= 100 then
Dec(FSpeedIndicator, 100)

else
FSpeedIndicator := 0;

Graphics Programming with GDI and Fonts

CHAPTER 8
129

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 129

LISTING 8.8 Continued

end;

procedure TMainForm.appevMainIdle(Sender: TObject; var Done: Boolean);
begin
if FSpeed >= FSpeedIndicator then
begin
DrawSprite;
FSpeed := 0;

end
else
inc(FSpeed);

Done := False;
end;

end.

The animation project consists of a background image on which a sprite, a flying saucer, is
drawn and moved about the background’s client area. The background is represented by a
bitmap consisting of scattered stars (see Figure 8.19).

Advanced Techniques

PART II
130

FIGURE 8.19
The background of the animation project.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 130

The sprite is made up of two 64×32 bitmaps. More on these bitmaps later; for now, we’ll dis-
cuss what goes on in the source code.

The unit defines a TSprite class. TSprite contains the fields that hold the sprite’s location on
the background image and two TBitmap objects to hold each of the sprite bitmaps. The
TSprite.Create constructor creates both TBitmap instances and loads them with the actual
bitmaps. Both the sprite bitmaps and the background bitmap are kept in a resource file that you
link to the project by including the following statement in the main unit:

{$R SPRITES.RES }

After the bitmap is loaded, the sprite’s boundaries are set. The TSprite.Done destructor frees
both bitmap instances.

The main form contains two TBitmap objects, a TSprite object, and direction indicators to
specify the direction of the sprite’s motion. Additionally, the main form defines another
method, DrawSprite(), which has the sprite-drawing functionality. The TApplicationEvents
component is a new Delphi 5 component that allows you to hook into the Application-level
events. Prior to Delphi 5, you had to do this by adding Application-level events at runtime.
Now, with this component, you can do all event management for TApplication at design time.
We will use this component to provide an OnIdle event for the TApplication object.

Note that two private variables are used to control the speed of the animation: FSpeed and
FSpeedIndicator. These are used in the DrawSprite() method for slowing down the anima-
tion on faster machines.

The FormCreate() event handler creates both TBitmap instances and loads each with the same
background bitmap. (The reason you use two bitmaps will be discussed in a moment.) It then
creates a TSprite instance, and sets the direction indicators. Finally FormCreate() resizes the
form to the background image’s size.

The FormPaint() method paints the BackGnd1 to its canvas, and the FormDestroy() frees the
TBitmap and TSprite instances.

The appevMainIdle() method calls DrawSprite(), which moves and draws the sprite on the
background. The bulk of the work is done in the DrawSprite() method.appevMainIdle() will
be invoked whenever the application is in an idle state. That is, whenever there are no actions
from the user for the application to respond to.

The DrawSprite() method repositions the sprite on the background image. A series of steps is
required to erase the old sprite on the background and then draw it at its new location while
preserving the background colors around the actual sprite image. Additionally, DrawSprite()
must perform these steps without producing flickering while the sprite is moving.

To accomplish this, drawing is performed on the offscreen bitmap, BackGnd2. BackGnd2 and
BackGnd1 are exact copies of the background image. However, BackGnd1 is never modified, so
it’s a clean copy of the background. When drawing is complete on BackGnd2, the modified area
of BackGnd2 is copied to the form’s canvas. This allows for only one BitBlt() operation to the

Graphics Programming with GDI and Fonts

CHAPTER 8
131

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

11.65227_Ch08CDx 11/30/99 11:23 AM Page 131

form’s canvas to both erase and draw the sprite at its new location. The drawing operations per-
formed on BackGnd2 are as follows.

First, a rectangular region is copied from BackGnd1 to BackGnd2 over the area occupied by the
sprite. This effectively erases the sprite from BackGnd2. Then the FAndImage bitmap is copied
to BackGnd2 at its new location using the bitwise AND operation. This effectively creates a black
hole in BackGnd2 where the sprite exists and still preserves the colors on BackGnd2 surrounding
the sprite. Figure 8.20 shows FAndImage.

In Figure 8.20, the sprite is represented by black pixels, and the rest of the image surrounding it
consists of white pixels. The color black has a value of 0, and the color white has the value of 1.
Tables 8.5, and 8.6 show the results of performing the AND operation with black and white colors.

TABLE 8.5 AND Operation with Black Color

Background Value Color

BackGnd2 1001 Some color

FAndImage 0000 Black

Result 0000 Black

TABLE 8.6 AND Operation with White Color<$AND operation; with white color>

Background Value Color

BackGnd2 1001 Some color

FAndImage 1111 White

Result 1001 Some color

These tables show how performing the AND operation results in blacking out the area where the
sprite exists on BackGnd2. In Table 8.5, Value represents a pixel color. If a pixel on BackGnd2
contains some arbitrary color, combining this color with the color black using the AND operator
results in that pixel becoming black. Combining this color with the color white using the AND
operator results in the color being the same as the arbitrary color, as shown in Table 8.6.
Because the color surrounding the sprite in FAndImage is white, the pixels on BackGnd2 where
this portion of FAndImage is copied retain their colors.

After copying FAndImage to BackGnd2, FOrImage must be copied to the same location on
BackGnd2 to fill in the black hole created by FAndImage with the actual sprite colors. FOrImage
also has a rectangle surrounding the actual sprite image. Again, you’re faced with getting the
sprite colors to BackGnd2 while preserving BackGnd2’s colors surrounding the sprite. This is
accomplished by combining FOrImage with BackGnd2 using the OR operation. FOrImage is
shown in Figure 8.21.

Advanced Techniques

PART II
132

11.65227_Ch08CDx 11/30/99 11:23 AM Page 132

FIGURE 8.20
FAndImage for a sprite.

Graphics Programming with GDI and Fonts

CHAPTER 8
133

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

FIGURE 8.21
FOrImage.

Notice that the area surrounding the sprite image is black. Table 8.7 shows the results of per-
forming the OR operation on FOrImage and BackGnd2.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 133

TABLE 8.7 An OR Operation with the Color Black

Background Value Color

BackGnd2 1001 Some color

FAndImage 0000 Black

Result 1001 Black

Table 8.7 shows that if BackGnd2 contains an arbitrary color, using the OR operation to combine
it with black will result in BackGnd2’s color.

Recall that all this drawing is performed on the offscreen bitmap. When the drawing is com-
plete, a single BitBlt() is made to the form’s canvas to erase and copy the sprite.

The technique shown here is a fairly common method for performing animation. You might con-
sider extending the functionality of the TSprite class to move and draw itself on a parent canvas.

Advanced Fonts
Although the VCL enables you to manipulate fonts with relative ease, it doesn’t provide the
vast font-rendering capabilities provided by the Win32 API. This section gives you a back-
ground on Win32 fonts and shows you how to manipulate them.

Types of Win32 Fonts
There are basically two types of fonts in Win32: GDI fonts and device fonts. GDI fonts are
stored in font resource files and have an extension of .fon (for raster and vector fonts) or .tot
and .ttf (for TrueType fonts). Device fonts are specific to a particular device, such as a
printer. Unlike with the GDI fonts, when Win32 uses a device font for printing text, it only
needs to send the ASCII character to the device, and the device takes care of printing the char-
acter in the specified font. Otherwise, Win32 converts the font to a bitmap or performs the GDI
function to draw the font. Drawing the font using bitmaps or GDI functions generally takes
longer, as is the case with GDI fonts. Although device fonts are faster, they are device-specific
and often very limiting in what fonts a particular device supports.

Basic Font Elements
Before you learn how to use the various fonts in Win32, you should know the various terms
and elements associated with Win32 fonts.

A Font’s Typeface, Family, and Measurements
Think of a font as just a picture or glyph representing a character. Each character has two char-
acteristics: a typeface and a size.

In Win32, a font’s typeface refers to the font’s style and its size. Probably the best definition of
typeface and how it relates to a font is in the Win32 help file. This definition says, “A typeface

Advanced Techniques

PART II
134

11.65227_Ch08CDx 11/30/99 11:23 AM Page 134

is a collection of characters that share design characteristics; for example, Courier is a common
typeface. A font is a collection of characters that have the same typeface and size.”

Win32 categorizes these different typefaces into five font families: Decorative, Modern,
Roman, Script, and Swiss. The distinguishing font features in these families are the font’s ser-
ifs and stroke widths.

A serif is a small line at the beginning or end of a font’s main strokes that give the font a fin-
ished appearance. A stroke is the primary line that makes up the font. Figure 8.22 illustrates
these two features.

Graphics Programming with GDI and Fonts

CHAPTER 8
135

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

FIGURE 8.22
Serifs and strokes.

Some of the typical fonts you’ll find in the different font families are listed in Table 8.8.

TABLE 8.8 Font Families and Typical Fonts

Font Family Typical Fonts

Decorative Novelty fonts: Old English

Modern Fonts with constant strike widths that may or may not have serifs: Pica,
Elite, and Courier New

Roman Fonts with variable stroke widths and serifs: Times New Roman and New
Century SchoolBook

Script Fonts that look like handwriting: Script and Cursive

Swiss Fonts with variable stroke widths without serifs: Arial and Helvetica

A font’s size is represented in points (a point is 1⁄72 of an inch). A font’s height consists of its
ascender and descender. The ascender and descender are represented by the tmAscent and
tmDescent values as shown in Figure 8.23. Figure 8.23 shows other values essential to the
character measurement as well.

Characters reside in a character cell, an area surrounding the character that consists of white
space. When referring to character measurements, keep in mind that the measurement may
include both the character glyph (the character’s visible portion) and the character cell. Others
may refer to only one or the other.

Table 8.9 explains the meaning of the various character measurements.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 135

FIGURE 8.23
Character measurement values.

TABLE 8.9 Character Measurements

Measurement Meaning

External leading The space between text lines

Internal leading The difference between the character’s glyph height and the font’s cell height

Ascent Measurement from the baseline to the top of the character cell

Descent Measurement from the baseline to the bottom of the character cell

Point size The character height minus tmInternalLeading

Height The sum of ascent, descent, and internal leading

Baseline The line on which characters sit

GDI Font Categories
There are essentially three separate categories of GDI fonts: raster fonts, vector fonts (also
referred to as stroke fonts), and TrueType fonts. The first two existed in older versions of
Win32, whereas the latter was introduced in Windows 3.1.

Raster Fonts Explained
Raster fonts are basically bitmaps provided for a specific resolution or aspect ratio (ratio of the
pixel height and width of a given device) and font size. Because these fonts are provided in
specific sizes, Win32 can synthesize the font to generate a new font in the requested size, but it
can do so only to produce a larger font from a smaller font. The reverse is not possible because
the technique Win32 uses to synthesize the fonts is to duplicate the rows and columns that
make up the original font bitmap. Raster fonts are convenient when the size requested is avail-
able. They’re fast to display and look good when used at the intended size. The disadvantage is
that they tend to look a bit sloppy when scaled to larger sizes, as shown in Figure 8.24, which
displays the Win32 System font.

Advanced Techniques

PART II
136

11.65227_Ch08CDx 11/30/99 11:23 AM Page 136

FIGURE 8.24
A raster font.

Vector Fonts Explained
Vector fonts are generated by Win32 with a series of lines created by GDI functions as opposed
to bitmaps. These fonts offer better scalability than do raster fonts, but they have a much lower
density when displayed, which may or may not be desired. Also, the performance of vector fonts
is slow compared to raster fonts. Vector fonts lend themselves best to use with plotters but aren’t
recommended for designing appealing user interfaces. Figure 8.25 shows a typical vector font.

Graphics Programming with GDI and Fonts

CHAPTER 8
137

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

FIGURE 8.25
A vector font.

TrueType Fonts Explained
TrueType fonts are probably the most preferred of the three font types. The advantage to using
TrueType fonts is that they can represent virtually any style of font in any size and look pleas-
ing to the eye. Win32 displays TrueType fonts by using a collection of points and hints that
describe the font outline. Hints are simply algorithms to distort a scaled font’s outline to
improve its appearance at different resolutions. Figure 8.26 shows a TrueType font.

FIGURE 8.26
A TrueType font.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 137

Displaying Different Font Types
So far, we’ve given you the general concepts surrounding Window’s font technology. If you’re
interested in getting down to the many nuts and bolts of fonts, take a look at the Win32 online
help file on “Fonts Overview,” which provides you with a vast amount of information on the
topic. Now, you’ll learn how to use the Win32 API and Win32 structures to create and display
fonts of any shape and size.

A Font-Creation Sample Project
The example to follow illustrates the process of instantiating different font types in Windows.
The project also illustrates how to obtain information about a rendered font. This project is
located in on the CD as MakeFont.dpr.

How the Project Works
Through the main form, you select various font attributes to be used in creating the font. The
font then gets drawn to a TPaintBox component whenever you change the value of one of the
font’s attributes. (All components are attached to the FontChanged() event handler through
their OnChange or OnClick events.) You also can view information about a font by clicking the
Font Information button. Figure 8.27 shows the main form for this project. Listing 8.9 shows
the unit defining the main form.

Advanced Techniques

PART II
138

FIGURE 8.27
The main form for the font-creation project.

LISTING 8.9 The Font-Creation Project

unit MainFrm;

interface

11.65227_Ch08CDx 11/30/99 11:23 AM Page 138

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Mask, Spin;

const

// Array to represent the TLOGFONT.lfCharSet values
CharSetArray: array[0..4] of byte = (ANSI_CHARSET, DEFAULT_CHARSET,
SYMBOL_CHARSET, SHIFTJIS_CHARSET, OEM_CHARSET);

// Array to represent the TLOGFONT.lfWeight values
WeightArray: array[0..9] of integer =
(FW_DONTCARE, FW_THIN, FW_EXTRALIGHT, FW_LIGHT, FW_NORMAL, FW_MEDIUM,
FW_SEMIBOLD, FW_BOLD, FW_EXTRABOLD, FW_HEAVY);

// Array to represent the TLOGFONT.lfOutPrecision values
OutPrecArray: array[0..7] of byte = (OUT_DEFAULT_PRECIS,
OUT_STRING_PRECIS, OUT_CHARACTER_PRECIS, OUT_STROKE_PRECIS,
OUT_TT_PRECIS, OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS,
OUT_TT_ONLY_PRECIS);

// Array to represent the TLOGFONT.lfPitchAndFamily higher four-bit
// values
FamilyArray: array[0..5] of byte = (FF_DONTCARE, FF_ROMAN,
FF_SWISS, FF_MODERN, FF_SCRIPT, FF_DECORATIVE);

// Array to represent the TLOGFONT.lfPitchAndFamily lower two-bit values
PitchArray: array[0..2] of byte = (DEFAULT_PITCH, FIXED_PITCH,

VARIABLE_PITCH);

// Array to represent the TLOGFONT.lfClipPrecision values
ClipPrecArray: array[0..6] of byte = (CLIP_DEFAULT_PRECIS,
CLIP_CHARACTER_PRECIS, CLIP_STROKE_PRECIS, CLIP_MASK, CLIP_LH_ANGLES,
CLIP_TT_ALWAYS, CLIP_EMBEDDED);

// Array to represent the TLOGFONT.lfQuality values
QualityArray: array[0..2] of byte = (DEFAULT_QUALITY, DRAFT_QUALITY,
PROOF_QUALITY);

type

TMainForm = class(TForm)
lblHeight: TLabel;
lblWidth: TLabel;
gbEffects: TGroupBox;
cbxItalic: TCheckBox;

Graphics Programming with GDI and Fonts

CHAPTER 8
139

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 139

LISTING 8.9 Continued

cbxUnderline: TCheckBox;
cbxStrikeOut: TCheckBox;
cbWeight: TComboBox;
lblWeight: TLabel;
lblEscapement: TLabel;
cbEscapement: TComboBox;
pbxFont: TPaintBox;
cbCharSet: TComboBox;
lblCharSet: TLabel;
cbOutPrec: TComboBox;
lblOutPrecision: TLabel;
cbFontFace: TComboBox;
rgPitch: TRadioGroup;
cbFamily: TComboBox;
lblFamily: TLabel;
lblClipPrecision: TLabel;
cbClipPrec: TComboBox;
rgQuality: TRadioGroup;
btnSetDefaults: TButton;
btnFontInfo: TButton;
lblFaceName: TLabel;
rgGraphicsMode: TRadioGroup;
lblOrientation: TLabel;
cbOrientation: TComboBox;
seHeight: TSpinEdit;
seWidth: TSpinEdit;
procedure pbxFontPaint(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure btnFontInfoClick(Sender: TObject);
procedure btnSetDefaultsClick(Sender: TObject);
procedure rgGraphicsModeClick(Sender: TObject);
procedure cbEscapementChange(Sender: TObject);
procedure FontChanged(Sender: TObject);

private
{ Private declarations }
FLogFont: TLogFont;
FHFont: HFont;
procedure MakeFont;
procedure SetDefaults;

public
{ Public declarations }

end;

var

Advanced Techniques

PART II
140

11.65227_Ch08CDx 11/30/99 11:23 AM Page 140

MainForm: TMainForm;

implementation
uses FontInfoFrm;

{$R *.DFM}

procedure TMainForm.MakeFont;
begin
// Clear the contents of FLogFont
FillChar(FLogFont, sizeof(TLogFont), 0);
// Set the TLOGFONT’s fields
with FLogFont do
begin
lfHeight := StrToInt(seHeight.Text);
lfWidth := StrToInt(seWidth.Text);
lfEscapement :=
StrToInt(cbEscapement.Items[cbEscapement.ItemIndex]);

lfOrientation :=
StrToInt(cbOrientation.Items[cbOrientation.ItemIndex]);

lfWeight := WeightArray[cbWeight.ItemIndex];
lfItalic := ord(cbxItalic.Checked);
lfUnderline := ord(cbxUnderLine.Checked);
lfStrikeOut := ord(cbxStrikeOut.Checked);
lfCharSet := CharSetArray[cbCharset.ItemIndex];
lfOutPrecision := OutPrecArray[cbOutPrec.ItemIndex];
lfClipPrecision := ClipPrecArray[cbClipPrec.ItemIndex];
lfQuality := QualityArray[rgQuality.ItemIndex];
lfPitchAndFamily := PitchArray[rgPitch.ItemIndex] or

FamilyArray[cbFamily.ItemIndex];
StrPCopy(lfFaceName, cbFontFace.Items[cbFontFace.ItemIndex]);

end;
// Retrieve the requested font
FHFont := CreateFontIndirect(FLogFont);
// Assign to the Font.Handle
pbxFont.Font.Handle := FHFont;
pbxFont.Refresh;

end;

procedure TMainForm.SetDefaults;
begin
// Set the various controls to default values for ALogFont
seHeight.Text := ‘0’;
seWidth.Text := ‘0’;
cbxItalic.Checked := false;
cbxStrikeOut.Checked := false;

Graphics Programming with GDI and Fonts

CHAPTER 8
141

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 141

LISTING 8.9 Continued

cbxUnderline.Checked := false;
cbWeight.ItemIndex := 0;
cbEscapement.ItemIndex := 0;
cbOrientation.ItemIndex := 0;
cbCharset.ItemIndex := 1;
cbOutPrec.Itemindex := 0;
cbFamily.ItemIndex := 0;
cbClipPrec.ItemIndex := 0;
rgPitch.ItemIndex := 0;
rgQuality.ItemIndex := 0;
// Fill CBFontFace TComboBox with the screen’s fonts
cbFontFace.Items.Assign(Screen.Fonts);
cbFontFace.ItemIndex := cbFontFace.Items.IndexOf(Font.Name);

end;

procedure TMainForm.pbxFontPaint(Sender: TObject);
begin
with pbxFont do
begin
{ Note that in Windows 95, the graphics mode will always
be GM_COMPATIBLE as GM_ADVANCED is recognized only by Windows NT.}

case rgGraphicsMode.ItemIndex of
0: SetGraphicsMode(pbxFont.Canvas.Handle, GM_COMPATIBLE);
1: SetGraphicsMode(pbxFont.Canvas.Handle, GM_ADVANCED);

end;
Canvas.Rectangle(2, 2, Width-2, Height-2);
// Write the fonts name
Canvas.TextOut(Width div 2, Height div 2, CBFontFace.Text);

end;
end;

procedure TMainForm.FormActivate(Sender: TObject);
begin
SetDefaults;
MakeFont;

end;

procedure TMainForm.btnFontInfoClick(Sender: TObject);
begin
FontInfoForm.ShowModal;

end;

procedure TMainForm.btnSetDefaultsClick(Sender: TObject);
begin
SetDefaults;

Advanced Techniques

PART II
142

11.65227_Ch08CDx 11/30/99 11:23 AM Page 142

MakeFont;
end;

procedure TMainForm.rgGraphicsModeClick(Sender: TObject);
begin
cbOrientation.Enabled := rgGraphicsMode.ItemIndex = 1;
if not cbOrientation.Enabled then
cbOrientation.ItemIndex := cbEscapement.ItemIndex;

MakeFont;
end;

procedure TMainForm.cbEscapementChange(Sender: TObject);
begin
if not cbOrientation.Enabled then
cbOrientation.ItemIndex := cbEscapement.ItemIndex;

end;

procedure TMainForm.FontChanged(Sender: TObject);
begin
MakeFont;

end;

end.

In MAINFORM.PAS, you’ll see several array definitions that will be explained shortly. For now,
notice that the form has two private variables: FLogFont and FHFont. FLogFont is of type
TLOGFONT, a record structure used to describe the font to create. FHFont is the handle to the
font that gets created. The private method MakeFont() is where you create the font by first fill-
ing the FLogFont structure with values specified from the main form’s components and then
passing that structure to CreateFontIndirect(), a Win32 GDI function that returns a font
handle to the new font. Before you go on, however, you need to understand the TLOGFONT
structure.

The TLOGFONT Structure
As stated earlier, you use the TLOGFONT structure to define the font you want to create. This
structure is defined in the WINDOWS unit as follows:

TLogFont = record

lfHeight: Integer;

lfWidth: Integer;

lfEscapement: Integer;

lfOrientation: Integer;

lfWeight: Integer;

lfItalic: Byte;

Graphics Programming with GDI and Fonts

CHAPTER 8
143

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

11.65227_Ch08CDx 11/30/99 11:23 AM Page 143

lfUnderline: Byte;

lfStrikeOut: Byte;

lfCharSet: Byte;

lfOutPrecision: Byte;

lfClipPrecision: Byte;

lfQuality: Byte;

lfPitchAndFamily: Byte;

lfFaceName: array[0..lf_FaceSize - 1] of Char;

end;

You place values in the TLOGFONT’s fields that specify the attributes you want your font to have.
Each field represents a different type of attribute. By default, most of the fields can be set to
zero, which is what the Set Defaults button on the main form does. In this instance, Win32
chooses the attributes for the font and returns whatever it pleases. The general rule is this: The
more fields you fill in, the more you can fine-tune your font style. The following list explains
what each TLOGFONT field represents. Some of the fields may be assigned constant values that
are predefined in the WINDOWS unit. Refer to Win32 help for a detailed description of these val-
ues; we show you only the most commonly used ones here:

Field Value Description

lfHeight The font height. A value greater than zero indicates a cell height.
A value less than zero indicates the glyph height (the cell height
minus the internal leading). Set this field to zero to let Win32
decide a height for you.

lfWidth The average font width. Set this field to zero to let Win32 choose
a font width for you.

lfEscapement The angle (in tenths of degrees) of rotation of the font’s baseline
(the line along which characters are drawn). In Windows 95/98,
the text string and individual characters are drawn using the same
angle. That is, lfEscapement and lfOrientation are the same.
In Windows NT, text is drawn independently of the orientation
angle of each character in the text string. To achieve the latter,
you must set the graphics mode for the device to GM_ADVANCED
using the SetGraphicsMode() Win32 GDI function. By default,
the graphics mode is GM_COMPATIBLE, which makes the Windows
NT behavior like Windows 95. This font-rotation effect is only
available with TrueType fonts.

lfOrientation Enables you to specify an angle at which to draw individual char-
acters. In Windows 95/98, this has the same value as
lfEscapement. In Windows NT, the values may be different. (See
lfEscapement.)

Advanced Techniques

PART II
144

11.65227_Ch08CDx 11/30/99 11:23 AM Page 144

lfWeight This affects the font density. The WINDOWS unit defines several
constants for this field, such as FW_BOLD and FW_NORMAL. Set this
field to FW_DONTCARE to let Win32 choose a weight for you.

lfItalic Nonzero means italic; zero means nonitalic.

lfUnderline Nonzero means underlined; zero means not underlined.

lfStrikeOut Nonzero means that a line gets drawn through the font, whereas a
value of zero does not draw a line through the font.

lfCharSet Win32 defines the character sets: ANSI_CHARSET=0,
DEFAULT_CHARSET=1, SYMBOL_CHARSET=2,
SHIFTJIS_CHARSET=128, and OEM_CHARSET = 255. Use the
DEFAULT_CHARSET by default.

lfOutPrecision Specifies how Win32 should match the requested font’s size and
characteristics to an actual font. Use TT_ONLY_PRECIS to specify
only TrueType fonts. Other types are defined in the WINDOWS unit.

lfClipPrecision Specifies how Win32 clips characters outside a clipping region.
Use CLIP_DEFAULT_PRECIS to let Win32 choose.

lfQuality Defines the font’s output quality as GDI will draw it. Use
DEFAULT_QUALITY to let Win32 decide, or you may specify
PROOF_QUALITY or DRAFT_QUALITY.

lfPitchAndFamily Defines the font’s pitch in the two low-order bits. Specifies the
family in the higher four high-order bits. Table 8.8 displays these
families.

lfFaceName The typeface name of the font.

The MakeFont() procedure uses the values defined in the constant section of MainForm.pas.
These array constants contain the various predefined constant values for the TLOGFONT struc-
ture. These values are placed in the same order as the choices in the main form’s TComboBox
components. For example, the choices for the font family in the CBFamily combo box are in
the same order as the values in FamilyArray. We used this technique to reduce the code
required to fill in the TLOGFONT structure. The first line in the MakeFont() function

fillChar(FLogFont, sizeof(TLogFont), 0);

clears the FLogFont structure before any values are set. When FLogFont has been set, the line

FHFont := CreateFontIndirect(FLogFont);

calls the Win32 API function CreateFontIndirect(), which accepts the TLOGFONT structure as
a parameter and returns a handle to the requested font. This handle is then set to the
TPaintBox.Font’s handle property. Delphi 5 takes care of destroying the TPaintBox’s previous
font before making the assignment. After the assignment is made, you redraw pbxFont by call-
ing its Refresh() method.

Graphics Programming with GDI and Fonts

CHAPTER 8
145

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

11.65227_Ch08CDx 11/30/99 11:23 AM Page 145

The SetDefaults() method initializes the TLOGFONT structure with default values. This method
is called when the main form is created and whenever the user clicks the Set Defaults button.
Experiment with the project to see the different effects you can get with fonts, as shown in
Figure 8.28.

Advanced Techniques

PART II
146

FIGURE 8.28
A rotated font.

Displaying Information About Fonts
The main form’s Font Information button invokes the form FontInfoForm, which displays
information about the selected font. When you specify font attributes in the TLOGFONT structure,
Win32 attempts to provide you with a font that best resembles your requested font. It’s entirely
possible that the font you get back from the CreateFontIndirect() function has completely
different attributes than what you requested. FontInfoForm lets you inspect your selected font’s
attributes. It uses the Win32 API function GetTextMetrics() to retrieve the font information.

GetTextMetrics() takes two parameters: the handle to the device context whose font you want
to examine and a reference to another Win32 structure, TTEXTMETRIC. GetTextMetrics() then
updates the TTEXTMETRIC structure with information about the given font. The WINDOWS unit
defines the TTEXTMETRIC record as follows:

TTextMetric = record

tmHeight: Integer;

tmAscent: Integer;

tmDescent: Integer;

tmInternalLeading: Integer;

tmExternalLeading: Integer;

tmAveCharWidth: Integer;

11.65227_Ch08CDx 11/30/99 11:23 AM Page 146

tmMaxCharWidth: Integer;

tmWeight: Integer;

tmItalic: Byte;

tmUnderlined: Byte;

tmStruckOut: Byte;

tmFirstChar: Byte;

tmLastChar: Byte;

tmDefaultChar: Byte;

tmBreakChar: Byte;

tmPitchAndFamily: Byte;

tmCharSet: Byte;

tmOverhang: Integer;

tmDigitizedAspectX: Integer;

tmDigitizedAspectY: Integer;

end;

The TTEXTMETRIC record’s fields contain much of the same information we’ve already dis-
cussed about fonts. For example, it shows a font’s height, average character width, and whether
the font is underlined, italicized, struck out, and so on. Refer to the Win32 API online help for
detailed information on the TTEXTMETRIC structure. Listing 8.10 shows the code for the font
information form.

LISTING 8.10 Source to the Font Information Form

unit FontInfoFrm;

interface

uses

SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,

Forms, Dialogs, ExtCtrls, StdCtrls;

type

TFontInfoForm = class(TForm)

lbFontInfo: TListBox;

procedure FormActivate(Sender: TObject);

private

{ Private declarations }

public

{ Public declarations }

end;

Graphics Programming with GDI and Fonts

CHAPTER 8
147

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 147

LISTING 8.10 Continued

var

FontInfoForm: TFontInfoForm;

implementation

uses MainFrm;

{$R *.DFM}

procedure TFontInfoForm.FormActivate(Sender: TObject);

const

PITCH_MASK: byte = $0F; // Set the lower order four bits

FAMILY_MASK: byte = $F0; // Set to higher order four bits

var

TxMetric: TTextMetric;

FaceName: String;

PitchTest, FamilyTest: byte;

begin

// Allocate memory for FaceName string

SetLength(FaceName, lf_FaceSize+1);

// First get the font information

with MainForm.pbxFont.Canvas do

begin

GetTextFace(Handle, lf_faceSize-1, PChar(FaceName));

GetTextMetrics(Handle, TxMetric);

end;

// Now add the font information to the listbox from

// the TTEXTMETRIC structure.

with lbFontInfo.Items, TxMetric do

begin

Clear;

Add(‘Font face name: ‘+FaceName);

Add(‘tmHeight: ‘+IntToStr(tmHeight));

Add(‘tmAscent: ‘+IntToStr(tmAscent));

Add(‘tmDescent: ‘+IntToStr(tmDescent));

Add(‘tmInternalLeading: ‘+IntToStr(tmInternalLeading));

Add(‘tmExternalLeading: ‘+IntToStr(tmExternalLeading));

Add(‘tmAveCharWidth: ‘+IntToStr(tmAveCharWidth));

Add(‘tmMaxCharWidth: ‘+IntToStr(tmMaxCharWidth));

Advanced Techniques

PART II
148

11.65227_Ch08CDx 11/30/99 11:23 AM Page 148

Add(‘tmWeight: ‘+IntToStr(tmWeight));

if tmItalic <> 0 then

Add(‘tmItalic: YES’)

else

Add(‘tmItalic: NO’);

if tmUnderlined <> 0 then

Add(‘tmUnderlined: YES’)

else

Add(‘tmUnderlined: NO’);

if tmStruckOut <> 0 then

Add(‘tmStruckOut: YES’)

else

Add(‘tmStruckOut: NO’);

// Check the font’s pitch type

PitchTest := tmPitchAndFamily and PITCH_MASK;

if (PitchTest and TMPF_FIXED_PITCH) = TMPF_FIXED_PITCH then

Add(‘tmPitchAndFamily-Pitch: Fixed Pitch’);

if (PitchTest and TMPF_VECTOR) = TMPF_VECTOR then

Add(‘tmPitchAndFamily-Pitch: Vector’);

if (PitchTest and TMPF_TRUETYPE) = TMPF_TRUETYPE then

Add(‘tmPitchAndFamily-Pitch: True type’);

if (PitchTest and TMPF_DEVICE) = TMPF_DEVICE then

Add(‘tmPitchAndFamily-Pitch: Device’);

if PitchTest = 0 then

Add(‘tmPitchAndFamily-Pitch: Unknown’);

// Check the fonts family type

FamilyTest := tmPitchAndFamily and FAMILY_MASK;

if (FamilyTest and FF_ROMAN) = FF_ROMAN then

Add(‘tmPitchAndFamily-Family: FF_ROMAN’);

if (FamilyTest and FF_SWISS) = FF_SWISS then

Add(‘tmPitchAndFamily-Family: FF_SWISS’);

if (FamilyTest and FF_MODERN) = FF_MODERN then

Add(‘tmPitchAndFamily-Family: FF_MODERN’);

if (FamilyTest and FF_SCRIPT) = FF_SCRIPT then

Add(‘tmPitchAndFamily-Family: FF_SCRIPT’);

if (FamilyTest and FF_DECORATIVE) = FF_DECORATIVE then

Add(‘tmPitchAndFamily-Family: FF_DECORATIVE’);

Graphics Programming with GDI and Fonts

CHAPTER 8
149

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

continues

11.65227_Ch08CDx 11/30/99 11:23 AM Page 149

LISTING 8.10 Continued

if FamilyTest = 0 then

Add(‘tmPitchAndFamily-Family: Unknown’);

Add(‘tmCharSet: ‘+IntToStr(tmCharSet));

Add(‘tmOverhang: ‘+IntToStr(tmOverhang));

Add(‘tmDigitizedAspectX: ‘+IntToStr(tmDigitizedAspectX));

Add(‘tmDigitizedAspectY: ‘+IntToStr(tmDigitizedAspectY));

end;

end;

end.

The FormActive() method first retrieves the font’s name with the Win32 API function
GetTextFace(), which takes a device context, a buffer size, and a null-terminated character
buffer as parameters. FormActivate() then uses GetTextMetrics() to fill TxMetric, a TTEXT-
METRIC record structure, for the selected font. The event handler then adds the values in
TxMetric to the list box as strings. For the tmPitchAndFamily value, you mask out the high- or
low-order bit, depending on the value you’re testing for, and add the appropriate values to the
list box. Figure 8.29 shows FontInfoForm displaying information about a font.

Advanced Techniques

PART II
150

FIGURE 8.29
The font information form.

11.65227_Ch08CDx 11/30/99 11:23 AM Page 150

Summary
This chapter presented you with a lot of information about the Win32 Graphics Device
Interface. We discussed Delphi 5’s TCanvas, its properties, and its drawing methods. We also
discussed Delphi 5’s representation of images with its TImage component as well as mapping
modes and Win32 coordinates systems. You saw how you can use graphics programming tech-
niques to build a paint program and perform simple animation. Finally, we discussed fonts—
how to create them and how to display information about them. One of the nice things about
the GDI is that working with it can be a lot of fun. Entire books have been written on this sub-
ject alone. Take some time to experiment with the drawing routines, create your own fonts, or
just fool around with the mapping modes to see what type of effects you can get.

Graphics Programming with GDI and Fonts

CHAPTER 8
151

8

G
R

A
PH

IC
S

P
R

O
G

R
A

M
M

IN
G

11.65227_Ch08CDx 11/30/99 11:23 AM Page 151

11.65227_Ch08CDx 11/30/99 11:23 AM Page 152

CHAPTER

10
Printing in Delphi 5

IN THIS CHAPTER
• The TPrinter Object 154

• TPrinter.Canvas 155

• Simple Printing 156

• Printing a Form 159

• Advanced Printing 159

• Miscellaneous Printing Tasks 184

• Obtaining Printer Information 191

• Summary 207

13.65227_Ch10CDx 11/30/99 11:29 AM Page 153

Printing in Windows has been the bane of many a Windows programmer. However, don’t be
discouraged; Delphi simplifies most of what you need to know for printing. You can write sim-
ple printing routines to output text or bitmapped images with little effort. For more complex
printing, a few concepts and techniques are all you really need to enable you to perform any
type of custom printing. When you have that, printing isn’t so difficult.

Advanced Techniques

PART II
154

NOTE

You’ll find a set of reporting components by QuSoft on the QReport page of the
Component Palette. The documentation for this tool is located in the help file
QuickRpt.hlp.

QuSoft’s tools are suitable for applications that generate complex reports. However,
they limit you from getting to the nuts and bolts of printing at the source-code level,
where you have more control over what gets printed. This chapter doesn’t cover
QuickReports; instead, it covers creating your own reports in Delphi.

Delphi’s TPrinter object, which encapsulates the Windows printing engine, does a great deal
for you that you would otherwise have to handle yourself.

This chapter teaches you how to perform a whole range of printing operations by using
TPrinter. You learn the simple tasks that Delphi has made much easier for generating print-
outs. You also learn the techniques for creating advanced printing routines that should start you
on your way to becoming a printing guru.

The TPrinter Object
The TPrinter object encapsulates the Windows printing interface, making most of the printing
management invisible to you. TPrinter’s methods and properties enable you to print onto its
canvas as though you were drawing your output to a form’s surface. The function Printer()
returns a global TPrinter instance the first time it’s called. TPrinter’s properties and methods
are listed in Tables 10.1 and 10.2.

TABLE 10.1 TPrinter Properties

Property Purpose

Aborted Boolean variable that determines whether the user has aborted the print job.

Canvas The printing surface for the current page.

Fonts Contains a list of fonts supported by the printer.

Handle A unique number representing the printer’s device handle. See the sidebar
“Handles” in Chapter 20, “Key Elements of the Visual Component Library.”

13.65227_Ch10CDx 11/30/99 11:29 AM Page 154

Property Purpose

Orientation Determines horizontal (poLandScape) or vertical (poPortrait) printing.

PageHeight Height, in pixels, of the printed page’s surface.

PageNumber Indicates the page being printed. This is incremented with each subsequent call
to TPrinter.NewPage().

PageWidth Width, in pixels, of the printed page’s surface.

PrinterIndex Indicates the selected printer from the available printers on the user’s system.

Printers A list of the available printers on the system.

Printing Determines whether a print job is printing.

Title Text appearing in the Print Manager and on networked pages.

TABLE 10.2 TPrinter Methods

Method Purpose

Abort Terminates a print job.

BeginDoc Begins a print job.

EndDoc Ends a print job. (EndDoc ends a print job when printing is finished; Abort
can terminate the job before printing is complete.)

GetPrinter Retrieves the current printer.

NewPage Forces the printer to start printing on a new page and increments the
PageCount property.

SetPrinter Specifies a printer as a current printer.

TPrinter.Canvas
TPrinter.Canvas is much like the canvas for your form; it represents the drawing surface on
which text and graphics are drawn. The difference is that TPrinter.Canvas represents the
drawing surface for your printed output as opposed to your screen. Most of the routines you
use to draw text, to draw shapes, and to display images are used in the same manner for
printed output. When printing, however, you must take into account some differences:

• Drawing to the screen is dynamic—you can erase what you’ve placed on the screen’s
output. Drawing to the printer isn’t so flexible. What’s drawn to the TPrinter.Canvas is
printed to the printer.

• Drawing text or graphics to the screen is nearly instantaneous, whereas drawing to the
printer is slow, even on some high-performance laser printers. You therefore must allow

Printing in Delphi 5

CHAPTER 10
155

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:29 AM Page 155

users to abort a print job either by using an Abort dialog box or by some other method
that enables them to terminate the print job.

• Because your users are running Windows, you can assume that their display supports
graphics output. However, you can’t assume the same for their printers. Different printers
have different capabilities. Some printers may be high-resolution printers; other printers
may be very low resolution and may not support graphics printing at all. You must take
this into account in your printing routines.

• You’ll never see an error message like this:

Display ran out of screen space,
please insert more screen space into your display.

But you can bet that you’ll see an error telling you that the printer ran out of paper.
Windows NT/2000 and Windows 95/98 both provide error handling when this occurs.
However, you should provide a way for the user to cancel the printout when this occurs.

• Text and graphics on your screen don’t look the same on hard copy. Printers and displays
have very different resolutions. That 300×300 bitmap might look spectacular on a
640×480 display, but it’s a mere 1×1-inch square blob on your 300 dpi (dots per inch)
laser printer. You’re responsible for making adjustments to your drawing routines so that
your users won’t need a magnifying glass to read their printed output.

Simple Printing
In many cases, you want to send a stream of text to your printer without any regard for special
formatting or placement of the text. Delphi facilitates simple printing, as the following sections
illustrate.

Printing the Contents of a TMemo Component
Printing lines of text is actually quite simple using the AssignPrn() procedure. The AssignPrn()
procedure enables you to assign a text file variable to the current printer. It’s used with the
Rewrite() and CloseFile() procedures. The following lines of code illustrate this syntax:

var
f: TextFile;

begin
AssignPrn(f);
try
Rewrite(f);
writeln(f, ‘Print the output’);

finally

Advanced Techniques

PART II
156

13.65227_Ch10CDx 11/30/99 11:29 AM Page 156

CloseFile(f);
end;

end;

Printing a line of text to the printer is the same as printing a line of text to a file. You use this
syntax:

writeln(f, ‘This is my line of text’);

In Chapter 16, “MDI Applications,” you add menu options for printing the contents of the
TMdiEditForm form. Listing 10.1 shows you how to print the contents from TMdiEditForm.
You’ll use this same technique for printing text from just about any source.

LISTING 10.1 Printing Code for TMdiEditForm

procedure TMdiEditForm.mmiPrintClick(Sender: TObject);
var
i: integer;
PText: TextFile;

begin
inherited;
if PrintDialog.Execute then
begin
AssignPrn(PText);
Rewrite(PText);
try
Printer.Canvas.Font := memMainMemo.Font;
for i := 0 to memMainMemo.Lines.Count -1 do
writeln(PText, memMainMemo.Lines[i]);

finally
CloseFile(PText);

end;
end;

end;

Notice that the memo’s font also was assigned to the Printer’s font, causing the output to
print with the same font as memMainMemo.

Printing in Delphi 5

CHAPTER 10
157

10

P
R

IN
TIN

G
IN

D
ELPH

I5

CAUTION

Be aware that the printer will print with the font specified by Printer.Font only if
the printer supports that font. Otherwise, the printer will use a font that approxi-
mates the characteristics of the specified font.

13.65227_Ch10CDx 11/30/99 11:29 AM Page 157

Printing a Bitmap
Printing a bitmap is simple as well. The MdiApp example in Chapter 16, “MDI Applications,”
shows how to print the contents of a bitmap in TMdiBmpForm. This event handler is shown in
Listing 10.2.

LISTING 10.2 Printing Code for TMdiBmpForm

procedure TMdiBMPForm.mmiPrintClick(Sender: TObject);
begin
inherited;

with ImgMain.Picture.Bitmap do
begin
Printer.BeginDoc;
Printer.Canvas.StretchDraw(Canvas.ClipRect, imgMain.Picture.Bitmap);
Printer.EndDoc;

end; { with }
end;

Only three lines of code are needed to print the bitmap using the TCanvas.StretchDraw()
method. This vast simplification of printing a bitmap is made possible by the fact that since
Delphi 3, bitmaps are in DIB format by default, and DIBs are what the printer driver requires.
If you happen to have a handle to a bitmap that isn’t in DIB format, you can copy (Assign) it
into a temporary TBitmap, force the temporary bitmap into DIB format by assigning bmDIB to
the TBitmap.HandleType property, and then print from the new DIB.

Advanced Techniques

PART II
158

NOTE

One of the keys to printing is to be able to print images as they appear onscreen at
approximately the same size. A 3×3-inch image on a 640×480 pixel screen uses fewer
pixels than it would on a 300 dpi printer, for example. Therefore, stretch the image
to TPrinter’s canvas as was done in the example in the call to StretchDIBits().
Another technique is to draw the image using a different mapping mode, as
described in Chapter 8, “Graphics Programming with GDI and Fonts.” Keep in mind
that some older printers may not support the stretching of images. You can obtain
valuable information about the printer’s capabilities by using the Win32 API function
GetDeviceCaps().

13.65227_Ch10CDx 11/30/99 11:29 AM Page 158

Printing Rich Text–Formatted Data
Printing the contents of a TRichEdit component is a matter of one method call. The following
code shows how to do this (this is also the code for printing TMdiRtfForm in the MdiApp exam-
ple in Chapter 16, “MDI Applications”):

procedure TMdiRtfForm.mmiPrintClick(Sender: TObject);
begin
inherited;
reMain.Print(Caption);

end;

Printing a Form
Conceptually, printing a form can be one of the more difficult tasks to perform. However, this
task has been simplified greatly thanks to VCL’s Print() method of TForm. The following one-
line procedure prints your form’s client areas as well as all components residing in the client
area:

procedure TForm1.PrintMyForm(Sender: TObject);
begin
Print;

end;

Printing in Delphi 5

CHAPTER 10
159

10

P
R

IN
TIN

G
IN

D
ELPH

I5

NOTE

Printing your form is a quick-and-dirty way to print graphical output. However, only
what’s visible onscreen will be printed, due to Windows’ clipping. Also, the bitmap is
created at screen pixel density and then stretched to printer resolution. Text on the
form is not drawn at printer resolution; it’s drawn at screen resolution and stretched,
so overall the form will be noticeably jagged and blocky. You must use more elabo-
rate techniques to print complex graphics; these techniques are discussed later in this
chapter.

Advanced Printing
Often you need to print something very specific that isn’t facilitated by the development tool
you’re using or a third-party reporting tool. In this case, you need to perform the low-level
printing tasks yourself. The next several sections show you how to write such printing routines
and present a methodology you can apply to all your printing tasks.

13.65227_Ch10CDx 11/30/99 11:29 AM Page 159

Printing a Columnar Report
Many applications, particularly those using databases, print some type of report. One common
report style is the columnar report.

The next project prints a columnar report from one of the tables in Delphi’s demo directories.
Each page contains a header, column titles, and then the record list. Each subsequent page also
has the header and column titles preceding the record list.

Figure 10.1 shows the main form for this project. The TEdit/TUpDown pairs enable the user to
specify the column widths in tenths of inches. By using the TUpDown components, you can
specify minimum and maximum values. The TEdit1 control, edtHeaderFont, contains a
header that can be printed using a font that differs from the one used for the rest of the report.

Advanced Techniques

PART II
160

NOTE

Although this section covers printing, you should know that at the time of this writing,
several third-party printing components are available that should handle most of your
printing needs. You’ll find demos of some of these tools on the CD with this book.

FIGURE 10.1
Columnar report main form.

Listing 10.3 shows the source code for the project. The mmiPrintClick() event handler basi-
cally performs the following steps:

1. Initiates a print job.

2. Prints a header.

3. Prints column names.

13.65227_Ch10CDx 11/30/99 11:29 AM Page 160

4. Prints a page.

5. Continues steps 2, 3, and 4 until printing finishes.

6. Ends the print job.

LISTING 10.3 Columnar Report Demo

unit MainFrm;
interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Grids, DBGrids, DB, DBTables, Menus, StdCtrls, Spin,
Gauges, ExtCtrls, ComCtrls;

type
TMainForm = class(TForm)
{ components not included in listing,
please refer to CD source }

procedure mmiPrintClick(Sender: TObject);
procedure btnHeaderFontClick(Sender: TObject);

private
PixelsInInchx: integer;
LineHeight: Integer;
{ Keeps track of vertical space in pixels, printed on a page }
AmountPrinted: integer;
{ Number of pixels in 1/10 of an inch. This is used for line spacing }
TenthsOfInchPixelsY: integer;
procedure PrintLine(Items: TStringList);
procedure PrintHeader;
procedure PrintColumnNames;

end;

var
MainForm: TMainForm;

implementation
uses printers, AbortFrm;

{$R *.DFM}

procedure TMainForm.PrintLine(Items: TStringList);
var
OutRect: TRect;
Inches: double;
i: integer;

Printing in Delphi 5

CHAPTER 10
161

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:29 AM Page 161

LISTING 10.3 Continued

begin
// First position the print rect on the print canvas
OutRect.Left := 0;
OutRect.Top := AmountPrinted;
OutRect.Bottom := OutRect.Top + LineHeight;
With Printer.Canvas do
for i := 0 to Items.Count - 1 do
begin
Inches := longint(Items.Objects[i]) * 0.1;
// Determine Right edge
OutRect.Right := OutRect.Left + round(PixelsInInchx*Inches);
if not Printer.Aborted then
// Print the line
TextRect(OutRect, OutRect.Left, OutRect.Top, Items[i]);

// Adjust right edge
OutRect.Left := OutRect.Right;

end;
{ As each line prints, AmountPrinted must increase to reflect how
much of a page has been printed on based on the line height. }
AmountPrinted := AmountPrinted + TenthsOfInchPixelsY*2;

end;

procedure TMainForm.PrintHeader;
var
SaveFont: TFont;

begin
{ Save the current printer’s font, then set a new print font based
on the selection for Edit1 }
SaveFont := TFont.Create;
try
Savefont.Assign(Printer.Canvas.Font);
Printer.Canvas.Font.Assign(edtHeaderFont.Font);
// First print out the Header
with Printer do
begin
if not Printer.Aborted then
Canvas.TextOut((PageWidth div 2)-(Canvas.TextWidth(edtHeaderFont.Text)

div 2),0, edtHeaderFont.Text);
// Increment AmountPrinted by the LineHeight
AmountPrinted := AmountPrinted + LineHeight+TenthsOfInchPixelsY;

end;
// Restore the old font to the Printer’s Canvas property
Printer.Canvas.Font.Assign(SaveFont);

finally
SaveFont.Free;

Advanced Techniques

PART II
162

13.65227_Ch10CDx 11/30/99 11:29 AM Page 162

end;
end;

procedure TMainForm.PrintColumnNames;
var
ColNames: TStringList;

begin
{ Create a TStringList to hold the column names and the
positions where the width of each column is based on values
in the TEdit controls. }

ColNames := TStringList.Create;
try
// Print the column headers using a bold/underline style
Printer.Canvas.Font.Style := [fsBold, fsUnderline];

with ColNames do
begin
// Store the column headers and widths in the TStringList object
AddObject(‘LAST NAME’, pointer(StrToInt(edtLastName.Text)));
AddObject(‘FIRST NAME’, pointer(StrToInt(edtFirstName.Text)));
AddObject(‘ADDRESS’, pointer(StrToInt(edtAddress.Text)));
AddObject(‘CITY’, pointer(StrToInt(edtCity.Text)));
AddObject(‘STATE’, pointer(StrToInt(edtState.Text)));
AddObject(‘ZIP’, pointer(StrToInt(edtZip.Text)));

end;

PrintLine(ColNames);
Printer.Canvas.Font.Style := [];

finally
ColNames.Free; // Free the column name TStringList instance

end;
end;

procedure TMainForm.mmiPrintClick(Sender: TObject);
var
Items: TStringList;

begin
{ Create a TStringList instance to hold the fields and the widths
of the columns in which they’ll be drawn based on the entries in
the edit controls }

Items := TStringList.Create;
try
// Determine pixels per inch horizontally
PixelsInInchx := GetDeviceCaps(Printer.Handle, LOGPIXELSX);
TenthsOfInchPixelsY := GetDeviceCaps(Printer.Handle,

LOGPIXELSY) div 10;

Printing in Delphi 5

CHAPTER 10
163

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:29 AM Page 163

LISTING 10.3 Continued

AmountPrinted := 0;
MainForm.Enabled := False; // Disable the parent form
try
Printer.BeginDoc;
AbortForm.Show;
Application.ProcessMessages;
{ Calculate the line height based on text height using the
currently rendered font }

LineHeight := Printer.Canvas.TextHeight(‘X’)+TenthsOfInchPixelsY;
if edtHeaderFont.Text <> ‘’ then
PrintHeader;

PrintColumnNames;
tblClients.First;
{ Store each field value in the TStringList as well as its
column width }

while (not tblClients.Eof) or Printer.Aborted do
begin

Application.ProcessMessages;
with Items do
begin
AddObject(tblClients.FieldByName(‘LAST_NAME’).AsString,

pointer(StrToInt(edtLastName.Text)));
AddObject(tblClients.FieldByName(‘FIRST_NAME’).AsString,

pointer(StrToInt(edtFirstName.Text)));
AddObject(tblClients.FieldByName(‘ADDRESS_1’).AsString,

pointer(StrToInt(edtAddress.Text)));
AddObject(tblClients.FieldByName(‘CITY’).AsString,

pointer(StrToInt(edtCity.Text)));
AddObject(tblClients.FieldByName(‘STATE’).AsString,

pointer(StrToInt(edtState.Text)));
AddObject(tblClients.FieldByName(‘ZIP’).AsString,

pointer(StrToInt(edtZip.Text)));
end;
PrintLine(Items);
{ Force print job to begin a new page if printed output has
exceeded page height }

if AmountPrinted + LineHeight > Printer.PageHeight then
begin
AmountPrinted := 0;
if not Printer.Aborted then
Printer.NewPage;

PrintHeader;
PrintColumnNames;

Advanced Techniques

PART II
164

13.65227_Ch10CDx 11/30/99 11:29 AM Page 164

end;
Items.Clear;
tblClients.Next;

end;
AbortForm.Hide;
if not Printer.Aborted then
Printer.EndDoc;

finally
MainForm.Enabled := True;

end;
finally
Items.Free;

end;
end;

procedure TMainForm.btnHeaderFontClick(Sender: TObject);
begin
{ Assign the font selected with FontDialog1 to Edit1. }
FontDialog.Font.Assign(edtHeaderFont.Font);
if FontDialog.Execute then
edtHeaderFont.Font.Assign(FontDialog.Font);

end;

end.

mmiPrintClick() first creates a TStringList instance to hold the strings for a line to be
printed. Then the number of pixels per inch along the vertical axis is determined in
PixelsPerInchX, which is used to calculate column widths. TenthsOfInchPixelsY is used to
space each line by 0.1 inch. AmountPrinted holds the total amount of pixels along the printed
surface’s vertical axis for each line printed. This is required to determine whether to start a new
page when AmountPrinted exceeds Printer.PageHeight.

If a header exists in edtHeaderFont.Text, it’s printed in PrintHeader(). PrintColumnNames()
prints the names of the columns for each field to be printed. (These two procedures are dis-
cussed later in this section.) Finally, the table’s records are printed.

The following loop increments through tblClients records and prints selected fields within
each of the records:

while (not tblClients.Eof) or Printer.Aborted do begin

Within the loop, the field values are added to the TStringList using the AddObject() method.
Here, you store both the string and the column width. The column width is added to the
Items.Objects array property. Items is then passed to the PrintLine() procedure, which
prints the strings in a columnar format.

Printing in Delphi 5

CHAPTER 10
165

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:29 AM Page 165

In much of the previous code, you saw references to Printer.Aborted. This is a test to deter-
mine whether the user has aborted the print job, which is covered in the next section.

Advanced Techniques

PART II
166

TIP

The TStrings and TStringList’s Objects array properties are a convenient place to
store integer values. Using AddObject() or InsertObject(), you can hold any num-
ber up to MaxLongInt. Because AddObject() expects a TObject reference as its second
parameter, you must typecast that parameter as a pointer, as shown in the following
code:

MyList.AddObject(‘SomeString’, pointer(SomeInteger));

To retrieve the value, use a Longint typecast:

MyInteger := Longint(MyList.Objects[Index]);

The event handler then determines whether printing a new line will exceed the page height:

if AmountPrinted + LineHeight > Printer.PageHeight then

If this evaluates to True, AmountPrinted is set back to 0, Printer.NewPage is invoked to print
a new page, and the header and column names are printed again. Printer.EndDoc is called to
end the print job after the tblClients records have printed.

The PrintHeader() procedure prints the header centered at the top of the report using
edtHeaderFont.Text and edtHeaderFont.Font. AmountPrinted is then incremented and
Printer’s font is restored to its original style.

As the name implies, PrintColumnNames() prints the column names of the report. In this
method, names are added to a TStringList object, ColNames, which then is passed to
PrintLine(). Notice that the column names are printed in a bold, underlined font. Setting
Printer.Canvas.Font accordingly does this.

The PrintLine() procedure takes a TStringList argument called Items and prints each string
in Items on a single line in a columnar manner. The variable OutRect holds values for a bind-
ing rectangle at a location on Printer’s canvas to which the text is drawn. OutRect is passed
to TextRect(), along with the text to draw. By multiplying Items.Object[i] by 0.1,
OutRect.Right’s value is obtained because Items.Objects[i] is in tenths of inches. Inside the
for loop, OutRect is recalculated along the same X-axis to position it to the next column and
draw the next text value. Finally, AmountPrinted is incremented by LineHeight +
TenthsOfInchPixelsY.

Although this report is fully functional, you might consider extending it to include a footer,
page numbers, and even margin settings.

13.65227_Ch10CDx 11/30/99 11:29 AM Page 166

Aborting the Printing Process
Earlier in this chapter, you learned that your users need a way to terminate printing after
they’ve initiated it. The TPrinter.Abort() procedure and the Aborted property help you do
this. The code in Listing 10.3 contains such logic. To add abort logic to your printing routines,
your code must meet these three conditions:

• You must establish an event that, when activated, calls Printer.Abort, thus aborting the
printing process.

• You must check for TPrinter.Aborted = True before calling any of TPrinter’s print
functions, such as TextOut(), NewPage(), and EndDoc().

• You must end your printing logic by checking the value of TPrinter.Aborted for True.

A simple Abort dialog box can satisfy the first condition. You used such a dialog box in the
preceding example. This dialog box should contain a button that will invoke the abort process.

This button’s event handler should simply call TPrinter.Abort, which terminates the print job
and cancels any printing requests made to TPrinter.

In the unit MainForm.pas, examine the code to show AbortForm shortly after calling
TPrinter.Begindoc():

Printer.BeginDoc;
AbortForm.Show;
Application.ProcessMessages;

Because AbortForm is shown as a modeless dialog box, the call to
Application.ProcessMessages ensures that it’s drawn properly before any processing of the
printing logic continues.

To satisfy the second condition, the test for Printer.Aborted = True is performed before
calling any TPrinter methods. The Aborted property is set to True when the Abort() method
is called from AbortForm. As an example, before you call Printer.TextRect, check for
Aborted = True:

if not Printer.Aborted then
TextRect(OutRect, OutRect.Left, OutRect.Top, Items[i]);

Also, you shouldn’t call EndDoc() or any of TPrinter.Canvas’s drawing routines after calling
Abort(), because the printer has been effectively closed.

To satisfy the third condition in this example, while not Table.Eof also checks whether the
value of Printer.Aborted is True, which causes execution to jump out of the loop where the
print logic is executed.

Printing in Delphi 5

CHAPTER 10
167

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:29 AM Page 167

Printing Envelopes
The preceding example showed you a method for printing a columnar report. Although this
technique was somewhat more complicated than sending a series of writeln() calls to the
printer, it’s still, for the most part, a line-by-line print. Printing envelopes introduces a few fac-
tors that complicate things a bit further and are common to most types of printing you’ll do in
Windows. First, the objects (items) you must print probably need to be positioned at some spe-
cific location on the printed surface. Second, the items’ metrics, or units of measurement, can
be completely different from those of the printer canvas. Taking these two factors into account,
printing becomes much more than just printing a line and keeping track of how much print
space you’ve used.

This envelope-printing example shows you a step-by-step process you can use to print just
about anything. Keep in mind that everything drawn on the printer’s canvas is drawn within
some bounding rectangle on the canvas or to specific points on the printer canvas.

Printing in the Abstract
Think of the printing task in a more abstract sense for a moment. In all cases, two things are
certain: You have a surface on which to print, and you have one or more elements to plot onto
that surface. Take a look at Figure 10.2.

Advanced Techniques

PART II
168

Plane A

Plane B

Plane C

FIGURE 10.2
Three planes.

In Figure 10.2, Plane A is your destination surface. Planes B and C are the elements you want
to superimpose (print) onto Plane A. Assume a coordinate system for each plane where the unit
of measurement increases as you travel east along the X-axis and south along the Y-axis—that
is, unless you live in Australia. Figure 10.3 depicts this coordinate system. The result of com-
bining the planes is shown in Figure 10.4.

13.65227_Ch10CDx 11/30/99 11:30 AM Page 168

FIGURE 10.3
The Plane A, B, and C coordinate system.

Printing in Delphi 5

CHAPTER 10
169

10

P
R

IN
TIN

G
IN

D
ELPH

I5

X– X+
Y–

Y+

Plane A

Plane B

Plane C

FIGURE 10.4
Planes B and C superimposed on Plane A.

Notice that Planes B and C were rotated by 90 degrees to achieve the final result. So far, this
doesn’t appear to be too bad. Given that your planes are measured using the same unit of mea-
surement, you can easily draw out these rectangles to achieve the final result with some simple
geometry. But what if they’re not the same unit of measurement?

Suppose that Plane A represents a surface for which the measurements are given in pixels. Its
dimensions are 2,550×3,300 pixels. Plane B is measured in inches: 61⁄2×33⁄4 inches. Suppose

13.65227_Ch10CDx 11/30/99 11:30 AM Page 169

that you don’t know the dimensions for Plane C; you do know, however, that it’s measured
in pixels, and you’ll know its measurements later. These measurements are illustrated in
Figure 10.5.

Advanced Techniques

PART II
170

6-1/2 in

3-3/4 in

?
?

Pixels

2550 pixels

3300

pixels

FIGURE 10.5
Plane measurements.

This abstraction illustrates the problem associated with printing. In fact, it illustrates the very
task of printing an envelope. Plane A represents a printer’s page size on a 300 dpi printer (at
300 dpi, 81⁄2×11 inches equals 2,550×3,300 pixels). Plane B represents the envelope’s size in
inches, and Plane C represents the bounding rectangle for the text making up the address. Keep
in mind, however, that this abstraction isn’t tied to just envelopes. Planes B and C might repre-
sent TImage components measured in millimeters.

By looking at this task in its abstraction, you’ve achieved the first three steps to printing in
Windows: Identify each element to print, identify the unit of measurement for the destination
surface, and identify the units of measurement for each individual element to be plotted onto
the destination surface.

Now consider another twist—literally. When you’re printing an envelope in a vertical fashion,
the text must rotate vertically.

A Step-by-Step Process for Printing
The following list summarizes the process you should follow when laying out your printed out-
put in code:

1. Identify each element to be printed to the destination surface.

2. Identify the unit of measurement for the destination surface or printer canvas.

13.65227_Ch10CDx 11/30/99 11:30 AM Page 170

3. Identify the units of measurement for each individual element to be plotted onto the des-
tination surface.

4. Decide on the common unit of measurement with which to perform all drawing routines.
Almost always, this will be the printer canvas’s units—pixels.

5. Write the translation routines to convert the other units of measurement to that of the
common unit of measurement.

6. Write the routines to calculate the size for each element to print in the common unit of
measurement. In Object Pascal, this can be represented by a TPoint structure. Keep in
mind dependencies on other values. For example, the address’s bounding rectangle is
dependent on the envelope’s position. Therefore, the envelope’s data must be calculated
first.

7. Write the routines to calculate the position of each element as it will appear on the
printer canvas, based on the printer canvas’s coordinate system and the sizes obtained
from step 6. In Object Pascal, this can be represented by a TRect structure. Again, keep
dependencies in mind.

8. Write your printing function, using the data gathered from the previous steps, to position
items on the printed surface.

Printing in Delphi 5

CHAPTER 10
171

10

P
R

IN
TIN

G
IN

D
ELPH

I5

NOTE

Steps 5 and 6 can be achieved by using a technique of performing all drawing in a
specific mapping mode. Mapping modes are discussed in Chapter 8, “Graphics
Programming with GDI and Fonts.”

Getting Down to Business
Given the step-by-step process, your task of printing an envelope should be much clearer.
You’ll see this in the envelope-printing project. The first step is to identify the elements to print
or represent. The elements for the envelope example are the envelope, itself, and the address.

In this example, you learn how to print two standard envelope sizes: a size 10 and a size 63⁄4.

The following record holds the envelope sizes:

type

TEnvelope = record
Kind: string; // Stores the envelope type’s name
Width: double; // Holds the width of the envelope
Height: double; // Holds the height of the envelope

end;

13.65227_Ch10CDx 11/30/99 11:30 AM Page 171

const
// This constant array stores envelope types
EnvArray: array[1..2] of TEnvelope =
((Kind:’Size 10’;Width:9.5;Height:4.125), // 9-1/2 x 4-1/8
(Kind:’Size 6-3/4’;Width:6.5;Height:3.625)); // 6-1/2 x 3-3/4

Steps 2 and 3 are covered: You know that the destination surface is the TPrinter.Canvas,
which is represented in pixels. The envelopes are represented in inches, and the address is rep-
resented in pixels. Step 4 requires you to select a common unit of measurement. For this pro-
ject, you use pixels as the common unit of measurement.

For step 5, the only units you need to convert are from inches to pixels. The GetDeviceCaps()
Win32 API function can return the amount of pixels per one inch along the horizontal and ver-
tical axis for Printer.Canvas:

PixPerInX := GetDeviceCaps(Printer.Handle, LOGPIXELSX);
PixPerInY := GetDeviceCaps(Printer.Handle, LOGPIXELSY);

To convert the envelope’s size to pixels, you just multiply the number of inches by PixPerInX
or PixPerInY to get the horizontal or vertical measurement in pixels:

EnvelopeWidthInPixels := trunc(EnvelopeWidthValue * PixPerInX);
EnvelopeHeightInPixels := trunc(EnvelopeHeightValue * PixPerInY);

Because the envelope width or height can be a fractional value, it’s necessary to use the
Trunc() function to return the integer portion of the floating-point type rounded toward zero.

The sample project demonstrates how you would implement steps 6 and 7. The main form for
this project is shown in Figure 10.6; Listing 10.4 shows the source code for the envelope-
printing project.

Advanced Techniques

PART II
172

FIGURE 10.6
The main form for the envelope demo.

13.65227_Ch10CDx 11/30/99 11:30 AM Page 172

LISTING 10.4 Envelope Printing Demo

unit MainFrm;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
Forms, Dialogs, printers, StdCtrls, ExtCtrls, Menus, ComCtrls;

type

TEnvelope = record
Kind: string; // Stores the envelope type’s name
Width: double; // Holds the width of the envelope
Height: double; // Holds the height of the envelope

end;

const
// This constant array stores envelope types
EnvArray: array[1..2] of TEnvelope =
((Kind:’Size 10’;Width:9.5;Height:4.125), // 9-1/2 x 4-1/8
(Kind:’Size 6-3/4’;Width:6.5;Height:3.625)); // 6-1/2 x 3-3/4

type

// This enumerated type represents printing positions.
TFeedType = (epLHorz, epLVert, epRHorz, epRVert);

TPrintPrevPanel = class(TPanel)
public
property Canvas; // Publicize the Canvas property

end;

TMainForm = class(TForm)
gbEnvelopeSize: TGroupBox;
rbSize10: TRadioButton;
rbSize6: TRadioButton;
mmMain: TMainMenu;
mmiPrintIt: TMenuItem;
lblAdressee: TLabel;
edtName: TEdit;
edtStreet: TEdit;
edtCityState: TEdit;
rgFeedType: TRadioGroup;
PrintDialog: TPrintDialog;

Printing in Delphi 5

CHAPTER 10
173

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 173

LISTING 10.4 Continued

procedure FormCreate(Sender: TObject);
procedure rgFeedTypeClick(Sender: TObject);
procedure mmiPrintItClick(Sender: TObject);

private
PrintPrev: TPrintPrevPanel; // Print preview panel
EnvSize: TPoint; // Stores the envelope’s size
EnvPos: TRect; // Stores the envelope’s position
ToAddrPos: TRect; // Stores the address’s position
FeedType: TFeedType; // Stores the feed type from TEnvPosition
function GetEnvelopeSize: TPoint;
function GetEnvelopePos: TRect;
function GetToAddrSize: TPoint;
function GetToAddrPos: TRect;
procedure DrawIt;
procedure RotatePrintFont;
procedure SetCopies(Copies: Integer);

end;

var
MainForm: TMainForm;

implementation
{$R *.DFM}

function TMainForm.GetEnvelopeSize: TPoint;
// Gets the envelope’s size represented by a TPoint
var
EnvW, EnvH: integer;
PixPerInX,
PixPerInY: integer;

begin
// Pixels per inch along the horizontal axis
PixPerInX := GetDeviceCaps(Printer.Handle, LOGPIXELSX);
// Pixels per inch along the vertical axis
PixPerInY := GetDeviceCaps(Printer.Handle, LOGPIXELSY);

// Envelope size differs depending on the user’s selection
if RBSize10.Checked then
begin
EnvW := trunc(EnvArray[1].Width * PixPerInX);
EnvH := trunc(EnvArray[1].Height * PixPerInY);

end
else begin
EnvW := trunc(EnvArray[2].Width * PixPerInX);

Advanced Techniques

PART II
174

13.65227_Ch10CDx 11/30/99 11:30 AM Page 174

EnvH := trunc(EnvArray[2].Height * PixPerInY);
end;

// return Result as a TPoint record
Result := Point(EnvW, EnvH)

end;

function TMainForm.GetEnvelopePos: TRect;
{ Returns the envelope’s position relative to its feed type. This
function requires that the variable EnvSize be initialized }

begin
// Determine feed type based on user’s selection.
FeedType := TFeedType(rgFeedType.ItemIndex);

{ Return a TRect structure indicating the envelope’s
position as it is ejected from the printer. }

case FeedType of
epLHorz:
Result := Rect(0, 0, EnvSize.X, EnvSize.Y);

epLVert:
Result := Rect(0, 0, EnvSize.Y, EnvSize.X);

epRHorz:
Result := Rect(Printer.PageWidth - EnvSize.X, 0,

➥ Printer.PageWidth, EnvSize.Y);
epRVert:
Result := Rect(Printer.PageWidth - EnvSize.Y, 0,

➥ Printer.PageWidth, EnvSize.X);
end; // Case

end;

function MaxLn(V1, V2: Integer): Integer;
// Returns the larger of the two. If equal, returns the first
begin
Result := V1; // Default result to V1 }
if V1 < V2 then
Result := V2

end;

function TMainForm.GetToAddrSize: TPoint;
var
TempPoint: TPoint;

begin
// Calculate the size of the longest line using the MaxLn() function
TempPoint.x := Printer.Canvas.TextWidth(edtName.Text);
TempPoint.x := MaxLn(TempPoint.x, Printer.Canvas.TextWidth(edtStreet.Text));
TempPoint.x := MaxLn(TempPoint.x,

Printing in Delphi 5

CHAPTER 10
175

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 175

LISTING 10.4 Continued

Printer.Canvas.TextWidth(edtCityState.Text))+10;

// Calculate the height of all the address lines
TempPoint.y := Printer.Canvas.TextHeight(edtName.Text)+

➥ Printer.Canvas.TextHeight(edtStreet.Text)+
➥ Printer.Canvas.TextHeight(edtCityState.Text)+10;

Result := TempPoint;
end;

function TMainForm.GetToAddrPos: TRect;
// This function requires that EnvSize, and EnvPos be initialized
Var
TempSize: TPoint;
LT, RB: TPoint;

begin
// Determine the size of the Address bounding rectangle
TempSize := GetToAddrSize;
{ Calculate two points, one representing the Left Top (LT) position
and one representing the Right Bottom (RB) position of the
address’s bounding rectangle. This depends on the FeedType }

case FeedType of
epLHorz:
begin
LT := Point((EnvSize.x div 2) - (TempSize.x div 2),
((EnvSize.y div 2) - (TempSize.y div 2)));

RB := Point(LT.x + TempSize.x, LT.y + TempSize.Y);
end;

epLVert:
begin
LT := Point((EnvSize.y div 2) - (TempSize.y div 2),
((EnvSize.x div 2) - (TempSize.x div 2)));

RB := Point(LT.x + TempSize.y, LT.y + TempSize.x);
end;

epRHorz:
begin
LT := Point((EnvSize.x div 2) - (TempSize.x div 2) + EnvPos.Left,
((EnvSize.y div 2) - (TempSize.y div 2)));

RB := Point(LT.x + TempSize.x, LT.y + TempSize.Y);
end;
epRVert:
begin
LT := Point((EnvSize.y div 2) - (TempSize.y div 2) + EnvPos.Left,
((EnvSize.x div 2) - (TempSize.x div 2)));

RB := Point(LT.x + TempSize.y, LT.y + TempSize.x);
end;

Advanced Techniques

PART II
176

13.65227_Ch10CDx 11/30/99 11:30 AM Page 176

end; // End Case

Result := Rect(LT.x, LT.y, RB.x, RB.y);
end;

procedure TMainForm.DrawIt;
// This procedure assumes that EnvPos and EnvSize have been initialized
begin
PrintPrev.Invalidate; // Erase contents of Panel
PrintPrev.Update;
// Set the mapping mode for the panel to MM_ISOTROPIC
SetMapMode(PrintPrev.Canvas.Handle, MM_ISOTROPIC);
// Set the TPanel’s extent to match that of the printer boundaries.
SetWindowExtEx(PrintPrev.Canvas.Handle,

Printer.PageWidth, Printer.PageHeight, nil);
// Set the viewport extent to that of the PrintPrev TPanel size.
SetViewPortExtEx(PrintPrev.Canvas.Handle,

PrintPrev.Width, PrintPrev.Height, nil);
// Set the origin to the position at 0, 0
SetViewportOrgEx(PrintPrev.Canvas.Handle, 0, 0, nil);
PrintPrev.Brush.Style := bsSolid;

with EnvPos do
// Draw a rectangle to represent the envelope
PrintPrev.Canvas.Rectangle(Left, Top, Right, Bottom);

with ToAddrPos, PrintPrev.Canvas do
case FeedType of
epLHorz, epRHorz:
begin
Rectangle(Left, Top, Right, Top+2);
Rectangle(Left, Top+(Bottom-Top) div 2, Right,

➥ Top+(Bottom-Top) div 2+2);
Rectangle(Left, Bottom, Right, Bottom+2);

end;
epLVert, epRVert:
begin
Rectangle(Left, Top, Left+2, Bottom);
Rectangle(Left + (Right-Left)div 2, Top,

➥ Left + (Right-Left)div 2+2, Bottom);
Rectangle(Right, Top, Right+2, Bottom);

end;
end; // case

end;

procedure TMainForm.FormCreate(Sender: TObject);

Printing in Delphi 5

CHAPTER 10
177

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 177

LISTING 10.4 Continued

var
Ratio: double;

begin
// Calculate a ratio of PageWidth to PageHeight
Ratio := Printer.PageHeight / Printer.PageWidth;

// Create a new TPanel instance
with TPanel.Create(self) do
begin
SetBounds(15, 15, 203, trunc(203*Ratio));
Color := clBlack;
BevelInner := bvNone;
BevelOuter := bvNone;
Parent := self;

end;

// Create a Print preview panel
PrintPrev := TPrintPrevPanel.Create(self);

with PrintPrev do
begin
SetBounds(10, 10, 200, trunc(200*Ratio));
Color := clWhite;
BevelInner := bvNone;
BevelOuter := bvNone;
BorderStyle := bsSingle;
Parent := self;

end;

end;

procedure TMainForm.rgFeedTypeClick(Sender: TObject);
begin
EnvSize := GetEnvelopeSize;
EnvPos := GetEnvelopePos;
ToAddrPos := GetToAddrPos;
DrawIt;

end;

procedure TMainForm.SetCopies(Copies: Integer);
var
ADevice, ADriver, APort: String;
ADeviceMode: THandle;
DevMode: PDeviceMode;

Advanced Techniques

PART II
178

13.65227_Ch10CDx 11/30/99 11:30 AM Page 178

begin
SetLength(ADevice, 255);
SetLength(ADriver, 255);
SetLength(APort, 255);

{ If ADeviceMode is zero, a printer driver is not loaded. Therefore,
setting PrinterIndex forces the driver to load. }

if ADeviceMode = 0 then
begin
Printer.PrinterIndex := Printer.PrinterIndex;
Printer.GetPrinter(PChar(ADevice), PChar(ADriver),

➥ PChar(APort), ADeviceMode);
end;

if ADeviceMode <> 0 then
begin
DevMode := GlobalLock(ADeviceMode);
try
DevMode^.dmFields := DevMode^.dmFields or DM_Copies;
DevMode^.dmCopies := Copies;

finally
GlobalUnlock(ADeviceMode);

end;
end
else
raise Exception.Create(‘Could not set printer copies’);

end;

procedure TMainForm.mmiPrintItClick(Sender: TObject);
var
TempHeight: integer;
SaveFont: TFont;

begin
if PrintDialog.Execute then
begin
// Set the number of copies to print
SetCopies(PrintDialog.Copies);
Printer.BeginDoc;
try
// Calculate a temporary line height
TempHeight := Printer.Canvas.TextHeight(edtName.Text);
with ToAddrPos do
begin
{ When printing vertically, rotate the font such that it paints
at a 90 degree angle. }

if (FeedType = eplVert) or (FeedType = epRVert) then

Printing in Delphi 5

CHAPTER 10
179

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 179

LISTING 10.4 Continued

begin
SaveFont := TFont.Create;
try
// Save the original font
SaveFont.Assign(Printer.Canvas.Font);
RotatePrintFont;
// Write out the address lines to the printer’s Canvas
Printer.Canvas.TextOut(Left, Bottom, edtName.Text);
Printer.Canvas.TextOut(Left+TempHeight+2, Bottom,

➥ edtStreet.Text);
Printer.Canvas.TextOut(Left+TempHeight*2+2, Bottom,

➥ edtCityState.Text);
// Restore the original font
Printer.Canvas.Font.Assign(SaveFont);

finally
SaveFont.Free;

end;
end
else begin
{ If the envelope is not printed vertically, then
just draw the address lines normally. }

Printer.Canvas.TextOut(Left, Top, edtName.Text);
Printer.Canvas.TextOut(Left, Top+TempHeight+2, edtStreet.Text);
Printer.Canvas.TextOut(Left, Top+TempHeight*2+2,

➥ edtCityState.Text);
end;

end;
finally
Printer.EndDoc;

end;
end;

end;

procedure TMainForm.RotatePrintFont;
var
LogFont: TLogFont;

begin
with Printer.Canvas do
begin
with LogFont do
begin
lfHeight := Font.Height; // Set to Printer.Canvas.font.height
lfWidth := 0; // let font mapper choose width

Advanced Techniques

PART II
180

13.65227_Ch10CDx 11/30/99 11:30 AM Page 180

lfEscapement := 900; // tenths of degrees so 900 = 90 degrees
lfOrientation := lfEscapement; // Always set to value of lfEscapement
lfWeight := FW_NORMAL; // default
lfItalic := 0; // no italics
lfUnderline := 0; // no underline
lfStrikeOut := 0; // no strikeout
lfCharSet := ANSI_CHARSET; //default
StrPCopy(lfFaceName, Font.Name); // Printer.Canvas’s font’s name
lfQuality := PROOF_QUALITY;
lfOutPrecision := OUT_TT_ONLY_PRECIS; // force TrueType fonts
lfClipPrecision := CLIP_DEFAULT_PRECIS; // default
lfPitchAndFamily := Variable_Pitch; // default

end;
end;
Printer.Canvas.Font.Handle := CreateFontIndirect(LogFont);

end;

end.

When the user clicks one of the radio buttons in gbEnvelopeSize or gbFeedType, the
FeedTypeClick() event handler is called. This event handler calls the routines to calculate the
envelope’s size and position based on the radio button choices.

The address rectangle’s size and position also are calculated in these event handlers. This rec-
tangle’s width is based on the longest text width of the text in each of the three TEdit compo-
nents. The rectangle’s height consists of the combined height of the three TEdit components.

All calculations are based on Printer.Canvas’s pixels. mmiPrintItClick() contains logic to
print the envelope based on the choices selected. Additional logic to handle font rotation when
the envelope is positioned vertically is also provided. Additionally, a pseudo–print preview is
created in the FormCreate() event handler. This print preview is updated as the user selects the
radio buttons.

The TFeedType enumerated type represents each position of the envelope as it may feed out of
the printer:

TFeedType = (epLHorz, epLVert, epRHorz, epRVert);

TMainForm contains variables to hold the envelope’s size and position, the address’s TRect size
and position, and the current TFeedType.

TMainForm declares the methods GetEnvelopeSize(), GetEnvelopePos(), GetToAddrSize(),
and GetToAddrPos() to determine the various measurements for elements to be printed, as
specified in steps 6 and 7 of this chapter’s model.

Printing in Delphi 5

CHAPTER 10
181

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 181

In GetEnvelopeSize(), the GetDeviceCaps() function is used to convert the envelope size in
inches to pixels, based on the selection from gbEnvelopeSize. GetEnvelopPos() determines the
position of the envelope on TPrinter.Canvas, based on Printer.Canvas’s coordinate system.

GetToAddrSize() calculates the size of the address’s bounding rectangle, based on the mea-
surements of text contained in the three TEdit components. Here, Printer.Canvas’s
TextHeight() and TextWidth() methods are used to determine these sizes. The function
MaxLn() is a helper function used to determine the longest text line of the three TEdit compo-
nents, which is used as the rectangle’s width. You can also use the Max() function from the
Math.pas unit to determine the longest text line.

GetToAddrPos() calls GetToAddrSize() and uses the returned value to calculate the address’s
bounding rectangle’s position on Printer.Canvas. Note that the envelope’s size and placement
are needed for this function to position the address rectangle properly.

The mmiPrintItClick() event handler performs the actual printing logic. First, it initializes
printing with the BeginDoc() method. Then it calculates a temporary line height used for text
positioning. It determines the TFeedType, and if it’s one of the vertical types, saves the printer’s
font and calls the method RotatePrintFont(), which rotates the font 90 degrees. When it
returns form RotatePrintFont(), it restores Printer.Canvas’s original font. If the TFeedType
is one of the horizontal types, it performs the TextOut() calls to print the address. Finally,
mmiPrintItClick() ends printing with the EndDoc() method.

RotatePrintFont() creates a TLogFont structure and initializes its various values obtained
from Printer.Canvas and other default values. Notice the assignment to its lfEscapement
member. Remember from Chapter 8, “Graphics Programming with GDI and Fonts,” that
lfEscapement specifies an angle in tenths of degrees at which the font is to be drawn. Here,
you specify to print the font at a 90-degree angle by assigning 900 to lfEscapement. One thing
to note here is that only TrueType fonts can be rotated.

A Simple Print Preview
Often, a good way to help your users not make a mistake by choosing the wrong selection is to
enable them to view what the printed output would look like before actually printing. The pro-
ject in this section contains a print preview panel. You did this by constructing a descendant
class of TPanel and publicizing its Canvas property:

TPrintPrevPanel = class(TPanel)
public
property Canvas; // Publicize this property

end;

The FormCreate() event handler performs the logic to instantiate a TPrintPrevPanel. The fol-
lowing line determines the ratio of the printer’s width to its height:

Advanced Techniques

PART II
182

13.65227_Ch10CDx 11/30/99 11:30 AM Page 182

Ratio := Printer.PageHeight / Printer.PageWidth;

This ratio is used to calculate the width and height for the TPrintPrevPanel instance.

Before the TPrintPrevPanel is created, however, a regular TPanel with a black color is created
to serve as a shadow to the TPrintPrevPanel instance, PrintPrev. Its boundaries are adjusted
so that they’re slightly to the right of and below the PrintPrev’s boundaries. The effect is that it
gives PrintPrev a three-dimensional look with a shadow behind it. PrintPrev is used primarily
to show how the envelope would be printed. The routine DrawIt() performs this logic.

TEnvPrintForm.DrawIt() calls PrintPrev.Invalidate to erase its previous contents. Then it
calls PrintPrev.Update() to ensure that the paint message is processed before executing the
remaining code. It then sets PrintPrev’s mapping mode to MM_ISOTROPIC to allow it to accept
arbitrary extents along the X- and Y-axes. SetWindowExt() sets PrintPrev’s windows’ extents
to those of Printer.Canvas, and SetViewPortExt() sets PrintPrev’s viewport extents to its
own height and width (see Chapter 8, “Graphics Programming with GDI and Fonts,” for a dis-
cussion on mapping modes).

This enables DrawIt() to use the same metric values used for the Printer.Canvas, the enve-
lope, the address rectangle, and the PrintPrev panel. This routine also uses rectangles to rep-
resent text lines. The effect is shown in Figure 10.7.

Printing in Delphi 5

CHAPTER 10
183

10

P
R

IN
TIN

G
IN

D
ELPH

I5

FIGURE 10.7
An envelope-printing form with a print preview feature.

NOTE

An alternative and better print preview can be created with metafiles. Create the
metafile using the printer handle as the reference device, then draw into the
metafile canvas just as you would the printer canvas, and then draw the metafile on
the screen. No scaling or viewport extent tweaking is required.

13.65227_Ch10CDx 11/30/99 11:30 AM Page 183

Miscellaneous Printing Tasks
Occasionally, you’ll need to perform a printing task that isn’t available through the TPrinter
object, such specifying the print quality of your print job. To perform these tasks, you must
resort to the Win32 API method. However, this isn’t too difficult. First, you must understand
the TDeviceMode structure. The next section discusses this. The following sections show you
how to use this structure to perform these various printing tasks.

The TDeviceMode Structure
The TDeviceMode structure contains information about a printer driver’s initialization and envi-
ronment data. Programmers use this structure to retrieve information about or set various
attributes of the current printer. This structure is defined in the Windows.pas file.

You’ll find definitions for each of the fields in Delphi’s online help. The following sections
cover some of the more common fields of this structure, but it would be a good idea to take a
look at the online help and read what some of the other fields are used for. In some cases, you
might need to refer to these fields, and some of them are used differently in Windows NT/2000
than in Windows 95/98.

To obtain a pointer to the current printer’s TDeviceMode structure, you can first use
TPrinter.GetPrinter() to obtain a handle to the memory block that the structure occupies.
Then use the GlobalLock() function to retrieve a pointer to this structure. Listing 10.5 illus-
trates how to get the pointer to the TDeviceMode structure.

LISTING 10.5 Obtaining a Pointer to a TDeviceMode Structure

var
ADevice, ADriver, APort: array [0..255] of Char;
DeviceHandle: THandle;
DevMode: PDeviceMode; // A Pointer to a TDeviceMode structure

begin
{ First obtain a handle to the TPrinter’s DeviceMode structure }
Printer.GetPrinter(ADevice, ADriver, APort, DeviceHandle);
{ If DeviceHandle is still 0, then the driver was not loaded. Set
the printer index to force the printer driver to load making the
handle available }

if DeviceHandle = 0 then
begin
Printer.PrinterIndex := Printer.PrinterIndex;
Printer.GetPrinter(ADevice, ADriver, APort, DeviceHandle);

end;
{ If DeviceHandle is still 0, then an error has occurred. Otherwise,
use GlobalLock() to get a pointer to the TDeviceMode structure }

Advanced Techniques

PART II
184

13.65227_Ch10CDx 11/30/99 11:30 AM Page 184

if DeviceHandle = 0 then
Raise Exception.Create(‘Could Not Initialize TDeviceMode structure’)

else
DevMode := GlobalLock(DeviceHandle);

{ Code to use the DevMode structure goes here }
{ !!!! }
if not DeviceHandle = 0 then
GlobalUnlock(DeviceHandle);

end;

The comments in the preceding listing explain the steps required to obtain the pointer to the
TDeviceMode structure. After you’ve obtained this pointer, you can perform various printer rou-
tines, as illustrated in the following sections. First, however, notice this comment in the preced-
ing listing:

{ Code to use the DevMode structure goes here }
{ !!!! }

It’s here that you place the code examples to follow.

Before you can initialize any of the members of the TDeviceMode structure, however, you must
specify which member you’re initializing by setting the appropriate bit in the dmFields bit
flags. Table 10.3 lists the various bit flags of dmFields and also specifies to which
TDeviceMode member they pertain.

TABLE 10.3 TDeviceMode.dmFields Bit Flags

dmField Value Corresponding Field

DM_ORIENTATION dmOrientation

DM_PAPERSIZE dmPaperSize

DM_PAPERLENGTH dmPaperLength

DM_PAPERWIDTH dmPaperWidth

DM_SCALE dmScale

DM_COPIES dmCopies

DM_DEFAULTSOURCE dmDefaultSource

DM_PRINTQUALITY dmPrintQuality

DM_COLOR dmColor

DM_DUPLEX dmDuplex

DM_YRESOLUTION dmYResolution

DM_TTOPTION dmTTOption

DM_COLLATE dmCollate

Printing in Delphi 5

CHAPTER 10
185

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 185

TABLE 10.3 Continued

dmField Value Corresponding Field

DM_FORMNAME dmFormName

DM_LOGPIXELS dmLogPixels

DM_BITSPERPEL dmBitsPerPel

DM_PELSWIDTH dmPelsWidth

DM_PELSHEIGHT dmPelsHeight

DM_DISPLAYFLAGS dmDisplayFlags

DM_DISPLAYFREQUENCY dmDisplayFrequency

DM_ICMMETHOD dmICMMethod (Windows 95 only)

DM_ICMINTENT dmICMIntent (Windows 95 only)

DM_MEDIATYPE dmMediaType (Windows 95 only)

DM_DITHERTYPE dmDitherType (Windows 95 only)

In the examples that follow, you’ll see how to set the appropriate bit flag as well as the corre-
sponding TDeviceMode member.

Specifying Copies to Print
You can tell a print job how many copies to print by specifying the number of copies in the
dmCopies field of the TDeviceMode structure. The following code illustrates how to do this:

with DevMode^ do
begin

dmFields := dmFields or DM_COPIES;
dmCopies := Copies;

end;

First, you must set the appropriate bit flag of the dmFields field to indicate which member of
the TDeviceMode structure has been initialized. The preceding code is what you would insert
into the code in Listing 10.6 where specified. Then, whenever you start your print job, the
number of copies specified should be sent to the printer. It’s worth mentioning that although
this examples illustrates how to set the copies to print using the TDeviceMode structure, the
TPrinter.Copies property does the same.

Specifying Printer Orientation
Specifying printer orientation is similar to specifying copies except that you initialize a differ-
ent TDeviceMode structure:

Advanced Techniques

PART II
186

13.65227_Ch10CDx 11/30/99 11:30 AM Page 186

with DevMode^ do
begin

dmFields := dmFields or DM_ORIENTATION;
dmOrientation := DMORIENT_LANDSCAPE;

end;

The two options for dmOrientation are DMORIENT_LANDSCAPE and DMORIENT_PORTRAIT. You
might also look at the TPrinter.Orientation property.

Specifying Paper Size
To specify a paper size, you initialize TDeviceMode’s dmPaperSize member:

with DevMode^ do
begin

dmFields := dmFields or DM_PAPERSIZE;
dmPaperSize := DMPAPER_LETTER; // Letter, 8-1/2 by 11 inches

end;

Several predefined values exist for the dmPaperSize member, which you can look up in the
online help under TDeviceMode. The dmPaperSize member can be set to zero if the paper size
is specified by the dmPaperWidth and dmPaperHeight members.

Specifying Paper Length
You can specify the paper length in tenths of a millimeter for the printed output by setting the
dmPaperLength field. This overrides any settings applied to the dmPaperSize field. The follow-
ing code illustrates setting the paper length:

with DevMode^ do
begin

dmFields := dmFields or DM_PAPERLENGTH;
dmPaperLength := SomeLength;

end;

Specifying Paper Width
Paper width is also specified in tenths of a millimeter. To set the paper width, you must initial-
ize the dmPaperWidth field of the TDeviceMode structure. The following code illustrates this
setting:

with DevMode^ do
begin

dmFields := dmFields or DM_PAPERWIDTH;
dmPaperWidth := SomeWidth;

end;

This also overrides the settings for the dmPaperSize field.

Printing in Delphi 5

CHAPTER 10
187

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 187

Specifying Print Scale
The print scale is the factor by which the printed output is scaled. Therefore, the resulting page
size is scaled from the physical page size by a factor of TDeviceMode.dmScale divided by 100.
Therefore, to shrink the printed output (graphics and text) by half their original size, you would
assign the value of 50 to the dmScale field. The following code illustrates how to set the print
scale:

with DevMode^ do
begin

dmFields := dmFields or DM_SCALE;
dmScale := 50;

end;

Specifying Print Color
For printers that support color printing, you can specify whether the printer is to render color
or monochrome printing by initializing the dmColor field, as shown here:

with DevMode^ do
begin

dmFields := dmFields or DM_COLOR;
dmColor := DMCOLOR_COLOR;

end;

Another value that can be assigned to the dmColor field is DMCOLOR_MONOCHROME.

Specifying Print Quality
Print quality is the resolution at which the printer prints its output. Four predefined values exist
for setting the print quality, as shown in the following list:

• DMRES_HIGH. High-resolution printing

• DMRES_MEDIUM. Medium-resolution printing

• DMRES_LOW. Low-resolution printing

• DMRES_DRAFT. Draft-resolution printing

To change the quality of print, you initialize the dmPrintQuality field of the TDeviceMode
structure:

with DevMode^ do
begin

dmFields := dmFields or DM_PRINTQUALITY;
dmPrintQuality := DMRES_DRAFT;

end;

Advanced Techniques

PART II
188

13.65227_Ch10CDx 11/30/99 11:30 AM Page 188

Specifying Duplex Printing
Some printers are capable of duplex printing—printing on both sides of the paper. You can tell
the printer to perform double-sided printing by initializing the dmDuplex field of the
TDeviceMode structure to one of these values:

• DMDUP_SIMPLEX

• DMDUP_HORIZONTAL

• DMDUP_VERTICAL

Here’s an example:

with DevMode^ do
begin

dmFields := dmFields or DM_DUPLEX;
dmDuplex := DMDUP_HORIZONTAL;

end;

Changing the Default Printer
Although it’s possible to change the default printer by launching the printer folder, you might
want to change the default printer at runtime. This is possible as illustrated in the sample pro-
ject shown in Listing 10.6.

LISTING 10.6 Changing the Default Printer

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TMainForm = class(TForm)
cbPrinters: TComboBox;
lblPrinter: TLabel;
procedure FormCreate(Sender: TObject);
procedure cbPrintersChange(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

Printing in Delphi 5

CHAPTER 10
189

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 189

LISTING 10.6 Continued

var
MainForm: TMainForm;

implementation
uses IniFiles, Printers;

{$R *.DFM}

procedure TMainForm.FormCreate(Sender: TObject);
begin
{ Copy the printer names to the combobox and set the combobox to
show the currently selected default printer }

cbPrinters.Items.Assign(Printer.Printers);
cbPrinters.Text := Printer.Printers[Printer.PrinterIndex];
// Update the label to reflect the default printer
lblPrinter.Caption := Printer.Printers[Printer.PrinterIndex];

end;

procedure TMainForm.cbPrintersChange(Sender: TObject);
var
IniFile: TIniFile;
TempStr1, TempStr2: String;

begin
with Printer do
begin
// Set the new printer based on the ComboBox’s selected printer
PrinterIndex := cbPrinters.ItemIndex;
// Store the printer name into a temporary string
TempStr1 := Printers[PrinterIndex];
// Delete the unnecessary portion of the printer name
System.Delete(TempStr1, Pos(‘ on ‘, TempStr1), Length(TempStr1));
// Create a TIniFile class
IniFile := TIniFile.Create(‘WIN.INI’);
try
// Retrieve the device name of the selected printer
TempStr2 := IniFile.ReadString(‘Devices’, TempStr1, ‘’);
// Change the default printer to that chosen by the user
IniFile.WriteString(‘windows’, ‘device’, TempStr1 + ‘,’ + TempStr2);

finally
IniFile.Free;

end;
end;
// Update the label to reflect the new printer selection
lblPrinter.Caption := Printer.Printers[Printer.PrinterIndex];

end;

end.

Advanced Techniques

PART II
190

13.65227_Ch10CDx 11/30/99 11:30 AM Page 190

The preceding project consists of a main form with a TComboBox and a TLabel component.
Upon form creation, the TComboBox component is initialized with the string list of printer names
obtained from the Printer.Printers property. The TLabel component is then updated to reflect
the currently selected printer. The cbPrintersChange() event handler is where we placed the
code to modify the system-wide default printer. What this entails is changing the [device] entry
in the [windows] section of the WIN.INI file, located in the Windows directory. The comments in
the preceding code go on to explain the process of making these modifications.

Obtaining Printer Information
This section illustrates how you can retrieve information about a printer device such as physi-
cal characteristics (number of bins, paper sizes supported, and so on) as well as the printer’s
text- and graphics-drawing capabilities.

You might want to get information about a particular printer for several reasons. For example,
you might need to know whether the printer supports a particular capability. A typical example
is to determine whether the current printer supports banding. Banding is a process that can
improve printing speed and disk space requirements for printers with memory limitations. To
use banding, you must make API calls specific to this capability. On a printer that doesn’t sup-
port this capability, these calls wouldn’t function. Therefore, you can first determine whether the
printer will support banding (and use it, if so); otherwise, you can avoid the banding API calls.

GetDeviceCaps() and DeviceCapabilities()
The Win32 API function GetDeviceCaps() allows you to obtain information about devices
such as printers, plotters, screens, and so on. Generally, these are devices that have a device
context. You use GetDeviceCaps() by supplying it a handle to a device context and an index
that specifies the information you want to retrieve.

DeviceCapabilities() is specific to printers. In fact, the information obtained from
DeviceCapabilities() is provided by the printer driver for a specified printer.
Use DeviceCapabilities() by supplying it with strings identifying the printer device as well
as an index specifying the data you want to retrieve. Sometimes two calls to
DeviceCapabilities() are required to retrieve certain data. The first call is made to determine
how much memory you must allocate for the data to be retrieved. The second call stores the
data in the memory block you’ve allocated. This section illustrates how to do this.

One thing you should know is that most of the drawing capabilities that aren’t supported by a
particular printer will still work if you use them. For example, when GetDeviceCaps() or
DeviceCapabilities() indicates that BitBlt(), StretchBlt(), or printing TrueType fonts
isn’t supported, you can still use any of these functions; GDI will simulate these functions for
you. Note, however, that GDI cannot simulate BitBlt() on a device that doesn’t support raster
scanline pixels; BitBlt() will always fail on a pen plotter, for example.

Printing in Delphi 5

CHAPTER 10
191

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 191

Printer Information Sample Program
Figure 10.8 shows the main form for the sample program. This program contains eight pages,
each of which lists different printer capabilities for the printer selected in the combo box.

Advanced Techniques

PART II
192

FIGURE 10.8
The main form for the printer information example.

Declaring the DeviceCapabilitiesA Function
If you attempt to use the function DeviceCapabilities() defined in Windows.pas, you won’t
be able to run your program because this function isn’t defined in GDI32.DLL as Windows.pas
indicates. Instead, this function in GDI32.DLL is DeviceCapabilitiesEx(). However, even if
you define this function’s prototype as follows, the function won’t work as expected and
returns erroneous results:

function DeviceCapabilitiesEx(pDevice, pPort: Pchar; fwCapability: Word;
pOutput: Pchar; DevMode: PdeviceMode):
Integer; stdcall; external ‘Gdi32.dll’;

It turns out that two functions—DeviceCapabilitiesA() for ANSI strings and
DeviceCapabilitiesW() for wide strings—are defined in WINSPOOL.DRV, which is the Win32
print spooler interface. This function is the correct one to use as indicated in the Microsoft
Developer’s Network CD (MSDN). The correct definition for the function prototype that’s
used in the sample program in Listing 10.8 (shown in the following section) is as follows:

function DeviceCapabilitiesA(pDevice, pPort: Pchar; fwCapability: Word;
pOutput: Pchar; DevMode: PdeviceMode):
Integer; stdcall; external ‘winspool.drv’;

Note that the preceding declaration can be found in WINSPOOL.PAS in Delphi 5.

Sample Program Functionality
Listing 10.8 (shown at the end of this section) contains the source for the Printer Information
sample program. The main form’s OnCreate event handler simply populates the combo box

13.65227_Ch10CDx 11/30/99 11:30 AM Page 192

with the list of available printers on the system. The OnChange event handler for the combo box
is the central point of the application where the methods to retrieve the printer information are
called.

The first page on the form General Data contains general information about the printer device.
You’ll see that the printer’s device name, driver, and port location are obtained by calling the
TPrinter.GetPrinter() method. This method also retrieves a handle to a TDeviceMode struc-
ture for the currently selected printer. This information is then added to the General Data page.
To retrieve the printer driver version, you use the DeviceCapabilitiesA() function and pass
the DC_DRIVER index. The rest of the PrinterComboChange event handler calls the various rou-
tines to populate the list boxes on the various pages of the main form.

The GetBinNames() method illustrates how to use the DeviceCapabilitiesA() function to
retrieve the bin names for the selected printer. This method first gets the number of bin names
available by calling DeviceCapabilitiesA(), passing the DC_BINNAMES index, and passing nil
as the pOutput and DevMode parameters. The result of this function call specifies how much
memory must be allocated to hold the bin names. According to the documentation on
DeviceCapabilitiesA(), each bin name is defined as an array of 24 characters. We defined a
TBinName data type like this:

TBinName = array[0..23] of char;

We also defined an array of TBinName:

TBinNames = array[0..0] of TBinName;

This type is used to typecast a pointer as an array of TBinName data types. To access an ele-
ment at some index into the array, you must disable range checking, because this array is
defined to have a range of 0..0, as illustrated in the GetBinNames() method. The bin names
are added to the appropriate list box.

This same technique of determining the amount of memory required and allocating this mem-
ory dynamically is also used in the methods GetDevCapsPaperNames() and
GetResolutions().

The methods GetDuplexSupport(), GetCopies(), and GetEMFStatus() all use the
DeviceCapabilitiesA() function to return a value of the requested information. For example,
the following code determines whether the selected printer supports duplex printing by return-
ing a value of 1 if duplex printing is supported or 0 if not:

DeviceCapabilitiesA(Device, Port, DC_DUPLEX, nil, nil);

Also, the following statement returns the maximum number of copies the device can print:

DeviceCapabilitiesA(Device, Port, DC_COPIES, nil, nil);

Printing in Delphi 5

CHAPTER 10
193

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 193

The remaining methods use the GetDeviceCaps() function to determine the various capabilities
of the selected device. In some cases, GetDeviceCaps() returns the specific value requested.
For example, the following statement returns the width, in millimeters, of the printer device:

GetDeviceCaps(Printer.Handle, HORZSIZE);

In other cases, GetDeviceCaps() returns an integer value whose bits are masked to determine a
particular capability. For example, the GetRasterCaps() method first retrieves the integer
value that contains the bitmasked fields:

RCaps := GetDeviceCaps(Printer.Handle, RASTERCAPS);

Then, to determine whether the printer supports banding, you must mask out the RC_BANDING
field by performing an AND operation whose result should equal the value of RC_BANDING:

(RCaps and RC_BANDING) = RC_BANDING

This evaluation is passed to one of the helper functions, BoolToYesNoStr(), which returns the
string Yes or No, based on the result of the evaluation. Other fields are masked in the same
manner. This same technique is used in other areas where bitmasked fields are returned from
GetDeviceCaps() as well as from the DeviceCapabilitiesA() function, such as in the
GetTrueTypeInfo() method.

You’ll find both functions, DeviceCapabilties() and GetDeviceCaps(), well documented in
the online Win32 API help.

LISTING 10.7 Printer Information Sample Program

unit MainFrm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, ComCtrls, ExtCtrls;

type
TMainForm = class(TForm)
pgcPrinterInfo: TPageControl;
tbsPaperTypes: TTabSheet;
tbsGeneralData: TTabSheet;
lbPaperTypes: TListBox;
tbsDeviceCaps: TTabSheet;
tbsRasterCaps: TTabSheet;
tbsCurveCaps: TTabSheet;
tbsLineCaps: TTabSheet;
tbsPolygonalCaps: TTabSheet;

Advanced Techniques

PART II
194

13.65227_Ch10CDx 11/30/99 11:30 AM Page 194

tbsTextCaps: TTabSheet;
lvGeneralData: TListView;
lvCurveCaps: TListView;
Splitter1: TSplitter;
lvDeviceCaps: TListView;
lvRasterCaps: TListView;
pnlTop: TPanel;
cbPrinters: TComboBox;
lvLineCaps: TListView;
lvPolyCaps: TListView;
lvTextCaps: TListView;
procedure FormCreate(Sender: TObject);
procedure cbPrintersChange(Sender: TObject);

private
Device, Driver, Port: array[0..255] of char;
ADevMode: THandle;
public
procedure GetBinNames;
procedure GetDuplexSupport;
procedure GetCopies;
procedure GetEMFStatus;
procedure GetResolutions;
procedure GetTrueTypeInfo;
procedure GetDevCapsPaperNames;
procedure GetDevCaps;
procedure GetRasterCaps;
procedure GetCurveCaps;
procedure GetLineCaps;
procedure GetPolyCaps;
procedure GetTextCaps;

end;

var
MainForm: TMainForm;

implementation
uses
Printers, WinSpool;

const
NoYesArray: array[Boolean] of String = (‘No’, ‘Yes’);

type

// Types for holding bin names
TBinName = array[0..23] of char;
// Where used set $R- to prevent error

Printing in Delphi 5

CHAPTER 10
195

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 195

LISTING 10.7 Continued

TBinNames = array[0..0] of TBinName;

// Types for holding paper names
TPName = array[0..63] of char;

// Where used set $R- to prevent error
TPNames = array[0..0] of TPName;

// Types for holding resolutions
TResolution = array[0..1] of integer;
// Where used set $R- to prevent error
TResolutions = array[0..0] of TResolution;

// Type for holding array of pages sizes (word types)
TPageSizeArray = Array[0..0] of word;

var
Rslt: Integer;

{$R *.DFM}
(*
function BoolToYesNoStr(aVal: Boolean): String;
// Returns the string “YES” or “NO” based on the boolean value
begin
if aVal then
Result := ‘Yes’

else
Result := ‘No’;

end;
*)
procedure AddListViewItem(const aCaption, aValue: String; aLV: TListView);
// This method is used to add a TListItem to the TListView, aLV
var
NewItem: TListItem;

begin
NewItem := aLV.Items.Add;
NewItem.Caption := aCaption;
NewItem.SubItems.Add(aValue);

end;

procedure TMainForm.GetBinNames;
var
BinNames: Pointer;
i: integer;

Advanced Techniques

PART II
196

13.65227_Ch10CDx 11/30/99 11:30 AM Page 196

begin
{$R-} // Range checking must be turned off here.
// First determine how many bin names are available.
Rslt := DeviceCapabilitiesA(Device, Port, DC_BINNAMES, nil, nil);
if Rslt > 0 then
begin
{ Each bin name is 24 bytes long. Therefore, allocate Rslt*24 bytes to hold
the bin names. }

GetMem(BinNames, Rslt*24);
try
// Now retrieve the bin names in the allocated block of memory.
if DeviceCapabilitiesA(Device, Port, DC_BINNAMES, BinNames, nil) = -1

then
raise Exception.Create(‘DevCap Error’);

//{ Add the information to the appropriate list box.
AddListViewItem(‘BIN NAMES’, EmptyStr, lvGeneralData);
for i := 0 to Rslt - 1 do
begin
AddListViewItem(Format(‘ Bin Name %d’, [i]),
StrPas(TBinNames(BinNames^)[i]), lvGeneralData);

end;
finally
FreeMem(BinNames, Rslt*24);

end;
end;

{$R+} // Turn range checking back on.
end;

procedure TMainForm.GetDuplexSupport;
begin
{ This function uses DeviceCapabilitiesA to determine whether or not the
printer device supports duplex printing. }

Rslt := DeviceCapabilitiesA(Device, Port, DC_DUPLEX, nil, nil);
AddListViewItem(‘Duplex Printing’, NoYesArray[Rslt = 1], lvGeneralData);

end;

procedure TMainForm.GetCopies;
begin
{ This function determines how many copies the device can be set to print.
If the result is not greater than 1 then the print logic must be
executed multiple times }

Rslt := DeviceCapabilitiesA(Device, Port, DC_COPIES, nil, nil);
AddListViewItem(‘Copies that printer can print’,

InttoStr(Rslt), lvGeneralData);

end;

Printing in Delphi 5

CHAPTER 10
197

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 197

LISTING 10.7 Continued

procedure TMainForm.GetEMFStatus;
begin
// This function determines if the device supports the enhanced metafiles.
Rslt := DeviceCapabilitiesA(Device, Port, DC_EMF_COMPLIANT, nil, nil);
AddListViewItem(‘EMF Compliant’, NoYesArray[Rslt=1], lvGeneralData);

end;

procedure TMainForm.GetResolutions;
var
Resolutions: Pointer;
i: integer;

begin
{$R-} // Range checking must be turned off.
// Determine how many resolutions are available.
Rslt := DeviceCapabilitiesA(Device, Port, DC_ENUMRESOLUTIONS, nil, nil);
if Rslt > 0 then begin
{ Allocate the memory to hold the different resolutions which are
represented by integer pairs, ie: 300, 300 }

GetMem(Resolutions, (SizeOf(Integer)*2)*Rslt);
try
// Retrieve the different resolutions.
if DeviceCapabilitiesA(Device, Port, DC_ENUMRESOLUTIONS,
Resolutions, nil) = -1 then
Raise Exception.Create(‘DevCaps Error’);

// Add the resolution information to the appropriate list box.
AddListViewItem(‘RESOLUTION CONFIGURATIONS’, EmptyStr, lvGeneralData);

for i := 0 to Rslt - 1 do
begin
AddListViewItem(‘ Resolution Configuration’,
IntToStr(TResolutions(Resolutions^)[i][0])+
‘ ‘+IntToStr(TResolutions(Resolutions^)[i][1]), lvGeneralData);

end;
finally
FreeMem(Resolutions, SizeOf(Integer)*Rslt*2);

end;
end;

{$R+} // Turn range checking back on.
end;

procedure TMainForm.GetTrueTypeInfo;
begin
// Get the TrueType font capabilities of the device represented as bitmasks
Rslt := DeviceCapabilitiesA(Device, Port, DC_TRUETYPE, nil, nil);
if Rslt <> 0 then

Advanced Techniques

PART II
198

13.65227_Ch10CDx 11/30/99 11:30 AM Page 198

{ Now mask out the individual TrueType capabilities and indicate the
result in the appropriate list box. }

AddListViewItem(‘TRUE TYPE FONTS’, EmptyStr, lvGeneralData);
with lvGeneralData.Items do
begin
AddListViewItem(‘ Prints TrueType fonts as graphics’,
NoYesArray[(Rslt and DCTT_BITMAP) = DCTT_BITMAP], lvGeneralData);

AddListViewItem(‘ Downloads TrueType fonts’,
NoYesArray[(Rslt and DCTT_DOWNLOAD) = DCTT_DOWNLOAD],

➥ lvGeneralData);

AddListViewItem(‘ Downloads outline TrueType fonts’,
NoYesArray[(Rslt and DCTT_DOWNLOAD_OUTLINE) =

➥ DCTT_DOWNLOAD_OUTLINE],
lvGeneralData);

AddListViewItem(‘ Substitutes device for TrueType fonts’,
NoYesArray[(Rslt and DCTT_SUBDEV) = DCTT_SUBDEV], lvGeneralData);

end;
end;

procedure TMainForm.GetDevCapsPaperNames;
{ This method gets the paper types available on a selected printer from the
DeviceCapabilitiesA function. }

var
PaperNames: Pointer;
i: integer;

begin
{$R-} // Range checking off.
lbPaperTypes.Items.Clear;
// First get the number of paper names available.
Rslt := DeviceCapabilitiesA(Device, Port, DC_PAPERNAMES, nil, nil);
if Rslt > 0 then begin
{ Now allocate the array of paper names. Each paper name is 64 bytes.
Therefore, allocate Rslt*64 of memory. }

GetMem(PaperNames, Rslt*64);
try
// Retrieve the list of names into the allocated memory block.
if DeviceCapabilitiesA(Device, Port, DC_PAPERNAMES,
PaperNames, nil) = - 1 then
raise Exception.Create(‘DevCap Error’);

// Add the paper names to the appropriate list box.
for i := 0 to Rslt - 1 do
lbPaperTypes.Items.Add(StrPas(TPNames(PaperNames^)[i]));

finally

Printing in Delphi 5

CHAPTER 10
199

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 199

LISTING 10.7 Continued

FreeMem(PaperNames, Rslt*64);
end;

end;
{$R+} // Range checking back on.
end;

procedure TMainForm.GetDevCaps;
{ This method retrieves various capabilities of the selected printer device by
using the GetDeviceCaps function. Refer to the Online API help for the
meaning of each of these items. }

begin
with lvDeviceCaps.Items do
begin
Clear;
AddListViewItem(‘Width in millimeters’,
IntToStr(GetDeviceCaps(Printer.Handle, HORZSIZE)), lvDeviceCaps);

AddListViewItem(‘Height in millimeter’,
IntToStr(GetDeviceCaps(Printer.Handle, VERTSIZE)), lvDeviceCaps);

AddListViewItem(‘Width in pixels’,
IntToStr(GetDeviceCaps(Printer.Handle, HORZRES)), lvDeviceCaps);

AddListViewItem(‘Height in pixels’,
IntToStr(GetDeviceCaps(Printer.Handle, VERTRES)), lvDeviceCaps);

AddListViewItem(‘Pixels per horizontal inch’,
IntToStr(GetDeviceCaps(Printer.Handle, LOGPIXELSX)), lvDeviceCaps);

AddListViewItem(‘Pixels per vertical inch’,
IntToStr(GetDeviceCaps(Printer.Handle, LOGPIXELSY)), lvDeviceCaps);

AddListViewItem(‘Color bits per pixel’,
IntToStr(GetDeviceCaps(Printer.Handle, BITSPIXEL)), lvDeviceCaps);

AddListViewItem(‘Number of color planes’,
IntToStr(GetDeviceCaps(Printer.Handle, PLANES)), lvDeviceCaps);

AddListViewItem(‘Number of brushes’,
IntToStr(GetDeviceCaps(Printer.Handle, NUMBRUSHES)), lvDeviceCaps);

AddListViewItem(‘Number of pens’,
IntToStr(GetDeviceCaps(Printer.Handle, NUMPENS)), lvDeviceCaps);

AddListViewItem(‘Number of fonts’,
IntToStr(GetDeviceCaps(Printer.Handle, NUMFONTS)), lvDeviceCaps);

Rslt := GetDeviceCaps(Printer.Handle, NUMCOLORS);
if Rslt = -1 then
AddListViewItem(‘Number of entries in color table’, ‘ > 8’, lvDeviceCaps)

else AddListViewItem(‘Number of entries in color table’,
IntToStr(Rslt), lvDeviceCaps);

AddListViewItem(‘Relative pixel drawing width’,
IntToStr(GetDeviceCaps(Printer.Handle, ASPECTX)), lvDeviceCaps);

AddListViewItem(‘Relative pixel drawing height’,

Advanced Techniques

PART II
200

13.65227_Ch10CDx 11/30/99 11:30 AM Page 200

IntToStr(GetDeviceCaps(Printer.Handle, ASPECTY)), lvDeviceCaps);
AddListViewItem(‘Diagonal pixel drawing width’,
IntToStr(GetDeviceCaps(Printer.Handle, ASPECTXY)), lvDeviceCaps);

if GetDeviceCaps(Printer.Handle, CLIPCAPS) = 1 then
AddListViewItem(‘Clip to rectangle’, ‘Yes’, lvDeviceCaps)

else AddListViewItem(‘Clip to rectangle’, ‘No’, lvDeviceCaps);
end;

end;

procedure TMainForm.GetRasterCaps;
{ This method gets the various raster capabilities of the selected printer
device by using the GetDeviceCaps function with the RASTERCAPS index. Refer
to the online help for information on each capability. }

var
RCaps: Integer;

begin
with lvRasterCaps.Items do
begin
Clear;
RCaps := GetDeviceCaps(Printer.Handle, RASTERCAPS);
AddListViewItem(‘Banding’,
NoYesArray[(RCaps and RC_BANDING) = RC_BANDING], lvRasterCaps);

AddListViewItem(‘BitBlt Capable’,
NoYesArray[(RCaps and RC_BITBLT) = RC_BITBLT], lvRasterCaps);

AddListViewItem(‘Supports bitmaps > 64K’,
NoYesArray[(RCaps and RC_BITMAP64) = RC_BITMAP64], lvRasterCaps);

AddListViewItem(‘DIB support’,
NoYesArray[(RCaps and RC_DI_BITMAP) = RC_DI_BITMAP], lvRasterCaps);

AddListViewItem(‘Floodfill support’,
NoYesArray[(RCaps and RC_FLOODFILL) = RC_FLOODFILL], lvRasterCaps);

AddListViewItem(‘Windows 2.0 support’,
NoYesArray[(RCaps and RC_GDI20_OUTPUT) = RC_GDI20_OUTPUT],

➥ lvRasterCaps);
AddListViewItem(‘Palette based device’,
NoYesArray[(RCaps and RC_PALETTE) = RC_PALETTE], lvRasterCaps);

AddListViewItem(‘Scaling support’,
NoYesArray[(RCaps and RC_SCALING) = RC_SCALING], lvRasterCaps);

AddListViewItem(‘StretchBlt support’,
NoYesArray[(RCaps and RC_STRETCHBLT) = RC_STRETCHBLT],

➥ lvRasterCaps);
AddListViewItem(‘StretchDIBits support’,
NoYesArray[(RCaps and RC_STRETCHDIB) = RC_STRETCHDIB],

➥ lvRasterCaps);
end;

end;

Printing in Delphi 5

CHAPTER 10
201

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 201

LISTING 10.7 Continued

procedure TMainForm.GetCurveCaps;
{ This method gets the various curve capabilities of the selected printer
device by using the GetDeviceCaps function with the CURVECAPS index. Refer
to the online help for information on each capability. }

var
CCaps: Integer;

begin
with lvCurveCaps.Items do
begin
Clear;
CCaps := GetDeviceCaps(Printer.Handle, CURVECAPS);

AddListViewItem(‘Curve support’,
NoYesArray[(CCaps and CC_NONE) = CC_NONE], lvCurveCaps);

AddListViewItem(‘Circle support’,
NoYesArray[(CCaps and CC_CIRCLES) = CC_CIRCLES], lvCurveCaps);

AddListViewItem(‘Pie support’,
NoYesArray[(CCaps and CC_PIE) = CC_PIE], lvCurveCaps);

AddListViewItem(‘Chord arc support’,
NoYesArray[(CCaps and CC_CHORD) = CC_CHORD], lvCurveCaps);

AddListViewItem(‘Ellipse support’,
NoYesArray[(CCaps and CC_ELLIPSES) = CC_ELLIPSES], lvCurveCaps);

AddListViewItem(‘Wide border support’,
NoYesArray[(CCaps and CC_WIDE) = CC_WIDE], lvCurveCaps);

AddListViewItem(‘Styled border support’,
NoYesArray[(CCaps and CC_STYLED) = CC_STYLED], lvCurveCaps);

AddListViewItem(‘Round rectangle support’,
NoYesArray[(CCaps and CC_ROUNDRECT) = CC_ROUNDRECT], lvCurveCaps);

end;
end;

procedure TMainForm.GetLineCaps;
{ This method gets the various line drawing capabilities of the selected
printer device by using the GetDeviceCaps function with the LINECAPS index.
Refer to the online help for information on each capability. }
var
LCaps: Integer;

Advanced Techniques

PART II
202

13.65227_Ch10CDx 11/30/99 11:30 AM Page 202

begin
with lvLineCaps.Items do
begin
Clear;
LCaps := GetDeviceCaps(Printer.Handle, LINECAPS);

AddListViewItem(‘Line support’,
NoYesArray[(LCaps and LC_NONE) = LC_NONE], lvLineCaps);

AddListViewItem(‘Polyline support’,
NoYesArray[(LCaps and LC_POLYLINE) = LC_POLYLINE], lvLineCaps);

AddListViewItem(‘Marker support’,
NoYesArray[(LCaps and LC_MARKER) = LC_MARKER], lvLineCaps);

AddListViewItem(‘Multiple marker support’,
NoYesArray[(LCaps and LC_POLYMARKER) = LC_POLYMARKER], lvLineCaps);

AddListViewItem(‘Wide line support’,
NoYesArray[(LCaps and LC_WIDE) = LC_WIDE], lvLineCaps);

AddListViewItem(‘Styled line support’,
NoYesArray[(LCaps and LC_STYLED) = LC_STYLED], lvLineCaps);

AddListViewItem(‘Wide and styled line support’,
NoYesArray[(LCaps and LC_WIDESTYLED) = LC_WIDESTYLED], lvLineCaps);

AddListViewItem(‘Interior support’,
NoYesArray[(LCaps and LC_INTERIORS) = LC_INTERIORS], lvLineCaps);

end;
end;

procedure TMainForm.GetPolyCaps;
{ This method gets the various polygonal capabilities of the selected printer
device by using the GetDeviceCaps function with the POLYGONALCAPS index.

Refer to the online help for information on each capability. }
var
PCaps: Integer;

begin
with lvPolyCaps.Items do
begin
Clear;
PCaps := GetDeviceCaps(Printer.Handle, POLYGONALCAPS);

AddListViewItem(‘Polygon support’,
NoYesArray[(PCaps and PC_NONE) = PC_NONE], lvPolyCaps);

Printing in Delphi 5

CHAPTER 10
203

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 203

LISTING 10.7 Continued

AddListViewItem(‘Alternate fill polygon support’,
NoYesArray[(PCaps and PC_POLYGON) = PC_POLYGON], lvPolyCaps);

AddListViewItem(‘Rectangle support’,
NoYesArray[(PCaps and PC_RECTANGLE) = PC_RECTANGLE], lvPolyCaps);

AddListViewItem(‘Winding-fill polygon support’,
NoYesArray[(PCaps and PC_WINDPOLYGON) = PC_WINDPOLYGON], lvPolyCaps);

AddListViewItem(‘Single scanline support’,
NoYesArray[(PCaps and PC_SCANLINE) = PC_SCANLINE], lvPolyCaps);

AddListViewItem(‘Wide border support’,
NoYesArray[(PCaps and PC_WIDE) = PC_WIDE], lvPolyCaps);

AddListViewItem(‘Styled border support’,
NoYesArray[(PCaps and PC_STYLED) = PC_STYLED], lvPolyCaps);

AddListViewItem(‘Wide and styled border support’,
NoYesArray[(PCaps and PC_WIDESTYLED) = PC_WIDESTYLED], lvPolyCaps);

AddListViewItem(‘Interior support’,
NoYesArray[(PCaps and PC_INTERIORS) = PC_INTERIORS], lvPolyCaps);

end;
end;

procedure TMainForm.GetTextCaps;
{ This method gets the various text drawing capabilities of the selected
printer device by using the GetDeviceCaps function with the TEXTCAPS index.
Refer to the online help for information on each capability. }

var
TCaps: Integer;

begin
with lvTextCaps.Items do
begin
Clear;
TCaps := GetDeviceCaps(Printer.Handle, TEXTCAPS);

AddListViewItem(‘Character output precision’,
NoYesArray[(TCaps and TC_OP_CHARACTER) = TC_OP_CHARACTER], lvTextCaps);

AddListViewItem(‘Stroke output precision’,
NoYesArray[(TCaps and TC_OP_STROKE) = TC_OP_STROKE], lvTextCaps);

AddListViewItem(‘Stroke clip precision’,

Advanced Techniques

PART II
204

13.65227_Ch10CDx 11/30/99 11:30 AM Page 204

NoYesArray[(TCaps and TC_CP_STROKE) = TC_CP_STROKE], lvTextCaps);

AddListViewItem(‘90 degree character rotation’,
NoYesArray[(TCaps and TC_CR_90) = TC_CR_90], lvTextCaps);

AddListViewItem(‘Any degree character rotation’,
NoYesArray[(TCaps and TC_CR_ANY) = TC_CR_ANY], lvTextCaps);

AddListViewItem(‘Independent scale in X and Y direction’,
NoYesArray[(TCaps and TC_SF_X_YINDEP) = TC_SF_X_YINDEP], lvTextCaps);

AddListViewItem(‘Doubled character for scaling’,
NoYesArray[(TCaps and TC_SA_DOUBLE) = TC_SA_DOUBLE], lvTextCaps);

AddListViewItem(‘Integer multiples only for character scaling’,
NoYesArray[(TCaps and TC_SA_INTEGER) = TC_SA_INTEGER], lvTextCaps);

AddListViewItem(‘Any multiples for exact character scaling’,
NoYesArray[(TCaps and TC_SA_CONTIN) = TC_SA_CONTIN], lvTextCaps);

AddListViewItem(‘Double weight characters’,
NoYesArray[(TCaps and TC_EA_DOUBLE) = TC_EA_DOUBLE], lvTextCaps);

AddListViewItem(‘Italicized characters’,
NoYesArray[(TCaps and TC_IA_ABLE) = TC_IA_ABLE], lvTextCaps);

AddListViewItem(‘Underlined characters’,
NoYesArray[(TCaps and TC_UA_ABLE) = TC_UA_ABLE], lvTextCaps);

AddListViewItem(‘Strikeout characters’,
NoYesArray[(TCaps and TC_SO_ABLE) = TC_SO_ABLE], lvTextCaps);

AddListViewItem(‘Raster fonts’,
NoYesArray[(TCaps and TC_RA_ABLE) = TC_RA_ABLE], lvTextCaps);

AddListViewItem(‘Vector fonts’,
NoYesArray[(TCaps and TC_VA_ABLE) = TC_VA_ABLE], lvTextCaps);

AddListViewItem(‘Scrolling using bit-block transfer’,
NoYesArray[(TCaps and TC_SCROLLBLT) = TC_SCROLLBLT], lvTextCaps);

end;
end;

procedure TMainForm.FormCreate(Sender: TObject);
begin

Printing in Delphi 5

CHAPTER 10
205

10

P
R

IN
TIN

G
IN

D
ELPH

I5

continues

13.65227_Ch10CDx 11/30/99 11:30 AM Page 205

LISTING 10.7 Continued

// Store the printer names in the combo box.
cbPrinters.Items.Assign(Printer.Printers);
// Display the default printer in the combo box.
cbPrinters.ItemIndex := Printer.PrinterIndex;
// Invoke the combo’s OnChange event
cbPrintersChange(nil);

end;

procedure TMainForm.cbPrintersChange(Sender: TObject);
begin
Screen.Cursor := crHourGlass;
try
// Populate combo with available printers
Printer.PrinterIndex := cbPrinters.ItemIndex;
with Printer do
GetPrinter(Device, Driver, Port, ADevMode);

// Fill the general page with printer information
with lvGeneralData.Items do
begin
Clear;
AddListViewItem(‘Port’, Port, lvGeneralData);
AddListViewItem(‘Device’, Device, lvGeneralData);

Rslt := DeviceCapabilitiesA(Device, Port, DC_DRIVER, nil, nil);
AddListViewItem(‘Driver Version’, IntToStr(Rslt), lvGeneralData);

end;

// The functions below make use of the GetDeviceCapabilitiesA function.
GetBinNames;
GetDuplexSupport;
GetCopies;
GetEMFStatus;
GetResolutions;
GetTrueTypeInfo;

// The functions below make use of the GetDeviceCaps function.
GetDevCapsPaperNames;
GetDevCaps; // Fill Device Caps page.
GetRasterCaps; // Fill Raster Caps page.
GetCurveCaps; // Fill Curve Caps page.
GetLineCaps; // Fill Line Caps page.
GetPolyCaps; // Fill Polygonal Caps page.
GetTextCaps; // Fill Text Caps page.

finally

Advanced Techniques

PART II
206

13.65227_Ch10CDx 11/30/99 11:30 AM Page 206

Screen.Cursor := crDefault;
end;

end;

end.

Summary
This chapter teaches the techniques you need to know in order to program any type of custom
printing, from simple printing to more advanced techniques. You also learned a methodology
that you can apply to any printing task. Additionally, you learned about the TDeviceMode struc-
ture and how to perform common printing tasks. You’ll use more of this knowledge in upcom-
ing chapters, where you build even more powerful printing methods.

Printing in Delphi 5

CHAPTER 10
207

10

P
R

IN
TIN

G
IN

D
ELPH

I5

13.65227_Ch10CDx 11/30/99 11:30 AM Page 207

CHAPTER

15
Porting to Delphi 5

IN THIS CHAPTER
• New to Delphi 5 210

• Migrating from Delphi 4 212

• Migrating from Delphi 3 214

• Migrating from Delphi 2 216

• Migrating from Delphi 1 219

• Summary 238

18.65227_Ch15CDx 11/30/99 11:34 AM Page 209

If you’re upgrading to Delphi 5 from a previous version, this chapter is written for you. The
first section of this chapter discusses the issues involved in moving from any version of Delphi
to Delphi 5. In the second, third, and fourth sections, you learn about the often subtle differ-
ences between the various 32-bit versions of Delphi and how to take these differences into
account as you migrate applications to Delphi 5. The fourth section of this chapter is intended
to help those migrating 16-bit Delphi 1.0 applications to the 32-bit world of Delphi 5.
Although Borland makes a concerted effort to ensure that your code is compatible between
versions, it’s understandable that some changes have to be made in the name of progress, and
certain situations require code changes if applications are to compile and run properly under
the latest version of Delphi.

New to Delphi 5
In general, the more recent the version of Delphi you’re coming from, the easier it will be for
you to port to Delphi 5. However, whether you’re migrating from Delphi 1, 2, 3, or 4, this sec-
tion provides the information necessary for moving up to Delphi 5.

Which Version?
Although most Delphi code will compile for all versions of the compiler, in some instances
language or VCL differences require that you write slightly differently to accomplish a given
task for each product version. Occasionally, you might need to be able to compile for multiple
versions of Delphi from one code base. For this purpose, each version of the Delphi compiler
contains a VERxxx conditional define for which you can test in your source code. Because
Borland C++Builder also ships with new versions of the Delphi compiler, these editions also
contain this conditional define. Table 15.1 shows the conditional defines for the various ver-
sions of the Delphi compiler.

TABLE 15.1 Conditional Defines for Compiler Versions

Product Conditional Define

Delphi 1 VER80

Delphi 2 VER90

C++Builder 1 VER95

Delphi 3 VER100

C++Builder 3 VER110

Delphi 4 VER120

C++Builder 4 VER120

Delphi 5 VER130

Advanced Techniques

PART II
210

18.65227_Ch15CDx 11/30/99 11:34 AM Page 210

Using these defines, the source code you must write in order to compile for different compiler
versions would look something like this:

{$IFDEF VER80}
Delphi 1 code goes here

{$ENDIF}
{$IFDEF VER90}
Delphi 2 code goes here

{$ENDIF}
{$IFDEF VER95}
C++Builder 1 code goes here

{$ENDIF}
{$IFDEF VER100}
Delphi 3 code goes here

{$ENDIF}
{$IFDEF VER110}
C++Builder 3 code goes here

{$ENDIF}
{$IFDEF VER120}
Delphi 4 and C++Builder 4 code goes here

{$ENDIF}
{$IFDEF VER130}
Delphi 5 code goes here

{$ENDIF}

Porting to Delphi 5

CHAPTER 15
211

15

P
O

R
TIN

G
TO

D
ELPH

I5

NOTE

If you’re wondering why the Delphi 1.0 compiler is considered version 8, Delphi 2
version 9, and so on, it’s because Delphi 1.0 is considered version 8 of Borland’s Pascal
compiler. The last Turbo Pascal version was 7.0, and Delphi is the evolution of that
product line.

Just as you’ll have to deal with differences in the language and VCL between Delphi versions,
you’ll also have to deal with differences in the Windows API. If you need to cope with differ-
ences in the 16-bit and 32-bit APIs from a single code base, you can take advantage of addi-
tional defines intended for this purpose. The 16-bit Delphi compiler defines WINDOWS, whereas
the Win32 Delphi compilers define WIN32. The following code example demonstrates how to
take advantage of these defines:

{$IFDEF WINDOWS}
16-bit Windows-specific code goes here

{$ENDIF}
{$IFDEF WIN32}
Win32-specific code goes here

{$ENDIF}

18.65227_Ch15CDx 11/30/99 11:34 AM Page 211

Units, Components, and Packages
Delphi 5 compiled units (DCU files) differ from those of all previous versions of Delphi (and
C++Builder). You must have the source code to any units used in your application in order to
build your application under any particular version of Delphi. This, of course, means that you
won’t be able to use any components used in your application—your own components or third-
party components—unless you have the source to these components. If you don’t have the
source code to a particular third-party component, contact your vendor for a version of the
component specific to your version of Delphi.

Advanced Techniques

PART II
212

NOTE

This issue of compiler version versus unit file version is not a new situation and is the
same as C++ compiler object file versioning. If you distribute (or buy) components
without source code, you must understand that what you’re distributing/buying is a
compiler version–specific binary file that will probably need to be revised to keep up
with subsequent compiler releases.

What’s more, the issue of DCU versioning isn’t necessarily a compiler-only issue. Even
if the compiler weren’t changed between versions, changes and enhancements to
core VCL would probably still make it necessary that units be recompiled from source.

Delphi 3 also introduced packages, the idea of multiple units stored in a single binary file.
Starting with Delphi 3, the component library became a collection of packages rather than one
massive component library DLL. Like units, packages are not compatible across product ver-
sions, so you’ll need to rebuild your packages for Delphi 5, and you’ll need to contact the ven-
dors of your third-party components for updated packages.

Migrating from Delphi 4
There are only a handful of migration issues as you take your Delphi 4 applications into
Delphi 5. In many cases, you can simply load your project into Delphi 5 and hit the compile
key. However, if you do run into problems, this section discusses the migration speed bumps
you may face for getting things rolling in Delphi 5.

IDE Issues
Problems with IDE are likely the first you’ll encounter as you migrate your applications. Here
are a few of the issues you may encounter on the way:

• Delphi 4 debugger symbol files (RSM) are not compatible with Delphi 5. You’ll know
you’re having this problem when you see the message “Error reading symbol file.” If this
happens, the fix is simple: Rebuild the application.

18.65227_Ch15CDx 11/30/99 11:34 AM Page 212

• Delphi 5 now defaults to storing form files in text mode. If you need to maintain DFM
compatibility with earlier versions of Delphi, you’ll need to save the forms files in binary
instead. You can do this by unchecking New Forms As Text on the Preferences page of
the Environment Options dialog.

• Code generation when importing and generating type libraries has been changed. In addi-
tion to some minor changes, the new generator has been enhanced to allow you to map
symbol names; you can customize type library–to–Pascal symbol name mapping by edit-
ing the tlibimp.sym file. For directions, see the “Mapping Symbol Names in the Type
Library” topic in the online help.

RTL Issues
The only issue you’re likely to come across here deals with the setting of the floating-point
unit (FPU) control word in DLLs. In previous versions of Delphi, DLLs would set the FPU
control word, thereby changing the setting established by the host application. Now, DLL
startup code no longer sets the FPU control word. If you need to set the control word to ensure
some specific behavior by the FPU, you can do it manually using the Set8087CW() function in
the System unit.

VCL Issues
There are a number of VCL issues that you may come across, but most involve some simple
edits as a means to get your project on track in Delphi 5. Here’s a list of these issues:

• The type of properties that represent an index into an image list has changed from
Integer to TImageIndex type. TImageIndex is a strongly typed Integer defined in the
ImgList unit as

TImageIndex = type Integer;

This should only cause problems in cases where exact type matching matters, such as
when you’re passing var parameters.

• TCustomTreeview.CustomDrawItem() has a new var parameter called PaintImages of
type Boolean. If your application overrides this method, you’ll need to add this parame-
ter in order for it to compile in Delphi 5.

• The CoInitFlags variable in ComObj, which holds the flags passed to CoInitializeEx()
in the ComServ unit, has been changed to properly support initialization of multithreaded
COM servers. Now either the COINIT_MULTITHREADED or COINIT_APARTMENTTHREADED
flags will be added when appropriate.

• If you’re invoking pop-up menus in response to WM_RBUTTONUP messages or OnMouseUp
events, you may exhibit “double” pop-up menus or no pop-up menus at all when compil-
ing with Delphi 5. Delphi 5 now uses the WM_CONTEXT menu message to invoke pop-up
menus.

Porting to Delphi 5

CHAPTER 15
213

15

P
O

R
TIN

G
TO

D
ELPH

I5

18.65227_Ch15CDx 11/30/99 11:34 AM Page 213

Internet Development Issues
If you’re developing applications with Internet support, we have some bad news and some
good news:

• The TWebBrowser component, which encapsulates the Microsoft Internet Explorer
ActiveX control, has replaced the THTML component from Netmasters. Although the
TWebBrowser control is much more feature rich, you’re faced with a good deal of rewrite
if you used THTML because the interface is totally different. If you don’t want to rewrite
your code, you can go back to the old control by importing the HTML.OCX file from the
\Info\Extras\NetManage directory on the Delphi 5 CD-ROM.

• Packages are now supported when building ISAPI and NSAPI DLLs. You can take
advantage of this new support by replacing HTTPApp in your uses clause with
WebBroker.

Database Issues
There are a few database issues that may trip you up as you migrate to Delphi 5. These involve
some renaming of existing symbols and the new architecture of MIDAS:

• The type of the TDatabase.OnLogin event has been renamed TDatabaseLoginEvent
from TLoginEvent. This is unlikely to cause problems, but you may run into troubles if
you’re creating and assigning to OnLogin in code.

• The global FMTBCDToCurr() and CurrToFMTBCD() routines have been replaced by the
new BCDToCurr and CurrToBCD routines (and the corresponding protected methods on
TDataSet have been replaced by the protected and undocumented DataConvert method).

• MIDAS has undergone some significant changes between Delphi 4 and 5. See Chapter
32, “MIDAS Development,” for information on the changes, new features, and how to
port your MIDAS applications to Delphi 5.

Migrating from Delphi 3
Although there aren’t a great deal of compatibility issues between Delphi 3 and later versions,
the few issues that do exist can be potentially more problematic than porting from any other
previous version of Delphi to the next. Most of these issues revolve around new types and the
changing behavior of certain existing types.

Unsigned 32-Bit Integers
Delphi 4 introduced the LongWord type, which is an unsigned 32-bit integer. In previous ver-
sions of Delphi, the largest integer type was a signed 32-bit integer. Because of this, many of

Advanced Techniques

PART II
214

18.65227_Ch15CDx 11/30/99 11:34 AM Page 214

the types that you would expect to be unsigned, such as DWORD, UINT, HResult, HWND,
HINSTANCE, and other handle types, were defined simply as Integers. In Delphi 4 and later,
these types are redefined as LongWords. Additionally, the Cardinal type, which was previously
a subrange type of 0..MaxInt, is now also a LongWord. Although all this LongWord business
won’t cause problems in most circumstances, there are several problematic cases you should
know about:

• Integer and LongWord are not var-parameter compatible. Therefore, you cannot pass a
LongWord in a var Integer parameter, and vice versa. The compiler will give you an
error in this case, so you’ll need to change the parameter or variable type or typecast to
get around this problem.

• Literal constants having the value of $80000000 through $FFFFFFFF are considered
LongWords. You must typecast such a literal to an Integer if you wish to assign it to an
Integer type. Here’s an example:

var
I: Integer;

begin
I := Integer($FFFFFFFF);

• Similarly, any literal having a negative value is out of range for a LongWord, and you’ll
need to typecast to assign a negative literal to a LongWord. Here’s an example:

var
L: LongWord;

begin
L := LongWord(-1);

• If you mix signed and unsigned integers in arithmetic or comparison operations, the
compiler will automatically promote each operand to Int64 in order to perform the arith-
metic or comparison. This can cause some very difficult-to-find bugs. Consider the fol-
lowing code:

var
I: Integer;
D: DWORD;

begin
I := -1;
D := $FFFFFFFF;
if I = D then DoSomething;

Under Delphi 3, DoSomething would execute because -1 and $FFFFFFFF are the same
value when contained in an Integer. However, because Delphi 4 and later will promote
each operand to Int64 in order to perform the most accurate comparison, the generated
code ends up comparing $FFFFFFFFFFFFFFFF against $00000000FFFFFFFF, which is defi-
nitely not what’s intended. In this case, DoSomething will not execute.

Porting to Delphi 5

CHAPTER 15
215

15

P
O

R
TIN

G
TO

D
ELPH

I5

18.65227_Ch15CDx 11/30/99 11:34 AM Page 215

64-Bit Integer
Delphi 4 also introduced a new type called Int64, which is a signed 64-bit integer. This new
type is now used in the RTL and VCL where appropriate. For example, the Trunc() and
Round() standard functions now return Int64, and there are new versions of IntToStr(),
IntToHex(), and related functions that deal with Int64.

The Real Type
Starting with Delphi 4, the Real type became an alias for the Double type. In previous versions
of Delphi and Turbo Pascal, Real was a six-byte floating-point type. This shouldn’t pose any
problems for your code unless you have Reals written to some external storage (such as a file
of record) with an earlier version or you have code that depends on the organization of the
Real in memory. You can force Real to be the old 6-byte type by including the {$REALCOMPAT-
IBILITY ON} directive in the units you want to use the old behavior. If all you need to do is
force a limited number of instances of the Real type to use the old behavior, you can use the
Real48 type instead.

Migrating from Delphi 2
You’ll find that a high degree of compatibility between Delphi 2 and the later versions means a
smooth transition into a more up-to-date Delphi version. However, some changes have been
made since Delphi 2, both in the language and in VCL, that you’ll need to be aware of to
migrate to the latest version and take full advantage of its power.

Changes to Boolean Types
The implementation of the Delphi 2 Boolean types (Boolean, ByteBool, WordBool, LongBool)
dictated that True was ordinal value 1 and False ordinal value 0. To provide better compatibil-
ity with the Win32 API, the implementations of ByteBool, WordBool, and LongBool have
changed slightly; the ordinal value of True is now -1 ($FF, $FFFF, and $FFFFFFFF, respec-
tively). Note that no change was made to the Boolean type. These changes have the potential to
cause problems in your code—but only if you depend on the ordinal values of these types. For
example, consider the following declaration:

Advanced Techniques

PART II
216

TIP

The compiler in Delphi 4 and later generates a number of new hints, warnings, and
errors that deal with these type compatibility problems and implicit type promotions.
Make sure you turn on hints and warnings when compiling in order to let the com-
piler help you write clean code.

18.65227_Ch15CDx 11/30/99 11:34 AM Page 216

var
A: array[LongBool] of Integer;

This code is quite harmless under Delphi 2; it declares an array[False..True] (or [0..1]) of
Integer, for a total of three elements. Under Delphi 3 and later, however, this declaration can
cause some very unexpected results. Because True is defined as $FFFFFFFF for a LongBool, the
declaration boils down to array[0..$FFFFFFFF] of Integer, or an array of 4 billion
Integers! To avoid this problem, use the Boolean type as the array index.

Ironically, this change was necessary because a disturbing number of ActiveX controls and
control containers (such Visual Basic) test BOOLs by checking for -1 rather than testing for a
zero or nonzero value.

Porting to Delphi 5

CHAPTER 15
217

15

P
O

R
TIN

G
TO

D
ELPH

I5

TIP

To help ensure portability and to avoid bugs, never write code like this:

if BoolVar = True then ...

Instead, always test Boolean types like this:

if BoolVar then ...

ResourceString
If your application uses string resources, consider taking advantage of ResourceStrings as
described in Chapter 2, “The Object Pascal Language.” Although this won’t improve the effi-
ciency of your application in terms of size or speed, it will make language translation easier.
ResourceStrings and the related topic of resource DLLs are required to be able to write appli-
cations displaying different language strings but have them all running on the same core VCL
package.

RTL Changes
Several changes made to the runtime library (RTL) after Delphi 2 might cause problems as you
migrate your applications. First, the meaning of the HInstance global variable has changed
slightly: HInstance contains the instance handle of the current DLL, EXE, or package. Use the
new MainInstance global variable when you want to obtain the instance handle of the main
application.

The second significant change pertains to the IsLibrary global. In Delphi 2, you could check
the value of IsLibrary to determine whether your code was executing within the context of a
DLL or EXE. IsLibrary isn’t package aware, however, so you can no longer depend on
IsLibrary to be accurate, depending on whether it’s called from an EXE, DLL, or a module

18.65227_Ch15CDx 11/30/99 11:34 AM Page 217

within a package. Instead, you should use the ModuleIsLib global, which returns True when
called within the context of a DLL or package. You can use this in combination with the
ModuleIsPackage global to distinguish between a DLL and a package.

TCustomForm
The Delphi 3 VCL introduced a new class between TScrollingWinControl and TForm called
TCustomForm. In itself, that shouldn’t pose a problem for you in migrating your applications
from Delphi 2; however, if you have any code that manipulates instances of TForm, you might
need to update it so that it manipulates TCustomForms instead of TForms. Some examples of
these are calls to GetParentForm(), ValidParentForm(), and any usage of the TDesigner class.

Advanced Techniques

PART II
218

CAUTION

The semantics for GetParentForm(), ValidParentForm(), and other VCL methods
that return Parent pointers have changed slightly from Delphi 2. These routines can
now return nil, even though your component has a parent window context in
which to draw. For example, when your component is encapsulated as an ActiveX
control, it may have a ParentWindow, but not a Parent control. This means you must
watch out for Delphi 2 code that does this:

with GetParentForm(xx) do ...

GetParentForm() can now return nil depending on how your component is being
contained.

GetChildren()
Component writers, be aware that the declaration of TComponent.GetChildren() has changed
to read as follows:

procedure GetChildren(Proc: TGetChildProc; Root: TComponent); dynamic;

The new Root parameter holds the component’s root owner—that is, the component obtained
by walking up the chain of the component’s owners until Owner is nil.

Automation Servers
The code required for automation has changed significantly from Delphi 2. Chapter 23,
“COM-based Technologies,” describes the process of creating Automation servers in Delphi 5.
Rather than describe the details of the differences here, suffice it to say that you should never
mix the Delphi 2 style of creating Automation servers with the more recent style found in
Delphi 3 and later.

18.65227_Ch15CDx 11/30/99 11:34 AM Page 218

In Delphi 2, automation is facilitated through the infrastructure provided in the OleAuto and
Ole2 units. These units are present in later releases of Delphi only for backward compatibility,
and you shouldn’t use them for new projects. Now the same functionality is provided in the
ComObj, ComServ, and ActiveX units. You should never mix the former units with the latter in
the same project.

Migrating from Delphi 1
Most of the changes required when porting Delphi 1 applications to a later version are neces-
sary because of the nature of programming under a new operating system. Other changes are
required because of enhancements in VCL and the Object Pascal language. Some people would
prefer that Delphi 1 applications simply ran without modification under Delphi 5. If that’s your
opinion, keep in mind that sometimes it’s necessary to leave a little behind to move ahead. You
should find that each new version of Delphi strikes an excellent balance in this regard.

In addition to explaining what you need to know to migrate Delphi 1 applications, this section
also provides you with information about optimizing your project for 32-bit Delphi and main-
taining code that’s compatible with both 16- and 32-bit Delphi.

Strings and Characters
In response to customer demand for a more flexible string, Borland introduced a new string
type in Delphi 2 known as AnsiString. Among other benefits, AnsiString supports the cre-
ation of virtually unlimited-length strings. Delphi 2 also introduced new character and null-
terminated string types to fully support application internationalization using the Unicode dou-
ble-byte format. Delphi 3 took double-byte support even further with the introduction of the
WideString type. By far the most common issues likely to arise as you migrate from Delphi 1
are those dealing with the use and manipulation of strings.

New Character Types
Strings, of course, are made up of characters, so it’s important that you understand the behavior
of character types in Delphi 4 before learning about the new string types. The most important
change to this portion of the language is the new character type WideChar, introduced in Delphi
2 to support Unicode (or “wide”) character and string types. In addition to WideChar, Delphi 3
introduced a new type name, AnsiChar, which specifies a normal single-byte character.

The AnsiChar type is the same as the Delphi 1 Char type. It’s a one-byte value that can contain
any of 256 different values. Use AnsiChar only when you know that the value in question will
always be one byte in size.

Use WideChar for a character value that’s two bytes in size. WideChar exists for compatibility
with the Unicode character standard adopted by the Win32 API to support local-language

Porting to Delphi 5

CHAPTER 15
219

15

P
O

R
TIN

G
TO

D
ELPH

I5

18.65227_Ch15CDx 11/30/99 11:34 AM Page 219

strings. Because of its two-byte size, a WideChar can contain any one of 65,536 possible val-
ues, enough for even the largest alphabets.

Advanced Techniques

PART II
220

The purpose of Unicode is to support use of local-language strings across the entire
system (and across the global network) without loss of information. There are one-
byte character sets for most languages (except Far Eastern languages), but converting
between language character sets is not always reversible, so conversion introduces
loss of information. Unicode solves that by eliminating the need to convert between
character set encodings. It also addresses the Far Eastern language issue by providing
a very large character set base for encoding pictograph-per-word languages such as
Chinese.

Of course, the char type is still valid in Delphi. Currently, the char and AnsiChar types are
equivalent. However, Borland reserves the right to change the definition of char to WideChar in
some future version of Delphi; you should never depend on the size of a char being a certain
length in your code—always use SizeOf() to determine its actual size.

New String Types
Listed here are the string types supported in Delphi 5:

• AnsiString (also referred to as long string and huge string) is the new default string
type for Object Pascal. It’s composed of AnsiChar characters and allows for lengths of
up to 1GB. This string type is also compatible with null-terminated strings. This string is
always dynamically allocated and lifetime managed.

• ShortString is synonymous with the standard string type in Delphi 1.0. The capacity of
ShortString is limited to 255 characters.

• WideString is comprised of WideChar characters, and, like AnsiString, it’s automati-
cally allocated and lifetime managed. Chapter 2, “The Object Pascal Language,” contains
a complete rundown on this and other string types.

• PAnsiChar is a pointer to a null-terminated AnsiChar string.

• PWideChar is a pointer to a null-terminated string of WideChar characters, making up a
Unicode, or double-byte, string.

• PChar is a pointer to a null-terminated Char string, which is fully compatible with
C-style strings used in Windows API functions. This type hasn’t changed from version
1.0 and is currently defined as PAnsiChar.

By default, strings defined in Delphi 2 and later are AnsiStrings. So if you declare a string,
as shown here, the compiler assumes that you’re creating an AnsiString:

18.65227_Ch15CDx 11/30/99 11:34 AM Page 220

var
S: String; // S is an AnsiString

Alternatively, you can cause variables declared as String to instead be of type ShortString by
using the $H compiler directive. When the value of the $H compiler directive is negative,
String variables are ShortStrings; when the value of the directive is positive (the default),
String variables are AnsiStrings. The following code demonstrates this behavior:

var
{$H-}
S1: String; // S1 is a ShortString
{$H+}
S2: String; // S2 is an AnsiString

The exception to the $H rule is that a String declared with an explicit size (limited to a maxi-
mum of 255 characters) is always a ShortString:

var
S: String[63]; // A ShortString of up to 63 characters

Porting to Delphi 5

CHAPTER 15
221

15

P
O

R
TIN

G
TO

D
ELPH

I5

CAUTION

Be careful when passing strings declared in units with $H+ to functions and proce-
dures defined in units with $H-, and vice versa. These types of errors can introduce
some hard-to-find bugs into your applications.

Setting String Length
In Delphi 1, you could set the length of a string by assigning a value to the 0, byte as shown here:

S[0] := 23; { sets the length byte of a short string }

This was possible because the maximum length of a short string (255) could be stored in the
leading byte. Because the maximum length of a long string is 1GB, the size obviously can’t fit
in one byte; the length is therefore stored differently. Because of this issue, Delphi 2 introduced
a new standard procedure called SetLength() that you should use to set the length of a string.
SetLength() is defined as follows:

procedure SetLength(var S: String; NewLength: Integer};

SetLength() can be used with short and long strings. If you want to maintain one set of source
code for 16-bit Delphi 1 projects and 32-bit Delphi projects, you can define a SetLength()
function, as follows, for 16-bit Delphi 1 projects:

{$IFDEF WINDOWS}
{ for 16-bit Delphi 1 projects }

18.65227_Ch15CDx 11/30/99 11:34 AM Page 221

procedure SetLength(var S: String; NewLength: Integer);
begin
S[0] := Char(NewLength);

end;
{$ENDIF}

Advanced Techniques

PART II
222

TIP

For more information on the physical layout of the AnsiString type, see Chapter 2,
“The Object Pascal Language.”

Dynamically Allocated Strings
In Delphi 1, it’s possible to use variables of type PString to implement dynamically allocated
strings by allocating memory with the NewStr(), GetMem(), or AllocMem() standard procedure.
In 32-bit Delphi, because long strings are automatically allocated dynamically from the heap,
there’s no need to use such techniques. Change your PString references to String (the code
that dynamically creates and frees memory). You must also remove any dereferencing of the
PString variable that appears in your code. Consider the following block of Delphi 1 code:

var
S1, S2: PString;

begin
S1 := AllocMem(SizeOf(S1^));
S1^ := ‘Give up the rock.’;
S2 := NewStr(S1^);
FreeMem(S1, SizeOf(S1^));
Edit1.Text := S2^;
DisposeStr(S2);

end;

This code can be enormously simplified (and optimized) simply by taking advantage of long
strings, as shown here:

var
S1, S2: string;

begin
S1 := ‘Give up the rock.’;
S2 := S1;
Edit1.Text := S2;

end;

Indexing Strings as Arrays
Sometimes you want to access a certain character in a string by indexing the string as an array.
For example, the following line of code sets the fifth character in the string to A:

18.65227_Ch15CDx 11/30/99 11:34 AM Page 222

S[5] := ‘A’;

This type of operation is still perfectly legitimate with long strings, but there’s one caveat:
Because long strings are dynamically allocated, you must ensure that the length of the string is
greater than or equal to the character element you attempt to index. For example, the following
code is invalid:

var
S: string;

begin
S[5] := ‘A’; // Space for S has not yet been allocated!!

end;

However, this code is quite valid:

var
S: string;

begin
S := ‘Hello’; // allocates enough room for the string
S[5] := ‘A’;

end;

This code is also valid:

var
S: string;

begin
SetLength(S, 5); // allocate 5 characters for S
S[5] := ‘A’;

end;

Porting to Delphi 5

CHAPTER 15
223

15

P
O

R
TIN

G
TO

D
ELPH

I5

CAUTION

You should not assume that a character index into a string is the same thing as the
byte offset into the string. For example, WideStringvVar[5] accesses the fifth charac-
ter (at byte offset 10).

Null-Terminated Strings
When calling Windows 3.1 API functions in Delphi 1, programmers had to be aware of the dif-
ference between the Pascal String type and the C-style PChar (the null-terminated string used
in Windows). Long strings make it much easier to call Win32 API functions. Long strings are
both heap allocated and guaranteed to be null terminated. For these reasons, you can simply
typecast a long string variable when you need to use it as a null-terminated PChar in a Win32
API function call. Imagine that you have procedure Foo(), defined as follows:

18.65227_Ch15CDx 11/30/99 11:34 AM Page 223

procedure Foo(P: PChar);

In Delphi 1, you would typically call this function like this:

var
S: string; { Pascal short string }
P: PChar; { null terminated string }

begin
S := ‘Hello world’; { initialize S }
P := AllocMem(255); { allocate P }
StrPCopy(P, S); { copy S to P }
Foo(P); { call Foo with P }
FreeMem(P, 255); { dispose P }

end;

Using a 32-bit version of Delphi, you can call Foo() using a long string variable with the fol-
lowing syntax:

var
S: string; // a long string is null terminated

begin
S := ‘Hello World’;
Foo(PChar(S)); // fully compatible with PChar type

end;

This means that you can optimize your 32-bit code by removing unnecessary temporary
buffers to hold null-terminated strings.

Null-Terminated Strings as Buffers
A common use for PChar variables is as a buffer to be passed to an API function that fills the
buffer string with information. A classic example is the GetWindowsDirectory() API function,
defined in the Win32 API as follows:

function GetWindowsDirectory(lpBuffer: PChar; uSize: UINT): UINT;

If your goal is to store the Windows directory in a string variable, a common shortcut under
Delphi 1 is to pass the address of the first element of the string as shown here:

var
S: string;

begin
GetWindowsDirectory(@S[1], 254); { 254 = room for null }
S[0] := Chr(StrLen(@S[1])); { adjust length }

end;

This technique doesn’t work with long strings for two reasons. First, as mentioned earlier, you
must give the string an initial length before any space is allocated. Second, because a long

Advanced Techniques

PART II
224

18.65227_Ch15CDx 11/30/99 11:34 AM Page 224

string is already a pointer to heap space, using the @ operator effectively passes a pointer to a
pointer to a character—definitely not what you intended! With long strings, this technique is
streamlined by typecasting the string to a PChar:

var
S: string;

begin
SetLength(S, MAX_PATH + 1); // allocate space
GetWindowsDirectory(PChar(S), MAX_PATH);
SetLength(S, StrLen(PChar(S))); // adjust length

end;

PChars as Strings
Because long strings can be used as PChars, it’s only fair that the reverse hold true. Null-
terminated strings are assignment compatible to long strings. In Delphi 1, the following code
requires a call to StrPCopy():

var
S: string;
P: PChar;

begin
P := StrNew(‘Object Pascal’);
S := StrPas(P);
StrDispose(P);

end;

Now you can accomplish the same thing with a simple assignment using long strings:

var
S: string;
P: PChar;

begin
P := StrNew(‘Object Pascal’);
S := P;
StrDispose(P);

end;

Similarly, you can also pass null-terminated strings to functions and procedures that expect
String parameters. Suppose that procedure Bar() is defined as follows:

procedure Bar(S: string);

You can call Bar() using a PChar as follows:

var
P: PChar;

begin
P := StrNew(‘Hello’);

Porting to Delphi 5

CHAPTER 15
225

15

P
O

R
TIN

G
TO

D
ELPH

I5

18.65227_Ch15CDx 11/30/99 11:34 AM Page 225

Bar(P);
StrDispose(P);

end;

However, this technique doesn’t work with procedures and functions that accept Strings by
reference. Suppose that procedure Bar() were instead defined like this:

procedure Bar(var S: string);

The sample code just presented couldn’t be used to call Bar(). Instead, you have to define a
temporary string to pass to Bar(), as shown here:

var
P: PChar;
TempStr: string;

begin
P := StrNew(‘Hello’);
TempStr := P;
Bar(TempStr);
StrDispose(P);
P := PChar(TempStr);

end;

Delphi 2 introduced a standard procedure called SetString() that allows you to copy only a
portion of a PChar into a string variable. SetString() has an advantage in that it works with
both long and short strings. The definition of SetString() is given here:

procedure SetString(var S: string: Buffer: PChar; Len: Integer);

Advanced Techniques

PART II
226

CAUTION

Be wary of assigning a string variable to a PChar variable when the lifetime of the
PChar variable is greater than that of the string. Because the string will be deallo-
cated when it leaves scope, the PChar variable will point to garbage after the string
leaves scope. The following code illustrates this problem:

var
P: PChar;

procedure Bar(var P: PChar);
var
S: String;

begin
S := ‘Hola Mundo’;
P := PChar(S); // P is valid here

end; // S is freed here

18.65227_Ch15CDx 11/30/99 11:34 AM Page 226

Variable Size and Range
Another issue that might arise as you migrate your Delphi code is that some types change size
(and therefore range) when they move from 16-bit to 32-bit environments. Tables 15.2 and
15.3 show the differences with regard to these types.

TABLE 15.2 Variable Size Differences

Type 16-Bit Size 32-Bit Size

Integer Two bytes Four bytes

Cardinal Two bytes Four bytes

String 256 bytes Four bytes

TABLE 15.3 Variable Range Differences

Type 16-Bit Range 32-Bit Range

Integer -32,768..32,767 -2,147,483,648..2,147,483,647

Cardinal 0..65,536 0..2,147,483,647

String 255 characters 1GB of characters

For the most part, these new variable sizes have no effect on your applications. In those areas
where you depend on type sizes, make sure you use the SizeOf() function. Also, if you’ve writ-
ten any of these types to binary files or BLOBs in 16-bit Delphi, you must take into account the
change in size as you read the data back in with 32-bit Delphi. For this purpose, Table 15.4 indi-
cates which 32-bit Delphi types share binary compatibility with the Delphi 1 types.

TABLE 15.4 Variable Type Compatibility

16-Bit Delphi Type Compatible 32-Bit Delphi Type

Integer SmallInt

Cardinal Word

string ShortString

Porting to Delphi 5

CHAPTER 15
227

15

P
O

R
TIN

G
TO

D
ELPH

I5

procedure Foo;
begin
Bar(P);
ShowMessage(P); // DANGER! P is now invalid

end;

18.65227_Ch15CDx 11/30/99 11:34 AM Page 227

Record Alignment
By default in 32-bit Delphi, records are padded so that they’re aligned properly; 32-bit data
(such as Integer) is aligned on 32-bit (DWORD) boundaries, and 16-bit data (such as Word) is
aligned on addresses that are even multiples of 16.

type
TX = record
B: Byte;
L: Longint;

end;

Advanced Techniques

PART II
228

NOTE

Data is aligned on boundaries in order to optimize processor performance when
accessing memory.

With the default compiler settings, the Delphi 1 SizeOf(TX) function returns 5; under Delphi 2
and later, SizeOf(TX) function returns 8. This isn’t normally an issue; however, it can be an
issue if you don’t use SizeOf() to determine the size of the record in your code or if you have
records written to a binary file.

The reason that the 32-bit Delphi compiler aligns record elements on DWORD boundaries is that
doing so enables the compiler to generate more optimized code. If there’s a reason you want to
block this behavior, you can use the new packed modifier in the type declaration:

type
TX = packed record
B: Byte;
L: Longint;

end;

With TX defined as a packed record, as shown here, SizeOf(TX) now returns 5 under Delphi 2
and later. You can make packed records the default by using the $A- compiler directive.

TIP

If you can reorder the fields in a record to make fields start on their natural bound-
aries (for example, reorder four Byte fields so they all come before an Integer field,
instead of two on either side of the Integer), you can get optimum packing without
incurring the performance cost of unaligned data.

18.65227_Ch15CDx 11/30/99 11:34 AM Page 228

32-Bit Math
A much more subtle issue regarding variable size is that the 32-bit Delphi compiler automati-
cally performs optimized 32-bit math on all operands in an expression (Delphi 1 used 16-bit
math). Consider the following Object Pascal code:

var
L: longint;
w1, w2: word;

begin
w1 := $FFFE;
w2 := 5;
L := w1 + w2;

end;

Under Delphi 1.0, the value of L at the end of this routine is 3 because the calculation of w1 +
w2 is stored as a 16-bit value, and the operation causes the result to wrap. Under Delphi 3, the
value of L at the end of this routine is $10003 because the w1 + w2 calculation is performed
using 32-bit math. The repercussion of the new functionality is that if you use and depend on
the compiler’s range-checking logic to catch “errors” such as these in Delphi 1.0, you must use
some other method for finding those errors in 32-bit versions of Delphi, because a range-check
error won’t occur.

The TDateTime Type
To maintain compatibility with OLE and the Win32 API, the zero value of a TDateTime vari-
able has changed. Date values start at 00/00/0000 under Delphi 1; they start at 12/30/1899
under 32-bit Delphi. Although this change won’t affect dates stored in a database field, it will
affect binary dates stored in a binary file or database BLOB field.

Unit Finalization
Delphi 1 provides a procedure called AddExitProc() and a pointer called ExitProc that enable
you to define a procedure as containing “exit code” for a particular unit. Under 32-bit Delphi,
the process of adding an exit procedure to a unit is greatly simplified with the addition of the
unit’s finalization section. Intended as a counterpart to the unit’s initialization section,
the code in a finalization section is guaranteed to be called when the application closes.
Although this type of change isn’t necessary to compile your application under 32-bit Delphi,
it does make for much cleaner code.

Porting to Delphi 5

CHAPTER 15
229

15

P
O

R
TIN

G
TO

D
ELPH

I5

18.65227_Ch15CDx 11/30/99 11:34 AM Page 229

Consider the following Delphi 1 initialization section and exit code:

procedure MyExitProc;
begin
MyGlobalObject.Free;

end;
initialization
AddExitProc(MyExitProc);
MyGlobalObject := TGlobalObject.Create;

end.

This code can be simplified using the finalization section in 32-bit Delphi, as shown here:

initialization
MyGlobalObject := TGlobalObject.Create;

finalization
MyGlobalObject.Free;

end.

Assembly Language
Because assembly language is highly dependent on the platform for which it is written, the 16-
bit built-in assembly language in Delphi 1 applications doesn’t work in 32-bit Delphi. You
must rewrite such routines using 32-bit assembly language.

Additionally, certain interrupts might not be supported under Win32. An example of interrupts
no longer supported under Win32 is the suite of DOS Protected Mode Interface (DPMI) func-
tions provided under interrupt $31. In some cases, Win32 API functions and procedures take
the place of interrupts (the new Win32 file I/O functions are an example). If your application
makes use of interrupts, refer to the Win32 documentation to check the alternatives in your
specific case.

Additionally, inline hexadecimal code is no longer supported in the 32-bit Delphi compiler. If
you have any routines that use inline code, replace them with 32-bit assembly language routines.

Advanced Techniques

PART II
230

NOTE

Conversion of ExitProcs to finalization blocks is mandatory for packages. Packages
can be dynamically loaded and unloaded multiple times at design time, and
ExitProcs are not called when a package is dynamically unloaded by the IDE.
Therefore, your cleanup code must go in finalization sections.

18.65227_Ch15CDx 11/30/99 11:34 AM Page 230

Calling Conventions
Delphi 1 can use either the cdecl or pascal calling convention for parameter passing and stack
cleanup for function and procedure calls. The default calling convention for Delphi 1 is pascal.

Delphi 2 introduced directives representing two new calling conventions: register and
stdcall. The register calling convention is the default for Delphi 2 and 3, offering faster per-
formance. This method dictates that the first three 32-bit parameters be passed in the eax, edx,
and ecx registers, respectively. Remaining parameters use the pascal calling convention. The
stdcall calling convention is a hybrid of pascal and cdecl in that the parameters are passed
using the cdecl convention but the stack is cleaned up using the pascal convention.

Delphi 3 introduced a new procedure directive called safecall. safecall follows the stdcall
convention for parameter passing and also allows COM errors to be handled in a more Delphi-
like manner. Most COM functions return HRESULT values as errors, whereas the preferred man-
ner of error handling in Delphi is through the use of structured exception handling. When you
call a safecall function from Delphi, the HRESULT return value of the function is converted
into an exception that you may handle. When implementing a safecall function in Delphi,
any exceptions raised in the function will be converted into an HRESULT value, which is
returned to the caller.

Porting to Delphi 5

CHAPTER 15
231

15

P
O

R
TIN

G
TO

D
ELPH

I5

NOTE

Although functions and procedures in the 16-bit Windows API use the pascal calling
convention, Win32 API functions and procedures use the stdcall convention.
Consequently, if you have any callback functions in your code, those also use the
stdcall calling convention. Consider the following callback, intended for use with
the EnumWindows() API function under 16-bit Windows:

function EnumWindowsProc(Handle: hwnd; lParam: Longint): BOOL; export;

It’s defined as follows for 32-bit Windows:

function EnumWindowsProc(Handle: hwnd; lParam: Longint): BOOL; stdcall;

Dynamic Link Libraries (DLLs)
The creation and use of DLLs work very much the same in 32-bit Delphi as in Delphi 1,
although there are a few minor differences. Some of these issues are listed here:

• Because of Win32’s flat memory model, the export directive (necessary for callback and
DLL functions in Delphi 1) is unnecessary in later versions. It’s simply ignored by the
compiler.

18.65227_Ch15CDx 11/30/99 11:34 AM Page 231

• If you’re writing a DLL you intend to share with executables written using other devel-
opment tools, it’s a good idea to use the stdcall directive for maximum compatibility.

• The preferred way to export functions in a Win32 DLL is by name (instead of by ordi-
nal). The following example exports functions by ordinal, the Delphi 1 way:

function SomeFunction: integer; export;
begin
.
.
.
end;

procedure SomeProcedure; export;
begin
.
.
.
end;

exports
SomeFunction index 1,
SomeProcedure index 2;

Here are the same functions exported by name, the 32-bit Delphi way:

function SomeFunction: integer; stdcall;
begin
.
.
.
end;

procedure SomeProcedure; stdcall;
begin
.
.
.
end;

exports
SomeFunction name ‘SomeFunction’;
SomeProcedure name ‘SomeProcedure’;

• Exported names are case sensitive. You must use proper case when importing functions
by name and when calling GetProcAddress().

• When you import a function or procedure and specify the library name after the external
directive, the file extension can be included. If no extension is specified, .DLL is
assumed.

Advanced Techniques

PART II
232

18.65227_Ch15CDx 11/30/99 11:34 AM Page 232

• Under Windows 3.x, a DLL in memory has only one data segment that’s shared by all
instances of the DLL. Therefore, if applications A and B both load DLL C, changes
made to global variables in DLL C from application A are visible to application B, and
the reverse is also true. Under Win32, each DLL receives its own data segment, so
changes made to global DLL data from one program aren’t visible to another program.

Porting to Delphi 5

CHAPTER 15
233

15

P
O

R
TIN

G
TO

D
ELPH

I5

TIP

See Chapter 9, “Dynamic Link Libraries,” for more information on the behavior of
DLLs under Win32.

Windows Operating System Changes
In several areas, changes in the 32-bit architecture of Windows can have an impact on code
written in Delphi. These include changes resulting from the 32-bit memory model, changes in
resource formats, unsupported features, and changes to the Windows API itself.

32-Bit Address Space
Win32 provides a 4GB flat address space for your application. The term flat means that all
segment registers hold the same value and that the definition of a pointer is an offset into that
4GB space. Because of this, any code in your Delphi 1 applications that depends on the con-
cept of a pointer consisting of a selector and offset must be rewritten to accommodate the new
architecture.

The following elements of the Delphi 1 runtime library are 16-bit pointer specific and are not
in the 32-bit Delphi runtime library: DSeg, SSeg, CSeg, Seg, Ofs, and SPtr.

Because of the way in which Win32 uses a hard disk paging file to simulate RAM on demand,
the Delphi 1.0 MemAvail() and MaxAvail() functions are no longer useful for gauging avail-
able memory. If you have to obtain this information in 32-bit Delphi, use the GetHeapStatus()
Delphi RTL function, which is defined as follows:

function GetHeapStatus: THeapStatus;

The THeapStatus record is designed to provide information (in bytes) on the status of the heap
for your process. This record is defined as follows:

type
THeapStatus = record
TotalAddrSpace: Cardinal;
TotalUncommitted: Cardinal;
TotalCommitted: Cardinal;
TotalAllocated: Cardinal;

18.65227_Ch15CDx 11/30/99 11:34 AM Page 233

TotalFree: Cardinal;
FreeSmall: Cardinal;
FreeBig: Cardinal;
Unused: Cardinal;
Overhead: Cardinal;
HeapErrorCode: Cardinal;

end;

Again, because the nature of Win32 is such that the amount of “free” memory has little mean-
ing, most users will find the TotalAllocated field (which indicates how much heap memory
has been allocated by the current process) most useful for debugging purposes.

Advanced Techniques

PART II
234

NOTE

For more information on the internals of the Win32 operating system, see Chapter 3,
“The Win32 API.”

32-Bit Resources
If you have any resources (RES or DCR files) that you link into your application or use with a
component, you must create 32-bit versions of these files before you can use them with 32-bit
Delphi. Typically, this is a simple matter of using the included Image Editor or a separate
resource editor (such as Resource Workshop) to save the resource file in a 32-bit-compatible
format.

VBX Controls
Because Microsoft doesn’t support VBX controls (which are inherently 16-bit controls) in 32-
bit applications for Windows 95 and Windows NT, they aren’t supported in 32-bit Delphi.
ActiveX controls (OCXs) effectively replace VBX controls in 32-bit platforms. If you want to
migrate a Delphi 1.0 application that uses VBX controls, contact your VBX vendor to get an
equivalent 32-bit ActiveX control.

Changes to the Windows API Functions
Some Windows APIs or features have changed from Windows 3.1 to Win32. Some 16-bit API
functions no longer exist in Win32, some functions are obsolete but continue to exist for the
sake of compatibility, and some accept different parameters or return different types or values.
Tables 15.5 and 15.6 list these functions. For complete documentation on these functions, see
the Win32 API online help that comes with Delphi.

18.65227_Ch15CDx 11/30/99 11:34 AM Page 234

TABLE 15.5 Obsolete Windows 3.x API Functions

Windows 3.x Function Win32 Replacement

OpenComm() CreateFile()

CloseComm() CloseHandle()

FlushComm() PurgeComm()

GetCommError() ClearCommError()

ReadComm() ReadFile()

WriteComm() WriteFile()

UngetCommChar() N/A

DlgDirSelect() DlgDirSelectEx()

DlgDirSelectComboBox() DlgDirSelectComboBoxEx()

GetBitmapDimension() GetBitmapDimensionEx()

SetBitmapDimension() SetBitmapDimensionEx()

GetBrushOrg() GetBrushOrgEx()

GetAspectRatioFilter() GetAspectRatioFilterEx()

GetTextExtent() GetTextExtentPoint()

GetViewportExt() GetViewportExtEx()

GetViewportOrg() GetViewportOrgEx()

GetWindowExt() GetWindowExtEx()

GetWindowOrg() GetWindowOrgEx()

OffsetViewportOrg() OffsetViewportOrgEx()

OffsetWindowOrg() OffsetWindowOrgEx()

ScaleViewportExt() ScaleViewportExtEx()

ScaleWindowExt() ScaleWindowExtEx()

SetViewportExt() SetViewportExtEx()

SetViewportOrg() SetViewportOrgEx()

SetWindowExt() SetWindowExtEx()

SetWindowOrg() SetWindowOrgEx()

GetMetafileBits() GetMetafileBitsEx()

SetMetafileBits() SetMetafileBitsEx()

GetCurrentPosition() GetCurrentPositionEx()

MoveTo() MoveToEx()

DeviceCapabilities() DeviceCapabilitiesEx()

DeviceMode() DeviceModeEx()

Porting to Delphi 5

CHAPTER 15
235

15

P
O

R
TIN

G
TO

D
ELPH

I5

continues

18.65227_Ch15CDx 11/30/99 11:34 AM Page 235

TABLE 15.5 Continued

Windows 3.x Function Win32 Replacement

ExtDeviceMode() ExtDeviceModeEx()

FreeSelector() N/A

AllocSelector() N/A

ChangeSelector() N/A

GetCodeInfo() N/A

GetCurrentPDB() GetCommandLine() and/or
GetEnvironmentStrings()

GlobalDOSAlloc() N/A

GlobalDOSFree() N/A

SwitchStackBack() N/A

SwitchStackTo() N/A

GetEnvironment() (Win32 file I/O functions)

SetEnvironment() (Win32 file I/O functions)

ValidateCodeSegments() N/A

ValidateFreeSpaces() N/A

GetInstanceData() N/A

GetKBCodePage() N/A

GetModuleUsage() N/A

Yield() WaitMessage() and/or Sleep()

AccessResource() N/A

AllocResource() N/A

SetResourceHandler() N/A

AllocDSToCSAlias() N/A

GetCodeHandle() N/A

LockData() N/A

UnlockData() N/A

GlobalNotify() N/A

GlobalPageLock() VirtualLock()

TABLE 15.6 Win32 API Compatibility Function

Windows 3.x Function Win32 Replacement

DefineHandleTable() N/A

MakeProcInstance() N/A

Advanced Techniques

PART II
236

18.65227_Ch15CDx 11/30/99 11:34 AM Page 236

Windows 3.x Function Win32 Replacement

FreeProcInstance() N/A

GetFreeSpace() GlobalMemoryStatus()

GlobalCompact() N/A

GlobalFix() N/A

GlobalUnfix() N/A

GlobalWire() N/A

GlobalUnwire() N/A

LocalCompact() N/A

LocalShrink() N/A

LockSegment() N/A

UnlockSegment() N/A

SetSwapAreaSize() N/A

Concurrent 16-Bit and 32-Bit Projects
This section gives you some guidelines for developing projects that compile under 16-bit
Delphi 1 or any 32-bit version of Delphi. Although you can follow the directions outlined in
this chapter for source code compatibility, here are some further pointers to help you along:

• The WINDOWS conditional is defined by the compiler under Delphi 1; the WIN32 condi-
tional is defined under 32-bit versions of Delphi. You can use these defines to perform
conditional compilation with the {$IFDEF WINDOWS} and {$IFDEF WIN32} directives.

• Avoid the use of any component or feature in 32-bit Delphi that isn’t supported by
Windows 3.1 or Delphi 1 if you want to recompile with Delphi 1 for a 16-bit application.
For example, avoid the use of Win95 components and features such as multithreading
that aren’t available in Windows 3.1. The easiest way to ensure compatibility with pro-
jects intended for both Delphi 1 and 32-bit versions of Delphi is to develop the project in
Delphi 1 and recompile it with 32-bit Delphi for optimized 32-bit performance.

• Be wary of differences between the APIs. If you have to use an API procedure or func-
tion that’s implemented differently in the different platforms, make use of the WINDOWS
and WIN32 conditional defines.

• Each new version often adds more properties or different properties than those found in
the previous version. This means, for example, that when version 5 components are
saved to a DFM file, these new properties are written as well. Although it’s often possi-
ble to “ignore” the errors that occur when loading projects with these properties in
Delphi 1, it’s often a more favorable solution to maintain two separate sets of DFM files,
one for each platform.

Porting to Delphi 5

CHAPTER 15
237

15

P
O

R
TIN

G
TO

D
ELPH

I5

18.65227_Ch15CDx 11/30/99 11:34 AM Page 237

Summary
Armed with the information provided by this chapter, you should be able to migrate your pro-
jects smoothly from any previous version of Delphi to Delphi 5. Also, with a bit of work,
you’ll be able to maintain projects that work with multiple versions of Delphi.

Advanced Techniques

PART II
238

Win32s
One other option for leveraging a single code base into both 16- and 32-bit Windows
is to attempt to run your 32-bit Delphi applications under Win32s. Win32s is an add-
on to Windows 3.x, which enables a subset of the Win32 API to function on 16-bit
Windows. One serious drawback to this method is that many Win32 features, such as
threads, are not available under Win32s (this precludes your use of the Borland
Database Engine in this circumstance because the BDE makes use of threads). If you
choose this route, you should also bear in mind that Win32s is not an officially sup-
ported platform for 32-bit Delphi, so you’re on your own if things don’t quite func-
tion as you expect.

18.65227_Ch15CDx 11/30/99 11:34 AM Page 238

CHAPTER

16
MDI Applications

IN THIS CHAPTER
• Creating the MDI Application 240

• Working with Menus 272

• Miscellaneous MDI Techniques 273

• Summary 287

19.65227_Ch16CDx 11/30/99 11:37 AM Page 239

The Multiple Document Interface, otherwise known as MDI, was introduced to Windows 2.0 in
the Microsoft Excel spreadsheet program. MDI gave Excel users the ability to work on more
than one spreadsheet at a time. Other uses of MDI included the Windows 3.1 Program
Manager and File Manager programs. Borland Pascal for Windows is another MDI application.

During the development of Windows 95, many developers were under the impression that
Microsoft was going to eliminate MDI capabilities. Much to their surprise, Microsoft kept
MDI as part of Windows 95 and there has been no further word about Microsoft’s intention to
get rid of it.

Advanced Techniques

PART II
240

CAUTION

Microsoft has acknowledged that the Windows MDI implementation is flawed. It
advised developers against continuing to build apps in the MDI model. Since then,
Microsoft has returned to building MS apps in the MDI model but does so without
using the Windows MDI implementation. You can still use MDI, but be forewarned
that the Windows MDI implementation is still flawed, and Microsoft has no plans to
fix those problems. What we present in this chapter is a safe implementation of the
MDI model.

Handling events simultaneously between multiple forms might seem difficult. In traditional
Windows programming, you had to have knowledge of the Windows class MDICLIENT, MDI
data structures, and the additional functions and messages specific to MDI. With Delphi 5, cre-
ating MDI applications is greatly simplified. When you finish this chapter, you’ll have a solid
foundation for building MDI applications, which you can easily expand to include more
advanced techniques.

Creating the MDI Application
To create MDI applications, you need familiarity with the form styles fsMDIForm and
fsMDIChild and a bit of MDI programming methodology. The following sections present some
basic concepts regarding MDI and show how MDI works with special MDI child forms.

Understanding MDI Basics
To understand MDI applications, first you must understand how they’re constructed. Figure
16.1 shows an MDI application similar to one you’ll build in this chapter.

19.65227_Ch16CDx 11/30/99 11:37 AM Page 240

FIGURE 16.1
The structure of an MDI application.

Here are the windows involved with an MDI application:

• Frame window. The application’s main window. It has a caption, menu bar, and system
menu. Minimize, maximize, and close buttons appear in its upper-right corner. The blank
space inside the frame window is known as its client area and is actually the client
window.

• Client window. The manager for MDI applications. The client window handles all MDI-
specific commands and manages the child windows that reside on its surface—including
the drawing of MDI child windows. The client is created automatically by the Visual
Component Library (VCL) when you create a frame window.

• Child windows. MDI child windows are your actual documents—text files, spreadsheets,
bitmaps, and other document types. Child windows, like frame windows, have a caption,
system menu, minimize, maximize, and close buttons, and possibly a menu. It’s possible
to place a help button on a child window. A child window’s menu is combined with the
frame window’s menu. Child windows never move outside the client area.

Delphi 5 does not require you to be familiar with the special MDI window’s messages. The
client window is responsible for managing MDI functionality, such as cascading and tiling child
windows. To cascade child windows using the traditional method, for example, use the Windows
API function SendMessage() to send a WM_MDICASCADE message to the client window:

procedure TFrameForm.Cascade1Click(Sender: TObject);
begin

MDI Applications

CHAPTER 16
241

16

M
D

I
A

PPLIC
A

TIO
N

S

System menu icon
Main menu bar

Title bar Minimize button Maximize button

Close button

Child windows

Window button

Client area

19.65227_Ch16CDx 11/30/99 11:37 AM Page 241

SendMessage(ClientHandle, WM_MDICASCADE, 0, 0);
end;

In Delphi 5, just call the Cascade() method:

procedure TFrameForm.Cascade1Click(Sender: TObject);
begin
cascade;

end;

The following sections show you a complete MDI application whose child MDI windows have
the functionality of a text editor, a bitmap file viewer, and a rich text format editor. The pur-
pose of this application is to show you how to build MDI applications whose child windows
each display and edit different types of information. For example, the text editor allows you to
edit any text-based file. The rich text editor allows you to edit rich text–formatted (.rtf) files.
Finally, the bitmap viewer allows you to view any Windows bitmapped file.

We also show you how to perform some advanced MDI techniques using the Win32 API.
These techniques mainly have to do with managing MDI child forms in an MDI-based applica-
tion. First, we’ll discuss the building of the child forms and their functionality. Then we’ll talk
about the main form.

The Child Form
As mentioned earlier, this MDI application contains three types of child forms: TMdiEditForm,
TMdiRTFForm, and TMdiBMPForm. Each of these three types descends from TMDIChildForm,
which serves as a base class. The following section describes the TMDIChildForm base class.
The sections after that talk about the three child forms used in the MDI application.

The TMDIChildForm Base Class
The child forms used in the MDI application have some common functionality. They all have
the same File menu and their FormStyle property is set to fsMDIChild. Additionally, they all
make use of a TToolBar component. By deriving each child form from a base form class, you
can avoid having to redefine these settings for each form. We defined a base form,
TMDIChildForm, as shown in MdiChildFrm.pas (refer to Listing 16.1).

LISTING 16.1 MdiChildFrm.pas: A Unit Defining TMDIChildForm

unit MdiChildFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, Menus, ComCtrls, ToolWin, ImgList;

Advanced Techniques

PART II
242

19.65227_Ch16CDx 11/30/99 11:37 AM Page 242

type

TMDIChildForm = class(TForm)
(* Component list removed, refer to online source. *)
procedure FormClose(Sender: TObject; var Action: TCloseAction);
procedure mmiExitClick(Sender: TObject);
procedure mmiCloseClick(Sender: TObject);
procedure mmiOpenClick(Sender: TObject);
procedure mmiNewClick(Sender: TObject);
procedure FormActivate(Sender: TObject);
procedure FormDeactivate(Sender: TObject);

end;

var
MDIChildForm: TMDIChildForm;

implementation
uses MainFrm, Printers;

{$R *.DFM}

procedure TMDIChildForm.FormClose(Sender: TObject; var Action: TCloseAction);
begin
Action := caFree;
{ Reassign the toolbar parent }
tlbMain.Parent := self;
{ If this is the last child form being displayed, then make the main form’s
toolbar visible }

if (MainForm.MDIChildCount = 1) then
MainForm.tlbMain.Visible := True

end;

procedure TMDIChildForm.mmiExitClick(Sender: TObject);
begin
MainForm.Close;

end;

procedure TMDIChildForm.mmiCloseClick(Sender: TObject);
begin
Close;

end;

procedure TMDIChildForm.mmiOpenClick(Sender: TObject);
begin
MainForm.mmiOpenClick(nil);

end;

MDI Applications

CHAPTER 16
243

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 243

LISTING 16.1 Continued

procedure TMDIChildForm.mmiNewClick(Sender: TObject);
begin
MainForm.mmiNewClick(nil);

end;

procedure TMDIChildForm.FormActivate(Sender: TObject);
begin
{ When the form becomes active, hide the main form’s toolbar and assign
this child form’s toolbar to the parent form. Then display this
child form’s toolbar. }

MainForm.tlbMain.Visible := False;
tlbMain.Parent := MainForm;
tlbMain.Visible := True;

end;

procedure TMDIChildForm.FormDeactivate(Sender: TObject);
begin
{ The child form becomes inactive when it is either destroyed or when another
child form becomes active. Hide this form’s toolbar so that the next

form’s
toolbar will be visible. }

tlbMain.Visible := False;
end;

end.

Advanced Techniques

PART II
244

NOTE

Note that we have removed the component declarations for the TMdiChildForm base
class from the printed text for space reasons.

TMDIChildForm contains event handlers for the menu items for its main menu as well as for
some common tool buttons. Actually, the tool buttons are simply wired to the event handler of
their corresponding menu item. Some of these event handlers call methods on the main form.
For example, notice that the mmiNewClick() event handler calls the MainForm.mmiNewClick()
event handler. TMainForm.mmiNewClick() contains functionality for creating a new MDI child
form. You’ll notice that there are other event handlers such as mmiOpenClick() and
mmiExitClick() that call the respective event handlers on the main form. We’ll cover
TMainForm’s functionality later in the section “The Main Form.”

Because each MDI child needs to have the same functionality, it makes sense to put this func-
tionality into a base class from which the MDI child forms can descend. This way, the MDI

19.65227_Ch16CDx 11/30/99 11:37 AM Page 244

child forms do not have to define these same methods. They will inherit the main menu as well
as the toolbar components that you see on the main form.

Notice in the TMDIChildForm.FormClose() event handler that you set the Action parameter to
caFree to ensure that the TMDIChildForm instance is destroyed when closed. You do this
because MDI child forms don’t close automatically when you call their Close() method. You
must specify, in the OnClose event handler, what you want done with the child form when its
Close() method is called. The child form’s OnClose event handler passes in a variable Action,
of type TCloseAction, to which you must assign one of four possible values:

• caNone. Do nothing.

• caHide. Hide the form but don’t destroy it.

• caFree. Free the form.

• caMinimize. Minimize the form (this is the default).

TCloseAction is an enumerated type.

When a form becomes active, its OnActivate event handler is called. You must perform some
specific logic whenever a child form becomes active. Therefore, in the TMdiChildForm.
FormActivate() event handler, you’ll see that we make the main form’s toolbar invisible while
setting the child form’s toolbar to visible. We also assign the main form as the parent to the
child form’s toolbar so that the toolbar appears on the main form and not on the child form.
This is one way you might give the main form a different toolbar when a different type of MDI
child form is active. The OnDeactivate event handler simply makes the child form’s toolbar
invisible. Finally, the OnClose event reassigns the child form as the parent to the toolbar, and if
the current child form is the only child form, it makes the main form’s toolbar visible. The
effect is that the main form has a single toolbar with buttons that change depending on the type
of active child form.

The Text Editor Form
The text editor form enables the user to load and edit any text file. This form, TMdiEditForm, is
inherited from TMDIChildForm. TMdiEditForm contains a client-aligned TMemo component.

TMdiEditForm also contains TPrintDialogs, TSaveDialog and TFontDialog components.

TMdiEditForm is not an autocreated form and is removed from the list of autocreated forms in
the Project Options dialog box.

MDI Applications

CHAPTER 16
245

16

M
D

I
A

PPLIC
A

TIO
N

S

NOTE

None of the forms, except for TMainForm, in the MDI project are automatically cre-
ated and therefore have been removed from the list of autocreated forms. These
forms are created dynamically in the project’s source code.

19.65227_Ch16CDx 11/30/99 11:37 AM Page 245

TMdiEditForm’s source code is given in Listing 16.2.

LISTING 16.2 MdiEditFrm.pas: A Unit Defining TMdiEditForm

unit MdiEditFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Menus, ExtCtrls, Buttons, ComCtrls,
ToolWin, MdiChildFrm, ImgList;

type

TMdiEditForm = class(TMDIChildForm)
memMainMemo: TMemo;
SaveDialog: TSaveDialog;
FontDialog: TFontDialog;
mmiEdit: TMenuItem;
mmiSelectAll: TMenuItem;
N7: TMenuItem;
mmiDelete: TMenuItem;
mmiPaste: TMenuItem;
mmiCopy: TMenuItem;
mmiCut: TMenuItem;
mmiCharacter: TMenuItem;
mmiFont: TMenuItem;
N8: TMenuItem;
mmiWordWrap: TMenuItem;
N9: TMenuItem;
mmiCenter: TMenuItem;
mmiRight: TMenuItem;
mmiLeft: TMenuItem;
mmiUndo: TMenuItem;
N4: TMenuItem;
mmiBold: TMenuItem;
mmiItalic: TMenuItem;
mmiUnderline: TMenuItem;
PrintDialog: TPrintDialog;

{ File Event Handlers }
procedure mmiSaveClick(Sender: TObject);
procedure mmiSaveAsClick(Sender: TObject);

Advanced Techniques

PART II
246

19.65227_Ch16CDx 11/30/99 11:37 AM Page 246

{ Edit Event Handlers }
procedure mmiCutClick(Sender: TObject);
procedure mmiCopyClick(Sender: TObject);
procedure mmiPasteClick(Sender: TObject);
procedure mmiDeleteClick(Sender: TObject);
procedure mmiUndoClick(Sender: TObject);
procedure mmiSelectAllClick(Sender: TObject);

{ Character Event Handlers }
procedure CharAlignClick(Sender: TObject);
procedure mmiBoldClick(Sender: TObject);
procedure mmiItalicClick(Sender: TObject);
procedure mmiUnderlineClick(Sender: TObject);
procedure mmiWordWrapClick(Sender: TObject);
procedure mmiFontClick(Sender: TObject);

{ Form Event Handlers }
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
procedure mmiPrintClick(Sender: TObject);

public
{ User Defined Methods }
procedure OpenFile(FileName: String);
procedure SetButtons;

end;

var
MdiEditForm: TMdiEditForm;

implementation

uses Printers;

{$R *.DFM}
{ File Event Handlers }

procedure TMdiEditForm.mmiSaveClick(Sender: TObject);
begin
inherited;
{ If there isn’t a caption, then there isn’t already a filename.
Therefore, call mmiSaveAsClick since it gets a filename. }

if Caption = ‘’ then
mmiSaveAsClick(nil)

else begin
{ Save to the file specified by the form’s Caption. }
memMainMemo.Lines.SaveToFile(Caption);
memMainMemo.Modified := false; // Set to false since the text is saved.

MDI Applications

CHAPTER 16
247

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 247

LISTING 16.2 Continued

end;
end;

procedure TMdiEditForm.mmiSaveAsClick(Sender: TObject);
begin
inherited;
SaveDialog.FileName := Caption;
if SaveDialog.Execute then
begin
{ Set caption to filename specified by SaveDialog1 since this
may have changed. }

Caption := SaveDialog.FileName;
mmiSaveClick(nil); // Save the file.

end;
end;

{ Edit Event Handlers }

procedure TMdiEditForm.mmiCutClick(Sender: TObject);
begin
inherited;
memMainMemo.CutToClipBoard;

end;

procedure TMdiEditForm.mmiCopyClick(Sender: TObject);
begin
inherited;
memMainMemo.CopyToClipBoard;

end;

procedure TMdiEditForm.mmiPasteClick(Sender: TObject);
begin
inherited;
memMainMemo.PasteFromClipBoard;

end;

procedure TMdiEditForm.mmiDeleteClick(Sender: TObject);
begin
inherited;
memMainMemo.ClearSelection;

end;

procedure TMdiEditForm.mmiUndoClick(Sender: TObject);
begin
inherited;

Advanced Techniques

PART II
248

19.65227_Ch16CDx 11/30/99 11:37 AM Page 248

memMainMemo.Perform(EM_UNDO, 0, 0);
end;

procedure TMdiEditForm.mmiSelectAllClick(Sender: TObject);
begin
inherited;
memMainMemo.SelectAll;

end;

{ Character Event Handlers }
procedure TMdiEditForm.CharAlignClick(Sender: TObject);
begin
inherited;
mmiLeft.Checked := false;
mmiRight.Checked := false;
mmiCenter.Checked := false;

{ TAlignment is defined by VCL as:

TAlignment = (taLeftJustify, taRightJustify, taCenter);

Therefore each of the menu items contains the appropriate Tag property
whose value represents one of the TAlignment values: 0, 1, 2 }

{ If the menu invoked this event handler, set it to checked and
set the alignment for the memo }

if Sender is TMenuItem then
begin
TMenuItem(Sender).Checked := true;
memMainMemo.Alignment := TAlignment(TMenuItem(Sender).Tag);

end
{ If a TToolButton from the main form invoked this event handler,
set the memo’s alignment and then check the appropriate TMenuItem. }

else if Sender is TToolButton then
begin
memMainMemo.Alignment := TAlignment(TToolButton(Sender).Tag);
case memMainMemo.Alignment of
taLeftJustify: mmiLeft.Checked := True;
taRightJustify: mmiRight.Checked := True;
taCenter: mmiCenter.Checked := True;

end;
end;
SetButtons;

end;

procedure TMdiEditForm.mmiBoldClick(Sender: TObject);

MDI Applications

CHAPTER 16
249

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 249

LISTING 16.2 Continued

begin
inherited;
if not mmiBold.Checked then
memMainMemo.Font.Style := memMainMemo.Font.Style + [fsBold]

else
memMainMemo.Font.Style := memMainMemo.Font.Style - [fsBold];

SetButtons;
end;

procedure TMdiEditForm.mmiItalicClick(Sender: TObject);
begin
inherited;
if not mmiItalic.Checked then
memMainMemo.Font.Style := memMainMemo.Font.Style + [fsItalic]

else
memMainMemo.Font.Style := memMainMemo.Font.Style - [fsItalic];

SetButtons;
end;

procedure TMdiEditForm.mmiUnderlineClick(Sender: TObject);
begin
inherited;
if not mmiUnderline.Checked then
memMainMemo.Font.Style := memMainMemo.Font.Style + [fsUnderline]

else
memMainMemo.Font.Style := memMainMemo.Font.Style - [fsUnderline];

SetButtons;
end;

procedure TMdiEditForm.mmiWordWrapClick(Sender: TObject);
begin
inherited;
with memMainMemo do
begin
WordWrap := not WordWrap;
{ Remove scrollbars if Memo1 is wordwrapped since they’re not
required. Otherwise, make sure scrollbars are present. }

if WordWrap then
ScrollBars := ssVertical

else
ScrollBars := ssBoth;

mmiWordWrap.Checked := WordWrap;
end;

end;

procedure TMdiEditForm.mmiFontClick(Sender: TObject);

Advanced Techniques

PART II
250

19.65227_Ch16CDx 11/30/99 11:37 AM Page 250

begin
inherited;
FontDialog.Font := memMainMemo.Font;
if FontDialog.Execute then
memMainMemo.Font := FontDialog.Font;

end;

{ Form Event Handlers }
procedure TMdiEditForm.FormCloseQuery(Sender: TObject;

var CanClose: Boolean);
{ This procedure ensures that the user has saved the contents of the
memo if it was modified since the last time the file was saved. }

const
CloseMsg = ‘’’%s’’ has been modified, Save?’;

var
MsgVal: integer;
FileName: string;

begin
inherited;
FileName := Caption;
if memMainMemo.Modified then
begin
MsgVal := MessageDlg(Format(CloseMsg, [FileName]), mtConfirmation,

mbYesNoCancel, 0);
case MsgVal of
mrYes: mmiSaveClick(Self);
mrCancel: CanClose := false;

end;
end;

end;

procedure TMdiEditForm.OpenFile(FileName: string);
begin
memMainMemo.Lines.LoadFromFile(FileName);
Caption := FileName;

end;

procedure TMdiEditForm.SetButtons;
{ This procedure ensures that menu items and buttons on the main form
accurately reflect various settings for the memo. }

begin
mmiBold.Checked := fsBold in memMainMemo.Font.Style;
mmiItalic.Checked := fsItalic in memMainMemo.Font.Style;
mmiUnderLine.Checked := fsUnderline in memMainMemo.Font.Style;

tbBold.Down := mmiBold.Checked;

MDI Applications

CHAPTER 16
251

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 251

LISTING 16.2 Continued

tbItalic.Down := mmiItalic.Checked;
tbUnderline.Down := mmiUnderLine.Checked;
tbLAlign.Down := mmiLeft.Checked;
tbRAlign.Down := mmiRight.Checked;
tbCAlign.Down := mmiCenter.Checked;

end;

procedure TMdiEditForm.mmiPrintClick(Sender: TObject);
var
i: integer;
PText: TextFile;

begin
inherited;
if PrintDialog.Execute then
begin
AssignPrn(PText);
Rewrite(PText);
try
Printer.Canvas.Font := memMainMemo.Font;
for i := 0 to memMainMemo.Lines.Count -1 do
writeln(PText, memMainMemo.Lines[i]);

finally
CloseFile(PText);

end;
end;
end;

end.

Most of the methods for TMdiEditForm are event handlers for the various menus in
TMdiEditForm’s main menu, the same menu inherited from TMdiChildForm. Also notice that
additional menu items have been added to the main menu that apply specifically to
TMdiEditForm.

You’ll notice that there are no event handlers for the File, New, File, Open, File, Close, and
File, Exit menus because they’re already linked to TMdiChildForm’s event handlers.

The event handlers for the Edit menu items are all single-line methods that interact with the
TMemo component. For example, you’ll notice that the event handlers mmiCutClick(),
mmiCopyClick(), and mmiPasteClick() interact with the Windows Clipboard in order to per-
form cut, copy, and paste operations. The other edit event handlers perform various editing
functions on the memo component that have to do with deleting, clearing, and selecting text.

Advanced Techniques

PART II
252

19.65227_Ch16CDx 11/30/99 11:37 AM Page 252

The Character menu applies various formatting attributes to the memo.

Notice that we stored a unique value in the Tag property of the TToolButton components for
setting text alignment. This Tag value represents a value in the TAlignment enumerated type.
This value is extracted from the Tag value of the TToolButton component that invoked the
event handler to set the appropriate alignment for the memo component.

All menu items and tool buttons that set text alignment are wired to the CharAlignClick()
event handler. This is why you have to check and respond appropriately in the event handler
depending on whether a TMenuItem or TToolButton component invoked the event.

CharAlignClick() calls the SetButtons() method, which sets various menu items and com-
ponents accordingly based on the memo’s attributes.

The mmiWordWrapClick() event handler simply toggles the memo’s wordwrap attribute and
then the Checked property for the menu item. This method also specifies whether the memo
component contains scrollbars based on its word-wrapping capability.

The mmiFontClick() event handler invokes a TFontDialog component and applies the selected
font to the memo. Notice that before launching the FontDialog component, the Font property
is set to reflect the memo’s font so that the correct font is displayed in the dialog box.

The mmiSaveAsClick() event handler invokes a TSaveDialog component to get a filename
from the user to which the memo’s contents will be saved. When the file is saved, the
TMdiEditForm.Caption property is set to reflect the new filename.

The mmiSaveClick() event handler calls the mmiSaveAsClick() event handler if a filename
doesn’t exist. This is the case if the user creates a new file instead of opening an existing one.
Otherwise, the memo’s contents are saved to the existing file specified by the
MdiEditForm.Caption property. Notice that this event handler also sets
memMainMemo.Modified to False. Modified is automatically set to True whenever the user
changes the contents of a TMemo component. However, it’s not set to False automatically
whenever its contents are saved.

The FormCloseQuery() method is the event handler for the OnCloseQuery event. This event
handler evaluates the memMainMemo.Modified property when the user attempts to close the
form. If the memo has been modified, the user is notified and asked whether he or she wants to
save the contents of the memo.

The public method TMdiEditForm.OpenFile() loads the file specified by the FileName para-
meter and places the file’s contents into the memMainMemo.Lines property and then sets the
form’s Caption to reflect this filename.

That completes the functionality for TMdiEditForm. The other forms are somewhat similar in
functionality.

MDI Applications

CHAPTER 16
253

16

M
D

I
A

PPLIC
A

TIO
N

S

19.65227_Ch16CDx 11/30/99 11:37 AM Page 253

The Rich Text Editor Form
The rich text editor enables the user to load and edit rich text–formatted files. This form,
TMdiRtfForm, is derived from TMDIChild. It contains a client-aligned TRichEdit component.

TMdiRtfForm and TMdiEditForm are practically identical except that TMdiRtfForm contains a
TRichEdit component as its editor; TMdiEditForm uses a TMemo component. TMdiRtfForm dif-
fers from the text editor in that the text attributes applied to the TRichEdit component affect
paragraphs or selected text in the TRichEdit component; they affect the entire text with the
TMemo component.

The source code for TMdiRtfForm is shown in Listing 16.3.

LISTING 16.3 MdiRtfFrm.pas: A Unit Defining TMdiRtfForm

unit MdiRtfFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, MdiChildFrm, StdCtrls, ComCtrls,
ExtCtrls, Buttons, Menus, ToolWin, ImgList;

type

TMdiRtfForm = class(TMDIChildForm)
reMain: TRichEdit;
FontDialog: TFontDialog;
SaveDialog: TSaveDialog;
mmiEdit: TMenuItem;
mmiSelectAll: TMenuItem;
N7: TMenuItem;
mmiPaste: TMenuItem;
mmiCopy: TMenuItem;
mmiCut: TMenuItem;
mmiCharacter: TMenuItem;
mmiFont: TMenuItem;
N8: TMenuItem;
mmiWordWrap: TMenuItem;
N9: TMenuItem;
mmiCenter: TMenuItem;
mmiRight: TMenuItem;
mmiLeft: TMenuItem;
mmiUndo: TMenuItem;
mmiDelete: TMenuItem;

Advanced Techniques

PART II
254

19.65227_Ch16CDx 11/30/99 11:37 AM Page 254

N4: TMenuItem;
mmiBold: TMenuItem;
mmiItalic: TMenuItem;
mmiUnderline: TMenuItem;

{ File Event Handlers }
procedure mmiSaveClick(Sender: TObject);
procedure mmiSaveAsClick(Sender: TObject);

{ Edit Event Handlers }
procedure mmiCutClick(Sender: TObject);
procedure mmiCopyClick(Sender: TObject);
procedure mmiPasteClick(Sender: TObject);
procedure mmiDeleteClick(Sender: TObject);
procedure mmiUndoClick(Sender: TObject);
procedure mmiSelectAllClick(Sender: TObject);

{ Character Event Handlers }
procedure CharAlignClick(Sender: TObject);
procedure mmiBoldClick(Sender: TObject);
procedure mmiItalicClick(Sender: TObject);
procedure mmiUnderlineClick(Sender: TObject);
procedure mmiWordWrapClick(Sender: TObject);
procedure mmiFontClick(Sender: TObject);

{ Form Event Handlers }
procedure FormShow(Sender: TObject);
procedure FormCloseQuery(Sender: TObject; var CanClose: Boolean);
procedure reMainSelectionChange(Sender: TObject);
procedure mmiPrintClick(Sender: TObject);

public
{ User-Defined Functions. }
procedure OpenFile(FileName: String);
function GetCurrentText: TTextAttributes;
procedure SetButtons;

end;

var
MdiRtfForm: TMdiRtfForm;

implementation
{$R *.DFM}
{ File Event Handlers }

procedure TMdiRtfForm.mmiSaveClick(Sender: TObject);
begin

MDI Applications

CHAPTER 16
255

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 255

LISTING 16.2 Continued

inherited;
reMain.Lines.SaveToFile(Caption);

end;

procedure TMdiRtfForm.mmiSaveAsClick(Sender: TObject);
begin
inherited;
SaveDialog.FileName := Caption;
if SaveDialog.Execute then
begin
Caption := SaveDialog.FileName;
mmiSaveClick(Sender);

end;
end;

{ Edit Event Handlers }

procedure TMdiRtfForm.mmiCutClick(Sender: TObject);
begin
inherited;
reMain.CutToClipBoard;

end;

procedure TMdiRtfForm.mmiCopyClick(Sender: TObject);
begin
inherited;
reMain.CopyToClipBoard;

end;

procedure TMdiRtfForm.mmiPasteClick(Sender: TObject);
begin
inherited;
reMain.PasteFromClipBoard;

end;

procedure TMdiRtfForm.mmiDeleteClick(Sender: TObject);
begin
inherited;
reMain.ClearSelection;

end;

procedure TMdiRtfForm.mmiUndoClick(Sender: TObject);
begin
inherited;
reMain.Perform(EM_UNDO, 0, 0);

Advanced Techniques

PART II
256

19.65227_Ch16CDx 11/30/99 11:37 AM Page 256

end;

procedure TMdiRtfForm.mmiSelectAllClick(Sender: TObject);
begin
inherited;
reMain.SelectAll;

end;

{ Character Event Handlers }

procedure TMdiRtfForm.CharAlignClick(Sender: TObject);
begin
inherited;
mmiLeft.Checked := false;
mmiRight.Checked := false;
mmiCenter.Checked := false;

{ If a TMenuItem invoked this event handler, set its checked
property to true and set the attribute to RichEdit1’s current
paragraph. }

if Sender is TMenuItem then
begin
TMenuItem(Sender).Checked := true;
with reMain.Paragraph do
if mmiLeft.Checked then
Alignment := taLeftJustify

else if mmiRight.Checked then
Alignment := taRightJustify

else if mmiCenter.Checked then
Alignment := taCenter;

end
{ If one of the main form’s tool buttons invoked this event handler
set the attribute to reMain’s current paragraph and set the
alignment menu items accordingly. }

else if Sender is TSpeedButton then
begin
reMain.Paragraph.Alignment :=

TAlignment(TSpeedButton(Sender).Tag);
case reMain.Paragraph.Alignment of
taLeftJustify: mmiLeft.Checked := True;
taRightJustify: mmiRight.Checked := True;
taCenter: mmiCenter.Checked := True;

end;
end;
SetButtons;

end;

MDI Applications

CHAPTER 16
257

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 257

LISTING 16.2 Continued

procedure TMdiRtfForm.mmiBoldClick(Sender: TObject);
begin
inherited;
if not mmiBold.Checked then
GetCurrentText.Style := GetCurrentText.Style + [fsBold]

else
GetCurrentText.Style := GetCurrentText.Style - [fsBold];

end;

procedure TMdiRtfForm.mmiItalicClick(Sender: TObject);
begin
inherited;
if not mmiItalic.Checked then
GetCurrentText.Style := GetCurrentText.Style + [fsItalic]

else
GetCurrentText.Style := GetCurrentText.Style - [fsItalic];

end;

procedure TMdiRtfForm.mmiUnderlineClick(Sender: TObject);
begin
inherited;
if not mmiUnderline.Checked then
GetCurrentText.Style := GetCurrentText.Style + [fsUnderline]

else
GetCurrentText.Style := GetCurrentText.Style - [fsUnderline];

end;

procedure TMdiRtfForm.mmiWordWrapClick(Sender: TObject);
begin
inherited;
with reMain do
begin
{ Remove scrollbars if Memo1 is wordwrapped since they’re not
required. Otherwise, make sure scrollbars are present. }

WordWrap := not WordWrap; if WordWrap then
ScrollBars := ssVertical

else
ScrollBars := ssNone;

mmiWordWrap.Checked := WordWrap;
end;

end;

procedure TMdiRtfForm.mmiFontClick(Sender: TObject);
begin
inherited;
FontDialog.Font.Assign(reMain.SelAttributes);

Advanced Techniques

PART II
258

19.65227_Ch16CDx 11/30/99 11:37 AM Page 258

if FontDialog.Execute then
GetCurrentText.Assign(FontDialog.Font);

reMain.SetFocus;
end;

{ Form Event Handlers }

procedure TMdiRtfForm.FormShow(Sender: TObject);
begin
inherited;
reMainSelectionChange(nil);

end;

procedure TMdiRtfForm.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

{ This procedure ensures that the user has saved the contents of
reMain if it was modified since the last time the file was saved. }

const
CloseMsg = ‘’’%s’’ has been modified, Save?’;

var
MsgVal: integer;
FileName: string;

begin
inherited;
FileName := Caption;
if reMain.Modified then
begin
MsgVal := MessageDlg(Format(CloseMsg, [FileName]), mtConfirmation,

mbYesNoCancel, 0);
case MsgVal of
mrYes: mmiSaveClick(Self);
mrCancel: CanClose := false;

end;
end;

end;

procedure TMdiRtfForm.reMainSelectionChange(Sender: TObject);
begin
inherited;
SetButtons;

end;

procedure TMdiRtfForm.OpenFile(FileName: String);
begin
reMain.Lines.LoadFromFile(FileName);

MDI Applications

CHAPTER 16
259

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 259

LISTING 16.2 Continued

Caption := FileName;
end;

function TMdiRtfForm.GetCurrentText: TTextAttributes;
{ This procedure returns the text attributes of the current paragraph
or based on the selected text of reMain.}

begin
if reMain.SelLength > 0 then
Result := reMain.SelAttributes

else
Result := reMain.DefAttributes;

end;

procedure TMdiRtfForm.SetButtons;
{ Ensures that the controls on the form reflect the
current attributes of the paragraph by looking at the paragraph
attributes themselves and setting the controls accordingly. }

begin

with reMain.Paragraph do
begin
mmiLeft.Checked := Alignment = taLeftJustify;
mmiRight.Checked := Alignment = taRightJustify;
mmiCenter.Checked := Alignment = taCenter;

end;

with reMain.SelAttributes do
begin
mmiBold.Checked := fsBold in Style;
mmiItalic.Checked := fsItalic in Style;
mmiUnderline.Checked := fsUnderline in Style;

end;
mmiWordWrap.Checked := reMain.WordWrap;

tbBold.Down := mmiBold.Checked;
tbItalic.Down := mmiItalic.Checked;
tbUnderline.Down := mmiUnderline.Checked;
tbLAlign.Down := mmiLeft.Checked;
tbRAlign.Down := mmiRight.Checked;
tbCAlign.Down := mmiCenter.Checked;

end;

procedure TMdiRtfForm.mmiPrintClick(Sender: TObject);
begin

Advanced Techniques

PART II
260

19.65227_Ch16CDx 11/30/99 11:37 AM Page 260

inherited;
reMain.Print(Caption);

end;

end.

Like TMdiEditForm, most of TMdiRtfForm’s methods are event handlers for the various menu
items and tool buttons. These event handlers are similar to TMdiEditForm’s event handlers.

TMdiRtfForm’s File menu items invoke the File menu items of the TMdiChildForm base class.
Recall that TMdiChildForm is the ancestor to TMdiRtfForm. The event handlers,
mmiSaveClick() and mmiSaveAsClick(), both call reMain.Lines.SaveToFile() to save
reMain’s contents.

The event handlers for TMdiRtfForm’s Edit menu items are single-line methods similar to the
TMdiEditForm’s Edit menu event handlers except that these event handlers call methods applic-
able to reMain. The method names are the same as the memo methods that perform the same
operations.

TMdiRtfForm’s Character menu items modify the alignment of paragraphs or selected text
within the TRichEdit component (as opposed to the text within the entire component, as is the
behavior with a TMemo component). Whether these attributes are applied to a paragraph or to
selected text depends on the return value of the GetCurrentText() function.
GetCurrentText() determines whether any text is selected by looking at the value of
TRichEdit.SelLength. A zero value indicates that no text is selected. The
TRichEdit.SelAttributes property refers to any selected text in the TRichEdit component.
TRichEdit.DefAttributes refers to the current paragraph of the TRichEdit component.

The mmiFontClick() event handler allows the user to specify font attributes for a paragraph.
Note that a paragraph can also refer to selected text.

Word wrapping is handled the same with the TRichEdit component as with the TMemo compo-
nent in the text editor.

The TRichEdit.OnSelectionChange event handler is available to allow the programmer to
provide some functionality whenever the selection of the component has changed. When the
user moves the caret within the TRichEdit component, the component’s SelStart property
value changes. Because this action causes the OnSelectionChange event handler to be called,
code was added to change the status of the various TMenuItem and TSpeedButton components
on the main form to reflect the attributes of the text as the user scrolls through text in the
TRichEdit component. This is necessary because text attributes in the TRichEdit component
can differ; this is not the case with a TMemo component because attributes applied to a TMemo
component apply to the entire component.

MDI Applications

CHAPTER 16
261

16

M
D

I
A

PPLIC
A

TIO
N

S

19.65227_Ch16CDx 11/30/99 11:37 AM Page 261

In functionality, the rich text editor form and the text editor form are, for the most part, very
similar. The main difference is that the rich text editor allows users to change the attributes for
separate paragraphs or selected text; the text editor is incapable of doing this.

The Bitmap Viewer—The Third MDI Child Form
The bitmap viewer enables the user to load and view Windows bitmap files. Like the other two
MDI child forms, the bitmap viewer form, TMdiBmpForm, is derived from the TMDIChildForm
base class. It contains a client-aligned TImage component.

TMdiBmpForm contains only its inherited TMainMenu component. Listing 16.4 shows the source
code that defines TMdiBmpForm.

LISTING 16.4 MdiBmpFrm.pas: A Unit Defining TMdiBmpForm

unit MdiBmpFrm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls, Forms, Dialogs,
MdiChildFrm, ExtCtrls, Menus, Buttons, ComCtrls, ToolWin, ImgList;

type
TMdiBMPForm = class(TMDIChildForm)
mmiEdit: TMenuItem;
mmiCopy: TMenuItem;
mmiPaste: TMenuItem;
imgMain: TImage;
procedure mmiCopyClick(Sender: TObject);
procedure mmiPasteClick(Sender: TObject);
procedure mmiPrintClick(Sender: TObject);

public
procedure OpenFile(FileName: string);

end;

var
MdiBMPForm: TMdiBMPForm;

implementation

uses ClipBrd, Printers;

{$R *.DFM}

procedure TMdiBMPForm.OpenFile(FileName: String);

Advanced Techniques

PART II
262

19.65227_Ch16CDx 11/30/99 11:37 AM Page 262

begin
imgMain.Picture.LoadFromFile(FileName);
Caption := FileName;

end;

procedure TMdiBMPForm.mmiCopyClick(Sender: TObject);
begin
inherited;
ClipBoard.Assign(imgMain.Picture);

end;

procedure TMdiBMPForm.mmiPasteClick(Sender: TObject);
{ This method copies the contents from the clipboard into imgMain }
begin
inherited;
// Copy clipboard content to imgMain
imgMain.Picture.Assign(ClipBoard);
ClientWidth := imgMain.Picture.Width;
{ Adjust clientwidth to adjust the scollbars }
VertScrollBar.Range := imgMain.Picture.Height;
HorzScrollBar.Range := imgMain.Picture.Width;

end;

procedure TMdiBMPForm.mmiPrintClick(Sender: TObject);
begin
inherited;

with ImgMain.Picture.Bitmap do
begin

Printer.BeginDoc;
Printer.Canvas.StretchDraw(Canvas.ClipRect, imgMain.Picture.Bitmap);
Printer.EndDoc;

end; { with }
end;

end.

There is not as much code for TMdiBmpForm as there was for the two previous forms. The File
menu items invoke the TMDIChildForm’s event handlers just as the TMdiEditForm and
TMdiRtfForm File menu items do. The Edit menu items copy and paste the bitmap to and from
the Windows Clipboard, respectively. Before calling the TImage.Picture.Assign() method to
assign the Clipboard data to the TImage component. The TImage component recognizes both
the CF_BITMAP and CF_PICTURE formats as bitmaps.

MDI Applications

CHAPTER 16
263

16

M
D

I
A

PPLIC
A

TIO
N

S

19.65227_Ch16CDx 11/30/99 11:37 AM Page 263

The Main Form
The main form is the form with which the user initially works to create or switch between
MDI child forms. This form is appropriately named MainForm. MainForm serves as the parent
to the text editor, bitmap viewer, and RTF editor MDI child forms.

TMainForm is not a descendant of TMDIChildForm as are the other forms discussed so far in this
chapter. TMainForm has the FormStyle of fsMDIForm (the other three forms inherited the style
fsMDIChild from TMDIChild). TMainForm contains a TMainMenu component and a TOpenDialog
component. TMainForm also contains a toolbar that contains only one button. TMainForm’s
source code is shown in Listing 16.5.

LISTING 16.5 MdiMainForm.pas: A Unit Defining TMainForm

unit MainFrm;

interface

uses
WinTypes, WinProcs, Classes, Graphics, Forms, Controls, Menus,
StdCtrls, Messages, Dialogs, SysUtils, ComCtrls,
ToolWin, ExtCtrls, Buttons, ImgList;

type
TMainForm = class(TForm)
mmMain: TMainMenu;
OpenDialog: TOpenDialog;
mmiFile: TMenuItem;
mmiExit: TMenuItem;
N3: TMenuItem;
mmiOpen: TMenuItem;

Advanced Techniques

PART II
264

The Windows Clipboard
The Clipboard provides the easiest way for two applications to share information. It’s
nothing more than a global memory block that Windows maintains for any applica-
tion to access through a specific set of Windows functions.

The Clipboard supports several standard formats, such as text, OEM text, bitmaps,
and metafiles; it also supports other specialized formats. Additionally, you can extend
the Clipboard to support application-specific formats.

Delphi 5 encapsulates the Windows Clipboard with the global variable Clipboard of
type TClipBoard, making it much easier for you to use. The TClipBoard class is cov-
ered in detail in Chapter 17, “Sharing Information with the Clipboard.”

19.65227_Ch16CDx 11/30/99 11:37 AM Page 264

mmiNew: TMenuItem;
mmiWindow: TMenuItem;
mmiArrangeIcons: TMenuItem;
mmiCascade: TMenuItem;
mmiTile: TMenuItem;
mmiCloseAll: TMenuItem;
tlbMain: TToolBar;
ilMain: TImageList;
tbFileOpen: TToolButton;

{ File Event Handlers }
procedure mmiNewClick(Sender: TObject);
procedure mmiOpenClick(Sender: TObject);
procedure mmiExitClick(Sender: TObject);

{ Window Event Handlers }
procedure mmiTileClick(Sender: TObject);
procedure mmiArrangeIconsClick(Sender: TObject);
procedure mmiCascadeClick(Sender: TObject);
procedure mmiCloseAllClick(Sender: TObject);

public
{ User defined methods }
procedure OpenTextFile(EditForm: TForm; Filename: string);
procedure OpenBMPFile(FileName: String);
procedure OpenRTFFile(RTFForm: TForm; FileName: string);

end;

var
MainForm: TMainForm;

implementation
uses MDIBmpFrm, MdiEditFrm, MdiRtfFrm, FTypForm;

const
{ Define constants to represent file name extensions }
BMPExt = ‘.BMP’; // Bitmapped file
TextExt = ‘.TXT’; // Text file
RTFExt = ‘.RTF’; // Rich Text Format file

{$R *.DFM}

procedure TMainForm.mmiNewClick(Sender: TObject);
begin
{ Determine the file type the user wishes to open by calling the
GetFileType function. Call the appropriate method based on the
retrieved file type. }

MDI Applications

CHAPTER 16
265

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 265

LISTING 16.5 Continued

case GetFileType of
mrTXT: OpenTextFile(nil, ‘’); // Open a text file.
mrRTF: OpenRTFFile(nil, ‘’); // Open an RTF file.
mrBMP:
begin

{ Set the default filter for OpenDialog1 for BMP files. }
OpenDialog.FilterIndex := 2;
mmiOpenClick(nil);

end;
end;

end;

procedure TMainForm.mmiOpenClick(Sender: TObject);
var
Ext: string[4];

begin
{ Call the appropriate method based on the file type of the file
selected from OpenDialog1 }

if OpenDialog.Execute then
begin
{ Get the file’s extension and compare it to determine the
file type the user is opening. Call the appropriate method and
pass in the file name. }

Ext := ExtractFileExt(OpenDialog.FileName);
if CompareStr(UpperCase(Ext), TextExt) = 0 then
OpenTextFile(ActiveMDIChild, OpenDialog.FileName)

else if CompareStr(UpperCase(Ext), BMPExt) = 0 then
OpenBMPFile(OpenDialog.FileName)

else if CompareStr(UpperCase(Ext), RTFExt) = 0 then
OpenRTFFile(ActiveMDIChild, OpenDialog.FileName);

end;
end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

{ Window Event Handlers }

procedure TMainForm.mmiTileClick(Sender: TObject);
begin
Tile;

end;

procedure TMainForm.mmiArrangeIconsClick(Sender: TObject);

Advanced Techniques

PART II
266

19.65227_Ch16CDx 11/30/99 11:37 AM Page 266

begin
ArrangeIcons;

end;

procedure TMainForm.mmiCascadeClick(Sender: TObject);
begin
Cascade;

end;

procedure TMainForm.mmiCloseAllClick(Sender: TObject);
var
i: integer;

begin
{ Close all forms in reverse order as they appear in the
MDIChildren property. }

for i := MdiChildCount - 1 downto 0 do
MDIChildren[i].Close;

end;

{ User Defined Methods }
procedure TMainForm.OpenTextFile(EditForm: TForm; FileName: string);
begin
{ If EditForm is of a TEditForm type, then give the user the option
of loading the file contents into this form. Otherwise, create a
new TEditForm instance and load the file into that instance }
if (EditForm <> nil) and (EditForm is TMdiEditForm) then
if MessageDlg(‘Load file into current form?’, mtConfirmation,
[mbYes, mbNo], 0) = mrYes then

begin
TMdiEditForm(EditForm).OpenFile(FileName);
Exit;

end;
{ Create a new TEditForm and call its OpenFile() method }
with TMdiEditForm.Create(self) do
if FileName <> ‘’ then
OpenFile(FileName)

end;

procedure TMainForm.OpenRTFFile(RTFForm: TForm; FileName: string);
begin
{ If RTFForm is of a TRTFForm type, then give the user the option
of loading the file contents into this form. Otherwise, create a
new TRTFForm instance and load the file into that instance }
if (RTFForm <> nil) and (RTFForm is TMdiRTFForm) then
if MessageDlg(‘Load file into current form?’, mtConfirmation,

MDI Applications

CHAPTER 16
267

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 267

LISTING 16.5 Continued

[mbYes, mbNo], 0) = mrYes then begin
(RTFForm as TMdiRTFForm).OpenFile(FileName);

Exit;
end;
{ Create a new TRTFForm and call its OpenFile() method }
with TMdiRTFForm.Create(self) do
if FileName <> ‘’ then
OpenFile(FileName);

end;

procedure TMainForm.OpenBMPFile(FileName: String);
begin
{ Create a new TBMPForm instances and load a BMP file into it. }
with TMdiBmpForm.Create(self) do
OpenFile(FileName);

end;

end.

TMainForm uses another form, FileTypeForm, of the type TFileTypeForm. Listing 16.6 shows
the source code for this form.

LISTING 16.6 The FTYPFORM.PAS Unit Defining TFileTypeForm

unit FTypForm;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, ExtCtrls, Buttons;

const
mrTXT = mrYesToAll+1;
mrBMP = mrYesToAll+2;
mrRTF = mrYesToAll+3;

type

TFileTypeForm = class(TForm)
rgFormType: TRadioGroup;
btnOK: TButton;
procedure btnOkClick(Sender: TObject);

end;

Advanced Techniques

PART II
268

19.65227_Ch16CDx 11/30/99 11:37 AM Page 268

var
FileTypeForm: TFileTypeForm;

function GetFileType: Integer;

implementation

function GetFileType: Integer;
{ This function returns the file type selected by the user as
represented by one of the above defined constants. }

begin
FileTypeForm := TFileTypeForm.Create(Application);
try
Result := FileTypeForm.ShowModal;

finally
FileTypeForm.Free;

end;
end;

{$R *.DFM}

procedure TFileTypeForm.btnOkClick(Sender: TObject);
begin
{ Return the correct modal result based on the selected file type }
case rgFormType.ItemIndex of
0: ModalResult := mrTXT;
1: ModalResult := mrRTF;
2: ModalResult := mrBMP;
end;

end;

end.

TFileTypeForm is used to prompt the user for a file type to create. This form returns the
ModalResult based on which TRadioButton the user selected to indicate the type of file. The
GetFileType() function takes care of creating, showing, and freeing the TFileTypeForm
instance. This function returns the TFileTypeForm.ModalResult property. This form is not
automatically created and has been removed from the list of autocreated forms for the project.

TMainForm’s toolbar contains only one button, which is used to open the initial child form.
When a child form becomes active, its toolbar replaces the main form’s toolbar. This logic is
handled by the OnActivate event of the child form. TMainForm’s public methods
OpenTextFile(), OpenRTFFile(), and OpenBMPFile() are called from the event handler
TMainForm.mmiOpenClick(), which is invoked whenever the user selects the File, Open menu.

MDI Applications

CHAPTER 16
269

16

M
D

I
A

PPLIC
A

TIO
N

S

19.65227_Ch16CDx 11/30/99 11:37 AM Page 269

OpenTextFile() takes two parameters: a TForm instance and a filename. The TForm instance
represents the currently active form for the application. The reason for passing this TForm
instance to the OpenTextFile() method is so that the method can determine whether the TForm
passed to it is of the TMdiEditForm class. If so, it’s possible that the user is opening a text file
in the existing TMdiEditForm instance rather than creating a new TMdiEditForm instance. If a
TMdiEditForm instance is passed to this method, the user is prompted whether he or she wants
the text file to be placed into this TForm parameter. If the user replies no or the TMdiEditForm
parameter is nil, a new TMdiEditForm instance is created.

OpenRTFFile() operates the same as OpenTextFile() except that it checks for a TRFTForm class
as the currently active form represented by the TForm parameter. The functionality is the same.

OpenBMPFile() always assumes that the user is opening a new file. This is because the
TMdiBmpForm is only a viewer and not an editor. If the form allowed the user to edit a
bitmapped image, the OpenBMPFile() method would function as do OpenTextFile() and
OpenRTFFile().

The mmiNewClick() event handler calls the GetFileType() function to retrieve a file type from
the user. It then calls the appropriate OpenXXXFile() method based on the return value. If the
file is a .bmp file, the OpenDialog.Filter property is set to the BMP filter by default and the
mmiOpenClick() method is invoked because the user is not creating a new .bmp file but is
opening an existing one.

The mmiOpenClick() event handler invokes OpenDialog and calls the appropriate
OpenXXXFile() method. Notice that OpenTextFile() and OpenRTFFile() are passed the
TMainForm.ActiveMDIChild property as the first parameter. ActiveMDIChild is the MDI child
that currently has focus. Recall that both these methods determine whether the user wants to
open a file into an existing MDI child form. If no forms are active, ActiveMDIChild is nil. If
ActiveMDIChild is pointing to a TMdiRTFForm and OpenTextFile() is called, OpenTextFile()
still functions correctly because of this statement:

if (RTFForm <> nil) and (RTFForm is TMdiRTFForm) then

This statement determines whether ActiveMDIChild points to a TMdiRtfForm. If not, a new
form is created.

The event handler, mmiExitClick(), calls TMainForm.Close(); this method not only closes the
main form, it also terminates the application. If there are any child forms open at the time this
event handler is invoked, the child forms are also closed and destroyed.

The Window menu event handlers are single-line methods that affect how the MDI child forms
are arranged on the main form’s client area. Figures 16.2 and 16.3 show tiled and cascaded
forms, respectively.

Advanced Techniques

PART II
270

19.65227_Ch16CDx 11/30/99 11:37 AM Page 270

FIGURE 16.2
Tiled child forms.

MDI Applications

CHAPTER 16
271

16

M
D

I
A

PPLIC
A

TIO
N

S

FIGURE 16.3
Cascaded child forms.

The mmiArrangeIconsClick() method simply rearranges the icons in the main form’s client
area so that they’re evenly spaced and do not overlap.

The mmiCloseAllClick() event handler closes all open MDI child forms. The loop that closes
the child forms loops through all child forms in reverse order as they appear in the MDIChildren
array property. The MDIChildren property is a zero-based array property of all MDI children
active in an application. The MDIChildCount property is the number of children that are active.

This completes the discussion of the functionality of the MDI application. The following sec-
tions discuss some techniques and some of the components used with the various forms in the
application.

19.65227_Ch16CDx 11/30/99 11:37 AM Page 271

Working with Menus
Using menus in MDI applications is no more difficult than using them in any other type of
application. However, there are some differences in how menus work in MDI applications. The
following sections show how an MDI application allows its child forms to share the same
menu bar using a method called menu merging. You also learn how to make non-MDI applica-
tions share the same menu bar.

Merging Menus with MDI Applications
Take a look at the TMainMenu for the TMdiEditForm. By double-clicking the TMainMenu icon,
you bring up the menu editor.

TMdiEditForm’s main menu contains three menu items along the menu bar. These items are
File, Edit, and Character. Each of these menu items has a GroupIndex property that shows up
in the Object Inspector as you click a menu item in the menu editor. Notice that the File menu
item has a GroupIndex value of 0. The Edit and Character menu items both have GroupIndex
values of 1.

Notice that TMainForm’s main menu has two menu items along its menu bar: File and Window.
Like TMdiEditForm, TMainForm’s File menu item has a GroupIndex value of 0. The Window
menu item’s GroupIndex property, on the other hand, has a value of 9.

Also notice that the File menu for TMainForm and the File menu for TMdiEditForm have differ-
ent submenu items. TMdiEditForm’s File menu has more submenu items than does TMainForm’s
File menu.

The GroupIndex property is important because it allows menus of forms to be “merged.” This
means that when the main form launches a child form, the child form’s main menu is merged
with the main form’s main menu. The GroupIndex property determines how the menus are
ordered and which menus of the main form are replaced by menus of the child form. Note that
menu merging applies only to menu items along the menu bar of a TMainMenu component and
not to submenus.

Whenever a GroupIndex property for a child form’s menu item has the same value as the
GroupIndex property for a menu item on the main form, the child form’s menu item replaces the
main form’s menu item. The remaining menus are arranged along the menu bar in the order
specified by the GroupIndex properties of all combined menu items. When MdiEditForm is the
active form in the project, the menu items that appear along the main form’s menu bar are File,
Edit, Character, and Window, in that order. Note that the File menu is TMdiEditForm’s File
menu because both File menus have GroupIndex property values of 0. Therefore,
TMdiChildForm’s File menu replaces TMainForm’s File menu. The order of these menus directly
reflects the order of the GroupIndex properties for each menu item along the menu bar: 0, 1, 1, 9.

Advanced Techniques

PART II
272

19.65227_Ch16CDx 11/30/99 11:37 AM Page 272

This behavior is the same with the other forms in the MDI application. Whenever a form
becomes active, the menu along the main menu bar changes to reflect the merging of menus
for both the main form and child form. When you run the project, the menu bar changes
depending on which child form is active.

Merging menus with MDI applications is automatic. As long as the values of the menu items’
GroupIndex property is set in the order you specify, your menus merge correctly when you
invoke MDI child forms.

For non-MDI applications, the process is just as easy but requires an extra step. We gave a
quick example in Chapter 4, “Application Frameworks and Design Concepts,” on merging
menus in non-MDI applications when we discussed the TNavStatForm. However, in that appli-
cation, we based this merging on child forms that were actually child windows to a control,
other than the main form, and had to explicitly call the Merge() and Unmerge() functions. For
merging menus with non–MDI-based applications in general, this process is not automatic, as
it is with MDI applications. You must set the AutoMerge property to True for the TMainMenu on
the form whose menus are to be merged with the main form. A sample project that shows
menu merging for non-MDI forms can be found in the project NonMDI.dpr on the CD.

Adding a List of Open Documents to the Menu
To add a list of open documents to the Window menu, set the WindowMenu property of the main
form to the menu item’s instance that is to hold the list of open documents. For example, the
TMainForm.WindowMenu property in the sample MDI application is set to mmiWindow, which
refers to the Window menu along the menu bar. The selection you choose for this property
must be a menu item that appears on the menu bar—it cannot be a submenu. The application
displays a list of open documents in the Window menu.

Miscellaneous MDI Techniques
The following sections show various common techniques applicable to MDI applications.

MDI Applications

CHAPTER 16
273

16

M
D

I
A

PPLIC
A

TIO
N

S

NOTE

Although we don’t use them here, there are certain numbering guidelines that you
should follow so that your applications will better integrate with OLE Container’s
menu merging. These guidelines are explained in the “Borland Delphi Library
Reference Guide.”

19.65227_Ch16CDx 11/30/99 11:37 AM Page 273

Drawing a Bitmap in the MDI Client Window
When designing an MDI application, you might want to place a background image, such as a
company logo, on the client area of an MDI application’s main form. For regular (non-MDI)
forms, this procedure is simple. You just place a TImage component on the form, set its Align
property to alClient, and you’re done (refer back to the bitmap viewer in the MDI sample
application, earlier in this chapter). Placing an image on the main form of an MDI application,
however, is a different story.

Recall that the client window of an MDI application is a separate window from the main form.
The client window has many responsibilities of carrying out MDI-specific tasks, including the
drawing of MDI child windows.

Think of it as though the main form is a transparent window over the client window. Whenever
you place components such as TButton, TEdit, and TImage over the client area of the main
form, these components are actually placed on the main form’s transparent window. When the
client window performs its drawing of child windows—or rather child forms—the forms are
drawn underneath the components that appear on the main form, much like placing stickers on
the glass of a picture frame (see Figure 16.4).

Advanced Techniques

PART II
274

FIGURE 16.4
Client forms drawn underneath the main form’s components.

So how do you go about drawing on the client window? Because Delphi 5 doesn’t provide a
VCL encapsulation of the client window, you must use the Win32 API. The method used is to
subclass the client window and capture the message responsible for painting the client win-
dow’s background—WM_ERASEBKGND. There, you take over the default behavior and perform
your own custom drawing.

19.65227_Ch16CDx 11/30/99 11:37 AM Page 274

The following code is from the project MdiBknd.dpr on the CD. This project is an MDI appli-
cation with a TImage component that contains a bitmap. From the menu, you can specify how
to draw the image on the MDI client window—centered, tiled, or stretched, as shown respec-
tively in Figures 16.5, 16.6, and 16.7.

MDI Applications

CHAPTER 16
275

16

M
D

I
A

PPLIC
A

TIO
N

S

FIGURE 16.5
The MDI client window with a centered image.

FIGURE 16.6
The MDI client window with a tiled image.

19.65227_Ch16CDx 11/30/99 11:37 AM Page 275

FIGURE 16.7
The MDI client window with a stretched image.

Listing 16.7 shows the unit code that performs the drawing.

LISTING 16.7 Drawing Images on the MDI Client Window

unit MainFrm;

interface

uses Windows, SysUtils, Classes, Graphics, Forms, Controls, Menus,
StdCtrls, Dialogs, Buttons, Messages, ExtCtrls, JPeg;

type
TMainForm = class(TForm)
mmMain: TMainMenu;
mmiFile: TMenuItem;
mmiNew: TMenuItem;
mmiClose: TMenuItem;
N1: TMenuItem;
mmiExit: TMenuItem;
mmiImage: TMenuItem;
mmiTile: TMenuItem;
mmiCenter: TMenuItem;
mmiStretch: TMenuItem;
imgMain: TImage;
procedure mmiNewClick(Sender: TObject);
procedure mmiCloseClick(Sender: TObject);
procedure mmiExitClick(Sender: TObject);
procedure mmiTileClick(Sender: TObject);

Advanced Techniques

PART II
276

19.65227_Ch16CDx 11/30/99 11:37 AM Page 276

private
FOldClientProc,
FNewClientProc: TFarProc;
FDrawDC: hDC;
procedure CreateMDIChild(const Name: string);
procedure ClientWndProc(var Message: TMessage);
procedure DrawStretched;
procedure DrawCentered;
procedure DrawTiled;

protected
procedure CreateWnd; override;

end;

var
MainForm: TMainForm;

implementation

uses MdiChildFrm;

{$R *.DFM}

procedure TMainForm.CreateWnd;
begin
inherited CreateWnd;
// Turn the ClientWndProc method into a valid window procedure
FNewClientProc := MakeObjectInstance(ClientWndProc);
// Get a pointer to the original window procedure
FOldClientProc := Pointer(GetWindowLong(ClientHandle, GWL_WNDPROC));
// Set ClientWndProc as the new window procedure
SetWindowLong(ClientHandle, GWL_WNDPROC, LongInt(FNewClientProc));

end;

procedure TMainForm.DrawCentered;
{ This procedure centers the image on the form’s client area }
var
CR: TRect;

begin
GetWindowRect(ClientHandle, CR);
with imgMain do
BitBlt(FDrawDC, ((CR.Right - CR.Left) - Picture.Width) div 2,

((CR.Bottom - CR.Top) - Picture.Height) div 2,
Picture.Graphic.Width, Picture.Graphic.Height,
Picture.Bitmap.Canvas.Handle, 0, 0, SRCCOPY);

end;

MDI Applications

CHAPTER 16
277

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 277

LISTING 16.7 Continued

procedure TMainForm.DrawStretched;
{ This procedure stretches the image on the form’s client area }
var
CR: TRect;

begin
GetWindowRect(ClientHandle, CR);
StretchBlt(FDrawDC, 0, 0, CR.Right, CR.Bottom,

imgMain.Picture.Bitmap.Canvas.Handle, 0, 0,
imgMain.Picture.Width, imgMain.Picture.Height, SRCCOPY);

end;

procedure TMainForm.DrawTiled;
{ This procedure tiles the image on the form’s client area }
var
Row, Col: Integer;
CR, IR: TRect;
NumRows, NumCols: Integer;

begin
GetWindowRect(ClientHandle, CR);
IR := imgMain.ClientRect;
NumRows := CR.Bottom div IR.Bottom;
NumCols := CR.Right div IR.Right;
with imgMain do
for Row := 0 to NumRows+1 do
for Col := 0 to NumCols+1 do
BitBlt(FDrawDC, Col * Picture.Width, Row * Picture.Height,

Picture.Width, Picture.Height, Picture.Bitmap.Canvas.Handle,
0, 0, SRCCOPY);

end;

procedure TMainForm.ClientWndProc(var Message: TMessage);
begin
case Message.Msg of
// Capture the WM_ERASEBKGND messages and perform the client area drawing
WM_ERASEBKGND:
begin
CallWindowProc(FOldClientProc, ClientHandle, Message.Msg,

Message.wParam,
Message.lParam);

FDrawDC := TWMEraseBkGnd(Message).DC;
if mmiStretch.Checked then
DrawStretched

else if mmiCenter.Checked then
DrawCentered

else DrawTiled;

Advanced Techniques

PART II
278

19.65227_Ch16CDx 11/30/99 11:37 AM Page 278

Message.Result := 1;
end;

{ Capture the scrolling messages and ensure the client area
is redrawn by calling InvalidateRect }

WM_VSCROLL, WM_HSCROLL:
begin
Message.Result := CallWindowProc(FOldClientProc, ClientHandle,

Message.Msg,
Message.wParam, Message.lParam);

InvalidateRect(ClientHandle, nil, True);
end;

else
// By Default, call the original window procedure
Message.Result := CallWindowProc(FOldClientProc, ClientHandle,

Message.Msg,
Message.wParam, Message.lParam);

end; { case }
end;

procedure TMainForm.CreateMDIChild(const Name: string);
var
MdiChild: TMDIChildForm;

begin
MdiChild := TMDIChildForm.Create(Application);
MdiChild.Caption := Name;

end;

procedure TMainForm.mmiNewClick(Sender: TObject);
begin
CreateMDIChild(‘NONAME’ + IntToStr(MDIChildCount + 1));

end;

procedure TMainForm.mmiCloseClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
ActiveMDIChild.Close;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.mmiTileClick(Sender: TObject);
begin
mmiTile.Checked := false;

MDI Applications

CHAPTER 16
279

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 279

LISTING 16.7 Continued

mmiCenter.Checked := False;
mmiStretch.Checked := False;
{ Set the Checked property for the menu item which invoked }
{ this event handler to Checked }
if Sender is TMenuItem then
TMenuItem(Sender).Checked := not TMenuItem(Sender).Checked;

{ Redraw the client area of the form }
InvalidateRect(ClientHandle, nil, True);

end;

end.

To paint the image to the client window of the MDI application, you must use a technique
called subclassing. Subclassing is discussed in Chapter 5, “Understanding Messages.” To sub-
class the client window, you must store the client window’s original window procedure so that
you can call it. You must also have a pointer to the new window procedure. The form variable
FOldClientProc stores the original window procedure, and the variable FNewClientProc
points to the new window procedure.

The procedure ClientWndProc() is the procedure to which FNewClientProc points. Actually,
because ClientWndProc() is a method of TMainForm, you must use the
MakeObjectInstance() function to return a pointer to a window procedure created from the
method MakeObjectInstance(), as discussed in Chapter 13, “Hard-core Techniques.”

The TMainForm.CreateWnd() method was overridden when the main form’s client window was
subclassed by using the GetWindowLong() and SetWindowLong() Win32 API functions.
ClientWndProc() is the new window procedure.

TMainForm contains three private methods: DrawCentered(), DrawTiled(), and
DrawStretched(). Each of these methods uses Win32 API functions to perform the GDI draw-
ing routines to paint the bitmap. Win32 API functions are used because the client window’s
device context isn’t encapsulated by TCanvas, so you can’t normally use the built-in Delphi 5
methods. Actually, it’s possible to assign the device context to a TCanvas.Handle property. You
would have to instantiate a TCanvas instance in order to do this, but it is possible.

You must capture three messages to perform the background drawing: WM_ERASEBKGND,
WM_VSCROLL, and WM_HSCROLL. The WM_ERASEBKGND message is sent to a window when it’s to be
erased. This is an opportune time to perform the specialized drawing of the image. In the pro-
cedure, you determine which drawing procedure to call based on which menu item is selected.
The WM_VSCROLL and WM_HSCROLL messages are captured to ensure that the background image

Advanced Techniques

PART II
280

19.65227_Ch16CDx 11/30/99 11:37 AM Page 280

is properly drawn when the user scrolls the main form. Finally, all other messages are sent to
the original window procedure with this statement:

Message.Result := CallWindowProc(FOldClientProc, ClientHandle, Message.Msg,
Message.wParam, Message.lParam);

This example not only demonstrates how you can visually enhance your applications; it also
shows how you can perform API-level development with techniques not provided by the VCL.

Creating a Hidden MDI Child Form
Delphi 5 returns an error if you ever attempt to hide an MDI child form using a statement such
as this one:

ChildForm.Hide;

The error indicates that hiding an MDI child form is not allowed. The reason for this is
because the Delphi developers found that in the Windows implementation of MDI, hiding MDI
child forms corrupts the z-order of the child windows. Unless you’re extremely careful about
when you use such a technique, trying to hide an MDI child form can wreak havoc with your
application. Nevertheless, you might have the need to hide a child form. There are two ways in
which you can hide MDI child forms. Just be aware of the anomaly and use these techniques
with caution.

One way to hide an MDI child form is to prevent the client window from drawing the child
form altogether. Do this by using the LockWindowUpdate() Win32 API function to disable
drawing to the MDI client window. This technique is useful if you want to create an MDI child
form but don’t want to show that form to the user unless some process has completed success-
fully. For example, such a process might be a database query; if the process fails, you might
want to free the form. Unless you use some method to hide the form, you’ll see a flicker on the
screen as the form is created before you have an opportunity to destroy it. The
LockWindowUpdate() function disables drawing to a window’s canvas. Only one window can
be locked at any given time. Passing 0 to LockWindowUpdate reenables drawing to the win-
dow’s canvas.

The other method of hiding an MDI child form is to actually hide the child form by using the
Win32 API function ShowWindow(). You hide the form by specifying the SW_HIDE flag along
with the function. You must then use the SetWindowPos() function to restore the child window.
You can use this technique to hide the MDI child form if it’s already created and displayed to
the user.

Listing 16.8 illustrates the techniques just described and is the main form for the project
MdiHide.dpr on the CD.

MDI Applications

CHAPTER 16
281

16

M
D

I
A

PPLIC
A

TIO
N

S

19.65227_Ch16CDx 11/30/99 11:37 AM Page 281

LISTING 16.8 A Unit Showing MDI Child Form–Hiding Techniques

unit MainFrm;

interface

uses Windows, SysUtils, Classes, Graphics, Forms, Controls, Menus,
StdCtrls, Dialogs, Buttons, Messages, ExtCtrls, ComCtrls, MdiChildFrm;

type
TMainForm = class(TForm)
mmMain: TMainMenu;
mmiFile: TMenuItem;
mmiNew: TMenuItem;
mmiClose: TMenuItem;
mmiWindow: TMenuItem;
N1: TMenuItem;
mmiExit: TMenuItem;
mmiHide: TMenuItem;
mmiShow: TMenuItem;
mmiHideForm: TMenuItem;
procedure mmiNewClick(Sender: TObject);
procedure mmiCloseClick(Sender: TObject);
procedure mmiExitClick(Sender: TObject);
procedure mmiHideClick(Sender: TObject);
procedure mmiShowClick(Sender: TObject);
procedure mmiHideFormClick(Sender: TObject);

private
procedure CreateMDIChild(const Name: string);

public
HideForm: TMDIChildForm;
Hidden: Boolean;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.CreateMDIChild(const Name: string);
var
MdiChild: TMDIChildForm;

begin
MdiChild := TMDIChildForm.Create(Application);
MdiChild.Caption := Name;

Advanced Techniques

PART II
282

19.65227_Ch16CDx 11/30/99 11:37 AM Page 282

end;

procedure TMainForm.mmiNewClick(Sender: TObject);
begin
CreateMDIChild(‘NONAME’ + IntToStr(MDIChildCount + 1));

end;

procedure TMainForm.mmiCloseClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
ActiveMDIChild.Close;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.mmiHideClick(Sender: TObject);
begin
if Assigned(HideForm) then
ShowWindow(HideForm.Handle, SW_HIDE);

Hidden := True;
end;

procedure TMainForm.mmiShowClick(Sender: TObject);
begin
if Assigned(HideForm) then
SetWindowPos(HideForm.handle, HWND_TOP, 0, 0, 0, 0, SWP_NOSIZE

or SWP_NOMOVE or SWP_SHOWWINDOW);
Hidden := False;

end;

procedure TMainForm.mmiHideFormClick(Sender: TObject);
begin
if not Assigned(HideForm) then
begin
if MessageDlg(‘Create Hidden?’, mtConfirmation, [mbYes, mbNo], 0) = mrYes

then
begin

LockWindowUpdate(Handle);
try
HideForm := TMDIChildForm.Create(Application);
HideForm.Caption := ‘HideForm’;
ShowMessage(‘Form created and hidden. Press OK to show form’);

finally

MDI Applications

CHAPTER 16
283

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:37 AM Page 283

LISTING 16.8 Continued

LockWindowUpdate(0);
end;

end
else begin
HideForm := TMDIChildForm.Create(Application);
HideForm.Caption := ‘HideForm’;

end;
end
else if not Hidden then

HideForm.SetFocus;
end;

end.

The project is a simple MDI application. The event handler mmiHideFormClick() creates a
child form that can either be created and hidden or hidden by the user after it’s displayed.

When mmiHideFormClick() is invoked, it checks whether an instance of THideForm has been
created. If so, it displays only the THideForm instance, provided that it has not been hidden by
the user. If there is no instance of THideForm present, the user is prompted whether it should be
created and hidden. If the user responds affirmatively, drawing to the client window is disabled
before the form is created. If drawing to the client window is not disabled, the form is dis-
played as it’s created. The user is then shown a message box indicating that the form is cre-
ated. When the user closes the message box, drawing to the client window is reenabled and the
child form is displayed by forcing the client window to repaint itself. You can replace the mes-
sage box telling the user that the form is created with some lengthy process that requires the
child form to be created but not displayed. If the user chooses not to create the form as hidden,
it’s created normally.

The second method used to hide the form after it has already been displayed calls the Win32
API function ShowWindow() and passes the child form’s handle and the SW_HIDE flag. This
effectively hides the form. To redisplay the form, call the Win32 API function SetWindowPos(),
using the child form’s handle and the flags specified in the listing. SetWindowPos() is used to
change a window’s size, position, or z-order. In this example, SetWindowPos() is used to redis-
play the hidden window by setting its z-order; in this case, the z-order of the hidden form is set
to be the top window by specifying the HWND_TOP flag.

Minimizing, Maximizing, and Restoring
All MDI Child Windows
Often, you need to perform a task across all active MDI forms in the project. Changing the
form’s WindowState property is a typical example of a process to be performed on every

Advanced Techniques

PART II
284

19.65227_Ch16CDx 11/30/99 11:37 AM Page 284

instance of an MDI child form. This task is quite simple and only requires that you walk
through the forms using the main form’s MDIChildren array property. The main form’s
MDIChildren property holds the number of active MDI child forms. Listing 16.9 shows the
event handlers that minimize, maximize, and restore all MDI child windows in an application.
This project can be found on the CD as the Min_Max.dpr project.

LISTING 16.9 Minimizing, Maximizing, and Restoring All MDI Child Forms

unit MainFrm;

interface

uses Windows, SysUtils, Classes, Graphics, Forms, Controls, Menus,
StdCtrls, Dialogs, Buttons, Messages, ExtCtrls, ComCtrls;

type
TMainForm = class(TForm)
MainMenu1: TMainMenu;
mmiFile: TMenuItem;
mmiNew: TMenuItem;
mmiClose: TMenuItem;
mmiWindow: TMenuItem;
N1: TMenuItem;
mmiExit: TMenuItem;
mmiMinimizeAll: TMenuItem;
mmiMaximizeAll: TMenuItem;
mmiRestoreAll: TMenuItem;
procedure mmiNewClick(Sender: TObject);
procedure mmiCloseClick(Sender: TObject);
procedure mmiExitClick(Sender: TObject);
procedure mmiMinimizeAllClick(Sender: TObject);
procedure mmiMaximizeAllClick(Sender: TObject);
procedure mmiRestoreAllClick(Sender: TObject);

private
{ Private declarations }
procedure CreateMDIChild(const Name: string);

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation
uses MdiChildFrm;

MDI Applications

CHAPTER 16
285

16

M
D

I
A

PPLIC
A

TIO
N

S

continues

19.65227_Ch16CDx 11/30/99 11:38 AM Page 285

LISTING 16.9 Continued

{$R *.DFM}

procedure TMainForm.CreateMDIChild(const Name: string);
var
Child: TMDIChildForm;

begin
Child := TMDIChildForm.Create(Application);
Child.Caption := Name;

end;

procedure TMainForm.mmiNewClick(Sender: TObject);
begin
CreateMDIChild(‘NONAME’ + IntToStr(MDIChildCount + 1));

end;

procedure TMainForm.mmiCloseClick(Sender: TObject);
begin
if ActiveMDIChild <> nil then
ActiveMDIChild.Close;

end;

procedure TMainForm.mmiExitClick(Sender: TObject);
begin
Close;

end;

procedure TMainForm.mmiMinimizeAllClick(Sender: TObject);
var
i: integer;

begin
for i := MDIChildCount - 1 downto 0 do
MDIChildren[i].WindowState := wsMinimized;

end;

procedure TMainForm.mmiMaximizeAllClick(Sender: TObject);
var
i: integer;

begin
for i := 0 to MDIChildCount - 1 do
MDIChildren[i].WindowState := wsMaximized;

end;

procedure TMainForm.mmiRestoreAllClick(Sender: TObject);
var

Advanced Techniques

PART II
286

19.65227_Ch16CDx 11/30/99 11:38 AM Page 286

i: integer;
begin
for i := 0 to MDIChildCount - 1 do
MDIChildren[i].WindowState := wsNormal;

end;

end.

Summary
This chapter showed you how to build MDI applications in Delphi 5. You also learned some
advanced techniques specific to MDI applications. With the foundation you received in this
chapter, you should be well on your way to creating professional-looking MDI applications.

MDI Applications

CHAPTER 16
287

16

M
D

I
A

PPLIC
A

TIO
N

S

19.65227_Ch16CDx 11/30/99 11:38 AM Page 287

19.65227_Ch16CDx 11/30/99 11:38 AM Page 288

CHAPTER

18
Multimedia Programming
with Delphi

IN THIS CHAPTER
• Creating a Simple Media Player 290

• Using WAV Files in Your
Applications 291

• Playing Video 293

• Device Support 298

• Creating an Audio CD Player 299

• Summary 314

21.65227_Ch18CDx 11/30/99 11:40 AM Page 289

Delphi’s TMediaPlayer component is proof that good things come in small packages. In the
guise of this little component, Delphi encapsulates a great deal of the functionality of the
Windows Media Control Interface (MCI)—the portion of the Windows API that provides con-
trol for multimedia devices.

Delphi makes multimedia programming so easy that the traditional and boring “Hello World”
program may be a thing of the past. Why write Hello World to the screen when it’s almost as
easy to play a sound or video file that offers its greetings?

In this chapter, you learn how to write a simple yet powerful media player, and you even con-
struct a fully functional audio CD player. This chapter explains the uses and nuances of the
TMediaPlayer component. Of course, your computer must be equipped with multimedia
devices, such as a sound card and CD-ROM, for this chapter to be of real use to you.

Creating a Simple Media Player
The best way to learn is by doing. This application demonstrates how quickly you can create a
media player by placing TMediaPlayer, TButton, and TOpenDialog components on a form.
This form is shown in Figure 18.1.

Advanced Techniques

PART II
290

FIGURE 18.1
The EasyMM Media Player.

The EasyMM Media Player works like this: After you click Button1, the OpenDialog dialog box
appears, and you choose a file from it. The Media Player prepares itself to play the file you
chose in OpenDialog. You then can click the Play button on the Media Player to play the file.
The following code belongs to the button’s OnClick method, and it opens the Media Player
with the file you chose:

procedure TMainForm.BtnOpenClick(Sender: TObject);
begin
if OpenDialog1.Execute then
begin
MediaPlayer1.Filename := OpenDialog1.Filename;
MediaPlayer1.Open;

end;
end;

21.65227_Ch18CDx 11/30/99 11:40 AM Page 290

This code executes the OpenDialog1 dialog box, and if a filename is chosen, OpenDialog1’s
FileName property is copied to MediaPlayer1’s FileName property. The MediaPlayer’s Open
method is then called to prepare it to play the file.

You might also want to limit the files to browse through with the OpenDialog dialog box to
only multimedia files. TMediaPlayer supports a whole gaggle of multimedia device types, but
for now, you’ll just browse WAV, AVI, and MIDI files. This capability exists in the
TOpenDialog component, and you take advantage of it by selecting OpenDialog1 in the Object
Inspector, choosing the Mask property, and clicking the ellipsis to the right of this item to
invoke the Filter Editor. Fill in the .WAV, .AVI, and .MID extensions, as shown in Figure 18.2.

Multimedia Programming with Delphi

CHAPTER 18
291

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

FIGURE 18.2
The Filter Editor.

The project is saved as EasyMM.dpr and the main unit as Main.pas. The Media Player is now
ready to run. Run the program, and try it out using one of the multimedia files on your hard
disk. Other people might have convinced you—or perhaps you had convinced yourself—that
multimedia programming is difficult, but now you have firsthand proof that this just isn’t true.

Using WAV Files in Your Applications
WAV files (pronounced wave, which is short for waveform) are the standard file format for
sharing audio in Windows. As the name implies, WAV files store sounds in a binary format that
resembles a mathematical wave. The great thing about WAV files is that they have gained
industry acceptance, and you can find them everywhere. The bad thing about WAV files is that
they tend to be bulky, and just a few of those Homer Simpson WAV files can take up a hefty
chunk of hard disk space.

The TMediaPlayer component enables you to easily integrate WAV sounds into your applica-
tions. As just illustrated, playing WAV files in your program is no sweat—just feed a
TMediaPlayer component a filename, open it, and play it. A little audio capability can be just
the thing your applications need to go from neat to way cool.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 291

If playing WAV files is all you want to do, you might not need the overhead of a TMediaPlayer
component. Instead, you can use the PlaySound() API function found in the MMSystem unit.
PlaySound() is defined this way:

function PlaySound(pszSound: PChar; hmod: HMODULE;
fdwSound: DWORD): BOOL; stdcall;

PlaySound() has the capability to play a WAV sound from a file, from memory, or from a
resource file linked into the application. PlaySound() accepts three parameters:

• The first parameter, pszSound, is a PChar variable that represents a filename, alias name,
resource name, Registry entry, entry from the [sounds] section of your WIN.INI file, or
pointer to a WAV sound located somewhere in memory.

• The second parameter, hmod, represents the handle of the executable file that contains the
resource to be loaded. This parameter must be zero unless snd_Resource is specified in
the fdwSound parameter.

• The third parameter, fdwSound, contains flags that describe how the sound should be
played. These flags can contain a combination of any of the following values:

Flag Description

SND_APPLICATION The sound is played using an application-specific association.

SND_ALIAS The pszSound parameter is a system-event alias in the
Registry or the WIN.INI file. Don’t use this flag with either
SND_FILENAME or SND_RESOURCE, because they’re mutually
exclusive.

SND_ALIAS_ID The pszSound parameter is a predefined sound identifier.

SND_FILENAME The pszSound parameter is a filename.

SND_NOWAIT This flag indicates that if the driver is busy, it returns immedi-
ately without playing the sound.

SND_PURGE All sounds are stopped for the calling task. If pszSound is not
zero, all instances of the specified sound are stopped. If
pszSound is zero, all sounds invoked by the current task are
stopped. You must also specify the proper instance handle to
stop SND_RESOURCE events.

SND_RESOURCE The pszSound parameter is a resource identifier. When you’re
using this flag, the hmod parameter must contain the instance
that contains the specified resource.

SND_ASYNC Plays the sound asynchronously and returns the function
almost immediately. This achieves a background music effect.

SND_LOOP Plays the sound over and over until you make it stop or you go
insane. SND_ASYNC also must be specified when using this flag.

Advanced Techniques

PART II
292

21.65227_Ch18CDx 11/30/99 11:40 AM Page 292

SND_MEMORY Plays the WAV sound in the memory area pointed to by the
pszSound parameter.

SND_NODEFAULT If the sound can’t be found, PlaySound() returns immediately
without playing the default sound, as specified in the Registry.

SND_NOSTOP Plays the sound only if it isn’t already playing. PlaySound()
returns True if the sound is played and False if the sound is
not played. If this flag is not specified, Win32 will stop any
currently playing sound before attempting to play the sound
specified in pszSound.

SND_SYNC Plays the sound synchronously and doesn’t return from the
function until the sound finishes playing.

Multimedia Programming with Delphi

CHAPTER 18
293

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

TIP

To terminate a WAV sound currently playing asynchronously, call PlaySound() and
pass Nil or zero for all parameters, as follows:

PlaySound(Nil, 0, 0); // stop currently playing WAV

To terminate even non-waveform sounds for a given task, add the snd_Purge flag:

PlaySound(Nil, 0, snd_Purge); // stop all currently playing sounds

NOTE

The Win32 API still supports the sndPlaySound() function, which was a part of the
Windows 3.x API. This function is only supported for backward compatibility, how-
ever, and it might not be available in future implementations of the Win32 API. Use
the Win32 PlaySound() function rather than sndPlaySound() for future compatibility.

Playing Video
AVI (short for audio-video interleave) is one of the most common file formats used to
exchange audio and video information simultaneously. In fact, you’ll find a couple of AVI files
in the \Runimage\Delphi50\Demos\Coolstuf directory of the CD-ROM that contains your
copy of Delphi 5.

You can use the simple multimedia player program you wrote earlier in this chapter to display
AVI files. Simply select an AVI file when OpenDialog1 is invoked and click the Play button.
Note that the AVI file plays in its own window.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 293

Showing the First Frame
You might want to display the first frame of an AVI file in a window before you actually play
the file. This achieves a sort of freeze-frame effect. To do this after opening the TMediaPlayer
component, just set the Frames property of TMediaPlayer to 1 and then call the Step()
method. The Frames property tells TMediaPlayer how many frames to move when Step() and
Back() methods are called. Step() advances the TMediaPlayer frames and displays the current
frame. This is the code:

procedure TForm1.Button1Click(Sender: TObject);
begin
if OpenDialog1.Execute then
with MediaPlayer1 do
begin
Filename := OpenDialog1.Filename;
Open;
Frames := 1;
Step;
Notify := True;

end;
end;

Using the Display Property
You can assign a value to TMediaPlayer’s Display property to cause the AVI file to play to a
specific window, instead of creating its own window. To do this, you add a TPanel component
to your Media Player, as shown in Figure 18.3. After adding the panel, you can save the project
in a new directory as DDGMPlay.dpr.

Advanced Techniques

PART II
294

FIGURE 18.3
The DDGMPlay main window.

Click the drop-down arrow button for MediaPlayer1’s Display property and notice that all the
components in this project appear in the list box. Set the value of the Display property to Panel1.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 294

Now notice that when you run the program and select and play an AVI file, the AVI file output
appears in the panel. Also notice that the AVI file doesn’t take up the whole area of the panel;
the AVI file has a certain default size programmed into it.

Using the DisplayRect Property
DisplayRect is a property of type TRect that determines the size of the AVI file output win-
dow. You can use the DisplayRect property to cause your AVI file’s output to stretch or shrink
to a certain size. If you want the AVI file to take up the whole area of Panel1, for example, you
can assign DisplayRect to the size of the panel:

MediaPlayer1.DisplayRect := Rect(0, 0, Panel1.Width, Panel1.Height);

You can add this line of code to the OnClick handler for Button1, like this:

procedure TForm1.Button1Click(Sender: TObject);
begin
if OpenDialog1.Execute then begin
MediaPlayer1.Filename := OpenDialog1.Filename;
MediaPlayer1.Open;
MediaPlayer1.DisplayRect := Rect(0, 0, Panel1.Width, Panel1.Height);

end;
end;

Multimedia Programming with Delphi

CHAPTER 18
295

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

CAUTION

You can set the DisplayRect property only after the TMediaPlayer’s Open()
method is called.

Understanding TMediaPlayer Events
TMediaPlayer has two unique events: OnPostClick and OnNotify.

The OnPostClick event is very similar to OnClick, but OnClick occurs as soon as the compo-
nent is clicked, and OnPostClick executes only after some action occurs that was caused by a
click. If you click the Play button on TMediaPlayer at runtime, for example, an OnClick event
is generated, but an OnPostClick event is generated only after the media device is done playing.

The OnNotify event is a little more interesting. The OnNotify event executes whenever the
TMediaPlayer completes a media-control method (such as Back, Close, Eject, Next, Open,
Pause, PauseOnly, Play, Previous, Resume, Rewind, StartRecording, Step, or Stop) and only
when TMediaPlayer’s Notify property is set to True. To illustrate OnNotify, add a handler for
this event to the DDGMPlay project. In the event handler method, you cause a message dialog
box to appear after a command executes:

21.65227_Ch18CDx 11/30/99 11:40 AM Page 295

procedure TForm1.MediaPlayer1Notify(Sender: TObject);
begin
MessageDlg(‘Media control method executed’, mtInformation, [mbOk], 0);

end;

Don’t forget to also set the Notify property to True in Button1’s OnClick handler after open-
ing the Media Player:

procedure TForm1.Button1Click(Sender: TObject);
begin
if OpenDialog1.Execute then
with MediaPlayer1 do
begin
Filename := OpenDialog1.Filename;
Open;
DisplayRect := Rect(0, 0, Panel1.Width, Panel1.Height);
Notify := True;

end;
end;

Advanced Techniques

PART II
296

TIP

Notice that you moved the code dealing with MediaPlayer1 into a with..do con-
struct. As you learned in earlier chapters, this construct offers advantages in code
clarity and performance over simply qualifying each property and method name.

Viewing the Source Code for DDGMPlay
By now, you should know the basics of how to play WAV and AVI files. Listings 18.1 and 18.2
show the complete source code for the DDGMPlay project.

LISTING 18.1 The Source Code for DDGMPlay.dpr

program DDGMPlay;

uses
Forms,
Main in ‘MAIN.PAS’ {MainForm};

{$R *.RES}

begin
Application.CreateForm(TMainForm, MainForm);
Application.Run;

end.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 296

LISTING 18.2 The Source Code for Main.pas

unit Main;

interface

uses
SysUtils, Windows, Messages, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, MPlayer, ExtCtrls;

type
TMainForm = class(TForm)
MediaPlayer1: TMediaPlayer;
OpenDialog1: TOpenDialog;
Button1: TButton;
Panel1: TPanel;
procedure Button1Click(Sender: TObject);
procedure MediaPlayer1Notify(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

procedure TMainForm.Button1Click(Sender: TObject);
begin
if OpenDialog1.Execute then
with MediaPlayer1 do
begin
Filename := OpenDialog1.Filename;
Open;
DisplayRect := Rect(0, 0, Panel1.Width, Panel1.Height);
Notify := True;

end;
end;

procedure TMainForm.MediaPlayer1Notify(Sender: TObject);
begin
MessageDlg(‘Media control method executed’, mtInformation, [mbOk], 0);

Multimedia Programming with Delphi

CHAPTER 18
297

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:40 AM Page 297

LISTING 18.2 Continued

end;

end.

Device Support
TMediaPlayer supports the vast array of media devices supported by MCI. The type of device
that TMediaPlayer controls is determined by its DeviceType property. Table 18.1 describes the
different values of the DeviceType property.

TABLE 18.1 Values of TMediaPlayer’s DeviceType Property

DeviceType Value Media Device

dtAutoSelect The TMediaPlayer automatically should select the correct device
type based on the filename to be played.

dtAVIVideo AVI file. These files have the .AVI extension and contain both sound
and full-motion video.

dtCDAudio An audio CD played from your computer’s CD-ROM drive.

dtDAT A digital audio tape (DAT) player connected to your PC.

dtDigitalVideo A digital video device, such as a digital video camera.

dtMMMovie A multimedia movie format.

dtOther An unspecified multimedia format.

dtOverlay A video overlay device.

dtScanner A scanner connected to your PC.

dtSequencer A sequencer device capable of playing MIDI files. MIDI files typi-
cally end in a .MID or .RMI extension.

dtVCR A video cassette recorder (VCR) connected to your PC.

dtVideodisc A video disc player connected to your PC.

dtWaveAudio A WAV audio file. These files end in the .WAV extension.

Although you can see that TMediaPlayer supports many formats, this chapter focuses primarily
on the WAV, AVI, and CD Audio formats because those are the most common under Windows.

Advanced Techniques

PART II
298

NOTE

The TMediaPlayer component is a TWinControl descendant, which means it can be
easily encapsulated as an ActiveX control through the Delphi 5 wizards. One possible

21.65227_Ch18CDx 11/30/99 11:40 AM Page 298

Creating an Audio CD Player
You’ll learn about the finer points of the TMediaPlayer component by creating a full-featured
audio CD player. Figure 18.4 shows the main form for this application, which is called
CDPlayer.dpr. The main unit for this form is called CDMain.pas.

Multimedia Programming with Delphi

CHAPTER 18
299

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

benefit of doing this is the ability to embed a Media Player in a Web page to extend
your pages with custom multimedia. Additionally, with a few lines of JavaScript or
VBScript, you could provide a CD player for everyone on the Internet or your intranet
running a Windows browser.

FIGURE 18.4
The audio CD player’s main form.

Table 18.2 shows the important properties to be set for the components contained on the CD
player’s main form.

TABLE 18.2 Important Properties for the CD Player’s Components

Component Property Value

mpCDPlayer DeviceType dtAudioCD

sbTrack1–sbTrack20 Caption ‘1’ - ‘20’

sbTrack1–sbTrack20 Tag 1 - 20

Displaying a Splash Screen
When the CD player is run, it takes a couple seconds for it to load, and it might take several
more seconds for the TMediaPlayer component to initialize after calling its Open() method.
This delay from the time the user clicks the icon in Explorer to the time he or she actually sees
the program often gives the user an “is my program gonna start, or isn’t it?” feeling. This
delay is caused by the time Windows takes to load its multimedia subsystem, which occurs

21.65227_Ch18CDx 11/30/99 11:40 AM Page 299

when TMediaPlayer is opened. To avoid this problem, you can give the CD player program a
splash screen that displays as the program starts. The splash screen tells users that, yes, the
program will eventually start—it’s just taking a moment to load, so enjoy this little screen in
the meantime.

The first step in creating a splash screen is to create a form that you want to use as the splash
screen. Generally, you want this form to contain a panel but not a border or title bar; this gives
it a 3D, floating-panel appearance. On the panel, place one or more TLabel components and
perhaps a TImage component that displays a bitmap or icon.

The splash screen form for the CD player is shown in Figure 18.5, and the unit, Splash.pas, is
shown in Listing 18.3.

Advanced Techniques

PART II
300

FIGURE 18.5
The CD player’s splash screen form.

LISTING 18.3 The Source Code for SPLASH.PAS

unit Splash;
interface

uses Windows, Classes, Graphics, Forms, Controls, StdCtrls,
ExtCtrls;

type
TSplashScreen = class(TForm)
StatusPanel: TPanel;

end;

var
SplashScreen: TSplashScreen;

implementation

{$R *.DFM}

begin
{ Since the splash screen is displayed before the main screen is created,
it must be created before the main screen. }

SplashScreen := TSplashScreen.Create(Application);
SplashScreen.Show;

21.65227_Ch18CDx 11/30/99 11:40 AM Page 300

SplashScreen.Update;
end.

Unlike a normal form, the splash screen is created and shown in the initialization section
of its unit. Because the initialization section for all units is executed before the main pro-
gram block in the DPR file, this form is displayed before the main portion of the program runs.

Multimedia Programming with Delphi

CHAPTER 18
301

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

CAUTION

Do not use Application.CreateForm() to create your splash screen form
instance. The first time Application.CreateForm() is called in an applica-
tion, Delphi makes that form the main application form. It would be a “bad
thing” to make your splash screen the main form.

Beginning the CD Player
Create an event handler for the form’s OnCreate method. In this method, you open and initial-
ize the CD player program. First, call CDPlayer’s Open() method. Open() checks to make sure
that the system is capable of playing audio CDs and then initializes the device. If Open() fails,
it raises an exception of type EMCIDeviceError. In the event of an exception opening the
device, you should terminate the application. Here’s the code:

try
mpCDPlayer.Open; { Open the CD Player device. }

except
{ If an error occurred, the system may be incapable of playing CDs. }
on EMCIDeviceError do
begin
MessageDlg(‘Error Initializing CD Player. Program will now exit.’,

mtError, [mbOk], 0);
Application.Terminate; { bail out }

end;
end;

NOTE

The preferred way to end a Delphi application is by calling the main form’s Close()
method or by calling Application.Terminate.

21.65227_Ch18CDx 11/30/99 11:40 AM Page 301

After opening CDPlayer, you should set its EnabledButtons property to ensure that the proper
buttons are enabled for the device. Which buttons to enable, however, depends on the current
state of the CD device. If a CD is already playing when you call Open(), for example, you
obviously don’t want to enable the Play button. To perform a check on the current status of the
CD device, you can inspect CDPlayer’s Mode property. The Mode property, which has all its pos-
sible values laid out nicely in the online help, provides information on whether a CD device is
currently playing, stopped, paused, seeking, and so on. In this case, your concern is only whether
the device is stopped, paused, or playing. The following code enables the proper buttons:

case mpCDPlayer.Mode of
mpPlaying: mpCDPlayer.EnabledButtons := [btPause, btStop, btNext, btPrev];
mpStopped, { show default buttons if stopped }
mpPaused : mpCDPlayer.EnabledButtons := [btPlay, btNext, btPrev];

end;

The following is the completed source code for the TMainForm.FormCreate() method. Notice
that you make calls to several methods after successfully opening CDPlayer. The purpose of
these methods is to update various aspects of the CD player application, such as the number of
tracks on the current CD and the current track position. (These methods are described in more
detail later in this chapter.) Here’s the code:

procedure TMainForm.FormCreate(Sender: TObject);
{ This method is called when the form is created. It opens and initializes the
player }

begin
try
mpCDPlayer.Open; // Open the CD Player device.
{ If a CD is already playing at startup, show playing status. }
if mpCDPlayer.Mode = mpPlaying then
LblStatus.Caption := ‘Playing’;

GetCDTotals; // Show total time and tracks on current CD
ShowTrackNumber; // Show current track
ShowTrackTime; // Show the minutes and seconds for the current track
ShowCurrentTime; // Show the current position of the CD
ShowPlayerStatus; // Update the CD Player’s status

except
{ If an error occurred, the system may be incapable of playing CDs. }
on EMCIDeviceError do
begin
MessageDlg(‘Error Initializing CD Player. Program will now exit.’,

mtError, [mbOk], 0);
Application.Terminate;

end;
end;
{ Check the current mode of the CD-ROM and enable the appropriate buttons. }
case mpCDPlayer.Mode of

Advanced Techniques

PART II
302

21.65227_Ch18CDx 11/30/99 11:40 AM Page 302

mpPlaying: mpCDPlayer.EnabledButtons := PlayButtons;
mpStopped, mpPaused: mpCDPlayer.EnabledButtons := StopButtons;

end;
SplashScreen.Release; // Close and free the splash screen

end;

Notice that the last line of code in this method closes the splash screen form. The OnCreate
event of the main form is generally the best place to do this.

Updating the CD Player Information
As the CD device plays, you can keep the information on CDPlayerForm up-to-date by using a
TTimer component. Every time a timer event occurs, you can call the necessary updating meth-
ods, as shown in the form’s OnCreate method, to ensure that the display stays current. Double-
click Timer1 to generate a method skeleton for its OnTimer event. Here’s the source code you
use for this event:

procedure TMainForm.tmUpdateTimerTimer(Sender: TObject);
{ This method is the heart of the CD Player. It updates all information at
every timer interval. }

begin
if mpCDPlayer.EnabledButtons = PlayButtons then
begin
mpCDPlayer.TimeFormat := tfMSF;
ggDiskDone.Progress := (mci_msf_minute(mpCDPlayer.Position) * 60 +

mci_msf_second(mpCDPlayer.Position));
mpCDPlayer.TimeFormat := tfTMSF;
ShowTrackNumber; // Show track number the CD player is currently on
ShowTrackTime; // Show total time for the current track
ShowCurrentTime; // Show elapsed time for the current track

end;
end;

Notice that, in addition to calling the various updating methods, this method also updates the
DiskDoneGauge control for the amount of time elapsed on the current CD. To get the elapsed
time, the method changes CDPlayer’s TimeFormat property to tfMSF and gets the minute and
second value from the Position property by using the mci_msf_Minute() and
mci_msf_Second() functions. This merits a bit more explanation.

TimeFormat
The TimeFormat property of a TMediaPlayer component determines how the values of the
StartPos, Length, Position, Start, and EndPos properties should be interpreted. Table 18.3
lists the possible values for TimeFormat. These values represent information packed into a
Longint type variable.

Multimedia Programming with Delphi

CHAPTER 18
303

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

21.65227_Ch18CDx 11/30/99 11:41 AM Page 303

TABLE 18.3 Values for the TMediaPlayer.TimeFormat Property

Value Time Storage Format

tfBytes Number of bytes

tfFrames Frames

tfHMS Hours, minutes, and seconds

tfMilliseconds Time in milliseconds

tfMSF Minutes, seconds, and frames

tfSamples Number of samples

tfSMPTE24 Hours, minutes, seconds, and frames based on 24 frames per second

tfSMPTE25 Hours, minutes, seconds, and frames based on 25 frames per second

tfSMPTE30 Hours, minutes, seconds, and frames based on 30 frames per second

tfSMPTE30Drop Hours, minutes, seconds, and frames based on 30 drop frames per second

tfTMSF Tracks, minutes, seconds, and frames

Time-Conversion Routines
The Windows API provides routines to retrieve the time information from the different packed
formats shown in Table 18.4. Packed format means that multiple data values are packed
(encoded) into one Longint value. These functions are located in MMSystem.dll, so be sure to
have MMSystem in your uses clause when using them.

TABLE 18.4 Functions to Unpack Multimedia Time Formats

Function Works With Returns

mci_HMS_Hour() tfHMS Hours

mci_HMS_Minute() tfHMS Minutes

mci_HMS_Second() tfHMS Seconds

mci_MSF_Frame() tfMSF Frames

mci_MSF_Minute() tfMSF Minutes

mci_MSF_Second() tfMSF Seconds

mci_TMSF_Frame() tfTMSF Frames

mci_TMSF_Minute() tfTMSF Minutes

mci_TMSF_Second() tfTMSF Seconds

mci_TMSF_Track() tfTMSF Tracks

Advanced Techniques

PART II
304

21.65227_Ch18CDx 11/30/99 11:41 AM Page 304

Methods for Updating the CD Player
As you learned earlier in this chapter, you use several methods to help keep the information
displayed by the CD player up-to-date. The primary purpose of each of these methods is to
update the labels in the top portion of the CD player form and to update the gauges in the mid-
dle portion of that form.

GetCDTotals()
The purpose of the GetCDTotals() method, shown in the following code, is to retrieve the
length and total number of tracks on the current CD. This information is then used to update
several labels and DiskDoneGauge. This code also calls the AdjustSpeedButtons() method,
which enables the same number of speedbuttons as tracks. Notice that this method also makes
use of the TimeFormat and time-conversion routines discussed earlier:

procedure TMainForm.GetCDTotals;
{ This method gets the total time and tracks of the CD and displays them. }
var
TimeValue: longint;

begin
mpCDPlayer.TimeFormat := tfTMSF; // set time format
TimeValue := mpCDPlayer.Length; // get CD length
TotalTracks := mci_Tmsf_Track(mpCDPlayer.Tracks); // get total tracks
TotalLengthM := mci_msf_Minute(TimeValue); // get total length in mins
TotalLengthS := mci_msf_Second(TimeValue); // get total length in secs
{ set caption of Total Tracks label }
LblTotTrk.Caption := TrackNumToString(TotalTracks);
{ set caption of Total Time label }
LblTotalLen.Caption := Format(MSFormatStr, [TotalLengthM, TotalLengthS]);
{ initialize gauge }
ggDiskDone.MaxValue := (TotalLengthM * 60) + TotalLengthS;
{ enable the correct number of speed buttons }
AdjustSpeedButtons;

end;

ShowCurrentTime()
The ShowCurrentTime() method is shown in the following code. This method is designed to
obtain the elapsed minutes and seconds for the currently playing track as well as to update the
necessary controls. Here, you also use the time-conversion routines provided by MMSystem:

procedure TMainForm.ShowCurrentTime;
{ This method displays the current time of the current track }
begin
{ Minutes for this track }
m := mci_Tmsf_Minute(mpCDPlayer.Position);
{ Seconds for this track }
s := mci_Tmsf_Second(mpCDPlayer.Position);

Multimedia Programming with Delphi

CHAPTER 18
305

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

21.65227_Ch18CDx 11/30/99 11:41 AM Page 305

{ update track time label }
LblTrackTime.Caption := Format(MSFormatStr, [m, s]);
{ update track gauge }
ggTrackDone.Progress := (60 * m) + s;

end;

ShowTrackTime()
The ShowTrackTime() method, shown in the following code, obtains the total length of the
current track in minutes and seconds, and it updates a label control. Again, you make use of
the time-conversion routines. Also notice that you check to make sure that the track isn’t the
same as when this function was last called. This comparison ensures that you don’t make
unnecessary function calls or repaint components unnecessarily. Here’s the code:

procedure TMainForm.ShowTrackTime;
{ This method changes the track time to display the total length of the
currently selected track. }

var
Min, Sec: Byte;
Len: Longint;

begin
{ Don’t update the information if player is still on the same track }
if CurrentTrack <> OldTrack then
begin
Len := mpCDPlayer.TrackLength[mci_Tmsf_Track(mpCDPlayer.Position)];
Min := mci_msf_Minute(Len);
Sec := mci_msf_Second(Len);
ggTrackDone.MaxValue := (60 * Min) + Sec;
LblTrackLen.Caption := Format(MSFormatStr, [m, s]);

end;
OldTrack := CurrentTrack;

end;

CD Player Source
You’ve now seen all aspects of the CD player as they relate to multimedia. Listings 18.4 and
18.5 show the complete source code for the CDPlayer.dpr and CDMain.pas modules. The
CDMain unit also shows some of the techniques you use to manipulate the speedbuttons using
their Tag properties as well as other techniques for updating the controls.

LISTING 18.4 The Source Code for CDPlayer.dpr

program CDPlayer;

uses
Forms,
Splash in ‘Splash.pas’ {SplashScreen},

Advanced Techniques

PART II
306

21.65227_Ch18CDx 11/30/99 11:41 AM Page 306

CDMain in ‘CDMain.pas’ {MainForm};

begin
Application.CreateForm(TMainForm, MainForm);
Application.Run;

end.

LISTING 18.5 The Source Code for CDMain.pas

unit CDMain;

interface

uses
SysUtils, Windows, Classes, Graphics, Forms, Controls, MPlayer, StdCtrls,
Menus, MMSystem, Messages, Buttons, Dialogs, ExtCtrls, Splash, Gauges;

type
TMainForm = class(TForm)
tmUpdateTimer: TTimer;
MainScreenPanel: TPanel;
LblStatus: TLabel;
Label2: TLabel;
LblCurTrk: TLabel;
Label4: TLabel;
LblTrackTime: TLabel;
Label7: TLabel;
Label8: TLabel;
LblTotTrk: TLabel;
LblTotalLen: TLabel;
Label12: TLabel;
LblTrackLen: TLabel;
Label15: TLabel;
CDInfo: TPanel;
SBPanel: TPanel;
Panel1: TPanel;
mpCDPlayer: TMediaPlayer;
sbTrack1: TSpeedButton;
sbTrack2: TSpeedButton;
sbTrack3: TSpeedButton;
sbTrack4: TSpeedButton;
sbTrack5: TSpeedButton;
sbTrack6: TSpeedButton;
sbTrack7: TSpeedButton;
sbTrack8: TSpeedButton;
sbTrack9: TSpeedButton;

Multimedia Programming with Delphi

CHAPTER 18
307

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:41 AM Page 307

LISTING 18.5 Continued

sbTrack10: TSpeedButton;
sbTrack11: TSpeedButton;
sbTrack12: TSpeedButton;
sbTrack13: TSpeedButton;
sbTrack14: TSpeedButton;
sbTrack15: TSpeedButton;
sbTrack16: TSpeedButton;
sbTrack17: TSpeedButton;
sbTrack18: TSpeedButton;
sbTrack19: TSpeedButton;
sbTrack20: TSpeedButton;
ggTrackDone: TGauge;
ggDiskDone: TGauge;
Label1: TLabel;
Label3: TLabel;
procedure tmUpdateTimerTimer(Sender: TObject);
procedure mpCDPlayerPostClick(Sender: TObject; Button: TMPBtnType);
procedure FormCreate(Sender: TObject);
procedure sbTrack1Click(Sender: TObject);
procedure FormClose(Sender: TObject; var Action: TCloseAction);

private
{ Private declarations }
OldTrack, CurrentTrack: Byte;
m, s: Byte;
TotalTracks: Byte;
TotalLengthM: Byte;
TotalLengthS: Byte;
procedure GetCDTotals;
procedure ShowTrackNumber;
procedure ShowTrackTime;
procedure ShowCurrentTime;
procedure ShowPlayerStatus;
procedure AdjustSpeedButtons;
procedure HighlightTrackButton;
function TrackNumToString(InNum: Byte): String;

end;

var
MainForm: TMainForm;

implementation

{$R *.DFM}

const

Advanced Techniques

PART II
308

21.65227_Ch18CDx 11/30/99 11:41 AM Page 308

{ Array of strings representing numbers from one to twenty: }
NumStrings: array[1..20] of String[10] =

(‘One’, ‘Two’, ‘Three’, ‘Four’, ‘Five’, ‘Six’, ‘Seven’, ‘Eight’, ‘Nine’,
‘Ten’, ‘Eleven’, ‘Twelve’, ‘Thirteen’, ‘Fourteen’, ‘Fifteen’, ‘Sixteen’,
‘Seventeen’, ‘Eighteen’, ‘Nineteen’, ‘Twenty’);

MSFormatStr = ‘%dm %ds’;
PlayButtons: TButtonSet = [btPause, btStop, btNext, btPrev];
StopButtons: TButtonSet = [btPlay, btNext, btPrev];

function TMainForm.TrackNumToString(InNum: Byte): String;
{ This function returns a string corresponding to a integer between 1 and 20.
If the number is greater than 20, then the integer is returned as a string. }

begin
if (InNum > High(NumStrings)) or (InNum < Low(NumStrings)) then
Result := IntToStr(InNum) { if not in array, then just return number }

else
Result := NumStrings[InNum]; { return the string from NumStrings array }

end;

procedure TMainForm.AdjustSpeedButtons;
{ This method enables the proper number of speed buttons }
var
i: integer;

begin
{ iterate through form’s Components array... }
for i := 0 to SBPanel.ControlCount - 1 do
if SBPanel.Controls[i] is TSpeedButton then // is it a speed button?
{ disable buttons higher than number of tracks on CD }
with TSpeedButton(SBPanel.Controls[i]) do Enabled := Tag <= TotalTracks;

end;

procedure TMainForm.GetCDTotals;
{ This method gets the total time and tracks of the CD and displays them. }
var
TimeValue: longint;

begin
mpCDPlayer.TimeFormat := tfTMSF; // set time format
TimeValue := mpCDPlayer.Length; // get CD length
TotalTracks := mci_Tmsf_Track(mpCDPlayer.Tracks); // get total tracks
TotalLengthM := mci_msf_Minute(TimeValue); // get total length in mins
TotalLengthS := mci_msf_Second(TimeValue); // get total length in secs
{ set caption of Total Tracks label }
LblTotTrk.Caption := TrackNumToString(TotalTracks);
{ set caption of Total Time label }
LblTotalLen.Caption := Format(MSFormatStr, [TotalLengthM, TotalLengthS]);

Multimedia Programming with Delphi

CHAPTER 18
309

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:41 AM Page 309

LISTING 18.5 Continued

{ intitialize gauge }
ggDiskDone.MaxValue := (TotalLengthM * 60) + TotalLengthS;
{ enable the correct number of speed buttons }
AdjustSpeedButtons;

end;

procedure TMainForm.ShowPlayerStatus;
{ This method displays the status of the CD Player and the CD that
is currently being played. }

begin
if mpCDPlayer.EnabledButtons = PlayButtons then
with LblStatus do
begin
case mpCDPlayer.Mode of
mpNotReady: Caption := ‘Not Ready’;
mpStopped: Caption := ‘Stopped’;
mpSeeking: Caption := ‘Seeking’;
mpPaused: Caption := ‘Paused’;
mpPlaying: Caption := ‘Playing’;

end;
end

{ If these buttons are displayed the CD Player must be stopped... }
else if mpCDPlayer.EnabledButtons = StopButtons then
LblStatus.Caption := ‘Stopped’;

end;

procedure TMainForm.ShowCurrentTime;
{ This method displays the current time of the current track }
begin
{ Minutes for this track }
m := mci_Tmsf_Minute(mpCDPlayer.Position);
{ Seconds for this track }
s := mci_Tmsf_Second(mpCDPlayer.Position);
{ update track time label }
LblTrackTime.Caption := Format(MSFormatStr, [m, s]);
{ update track gauge }
ggTrackDone.Progress := (60 * m) + s;

end;

procedure TMainForm.ShowTrackTime;
{ This method changes the track time to display the total length of the
currently selected track. }

var
Min, Sec: Byte;
Len: Longint;

Advanced Techniques

PART II
310

21.65227_Ch18CDx 11/30/99 11:41 AM Page 310

begin
{ Don’t update the information if player is still on the same track }
if CurrentTrack <> OldTrack then
begin
Len := mpCDPlayer.TrackLength[mci_Tmsf_Track(mpCDPlayer.Position)];
Min := mci_msf_Minute(Len);
Sec := mci_msf_Second(Len);
ggTrackDone.MaxValue := (60 * Min) + Sec;
LblTrackLen.Caption := Format(MSFormatStr, [m, s]);

end;
OldTrack := CurrentTrack;

end;

procedure TMainForm.HighlightTrackButton;
{ This procedure changes the color of the speedbutton font for the current
track to red, while changing other speedbuttons to navy blue. }

var
i: longint;

begin
{ iterate through form’s components }
for i := 0 to ComponentCount - 1 do
{ is it a speedbutton? }
if Components[i] is TSpeedButton then
if TSpeedButton(Components[i]).Tag = CurrentTrack then
{ turn red if current track }
TSpeedButton(Components[i]).Font.Color := clRed

else
{ turn blue if not current track }
TSpeedButton(Components[i]).Font.Color := clNavy;

end;

procedure TMainForm.ShowTrackNumber;
{ This method displays the currently playing track number. }
var
t: byte;

begin
t := mci_Tmsf_Track(mpCDPlayer.Position); // get current track
CurrentTrack := t; // set instance variable
LblCurTrk.Caption := TrackNumToString(t); // set Curr Track label caption
HighlightTrackButton; // Highlight current speedbutton

end;

procedure TMainForm.tmUpdateTimerTimer(Sender: TObject);
{ This method is the heart of the CD Player. It updates all information at
every timer interval. }

begin

Multimedia Programming with Delphi

CHAPTER 18
311

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:41 AM Page 311

LISTING 18.5 Continued

if mpCDPlayer.EnabledButtons = PlayButtons then
begin
mpCDPlayer.TimeFormat := tfMSF;
ggDiskDone.Progress := (mci_msf_minute(mpCDPlayer.Position) * 60 +

mci_msf_second(mpCDPlayer.Position));
mpCDPlayer.TimeFormat := tfTMSF;
ShowTrackNumber; // Show track number the CD player is currently on
ShowTrackTime; // Show total time for the current track
ShowCurrentTime; // Show elapsed time for the current track

end;
end;

procedure TMainForm.mpCDPlayerPostClick(Sender: TObject;
Button: TMPBtnType);

{ This method displays the correct CD Player buttons when one of the buttons
are clicked. }

begin
Case Button of
btPlay:
begin
mpCDPlayer.EnabledButtons := PlayButtons;
LblStatus.Caption := ‘Playing’;

end;
btPause:
begin
mpCDPlayer.EnabledButtons := StopButtons;
LblStatus.Caption := ‘Paused’;

end;
btStop:
begin
mpCDPlayer.Rewind;
mpCDPlayer.EnabledButtons := StopButtons;
LblCurTrk.Caption := ‘One’;
LblTrackTime.Caption := ‘0m 0s’;
ggTrackDone.Progress := 0;
ggDiskDone.Progress := 0;
LblStatus.Caption := ‘Stopped’;

end;
btPrev, btNext:
begin
mpCDPlayer.Play;
mpCDPlayer.EnabledButtons := PlayButtons;
LblStatus.Caption := ‘Playing’;

end;
end;

Advanced Techniques

PART II
312

21.65227_Ch18CDx 11/30/99 11:41 AM Page 312

end;

procedure TMainForm.FormCreate(Sender: TObject);
{ This method is called when the form is created. It opens and initializes the
player }

begin
try
mpCDPlayer.Open; // Open the CD Player device.
{ If a CD is already playing at startup, show playing status. }
if mpCDPlayer.Mode = mpPlaying then
LblStatus.Caption := ‘Playing’;

GetCDTotals; // Show total time and tracks on current CD
ShowTrackNumber; // Show current track
ShowTrackTime; // Show the minutes and seconds for the current track
ShowCurrentTime; // Show the current position of the CD
ShowPlayerStatus; // Update the CD Player’s status

except
{ If an error occurred, the system may be incapable of playing CDs. }
on EMCIDeviceError do
begin
MessageDlg(‘Error Initializing CD Player. Program will now exit.’,

mtError, [mbOk], 0);
Application.Terminate;

end;
end;
{ Check the current mode of the CD-ROM and enable the appropriate buttons. }
case mpCDPlayer.Mode of
mpPlaying: mpCDPlayer.EnabledButtons := PlayButtons;
mpStopped, mpPaused: mpCDPlayer.EnabledButtons := StopButtons;

end;
SplashScreen.Release; // Close and free the splash screen

end;

procedure TMainForm.sbTrack1Click(Sender: TObject);
{ This method sets the current track when the user presses one of the track
speed buttons. This method works with all 20 speed buttons, so by looking at
the ‘Sender’ it can tell which button was pressed by the button’s tag. }

begin
mpCDPlayer.Stop;
{ Set the start position on the CD to the start of the newly selected track }
Track := (Sender as TSpeedButton).Tag;
mpCDPlayer.StartPos := mpCDPlayer.TrackPosition[Track];
{ Start playing CD at new position }
mpCDPlayer.Play;
mpCDPlayer.EnabledButtons := PlayButtons;
LblStatus.Caption := ‘Playing’;

Multimedia Programming with Delphi

CHAPTER 18
313

18

M
U

LTIM
ED

IA
P

R
O

G
R

A
M

M
IN

G
W

ITH
D

ELPH
I

continues

21.65227_Ch18CDx 11/30/99 11:41 AM Page 313

LISTING 18.5 Continued

end;

procedure TMainForm.FormClose(Sender: TObject;
var Action: TCloseAction);

begin
mpCDPlayer.Close;

end;

end.

Summary
That about wraps up the basic concepts of Delphi’s TMediaPlayer component. This chapter
demonstrates the power and simplicity of this component through several examples. In particu-
lar, you learned about the common multimedia formats of WAV audio, AVI audio/video, and
CD audio.

Advanced Techniques

PART II
314

21.65227_Ch18CDx 11/30/99 11:41 AM Page 314

CHAPTER

19
Testing and Debugging

IN THIS CHAPTER
• Common Program Bugs 317

• Using the Integrated Debugger 321

• Summary 332

22.65227_Ch19CDx 11/30/99 12:20 PM Page 315

Some programmers in the industry believe that the knowledge and application of good pro-
gramming practice make the need for debugging expertise unnecessary. In reality, however, the
two complement each other, and whoever masters both will reap the greatest benefits. This is
especially true when multiple programmers are working on different parts of the same pro-
gram. It’s simply impossible to completely remove the possibility of human error.

A surprising number of people say, “My code compiles all right, so I don’t have any bugs,
right?” Wrong. There’s no correlation between whether a program compiles and whether it has
bugs; there’s a big difference between code that’s syntactically correct and code that’s logically
correct and bug-free. Also, don’t assume that because a particular piece of code worked yester-
day or on another system that it’s bug-free. When it comes to hunting software bugs, every-
thing should be presumed guilty until proven innocent.

During the development of any application, you should allow the compiler to help you as much
as possible. You can do this in Delphi by enabling all the runtime error-checking options in
Project, Options, Compiler, as shown in Figure 19.1, or by enabling the necessary directives in
your code. Additionally, you should have the Show Hints and Show Warnings options enabled
in that same dialog box in order to receive more information on your code. It’s common for a
developer to spend needless hours trying to track down “that impossible bug,” when he or she
could have found the error immediately by simply employing these effective compiler-aided
tools. (Of course, the authors would never be guilty of failing to remember to use these aids.
You believe us, right?)

Table 19.1 describes the different runtime error options available through Delphi.

Advanced Techniques

PART II
316

FIGURE 19.1
The Compiler page of the Project Options dialog box.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 316

TABLE 19.1 Delphi Runtime Errors

Runtime Error Directive Function

Range Checking {$R+} Checks to ensure that you don’t index an array or string
beyond its bounds and that assignments don’t assign a
value to a scalar variable that’s outside its range.

I/O Checking {$I+} Checks for an input/output error after every I/O call
(ReadLn() and WriteLn(), for example). This almost
always should be enabled.

Overflow Checking {$Q+} Checks to ensure that calculation results are not larger
than the register size.

Testing and Debugging

CHAPTER 19
317

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

Common Program Bugs
This section shows some commonly made mistakes that cause programs to fail or crash. If you
know what to look for when you’re debugging code, you can lessen the time needed to find
errors.

Using a Class Variable Before It’s Created
One of the most common bugs that creeps up when you develop in Delphi occurs because
you’ve used a class variable before it has been created. For example, take a look at the follow-
ing code:

procedure TForm1.Button1Click(Sender: TObject);
var
MyStringList: TStringList;

begin
MyStringList.Assign(ListBox1.Items);

end;

The TStringList class MyStringList has been declared; however, it’s used before it’s instanti-
ated. This is a sure way to cause an access violation. You must be sure to instantiate any class

TIP

Keep in mind that each of these runtime errors exacts a performance penalty on your
application. Therefore, once you’re out of the debugging phase of development and
are ready to ship a final product, you can improve performance by disabling some of
the runtime error checks. It’s common practice for developers to disable all of them
except I/O Checking for the final product.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 317

variables before you try to use them. The following code shows the correct way to instantiate
and use a class variable. However, it also introduces another bug. Can you see it?

procedure TForm1.Button1Click(Sender: TObject);
var
MyStringList: TStringList;

begin
MyStringList := TStringList.Create;
MyStringList.Assign(ListBox1.Items);

end;

If your answer was, “You didn’t free your TStringList class,” you’re correct. This won’t
cause your program to fail or crash, but it will eat up memory because, every time you call this
method, another TStringList is created and thrown away, thereby leaking memory. Although
the Win32 API will free all memory allocated by your process at the time it terminates, leaking
memory while running an application can cause serious problems. For example, a leaky applica-
tion will continue to eat more and more of the system’s memory resources as it runs, causing the
OS to have to perform more disk swapping, which ultimately slows down the entire system.

The corrected version of the preceding code listing is shown in the following code (minus a
necessary enhancement discussed in the next topic):

procedure TForm1.Button1Click(Sender: TObject);
var
MyStringList: TStringList;

begin
MyStringList := TStringList.Create; // Create it!
MyStringList.Assign(ListBox1.Items); // Use it!
{ Do your stuff with your TStringList instance }
MyStringList.Free; // Free it!

end;

Ensuring That Class Instances Are Freed
Suppose that in the previous code example, an exception occurs just after TStringList is cre-
ated. The exception would cause the flow of execution to immediately exit the procedure, and
none of the procedure’s remaining code would be executed, which would cause a memory loss.
Make sure your class instances are freed, even if an exception occurs, by using a
try..finally construct, as shown here:

procedure TForm1.Button1Click(Sender: TObject);
var
MyStringList: TStringList;

begin
MyStringList := TStringList.Create; // Create it!
try
MyStringList.Assign(ListBox1.Items); // Use it!

Advanced Techniques

PART II
318

22.65227_Ch19CDx 11/30/99 12:20 PM Page 318

{ Do your stuff with your TStringList instance }
finally
MyStringList.Free; // Free it!

end;
end;

After you read the section “Breakpoints” later in the chapter, try an experiment and place the
following line right after the line where you assign the ListBox1 items to the TStringList:

raise Exception.Create(‘Test Exception’);

Then place a breakpoint at the beginning of the method’s code and step through the code.
You’ll see that TStringList still gets freed, even after the exception is raised.

Taming the Wild Pointer
The wild pointer bug is a common error that clobbers some part of memory when you use the
pointer to write to memory. The wild pointer genus has two common species: the uninitialized
pointer and the stale pointer.

An uninitialized pointer is a pointer variable that’s used before memory has been allocated for
it. When such a pointer is used, you end up writing to whatever address happens to live at the
location of the pointer variable. The following code example illustrates an uninitialized pointer:

var
P: ^Integer;

begin
P^ := 1971; // Eeek! P is uninitialized!

A stale pointer is a pointer that references an area of memory that was once properly allocated
but has been freed. The following code shows a stale pointer:

var
P: ^Integer;

begin
New(P);
P^ := 1971;
Dispose(P);
P^ := 4; // Eeek! P is stale!

If you’re lucky, you’ll receive an access violation when you attempt to write to a wild pointer.
If you’re not so lucky, you’ll end up writing over data used by some other part of your applica-
tion. This type of error is absolutely no fun to debug. On one machine, the pointer may appear
to run just fine until you transfer it to another machine (and maybe make a few code changes
in the process), where it begins to malfunction. This may lead you to believe that the recent
changes you made are faulty or that the second machine has a hardware problem. Once you’ve
fallen into this trap, all the good programming practice in the world won’t save you. You may
start adding instances of ShowMessage() to portions of your code in an attempt to find the

Testing and Debugging

CHAPTER 19
319

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

22.65227_Ch19CDx 11/30/99 12:20 PM Page 319

problem, but this serves only to modify the code’s location in memory and might cause the bug
to move around—or worse, disappear! Your best defense against wild pointer bugs is to avoid
them in the first place. Whenever you need to work with pointers and manual memory alloca-
tion, make sure you check and double-check your algorithms to avoid the silly mistake that
may introduce a bug.

Using Uninitialized PChar-Type Variables
You’ll often see wild pointer errors when you use PChar-type variables. Because a PChar is just
a pointer to a string, you have to remember to allocate memory for the PChar by using the
StrAlloc(), GetMem(), StrNew(), GlobalAlloc(), or VirtualAlloc() function, as well as
using the FreeMem(), StrDispose(), GlobalFree(), or VirtualFree() function to free it.

Advanced Techniques

PART II
320

TIP

You can avoid potential bugs in your program by using string-type variables where
possible, instead of PChars. You can typecast a string to a PChar, so the code
involved is simple, and because strings are automatically allocated and freed, you
don’t have to concern yourself with memory allocation.

This holds true especially for Delphi 1.0 applications that you’re porting to 32-bit
Delphi. In Delphi 1.0, PChars are a necessary evil. In 32-bit Delphi, they’re necessary
only on rare occasions. Take the time to move to strings as you port your applica-
tions to 32-bit Delphi.

Dereferencing a nil Pointer
In addition to the wild pointer, another common mistake is dereferencing a nil (zero-value)
pointer. Dereferencing a nil pointer always causes the operating system to issue an access vio-
lation error. Although this isn’t an error that you want to have in your application, it’s generally
not fatal. Because it doesn’t actually corrupt memory, it’s safe to use exception handling to
take care of the exception and move along. The sample procedure in the following code listing
illustrates this point:

procedure I_AV;
var
P: PByte;

begin
P := Nil;
try
P^ := 1;

except

22.65227_Ch19CDx 11/30/99 12:20 PM Page 320

on EAccessViolation do
MessageDlg(‘You can’’t do that!!’, mtError, [mbOk], 0);

end;
end;

If you put this procedure in a program, you’ll see that the message dialog box appears to
inform you of the problem, but your program continues to run.

Using the Integrated Debugger
Delphi provides a feature-rich debugger built right into the IDE. Most of the facilities of the
integrated debugger can be found on the Run menu. These facilities include all the features you
would expect of a professional debugger, including the ability to specify command-line para-
meters for your application, set breakpoints, perform trace and step, add and view watches,
evaluate and modify data, and view call stack information.

Using Command-Line Parameters
If your program is designed to use command-line parameters, you can specify them in the Run
Parameters dialog box. In this dialog box, simply type the parameters as you would on the
command line or in the Windows Start menu’s Run dialog box.

Breakpoints
Breakpoints enable you to suspend the execution of your program whenever a certain condition
is met. The most common type of breakpoint is a source breakpoint, which occurs when a par-
ticular line of code is about to be executed. You can set a source breakpoint by clicking to the
far left of a line of code in the Code Editor, by using the local menu, or by selecting Run, Add
Breakpoint. Whenever you want to see how your program is behaving inside a particular pro-
cedure or function, just set a breakpoint on the first line of code in that routine. Figure 19.2
shows a source breakpoint set on a line of program code.

Conditional Breakpoints
You can add additional information to a source breakpoint to suspend the execution of your pro-
gram when some condition occurs in addition to when a line of code is reached. A typical example
is when you want to examine the code inside a loop construct. You probably don’t want to suspend
and resume execution every time your code passes through the loop, especially if the loop occurs
hundreds, or perhaps thousands, of times. Instead of continually pressing the F9 key to run, just set
a breakpoint to occur whenever a variable reaches a certain value. For example, in a new project,
place a TButton on the main form and add the following code to the button’s event handler:

procedure TForm1.Button1Click(Sender: TObject);
var

Testing and Debugging

CHAPTER 19
321

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

22.65227_Ch19CDx 11/30/99 12:20 PM Page 321

I: Integer;
begin
for I := 1 to 100 do
begin
Caption := IntToStr(I); // update form
Button1.Caption := IntToStr(I); // update button
Application.ProcessMessages; // let updates happen

end;
end;

Advanced Techniques

PART II
322

FIGURE 19.2
A source breakpoint set in the Code Editor.

Now set a breakpoint on the following line:

Caption := IntToStr(I); // update form

After you’ve set a breakpoint, select View, Debug Windows, Breakpoints, which will bring up
a Breakpoint List dialog box. Your breakpoint should show up in this list. Right-click your
breakpoint and select Properties from the local menu. This will invoke the Edit Breakpoint dia-
log box, as shown in Figure 19.3. In the Condition input line, enter I = 50 and select OK.
This will cause the breakpoint that you previously set to suspend program execution only when
the variable I contains the value 50.

TIP

Figure 19.3 provides a glimpse into the breakpoint actions feature, which is new to
Delphi 5. Breakpoint actions enable you to specify the exact behavior of the debug-
ger when a breakpoint is encountered. These actions are controlled using the three

22.65227_Ch19CDx 11/30/99 12:20 PM Page 322

FIGURE 19.3
The Edit Breakpoint dialog box.

Data Breakpoints
Data breakpoints are breakpoints you can set to occur when memory at a particular address is
modified. This is useful for low-level debugging, when you need to track down bugs that per-
haps occur when a variable gets assigned. You can set data breakpoints by selecting Run, Add
Breakpoint, Data Breakpoint from the main menu or by using the local menu on the
Breakpoint List dialog box. This invokes the Add Data Breakpoint dialog box, as shown in
Figure 19.4. In this dialog box, you can enter the start address of the area of memory you want
to monitor and the length (number of bytes) to monitor after that address. By specifying the

Testing and Debugging

CHAPTER 19
323

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

checkboxes shown in the figure. Break, as you might imagine, instructs the debugger
to break when the breakpoint is encountered. Ignore Subsequent Exceptions causes
the debugger to refrain from breaking when exceptions are encountered from the
breakpoint forward. Handle Subsequent Exceptions causes the debugger to resume
the default behavior of breaking when exceptions are encountered from the break-
point forward.

The latter two options are designed to be used in tandem. If you have a particular bit
of code that is causing you problems by raising exceptions in the debugger and you
don’t want to be notified about it, you can use these breakpoint options to instruct
the debugger to ignore exceptions before entering the code block and begin han-
dling exceptions once again after leaving the block.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 323

number of bytes, you can watch anything from a Char (one byte) to an Integer (four bytes) to
an array or record (any number of bytes). In a manner similar to source breakpoints, the Add
Data Breakpoint dialog box also allows you to enter an expression that will be evaluated when
the memory region is written to so that you can find those bugs that occur on the nth time a
memory region is set. If you want the debugger to break when a specific variable is modified,
just enter the name of the variable in the address field.

Advanced Techniques

PART II
324

FIGURE 19.4
The Add Data Breakpoint dialog box.

Address Breakpoints
An address breakpoint is a breakpoint you can set to occur when code residing at a particular
address is executed. These types of breakpoints are normally set from the local menu in the
CPU view when you can’t set a source breakpoint because you don’t have the source code for
a particular module. As with other types of breakpoints, you can also specify a condition for
address breakpoints in order to fine-tune your breakpoints.

Module Load Breakpoints
As you can probably surmise from the name, module load breakpoints enable you to set break-
points that occur when a specified module is loaded in the debugged application’s process.
This allows you to be notified immediately when a DLL or package is loaded by an applica-
tion. The most common place to set module load breakpoints is the local menu in the Modules
window, but they can also be set by using the Run, Add Breakpoint item on the main menu.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 324

Breakpoint Groups
Breakpoint groups are one of the most powerful and time-saving features the integrated debug-
ger offers. Using groups, any breakpoint can be set up to enable or disable any other break-
point so that a very complex algorithm of breakpoints can be created to find very specific bugs.
Suppose you suspect that a bug shows up in your Paint() method only after you choose a par-
ticular menu option. You could add a breakpoint to the Paint() method, run the program, and
constantly tell the debugger to continue when you get barraged with hundreds of calls to your
Paint() method. Alternatively, you could keep that breakpoint on your Paint() method, dis-
able it so that it doesn’t fire, and then add another breakpoint to your menu-select event han-
dler to enable the Paint() method breakpoint. Now you can run full speed in the debugger and
not break in your Paint() handler until after you select the menu choice.

Executing Code Line by Line
You can execute code line by line by using either the Step Over or Trace Into option (F8 and
F7 keys, respectively, in the Default and IDE classic keymapping). Trace Into steps into your
procedures and functions as they’re called; Step Over executes the procedure or function
immediately without stepping into it. Typically, you use these options after stopping some-
where in your code with a breakpoint. Get to know the F7 and F8 keys; they are your friends.

You can also tell Delphi to run your program up to the line that the cursor currently inhabits by
using the Run To Cursor (F4) option. This is particularly useful when you want to bypass a
loop that’s iterated many times, in which case using F7 or F8 becomes tedious. Keep in mind
that you can set breakpoints at any time in the Code Editor—even as your program executes;
you don’t have to set all the breakpoints up front.

Testing and Debugging

CHAPTER 19
325

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

TIP

If you accidentally step into a function that will be very difficult or time-consuming
to step out of, choose Run, Run Until Return from the main menu to cause the
debugger to break after the current procedure or function returns.

You can breakpoint your code dynamically by using the Program Pause option. This option
often helps you determine whether your program is in an infinite loop. Keep in mind that VCL
code is being run most of your program’s life, so you often won’t stop on a line of your pro-
gram’s code with this option.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 325

Using the Watch Window
You can use the Watch window to track the values of your program’s variables as your code
executes. Keep in mind that you must be in a code view of your program (a breakpoint should
be executed) for the contents of the Watch window to be accurate. You can enter an Object
Pascal expression or register name into the Watch window. This is shown in Figure 19.5.

Advanced Techniques

PART II
326

TIP

When you debug your application, you’ve probably noticed the blue dots shown in
the “gutter” on the left side of the Code Editor window. One of these blue dots is
shown next to each line of code for which machine code is generated. You can’t set a
breakpoint on or step to a particular line of code if it doesn’t have a blue dot next to
it because no machine code is associated with the line.

FIGURE 19.5
Using the Watch List window.

Debug Inspectors
A debug inspector is a kind of data inspector that’s perhaps easier to use and more powerful in
some ways than the Watch window. To use this feature, select Run, Inspect while debugging an
application. This will invoke a simple dialog box into which you can enter an expression. Click
OK, and you’ll be presented with a Debug Inspector window for the expression you entered.
For example, Figure 19.6 shows a Debug Inspector for the main form of a do-nothing Delphi
application.

The Debug Inspector window provides a means for conveniently viewing data that consists of
many individual elements, such as classes and records. Click the ellipses on the right of the
value column in the Inspector to modify the value of a field. You can even drill down into
record or class data members by double-clicking a field of this type in the list.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 326

FIGURE 19.6
Inspecting a form using a Debug Inspector.

Using the Evaluate and Modify Options
The Evaluate and Modify options enable you to inspect and change the contents of variables,
including arrays and records, on the fly as your application executes in the integrated debugger.
Keep in mind that this feature doesn’t enable you to access functions or variables that are out
of scope.

Testing and Debugging

CHAPTER 19
327

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

CAUTION

Evaluating and modifying variables is perhaps one of the more powerful features of
the integrated debugger, but with that power comes the responsibility of having
direct access to memory. You must be careful when changing the values of variables,
because changes can affect the behavior of your program later.

Accessing the Call Stack
You can access the call stack by choosing View, Debug Windows, Call Stack. This enables you
to view function and procedure calls along with the parameters passed to them. The call stack
is useful for seeing a road map of functions that were called up to the current point in your
source code. Figure 19.7 shows a typical view of the Call Stack window.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 327

FIGURE 19.7
The Call Stack window.

Advanced Techniques

PART II
328

TIP

To view any procedure or function listed in the Call Stack window, simply right-click
inside the window. This is a good trick for getting back to a function when you acci-
dentally trace in too far.

Viewing Threads
If your application makes use of multiple threads, the integrated debugger allows you to obtain
information on the various threads in your application through the Thread Status window.
Select View, Debug Windows, Threads from the main menu to invoke this window. When your
application is paused (has hit a breakpoint), you can use the local menu provided by this win-
dow to make another thread current or to view the source associated with a particular thread.
Remember that whenever you modify the current thread, the next run or step command you
issue is relative to that thread. Figure 19.8 shows the Thread Status window.

FIGURE 19.8
The Thread Status window.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 328

Event Log
The Event Log provides a place into which the debugger will log a record for the occurrence of
various events. The Event Log, shown in Figure 19.9, is accessible from the View, Debug
menu. You can configure the Event Log by using its local menu or the Debugger page of the
Tools, Environment Options dialog box.

Testing and Debugging

CHAPTER 19
329

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

FIGURE 19.9
The Event Log.

The types of events you can log include process information such as process start, process
stop, and module load debugger breakpoints, as well as Windows messages sent to the applica-
tion and application output using OutputDebugString().

TIP

The OutputDebugString() API function provides a handy means to help you debug
applications. The single parameter to OutputDebugString() is a PChar. The string
passed in this parameter will be passed on to the debugger, and in the case of
Delphi, the string will be added to the Event Log. This allows you to keep track of
variable values or similar debug information without having to use watches or dis-
playing intrusive debug dialog boxes.

Modules View
The Modules view enables you to obtain information on all the modules (EXE, DLL, BPL, and so
on) loaded into the debugged application’s process. Shown in Figure 19.10, this window pro-
vides you with a list of who’s who in your application’s process, permits you to set module
load breakpoints, and provides you with various types of information on each module.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 329

FIGURE 19.10
The Modules view.

DLL Debugging
The Delphi integrated debugger provides you with the ability to debug your DLL projects
using any arbitrary application as the host. If fact, it’s quite easy. Open your DLL project and
select Run, Parameters from the main menu. Then specify a host application in the Run
Parameters dialog box, as shown in Figure 19.11.

Advanced Techniques

PART II
330

FIGURE 19.11
Specifying a host application.

The host application is an executable file that loads and uses the DLL you’re currently debug-
ging. After specifying a proper host application, you can use the integrated debugger much as
you would for debugging a normal executable; you can set breakpoints, step, trace, and so on.

This feature is most useful for debugging ActiveX controls and in-process COM servers that
are executed from within the context of another process. For example, you can use this feature
to debug your ActiveX control from within Visual Basic.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 330

The CPU View
The CPU view, found by selecting View, Debug Windows, CPU from the main menu, provides
a developer’s-eye view of what’s going on inside the machine’s CPU. The CPU view consists
of five panes of information: the CPU pane, the Memory Dump pane, the Register pane, the
Flags pane, and the Stack pane (see Figure 19.12). Each of these panes enables the user to
view important aspects of the processor as an aid to debugging.

Testing and Debugging

CHAPTER 19
331

19

T
ESTIN

G
A

N
D

D
EB

U
G

G
IN

G

FIGURE 19.12
The CPU view.

The CPU pane shows the opcodes and mnemonics of the disassembled assembly code that’s
being executed. You can position the CPU pane at any address in your process to view instruc-
tions, or you can set the current instruction pointer to any new location, from which execution
then continues. It’s helpful to be able to understand the assembly code that the CPU pane dis-
plays, and experienced developers will attest to the fact that many bugs have been found and
exterminated by examining the assembly code generated for a routine and realizing that it was-
n’t performing the desired operation. Someone who doesn’t understand assembly language
obviously wouldn’t be able to find such a bug as quickly.

The local menu of the CPU view allows you to change the way items are displayed, look at a
different address, go back to the current instruction pointer (EIP), search, go back to the source
code, and so on. You can also pick the thread context in which to view the CPU information.

22.65227_Ch19CDx 11/30/99 12:20 PM Page 331

The Memory Dump pane enables you to view the contents of any range of memory. There are
many ways in which it can be viewed—as Byte, Word, DWORD, QWORD, Single, Double, or
Extended. You can search memory for a sequence of bytes as well as modify the data or follow
it as code or data pointers.

The Register and Flags panes are pretty straightforward. All the CPU registers and flags are
displayed here and can be modified.

The Stack pane gives you a stack-based view of the memory that’s used for your program
stack. In this pane, you can change values of data on the stack and follow addresses.

Summary
This chapter gives you some insight into the debugging process. It shows you the common
problems you might run into while developing applications, and discusses the useful features
of both the integrated and standalone debuggers. It’s important to remember that debugging is
as much a part of programming as is writing code. Your debugger can be one of your most
powerful allies in writing clean code, so take the time to know it well.

In the next part of the book, you’ll move into the realm of component-based development with
COM and VCL components.

Advanced Techniques

PART II
332

22.65227_Ch19CDx 11/30/99 12:20 PM Page 332

CHAPTER

30
Extending Database VCL

IN THIS CHAPTER
• Using the BDE 334

• dBASE Tables 336

• Paradox Tables 341

• Extending TDataSet 359

• Summary 387

35.65227_Ch30CDx 11/30/99 12:22 PM Page 333

Out of the box, Visual Component Library’s (VCL’s) database architecture is equipped to com-
municate primarily by means of the Borland Database Engine (BDE)—feature-rich and reli-
able database middleware. What’s more, VCL serves as a kind of insulator between you and
your databases, allowing you to access different types of databases in much the same manner.
Although all this adds up to reliability, scalability, and ease of use, there is a downside: data-
base-specific features provided both within and outside the BDE are generally not provided for
in the VCL database framework. This chapter provides you with the insight you’ll need to
extend VCL by communicating directly with the BDE and other data sources to obtain data-
base functionality not otherwise available in Delphi.

Using the BDE
When you’re writing applications that make direct calls to the BDE, there are a few rules of
thumb to keep in mind. This section presents the general information you need to get into the
BDE API from your Delphi applications.

The BDE Unit
All BDE functions, types, and constants are defined in the BDE unit. This unit will need to be in
the uses clause of any unit from which you want to make BDE calls. Additionally, the inter-
face portion of the BDE unit is available in the BDE.INT file, which you’ll find in the
..\Delphi5\Doc directory. You can use this file as a reference to the functions and records
available to you.

Database Development

PART IV
334

TIP

For additional assistance on programming using the BDE API, take a look at the
BDE32.hlp help file provided in your BDE directory (the default path for this directory
is \Program Files\Borland\Common Files\BDE). This file contains detailed informa-
tion on all BDE API functions and very good examples in both Object Pascal and C.

Check()
All BDE functions return a value of type DBIRESULT, which indicates the success or failure of
the function call. Rather than going through the cumbersome process of checking the result
of every BDE function call, Delphi defines a procedure called Check(), which accepts a
DBIRESULT as a parameter. This procedure will raise an exception when the DBIRESULT indi-
cates any value except success. The following code shows how to, and how not to, make a
BDE function call:

// !!Don’t do this:
var

35.65227_Ch30CDx 11/30/99 12:22 PM Page 334

Rez: DBIRESULT;
A: array[0..dbiMaxUserNameLen] of char;

begin
Rez := dbiGetNetUserName(A); // make BDE call
if Rez <> DBIERR_NONE then // handle error
// handle error here

else begin
// continue with function

end;
end;

// !!Do do this:
var
A: array[0..dbiMaxUserNameLen] of char;

begin
{ Handle error and make BDE call at one time. }
{ Exception will be raised in case of error. }
Check(dbiGetNetUserName(A));
// continue with function

end;

Cursors and Handles
Many BDE functions accept as parameters handles to cursors or databases. Roughly speaking,
a cursor handle is a BDE object that represents a particular set of data positioned at some par-
ticular row in that data. The data type of a cursor handle is hDBICur. Delphi surfaces this con-
cept as the current record in a particular table, query, or stored procedure. The Handle
properties of TTable, TQuery, and TStoredProc hold this cursor handle. Remember to pass the
Handle of one of these objects to any BDE function that requires an hDBICur.

Some BDE functions also require a handle to a database. A BDE database handle is of type
hDBIDb, and it represents some particular open database—either a local or networked directory
in the case of dBASE or Paradox, or a server database file in the case of a SQL server data-
base. You can obtain this handle from a TDatabase through its Handle property. If you’re not
connecting to a database using a TDatabase object, the DBHandle properties of TTable, TQuery,
and TStoredProc also contain this handle.

Synching Cursors
It’s been established that an open Delphi dataset has the concept of a current record, whereas
the underlying BDE maintains the concept of a cursor that points to some particular record in a
dataset. Because of the way Delphi performs record caching to optimize performance, some-
times the Delphi current record is not in sync with the underlying BDE cursor. Normally, this
is not a problem because this behavior is business as usual for VCL’s database framework.

Extending Database VCL

CHAPTER 30
335

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 335

However, if you want to make a direct call to a BDE function that expects a cursor as a parame-
ter, you need to ensure that Delphi’s current cursor position is synchronized with the underlying
BDE cursor. It might sound like a daunting task, but it’s actually quite easy to do. Simply call
the UpdateCursorPos() method of a TDataSet descendant to perform this synchronization.

In a similar vein, after making a BDE call that modifies the position of the underlying cursor,
you need to inform VCL that it needs to resynchronize its own current record position with that
of the BDE. To do this, you must call the CursorPosChanged() method of TDataSet descen-
dants immediately after calling into the BDE. The following code demonstrates how to use
these cursor-synchronization functions:

procedure DoSomethingWithTable(T: TTable);
begin
T.UpdateCursorPos;
// call BDE function(s) which modifies cursor position
T.CursorPosChanged;

end;

dBASE Tables
dBASE tables have a number of useful capabilities that are not directly supported by Delphi.
These features include, among other things, the maintenance of a unique physical record num-
ber for each record, the capability to “soft-delete” records (delete records without removing
them from the table), the capability to undelete soft-deleted records, and the capability to pack
a table to remove soft-deleted records. In this section, you’ll learn about the BDE functions
involved in performing these actions, and you’ll create a TTable descendant called
TdBaseTable that incorporates these features.

Physical Record Number
dBASE tables maintain a unique physical record number for each record in a table. This num-
ber represents a record’s physical position relative to the beginning of the table (regardless of
any index currently applied to the table). To obtain a physical record number, you must call the
BDE’s DbiGetRecord() function, which is defined as follows:

function DbiGetRecord(hCursor: hDBICur; eLock: DBILockType;
pRecBuff: Pointer; precProps: pRECProps): DBIResult stdcall;

hCursor is the cursor handle. Usually, this is the Handle property of the TDataSet descendant.

eLock is an optional request for the type of lock to place on the record. This parameter is of
type DBILockType, which is an enumerated type defined as follows:

type
DBILockType = (

Database Development

PART IV
336

35.65227_Ch30CDx 11/30/99 12:22 PM Page 336

dbiNOLOCK, // No lock (Default)
dbiWRITELOCK, // Write lock
dbiREADLOCK); // Read lock

In this case you don’t want to place a lock on the record because you’re not intending to mod-
ify the record content; therefore, dbiNOLOCK is the appropriate choice.

pRecBuff is a pointer to a record buffer. Because you want to obtain only the record properties
and not the data, you should pass Nil for this parameter.

pRecProps is a pointer to a RECProps record. This record is defined as follows:

type
pRECProps = ^RECProps;
RECProps = packed record // Record properties
iSeqNum : Longint; // When Seq# supported only
iPhyRecNum : Longint; // When Phy Rec#s supported only
iRecStatus : Word; // Delayed Updates Record Status
bSeqNumChanged : WordBool; // Not used
bDeleteFlag : WordBool; // When soft delete supported only

end;

As you can see, you can obtain a variety of information from this record. In this case, you’re
concerned only with the iPhyRecNum field, which is valid only in the case of dBASE and
FoxPro tables.

Putting this all together, the following code shows a method of TdBaseTable that returns the
physical record number of the current record:

function TdBaseTable.GetRecNum: Longint;
{ Returns the physical record number of the current record. }
var
RP: RECProps;

begin
UpdateCursorPos; // update BDE from Delphi
{ Get current record properties }
Check(DbiGetRecord(Handle, dbiNOLOCK, Nil, @RP));
Result := RP.iPhyRecNum; // return value from properties

end;

Viewing Deleted Records
Viewing records that have been soft-deleted in a dBASE table is as easy as making one BDE
API call. The function to call is DbiSetProp(), which is a very powerful function that enables
you to modify the different properties of multiple types of BDE objects. For a complete
description of this function and how it works, your best bet is to check out the “Properties—
Getting and Setting” topic in the BDE help. This function is defined as follows:

Extending Database VCL

CHAPTER 30
337

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 337

function DbiSetProp(hObj: hDBIObj; iProp: Longint;
iPropValue: Longint): DBIResult stdcall;

The hObj parameter holds a handle to some type of BDE object. In this case, it will be a cursor
handle.

The iProp parameter will contain the identifier of the property to be set. You’ll find a complete
list of these in the aforementioned topic in the BDE help. For the purposes of enabling or dis-
abling the view of deleted records, use the curSOFTDELETEON identifier.

iPropValue is the new value for the given property. In this case, it’s a Boolean value (0 mean-
ing off; 1 meaning on).

The following code shows the SetViewDeleted() method of TdBaseTable:

procedure TdBaseTable.SetViewDeleted(Value: Boolean);
{ Allows the user to toggle between viewing and not viewing }
{ deleted records. }
begin
{ Table must be active }
if Active and (FViewDeleted <> Value) then begin
DisableControls; // avoid flicker
try
{ Magic BDE call to toggle view of soft deleted records }
Check(DbiSetProp(hDBIObj(Handle), curSOFTDELETEON, Longint(Value)));

finally
Refresh; // update Delphi
EnableControls; // flicker avoidance complete

end;
FViewDeleted := Value

end;
end;

This method first performs a test to ensure that the table is open and that the value to be set is
different than the value the FViewDeleted field in the object already contains. It then calls
DisableControls() to avoid flicker of any data-aware controls attached to the table. The
DbiSetProp() function is called next (notice the necessary typecast of hDBICur’s Handle para-
meter to an hDBIObj). Think of hDBIObj as an untyped handle to some type of BDE object.
After that, the dataset is refreshed and any attached controls are reenabled.

Database Development

PART IV
338

TIP

Whenever you use DisableControls() to suspend a dataset’s connection to data-
aware controls, you should always use a try..finally block to ensure that the sub-
sequent call to EnableControls() takes place whether or not an error occurs.

35.65227_Ch30CDx 11/30/99 12:22 PM Page 338

Testing for a Deleted Record
When viewing a dataset that includes deleted records, you’ll probably need to determine as you
navigate through the dataset which records are deleted and which aren’t. Actually, you’ve
already learned how to perform this check. You can obtain this information using the
DbiGetRecord() function that you used to obtain the physical record number. The following
code shows this procedure. The only material difference between this procedure and
GetRecNum() is the checking of the bDeletedFlag field rather than the iPhyRecNo field of the
RECProps record. Here’s the code:

function TdBaseTable.GetIsDeleted: Boolean;
{ Returns a boolean indicating whether or not the current record }
{ has been soft deleted. }
var
RP: RECProps;

begin
if not FViewDeleted then // don’t bother if they aren’t viewing
Result := False // deleted records

else begin
UpdateCursorPos; // update BDE from Delphi
{ Get current record properties }
Check(DbiGetRecord(Handle, dbiNOLOCK, Nil, @RP));
Result := RP.bDeleteFlag; // return flag from properties

end;
end;

Undeleting a Record
So far, you’ve learned how to view deleted records as well as determine whether a record has
been deleted, and, of course, you already know how to delete a record. The only other thing you
need to learn regarding record deletion is how to undelete a record. Fortunately, the BDE makes
this an easy task thanks to the DbiUndeleteRecord() function, which is defined as follows:

function DbiUndeleteRecord(hCursor: hDBICur): DBIResult stdcall;

The lone parameter is a cursor handle for the current dataset. Using this function, you can cre-
ate an UndeleteRecord() method for TdBaseTable as shown here:

procedure TdBaseTable.UndeleteRecord;
begin
if not IsDeleted then
raise EDatabaseError.Create(‘Record is not deleted’);

Check(DbiUndeleteRecord(Handle));
Refresh;

end;

Extending Database VCL

CHAPTER 30
339

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 339

Packing a Table
To remove soft-deleted records from a dBASE table, that table must go through a process
called packing. For this, the BDE provides a function called DbiPackTable(), which is defined
as follows:

function DbiPackTable(hDb: hDBIDb; hCursor: hDBICur;
pszTableName: PChar; pszDriverType: PChar;
bRegenIdxs: Bool): DBIResult stdcall;

hDb is a handle to a database. You should pass the DBHandle property of a TDataSet descendant
or the Handle property of a TDatabase component in this parameter.

hCursor is a cursor handle. You should pass the Handle property of a TDataSet descendant in
this parameter. You may also pass Nil if you want to instead use the pszTableName and
pszDriverType parameters to identify the table.

pszTableName is a pointer to a string containing the name of the table.

pszDriverType is a pointer to a string representing the driver type of the table. If hCursor is
Nil, this parameter must be set to szDBASE. As a side note, it’s unusual that this parameter is
required because this function is supported only for dBASE tables—we don’t make the rules,
we just play by them.

bRegenIdxs indicates whether or not you want to rebuild all out-of-date indexes associated
with the table.

Here’s the Pack() method for the TdBaseTable class:

procedure TdBaseTable.Pack(RegenIndexes: Boolean);
{ Packs the table in order to removed soft deleted records }
{ from the file. }
const
SPackError = ‘Table must be active and opened exclusively’;

begin
{ Table must be active and opened exclusively }
if not (Active and Exclusive) then
raise EDatabaseError.Create(SPackError);

try
{ Pack the table }
Check(DbiPackTable(DBHandle, Handle, Nil, Nil, RegenIndexes));

finally
{ update Delphi from BDE }
CursorPosChanged;
Refresh;

end;
end;

The complete listing of the TdBaseTable object is provided in Listing 30.1, later in this chapter.

Database Development

PART IV
340

35.65227_Ch30CDx 11/30/99 12:22 PM Page 340

Paradox Tables
Paradox tables don’t have as many nifty features, such as soft deletion, but they do carry the
concept of a record number and table pack. In this section, you’ll learn how to extend a TTable
to perform these Paradox-specific tasks and to create a new TParadoxTable class.

Sequence Number
Paradox tables do not have the concept of a physical record number in the dBASE sense. They
do, however, maintain the concept of a sequence number for each record in a table. The
sequence number differs from the physical record number in that the sequence number is
dependent on whatever index is currently applied to the table. The sequence number of a
record is the order in which the record appears based on the current index.

The BDE makes it pretty easy to obtain a sequence number using the DbiGetSeqNo() function,
which is defined as follows:

function DbiGetSeqNo(hCursor: hDBICur; var iSeqNo: Longint): DBIResult;
stdcall;

hCursor is a cursor handle for a Paradox table, and the iSeqNo parameter will be filled in with
the sequence number of the current record. The following code shows the GetRecNum() func-
tion for TParadoxTable:

cfunction TParadoxTable.GetRecNum: Longint;
{ Returns the sequence number of the current record. }
begin
UpdateCursorPos; // update BDE from Delphi
{ Get sequence number of current record into Result }
Check(DbiGetSeqNo(Handle, Result));

end;

Table Packing
Table packing in Paradox has a different meaning than in dBASE because Paradox does not
support soft deletion of records. When a record is deleted in Paradox, the record is removed
from the table, but a “hole” is left in the database file where the record used to be. To compress
these holes left by deleted records and make the table smaller and more efficient, you must
pack the table.

Unlike with dBASE tables, there’s no obvious BDE function you can use to pack a Paradox
table. Instead, you must use DbiDoRestructure() to restructure the table and specify that the
table should be packed as it’s restructured. DbiDoRestructure() is defined as follows:

function DbiDoRestructure(hDb: hDBIDb; iTblDescCount: Word;
pTblDesc: pCRTblDesc; pszSaveAs, pszKeyviolName,
pszProblemsName: PChar; bAnalyzeOnly: Bool): DBIResult stdcall;

Extending Database VCL

CHAPTER 30
341

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 341

hDb is the handle to a database. However, because this function will not work when Delphi has
the table open, you won’t be able to use the DBHandle property of a TDataSet. To overcome
this, the sample code (shown a bit later) that uses this function demonstrates how to create a
temporary database.

iTblDescCount is the number of table descriptors. This parameter must be set to 1 because the
current version of the BDE supports only one table descriptor per call.

pTblDesc is a pointer to a CRTblDesc record. This is the record that identifies the table and
specifies how the table is to be restructured. This record is defined as follows:

type
pCRTblDesc = ^CRTblDesc;
CRTblDesc = packed record // Create/Restruct Table descr
szTblName : DBITBLNAME; // TableName incl. optional path & ext
szTblType : DBINAME; // Driver type (optional)
szErrTblName : DBIPATH; // Error Table name (optional)
szUserName : DBINAME; // User name (if applicable)
szPassword : DBINAME; // Password (optional)
bProtected : WordBool; // Master password supplied in szPassword
bPack : WordBool; // Pack table (restructure only)
iFldCount : Word; // Number of field defs supplied
pecrFldOp : pCROpType; // Array of field ops
pfldDesc : pFLDDesc; // Array of field descriptors
iIdxCount : Word; // Number of index defs supplied
pecrIdxOp : pCROpType; // Array of index ops
pidxDesc : PIDXDesc; // Array of index descriptors
iSecRecCount : Word; // Number of security defs supplied
pecrSecOp : pCROpType; // Array of security ops
psecDesc : pSECDesc; // Array of security descriptors
iValChkCount : Word; // Number of val checks
pecrValChkOp : pCROpType; // Array of val check ops
pvchkDesc : pVCHKDesc; // Array of val check descs
iRintCount : Word; // Number of ref int specs
pecrRintOp : pCROpType; // Array of ref int ops
printDesc : pRINTDesc; // Array of ref int specs
iOptParams : Word; // Number of optional parameters
pfldOptParams: pFLDDesc; // Array of field descriptors
pOptData : Pointer; // Optional parameters

end;

For Paradox table packing, it’s only necessary to specify values for the szTblName, szTblType,
and bPack fields.

pszSaveAs is an optional string pointer that identifies the destination table if it is different than
the source table.

Database Development

PART IV
342

35.65227_Ch30CDx 11/30/99 12:22 PM Page 342

pszKeyviolName is an optional string pointer that identifies the table to which records that
cause key violations during the restructure will be sent.

pszProblemsName is an optional string pointer that identifies the table to which records that
cause problems during the restructure will be sent.

bAnalyzeOnly is unused.

The following code shows the Pack() method of TParadoxTable. You can see from the code
how the CRTblDesc record is initialized and how the temporary database is created using the
DbiOpenDatabase() function. Also note the finally block, which ensures that the temporary
database is cleaned up after use.

procedure TParadoxTable.Pack;
var
TblDesc: CRTblDesc;
TempDBHandle: HDBIDb;
WasActive: Boolean;

begin
{ Initialize TblDesc record }
FillChar(TblDesc, SizeOf(TblDesc), 0); // fill with 0s
with TblDesc do begin
StrPCopy(szTblName, TableName); // set table name
StrCopy(szTblType, szPARADOX); // set table type
bPack := True; // set pack flag

end;
{ Store table active state. Must close table to pack. }
WasActive := Active;
if WasActive then Close;
try
{ Create a temporary database. Must be read-write/exclusive }
Check(DbiOpenDatabase(PChar(DatabaseName), Nil, dbiREADWRITE,

dbiOpenExcl, Nil, 0, Nil, Nil, TempDBHandle));
try
{ Pack the table }
Check(DbiDoRestructure(TempDBHandle, 1, @TblDesc, Nil, Nil, Nil,

False));
finally
{ Close the temporary database }
DbiCloseDatabase(TempDBHandle);

end;
finally
{ Reset table active state }
Active := WasActive;

end;
end;

Extending Database VCL

CHAPTER 30
343

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 343

Listing 30.1 shows the DDGTbls unit in which the TdBaseTable and TParadoxTable objects are
defined.

LISTING 30.1 The DDGTbls.pas Unit

unit DDGTbls;

interface

uses DB, DBTables, BDE;

type
TdBaseTable = class(TTable)
private
FViewDeleted: Boolean;
function GetIsDeleted: Boolean;
function GetRecNum: Longint;
procedure SetViewDeleted(Value: Boolean);

protected
function CreateHandle: HDBICur; override;

public
procedure Pack(RegenIndexes: Boolean);
procedure UndeleteRecord;
property IsDeleted: Boolean read GetIsDeleted;
property RecNum: Longint read GetRecNum;
property ViewDeleted: Boolean read FViewDeleted write SetViewDeleted;

end;

TParadoxTable = class(TTable)
private
protected
function CreateHandle: HDBICur; override;
function GetRecNum: Longint;

public
procedure Pack;
property RecNum: Longint read GetRecNum;

end;

implementation

uses SysUtils;

{ TdBaseTable }

function TdBaseTable.GetIsDeleted: Boolean;
{ Returns a boolean indicating whether or not the current record }
{ has been soft deleted. }

Database Development

PART IV
344

35.65227_Ch30CDx 11/30/99 12:22 PM Page 344

var
RP: RECProps;

begin
if not FViewDeleted then // don’t bother if they aren’t viewing
Result := False // deleted records

else begin
UpdateCursorPos; // update BDE from Delphi
{ Get current record properties }
Check(DbiGetRecord(Handle, dbiNOLOCK, Nil, @RP));
Result := RP.bDeleteFlag; // return flag from properties

end;
end;

function TdBaseTable.GetRecNum: Longint;
{ Returns the physical record number of the current record. }
var
RP: RECProps;

begin
UpdateCursorPos; // update BDE from Delphi
{ Get current record properties }
Check(DbiGetRecord(Handle, dbiNOLOCK, Nil, @RP));
Result := RP.iPhyRecNum; // return value from properties

end;

function TdBaseTable.CreateHandle: HDBICur;
{ Overridden from ancestor in order to perform a check to }
{ ensure that this is a dBASE table. }
var
CP: CURProps;

begin
Result := inherited CreateHandle; // do inherited
if Result <> Nil then begin
{ Get cursor properties, and raise exception if the }
{ table isn’t using the dBASE driver. }
Check(DbiGetCursorProps(Result, CP));
if not (CP.szTableType = szdBASE) then
raise EDatabaseError.Create(‘Not a dBASE table’);

end;
end;

procedure TdBaseTable.Pack(RegenIndexes: Boolean);
{ Packs the table in order to removed soft deleted records }
{ from the file. }
const
SPackError = ‘Table must be active and opened exclusively’;

begin

Extending Database VCL

CHAPTER 30
345

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

Lcontinues

35.65227_Ch30CDx 11/30/99 12:22 PM Page 345

LISTING 30.1 Continued

{ Table must be active and opened exclusively }
if not (Active and Exclusive) then
raise EDatabaseError.Create(SPackError);

try
{ Pack the table }
Check(DbiPackTable(DBHandle, Handle, Nil, Nil, RegenIndexes));

finally
{ update Delphi from BDE }
CursorPosChanged;
Refresh;

end;
end;

procedure TdBaseTable.SetViewDeleted(Value: Boolean);
{ Allows the user to toggle between viewing and not viewing }
{ deleted records. }
begin
{ Table must be active }
if Active and (FViewDeleted <> Value) then begin
DisableControls; // avoid flicker
try
{ Magic BDE call to toggle view of soft deleted records }
Check(DbiSetProp(hdbiObj(Handle), curSOFTDELETEON, Longint(Value)));

finally
Refresh; // update Delphi
EnableControls; // flicker avoidance complete

end;
FViewDeleted := Value

end;
end;

procedure TdBaseTable.UndeleteRecord;
begin
if not IsDeleted then
raise EDatabaseError.Create(‘Record is not deleted’);

Check(DbiUndeleteRecord(Handle));
Refresh;

end;

function TParadoxTable.CreateHandle: HDBICur;
{ Overridden from ancestor in order to perform a check to }
{ ensure that this is a Paradox table. }
var
CP: CURProps;

begin
Result := inherited CreateHandle; // do inherited

Database Development

PART IV
346

35.65227_Ch30CDx 11/30/99 12:22 PM Page 346

if Result <> Nil then begin
{ Get cursor properties, and raise exception if the }
{ table isn’t using the Paradox driver. }
Check(DbiGetCursorProps(Result, CP));
if not (CP.szTableType = szPARADOX) then
raise EDatabaseError.Create(‘Not a Paradox table’);

end;
end;

function TParadoxTable.GetRecNum: Longint;
{ Returns the sequence number of the current record. }
begin
UpdateCursorPos; // update BDE from Delphi
{ Get sequence number of current record into Result }
Check(DbiGetSeqNo(Handle, Result));

end;

procedure TParadoxTable.Pack;
var
TblDesc: CRTblDesc;
TempDBHandle: HDBIDb;
WasActive: Boolean;

begin
{ Initialize TblDesc record }
FillChar(TblDesc, SizeOf(TblDesc), 0); // fill with 0s
with TblDesc do begin
StrPCopy(szTblName, TableName); // set table name
szTblType := szPARADOX; // set table type
bPack := True; // set pack flag

end;
{ Store table active state. Must close table to pack. }
WasActive := Active;
if WasActive then Close;
try
{ Create a temporary database. Must be read-write/exclusive }
Check(DbiOpenDatabase(PChar(DatabaseName), Nil, dbiREADWRITE,

dbiOpenExcl, Nil, 0, Nil, Nil, TempDBHandle));
try
{ Pack the table }
Check(dbiDoRestructure(TempDBHandle, 1, @TblDesc, Nil, Nil, Nil,

False));
finally
{ Close the temporary database }
DbiCloseDatabase(TempDBHandle);

end;
finally

Extending Database VCL

CHAPTER 30
347

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

Lcontinues

35.65227_Ch30CDx 11/30/99 12:22 PM Page 347

LISTING 30.1 Continued

{ Reset table active state }
Active := WasActive;

end;
end;

end.

Limiting TQuery Result Sets
Here’s a classic SQL programming faux pas: Your application issues a SQL statement to the
server that returns a result set consisting of a gazillion rows, thereby making the application
user wait forever for the query to return and tying up precious server and network bandwidth.
Conventional SQL wisdom dictates that one shouldn’t issue queries that are so general that
they cause so many records to be fetched. However, this is sometimes unavoidable, and TQuery
doesn’t seem to help matters much, because it doesn’t provide a means for restricting the num-
ber of records in a result set to be fetched from the server. Fortunately, the BDE does provide
this capability, and it’s not very difficult to surface in a TQuery descendant.

The BDE API call that performs this magic is the catchall DbiSetProp() function, which was
explained earlier in this chapter. In this case, the first parameter to DbiSetProp() is the cursor
handle for the query, the second parameter must be curMAXROWS, and the final parameter should
be set to the maximum number of rows to which you want to restrict the result set.

The ideal place to make the call to this function is in the PrepareCursor() method of TQuery,
which is called immediately after the query is opened. Listing 30.2 shows the ResQuery unit, in
which the TRestrictedQuery component is defined.

LISTING 30.2 The ResQuery.pas Unit

unit ResQuery;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, DB, DBTables, BDE;

type
TRestrictedQuery = class(TQuery)
private
FMaxRowCount: Longint;

protected
procedure PrepareCursor; override;

Database Development

PART IV
348

35.65227_Ch30CDx 11/30/99 12:22 PM Page 348

published
property MaxRowCount: Longint read FMaxRowCount write FMaxRowCount;

end;

procedure Register;

implementation

procedure TRestrictedQuery.PrepareCursor;
begin
inherited PrepareCursor;
if FMaxRowCount > 0 then
Check(DbiSetProp(hDBIObj(Handle), curMAXROWS, FMaxRowCount));

end;

procedure Register;
begin
RegisterComponents(‘DDG’, [TRestrictedQuery]);

end;

end.

You can limit the result set of a query by simply setting the MaxRowCount property to a value
greater than zero. To further illustrate the point, Figure 30.1 shows the result of a query
restricted to three rows, as shown in SQL Monitor.

Extending Database VCL

CHAPTER 30
349

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

LFIGURE 30.1
A restricted query viewed from SQL Monitor.

35.65227_Ch30CDx 11/30/99 12:22 PM Page 349

BDE Miscellany
Through our development of database applications, we’ve found a few common development
tasks that could serve to be automated a bit. Some of these miscellaneous tasks include per-
forming SQL aggregate functions on a table, copying tables, and obtaining a list of Paradox
users for a particular session.

SQL Aggregate Functions
Generally speaking, SQL aggregate functions are functions built into the SQL language that
perform some arithmetic operation on one or more columns from one or more rows. Some
common examples of this are sum(), which adds columns from multiple rows, avg(), which
calculates the average value of columns from multiple rows, min(), which finds the minimum
value of columns in multiple rows, and max(), which (as you might guess) determines the
maximum value of columns within multiple rows.

Aggregate functions such as these can sometimes be inconvenient to use in Delphi. For exam-
ple, if you’re working with TTables to access data, using these functions involves creating a
TQuery, formulating the correct SQL statement for the table and column in question, executing
the query, and obtaining the result from the query. Clearly this is a process crying out to be
automated, and the code in Listing 30.3 does just that.

LISTING 30.3 Automating SQL Aggregate Functions

type
TSQLAggFunc = (safSum, safAvg, safMin, safMax);

const
// SQL aggregate functions
SQLAggStrs: array[TSQLAggFunc] of string = (
‘select sum(%s) from %s’,
‘select avg(%s) from %s’,
‘select min(%s) from %s’,
‘select max(%s) from %s’);

function CreateQueryFromTable(T: TTable): TQuery;
// returns a query hooked to the same database and session as table T
begin
Result := TQuery.Create(nil);
try
Result.DatabaseName := T.DatabaseName;
Result.SessionName := T.SessionName;

except
Result.Free;
Raise;

Database Development

PART IV
350

35.65227_Ch30CDx 11/30/99 12:22 PM Page 350

end;
end;

function DoSQLAggFunc(T: TTable; FieldNames: string;
Func: TSQLAggFunc): Extended;

begin
with CreateQueryFromTable(T) do
begin
try
SQL.Add(Format(SQLAggStrs[Func], [FieldNames, T.TableName]));
Open;
Result := Fields[0].AsFloat;

finally
Free;

end;
end;

end;

function SumField(T: TTable; Field: String): Extended;
begin
Result := DoSQLAggFunc(T, Field, safSum);

end;

function AvgField(T: TTable; Field: String): Extended;
begin
Result := DoSQLAggFunc(T, Field, safAvg);

end;

function MinField(T: TTable; Field: String): Extended;
begin
Result := DoSQLAggFunc(T, Field, safMin);

end;

function MaxField(T: TTable; Field: string): Extended;
begin
Result := DoSQLAggFunc(T, Field, safMax);

end;

As you can see from the listing, each of the individual aggregate function wrappers call into
the DoSQLAggFun() function. In this function, the CreateQueryFromTable() function creates
and returns a TQuery component that uses the same database and session as the TTable passed
in the T parameter. The proper SQL string is then formatted from an array of strings, the query
is executed, and the query’s result is returned from the function.

Extending Database VCL

CHAPTER 30
351

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 351

Quick Table Copy
If you want to make a copy of a table, traditional wisdom might dictate a few different courses
of action. The first might be to use the Win32 API’s CopyFile() function to physically copy
the table file(s) from one location to another. Another option is to use a TBatchMove component
to copy one TTable to another. Yet another option is to use TTable’s BatchMove() method to
perform the copy.

However, there are problems with each of these traditional alternatives: A brute-force file copy
using the CopyFile() API function may not work if the table files are open by another process
or user, and it certainly will not work if the table exists within some type of database file on a
SQL server. A file copy might become a very complex task if you consider that you may also
have to copy associated index, BLOB, or value files. The use of TBatchMove would solve these
problems, but only if you submit to the disadvantage of the complexity involved in using this
component. An additional drawback is the fact that the batch move process is much slower
than a direct file copy. Using TTable.BatchMove() does help to alleviate the issue of complex-
ity in performing the table copy, but it doesn’t overcome the performance shortcomings inher-
ent in the batch move process.

Fortunately, the BDE developers also recognized this issue and made a BDE API function
available that provides the best of both worlds: speed and ease of use. The function in question
is DbiCopyTable(), and it’s declared as shown here:

function DbiCopyTable ({ Copy one table to another }
hDb : hDBIDb; { Database handle }
bOverWrite : Bool; { True, to overwrite existing file }
pszSrcTableName : PChar; { Source table name }
pszSrcDriverType : PChar; { Source driver type }
pszDestTableName : PChar { Destination table name }

): DBIResult stdcall;

Because the BDE API function can’t deal directly with VCL TTable components, the following
procedure wraps DbiCopyTable() into a nifty routine to which you can pass a TTable and a
destination table name:

procedure QuickCopyTable(T: TTable; DestTblName: string;
Overwrite: Boolean);

// Copies TTable T to an identical table with name DestTblName.
// Will overwrite existing table with name DestTblName if Overwrite is
// True.
var
DBType: DBINAME;
WasOpen: Boolean;
NumCopied: Word;

begin

Database Development

PART IV
352

35.65227_Ch30CDx 11/30/99 12:22 PM Page 352

WasOpen := T.Active; // save table active state
if not WasOpen then T.Open; // ensure table is open
// Get driver type string
Check(DbiGetProp(hDBIObj(T.Handle), drvDRIVERTYPE, @DBType,
SizeOf(DBINAME), NumCopied));

// Copy the table
Check(DbiCopyTable(T.DBHandle, Overwrite, PChar(T.TableName), DBType,
PChar(DestTblName)));

T.Active := WasOpen; // restore active state
end;

Extending Database VCL

CHAPTER 30
353

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

NOTE

For local databases (Paradox, dBASE, Access, and FoxPro), all files associated with the
table—index and BLOB files, for example—are copied to the destination table. For
tables residing in a SQL database, only the table will be copied, and it’s up to you to
ensure that the necessary indexes and other elements are applied to the destination
table.

Paradox Session Users
If your application uses Paradox tables, you may come across a situation where you need to
determine which users are currently using a particular Paradox table. You can accomplish this
with the DbiOpenUserList() BDE API function. This function provides a BDE cursor for a
list of users for the current session. The following procedure demonstrates how to use this
function effectively:

procedure GetPDoxUsersForSession(Sess: TSession; UserList: TStrings);
// Clears UserList and adds each user using the same netfile as session
// Sess to the list. If Sess = nil, then procedure works for default
// net file.
var
WasActive: Boolean;
SessHand: hDBISes;
ListCur: hDBICur;
User: UserDesc;

begin
if UserList = nil then Exit;
UserList.Clear;
if Assigned(Sess) then
begin
WasActive := Sess.Active;
if not WasActive then Sess.Open;
Check(DbiStartSession(nil, SessHand, PChar(Sess.NetFileDir)));

35.65227_Ch30CDx 11/30/99 12:22 PM Page 353

end
else
Check(DbiStartSession(nil, SessHand, nil));

try
Check(DbiOpenUserList(ListCur));
try
while DbiGetNextRecord(ListCur, dbiNOLOCK, @User, nil) =
DBIERR_NONE do
UserList.Add(User.szUserName);

finally
DbiCloseCursor(ListCur); // close “user list table” cursor

end;
finally
DbiCloseSession(SessHand);
if Assigned(Sess) then Sess.Active := WasActive;

end;
end;

The interesting thing about the DbiOpenUserList() function is that it creates a cursor for a
table that’s manipulated in the same manner as any other BDE table cursor. In this case,
DbiGetNextRecord() is called repeatedly until the end of the table is reached. The record
buffer for this table follows the format of the UserDesc record, which is defined in the BDE
unit as follows:

type
pUSERDesc = ^USERDesc;
USERDesc = packed record { User description }
szUserName : DBIUSERNAME; { User Name }
iNetSession : Word; { Net level session number }
iProductClass: Word; { Product class of user }
szSerialNum : packed array [0..21] of Char; { Serial number }

end;

Each call to DbiGetNextRecord() fills a UserDesc record called User, and the szUserName
field of that record is added to the UserList string list.

Database Development

PART IV
354

TIP

Note the use of the try..finally resource protection blocks in the
GetPDoxUsersForSession() procedure. These ensure that both the BDE resources
associated with the session and cursor are properly released.

35.65227_Ch30CDx 11/30/99 12:22 PM Page 354

Writing Data-Aware VCL Controls
Chapter 21, “Writing Delphi Custom Components,” and Chapter 22, “Advanced Component
Techniques,” provided you with thorough coverage of component-building techniques and
methodologies. One large topic that wasn’t covered, however, is data-aware controls. Actually,
there isn’t much more to creating a data-aware control than there is to creating a regular VCL
control, but a typical data-aware component is different in four key respects:

• Data-aware controls maintain an internal data link object. A descendant of TDataLink,
this object provides the means by which the control communicates with a TDataSource.
For data-aware controls that connect to a single field of a dataset, this is usually a
TFieldDataLink. The control should handle the OnDataChange event of the data link in
order to receive notifications when the field or record data has changed.

• Data-aware controls must handle the CM_GETDATALINK message. The typical response to
this message is to return the data link object in the message’s Result field.

• Data-aware controls should surface a property of type TDataSource so the control can be
connected to a data source by which it will communicate with a dataset. By convention,
this property is called DataSource. Controls that connect to a single field should also
surface a string property to hold the name of the field to which it is connected. By con-
vention, this property is called DataField.

• Data-aware controls should override the Notification() method of TComponent. By
overriding this method, the data-aware control can be notified if the data source compo-
nent connected to the control has been deleted from the form.

To demonstrate the creation of a simple data-aware control, Listing 30.4 shows the DBSound
unit. This unit contains the TDBWavPlayer component, a component that plays WAV sounds
from a BLOB field in a dataset.

LISTING 30.4 The DBSound.pas Unit

unit DBSound;

interface

uses Windows, Messages, Classes, SysUtils, Controls, Buttons, DB,
DBTables, DbCtrls;

type
EDBWavError = class(Exception);

TDBWavPlayer = class(TSpeedButton)
private

Extending Database VCL

CHAPTER 30
355

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

Lcontinues

35.65227_Ch30CDx 11/30/99 12:22 PM Page 355

LISTING 30.4 Continued

FAutoPlay: Boolean;
FDataLink: TFieldDataLink;
FDataStream: TMemoryStream;
FExceptOnError: Boolean;
procedure DataChange(Sender: TObject);
function GetDataField: string;
function GetDataSource: TDataSource;
function GetField: TField;
procedure SetDataField(const Value: string);
procedure SetDataSource(Value: TDataSource);
procedure CMGetDataLink(var Message: TMessage); message
CM_GETDATALINK;

procedure CreateDataStream;
procedure PlaySound;

protected
procedure Notification(AComponent: TComponent;
Operation: TOperation); override;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure Click; override;
property Field: TField read GetField;

published
property AutoPlay: Boolean read FAutoPlay write FAutoPlay
default False;

property ExceptOnError: Boolean read FExceptOnError
write FExceptOnError;

property DataField: string read GetDataField write SetDataField;
property DataSource: TDataSource read GetDataSource
write SetDataSource;

end;

implementation

uses MMSystem;

const
// Error strings
SNotBlobField = ‘Field “%s” is not a blob field’;
SPlaySoundErr = ‘Error attempting to play sound’;

constructor TDBWavPlayer.Create(AOwner: TComponent);
begin
inherited Create(AOwner); // call inherited
FDataLink := TFieldDataLink.Create; // create field data link

Database Development

PART IV
356

35.65227_Ch30CDx 11/30/99 12:22 PM Page 356

FDataLink.OnDataChange := DataChange; // get data link notifications
FDataStream := TMemoryStream.Create; // create worker memory stream

end;

destructor TDBWavPlayer.Destroy;
begin
FDataStream.Free;
FDataLink.Free;
FDataLink := Nil;
inherited Destroy;

end;

procedure TDBWavPlayer.Click;
begin
inherited Click; // do default behavior
PlaySound; // play the sound

end;

procedure TDBWavPlayer.CreateDataStream;
// creates memory stream from wave file in blob field
var
BS: TBlobStream;

begin
// make sure it’s a blob field
if not (Field is TBlobField) then
raise EDBWavError.CreateFmt(SNotBlobField, [DataField]);

// create a blob stream
BS := TBlobStream.Create(TBlobField(Field), bmRead);
try
// copy from blob stream to memory stream
FDataStream.SetSize(BS.Size);
FDataStream.CopyFrom(BS, BS.Size);

finally
BS.Free; // free blob stream

end;
end;

procedure TDBWavPlayer.PlaySound;
// plays wave sound loaded in memory stream
begin
// make sure we are hooked to a dataset and field
if (DataSource <> nil) and (DataField <> ‘’) then
begin
// make sure data stream is created
if FDataStream.Size = 0 then CreateDataStream;
// Play the sound in the memory stream, raise exception on error

Extending Database VCL

CHAPTER 30
357

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

continues

35.65227_Ch30CDx 11/30/99 12:22 PM Page 357

LISTING 30.4 Continued

if (not MMSystem.PlaySound(FDataStream.Memory, 0, SND_ASYNC or
SND_MEMORY)) and FExceptOnError then
raise EDBWavError.Create(SPlaySoundErr);

end;
end;

procedure TDBWavPlayer.DataChange(Sender: TObject);
// OnChange handler FFieldDataLink.DataChange
begin
// deallocate memory occupied by previous wave file
with FDataStream do if Size <> 0 then SetSize(0);
// if AutoPlay is on, the play the sound
if FAutoPlay then PlaySound;

end;

procedure TDBWavPlayer.Notification(AComponent: TComponent;
Operation: TOperation);

begin
inherited Notification(AComponent, Operation);
// do some required housekeeping
if (Operation = opRemove) and (FDataLink <> nil) and
(AComponent = DataSource) then DataSource := nil;

end;

function TDBWavPlayer.GetDataSource: TDataSource;
begin
Result := FDataLink.DataSource;

end;

procedure TDBWavPlayer.SetDataSource(Value: TDataSource);
begin
FDataLink.DataSource := Value;
if Value <> nil then Value.FreeNotification(Self);

end;

function TDBWavPlayer.GetDataField: string;
begin
Result := FDataLink.FieldName;

end;

procedure TDBWavPlayer.SetDataField(const Value: string);
begin
FDataLink.FieldName := Value;

end;

Database Development

PART IV
358

35.65227_Ch30CDx 11/30/99 12:22 PM Page 358

function TDBWavPlayer.GetField: TField;
begin
Result := FDataLink.Field;

end;

procedure TDBWavPlayer.CMGetDataLink(var Message: TMessage);
begin
Message.Result := Integer(FDataLink);

end;

end.

This component is a TSpeedButton descendant that, when pressed, can play a WAV sound
residing in a database BLOB field. The AutoPlay property can also be set to True, which will
cause the sound to play every time the user navigates to a new record in the table. When this
property is set, it might also make sense to set the Visible property of the component to False
so that a button doesn’t appear visually on the form.

In the FDataLink.OnChange handler, DataChange(), the component works by extracting the
BLOB field using a TBlobStream and copying the BLOB stream to a memory stream,
FDataStream. When the sound is in a memory stream, you can play it using the PlaySound()
Win32 API function.

Extending TDataSet
One of the marquee features of the database VCL is the abstract TDataSet, which provides the
capability to manipulate non-BDE data sources within the database VCL framework.

In the Olden Days…
In previous versions of Delphi, the VCL database architecture was closed, making it was very
difficult to manipulate non-BDE data sources using VCL components. Figure 30.2 illustrates
the BDE-centric data set architecture found in Delphi 1 and 2.

As Figure 30.2 shows, TDataSet is essentially hard-coded for the BDE, and there’s no room in
this architecture for non-BDE data sources. Developers wanting to use non-BDE data sources
within VCL had two choices:

• Creating a DLL that looks to VCL like the BDE but talks to a different type of data

• Throwing TDataSet out the window and writing their own dataset class and data-aware
controls

Clearly, either of these options involves a very significant amount of work, and neither is a par-
ticularly elegant solution. Something had to be done.

Extending Database VCL

CHAPTER 30
359

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 359

FIGURE 30.2
Delphi 1 and 2 VCL dataset architecture.

Modern Times
Recognizing these issues and the strong customer demand for easier access to non-BDE data
sources, the Delphi development team made it a priority to extend VCL’s data set architecture
in Delphi 3. The idea behind the new architecture was to make the TDataSet class an abstrac-
tion of a VCL dataset and to move the BDE-specific data set code into the new TBDEDataSet
class. Figure 30.3 provides an illustration of this new architecture.

When you understand how TDataSet was uncoupled from the BDE, the challenge becomes
how to employ this concept to create a TDataSet descendant that manipulates some type of
non-BDE data. And we’re not using the term challenge loosely; creating a functional TDataSet
descendant is not a task for the faint of heart. This is a fairly demanding task that requires
familiarity with VCL database architecture and component writing.

Database Development

PART IV
360

TDataSet

TDBDataSet

TQueryTTable TStoredProc

Local Data
(Paradox,
dBASE,

Text)

Server Data
(Oracle, MS,
Sybase, etc.)

ODBC Data

Borland Database Engine

TIP

Delphi provides two examples of creating a TDataSet descendant—one very simple
and one very complicated. The simple example is the TTextDataSet class found in the
TextData unit in the \Delphi5\Demos\Db\TextData directory. This example encapsu-
lates TStringList as a one-field dataset. The complex example is the TBDEDataSet
class found in the DbTables unit in the VCL source. As mentioned earlier, this class
maps VCL’s dataset architecture to the BDE.

35.65227_Ch30CDx 11/30/99 12:22 PM Page 360

FIGURE 30.3
Delphi 3 and higher VCL dataset architecture.

Creating a TDataSet Descendant
Most dataset implementations will fall in between TTextDataSet and TBDEDataSet in terms of
complexity. To provide an example of this, we’ll demonstrate how to create a TDataSet
descendant that manipulates an Object Pascal file of record (for a description of file of
record, see Chapter 12, “Working With Files”). The following record and file type will be
used for this example:

type
// arbitrary-length array of char used for name field
TNameStr = array[0..31] of char;

// this record info represents the “table” structure:
PDDGData = ^TDDGData;
TDDGData = record
Name: TNameStr;
Height: Double;
ShoeSize: Integer;

end;

// Pascal file of record which holds “table” data:
TDDGDataFile = file of TDDGData;

Extending Database VCL

CHAPTER 30
361

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

TBDEDataSet

TQueryTTable TStoredProc

TDBDataSet

Local Data
(Paradox,
dBASE,

Text)

Server Data
(Oracle, MS,
Sybase, etc.)

ODBC Data

Borland Database Engine

TDataSet

TClientDataSet

DBClient.dll

IDProv32.dll

BDE

TDataSet

Custom data set

Custom data
source

TDataSet

35.65227_Ch30CDx 11/30/99 12:22 PM Page 361

An Object Pascal file of record can provide a convenient and efficient way to store infor-
mation, but the format is inherently limited by its inability to insert records into or delete
records from the middle of the file. For this reason, we’ll use a two-file scheme to track the
“table” information: the first, data file, being the file of record; the second, index file,
maintaining a list of integers that represent seek values into the first file. This means that a
record’s position in the data file doesn’t necessarily coincide with its position in the dataset. A
record’s position in the dataset is controlled by the order of the index file; the first integer in
the index file contains the seek value of the first record into the data file, the second integer in
the index file contains the next seek value into the data file, and so on.

In this section we’ll discuss what’s necessary to create a TDataSet descendant called
TDDGDataSet, which communicates to this file of record.

TDataSet Abstract Methods
TDataSet, being an abstract class, is useless until you override the methods necessary for
manipulation of some particular type of dataset. In particular, you must at least override each
of TDataSet’s 23 abstract methods and perhaps some optional methods. For the sake of discus-
sion, we’ve divided them into six logical groupings: record buffer methods, navigational meth-
ods, bookmark methods, editing methods, miscellaneous methods, and optional methods.

The following code shows an edited version of TDataSet as it is defined in Db.pas. For clarity,
only the methods mentioned thus far are shown, and the methods are categorized based on the
logical groupings we discussed. Here’s the code:

type
TDataSet = class(TComponent)
{ ... }
protected
{ Record buffer methods }
function AllocRecordBuffer: PChar; virtual; abstract;
procedure FreeRecordBuffer(var Buffer: PChar); virtual; abstract;
procedure InternalInitRecord(Buffer: PChar); virtual; abstract;
function GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean):
TGetResult; virtual; abstract;

function GetRecordSize: Word; virtual; abstract;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean;
override;

procedure SetFieldData(Field: TField; Buffer: Pointer); virtual;
abstract;

{ Bookmark methods }
function GetBookmarkFlag(Buffer: PChar): TBookmarkFlag; override;
procedure SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag);
override;

Database Development

PART IV
362

35.65227_Ch30CDx 11/30/99 12:22 PM Page 362

procedure GetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure SetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure InternalGotoBookmark(Bookmark: Pointer); override;
procedure InternalSetToRecord(Buffer: PChar); override;

{ Navigational methods }
procedure InternalFirst; virtual; abstract;
procedure InternalLast; virtual; abstract;

{ Editing methods }
procedure InternalAddRecord(Buffer: Pointer; Append: Boolean);
virtual; abstract;

procedure InternalDelete; virtual; abstract;
procedure InternalPost; virtual; abstract;

{ Miscellaneous methods }
procedure InternalClose; virtual; abstract;
procedure InternalHandleException; virtual; abstract;
procedure InternalInitFieldDefs; virtual; abstract;
procedure InternalOpen; virtual; abstract;
function IsCursorOpen: Boolean; virtual; abstract;

{ optional methods }
function GetRecordCount: Integer; virtual;
function GetRecNo: Integer; virtual;
procedure SetRecNo(Value: Integer); virtual;

{ ... }
end;

Record Buffer Methods
You must override a number of methods that deal with record buffers. Actually, VCL does a
pretty good job of hiding the gory details of its record buffer implementation; TDataSet will
create and manage groups of buffers, so your job is primarily to decide what goes in the
buffers and to move data between different buffers. Because it’s a requirement for all TDataSet
descendants to implement bookmarks, we’ll store bookmark information after the record data
in the record buffer. The record we’ll use to describe bookmark information is as follows:

type
// Bookmark information record to support TDataset bookmarks:
PDDGBookmarkInfo = ^TDDGBookmarkInfo;
TDDGBookmarkInfo = record
BookmarkData: Integer;
BookmarkFlag: TBookmarkFlag;

end;

The BookmarkData field will represent a simple seek value into the data file. The
BookmarkFlag field is used to determine whether the buffer contains a valid bookmark, and it
will contain special values when the dataset is positioned on the BOF and EOF cracks.

Extending Database VCL

CHAPTER 30
363

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 363

Before examining the record buffer–specific methods, first take a look at the constructor for the
TDDGDataSet class:

constructor TDDGDataSet.Create(AOwner: TComponent);
begin
FIndexList := TIndexList.Create;
FRecordSize := SizeOf(TDDGData);
FBufferSize := FRecordSize + SizeOf(TDDGBookmarkInfo);
inherited Create(AOwner);

end;

This constructor does three important things: First, it creates the TIndexList object. This list
object is used as the index file described earlier to maintain order in the dataset. Next, the
FRecordSize and FBufferSize fields are initialized. FRecordSize holds the size of the data
record, and FBufferSize represents the total size of the record buffer (the data record size plus
the size of the bookmark information record). Finally, this method calls the inherited construc-
tor to perform the default TDataSet setup.

The following are TDataSet methods that deal with record buffers that must be overridden in a
descendant. Except for GetFieldData(), all are declared as abstract in the base class:

function AllocRecordBuffer: PChar; override;
procedure FreeRecordBuffer(var Buffer: PChar); override;
procedure InternalInitRecord(Buffer: PChar); override;
function GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult; override;

function GetRecordSize: Word; override;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean; override;
procedure SetFieldData(Field: TField; Buffer: Pointer); override;

AllocRecordBuffer()
The AllocRecordBuffer() method is called to allocate memory for a single record buffer. In
this implementation of the method, the AllocMem() function is used to allocate enough mem-
ory to hold both the record data and the bookmark data:

Database Development

PART IV
364

NOTE

Keep in mind that this implementation of bookmarks and record buffers is specific to
this solution. If you were creating a TDataSet descendant to manipulate some other
type of data, you might choose to implement your record buffer or bookmarks dif-
ferently. For example, the data source you’re trying to encapsulate may natively sup-
port bookmarks.

35.65227_Ch30CDx 11/30/99 12:22 PM Page 364

function TDDGDataSet.AllocRecordBuffer: PChar;
begin
Result := AllocMem(FBufferSize);

end;

FreeRecordBuffer()
As you might expect, FreeRecordBuffer() must free the memory allocated by the
AllocRecordBuffer() method. It’s implemented using the FreeMem() procedure, as shown
here:

procedure TDDGDataSet.FreeRecordBuffer(var Buffer: PChar);
begin
FreeMem(Buffer);

end;

InternalInitRecord()
The InternalInitRecord() method is called to initialize a record buffer. In this method, you
can do things such as setting default field values and performing some type of initialization of
custom record buffer data. In this case, we simply zero-initialize the record buffer:

procedure TDDGDataSet.InternalInitRecord(Buffer: PChar);
begin
FillChar(Buffer^, FBufferSize, 0);

end;

GetRecord()
The primary function of the GetRecord() method is to retrieve the record data for either the
previous, current, or next record in the dataset. The return value of this function is of type
TGetResult, which is defined in the Db unit as follows:

TGetResult = (grOK, grBOF, grEOF, grError);

The meaning of each of the enumerations is pretty much self-explanatory: grOk means success,
grBOF means the dataset is at the beginning, grEOF means the dataset is at the end, and
grError means an error has occurred.

The implementation of this method is as follows:

function TDDGDataSet.GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult;

var
IndexPos: Integer;

begin
if FIndexList.Count < 1 then

Result := grEOF
else begin

Extending Database VCL

CHAPTER 30
365

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 365

Result := grOk;
case GetMode of
gmPrior:
if FRecordPos <= 0 then
begin
Result := grBOF;
FRecordPos := -1;

end
else
Dec(FRecordPos);

gmCurrent:
if (FRecordPos < 0) or (FRecordPos >= RecordCount) then

Result := grError;
gmNext:
if FRecordPos >= RecordCount-1 then
Result := grEOF

else
Inc(FRecordPos);

end;
if Result = grOk then
begin
IndexPos := Integer(FIndexList[FRecordPos]);
Seek(FDataFile, IndexPos);
BlockRead(FDataFile, PDDGData(Buffer)^, 1);
with PDDGBookmarkInfo(Buffer + FRecordSize)^ do
begin
BookmarkData := FRecordPos;
BookmarkFlag := bfCurrent;

end;
end
else if (Result = grError) and DoCheck then
DatabaseError(‘No records’);

end;
end;

The FRecordPos field tracks the current record position in the dataset. You’ll notice that
FRecordPos is incremented or decremented, as appropriate, when GetRecord() is called to
obtain the next or previous record. If FRecordPos contains a valid record number, FRecordPos
is used as an index into FIndexList. The number at that index is a seek value into the data file,
and the record data is read from that position in the data file into the buffer specified by the
Buffer parameter.

GetRecord() also has one additional job: When the DoCheck parameter is True and grError is
the potential return value, an exception should be raised.

Database Development

PART IV
366

35.65227_Ch30CDx 11/30/99 12:22 PM Page 366

GetRecordSize()
The GetRecordSize() method should return the size, in bytes, of the record data portion of the
record buffer. Be careful not to return the size of the entire record buffer; just return the size of
the data portion. In this implementation, we return the value of the FRecordSize field:

function TDDGDataSet.GetRecordSize: Word;
begin
Result := FRecordSize;

end;

GetFieldData()
The GetFieldData() method is responsible for copying data from the active record buffer (as
provided by the ActiveBuffer property) into a field buffer. This is often accomplished most
expediently using the Move() procedure. You can differentiate which field to copy using
Field’s Index or Name property. Also, be sure to copy from the correct offset into
ActiveBuffer because ActiveBuffer contains a complete record’s data and Buffer only holds
one field’s data. This implementation copies the fields from the internal buffer structure to its
respective TField:

function TDDGDataSet.GetFieldData(Field: TField; Buffer: Pointer):
Boolean;

begin
Result := True;
case Field.Index of
0:
begin
Move(ActiveBuffer^, Buffer^, Field.Size);
Result := PChar(Buffer)^ <> #0;

end;
1: Move(PDDGData(ActiveBuffer)^.Height, Buffer^, Field.DataSize);
2: Move(PDDGData(ActiveBuffer)^.ShoeSize, Buffer^, Field.DataSize);

end;
end;

Both this method and SetFieldData() can become much more complex if you want to support
more advanced features such as calculated fields and filters.

SetFieldData()
The purpose of SetFieldData() is inverse to that of GetFieldData(); SetFieldData() copies
data from a field buffer into the active record buffer. As you can see from the following code,
the implementations of these two methods are very similar:

procedure TDDGDataSet.SetFieldData(Field: TField; Buffer: Pointer);
begin
case Field.Index of

Extending Database VCL

CHAPTER 30
367

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 367

0: Move(Buffer^, ActiveBuffer^, Field.Size);
1: Move(Buffer^, PDDGData(ActiveBuffer)^.Height, Field.DataSize);
2: Move(Buffer^, PDDGData(ActiveBuffer)^.ShoeSize, Field.DataSize);

end;
DataEvent(deFieldChange, Longint(Field));

end;

After the data is copied, the DataEvent() method is called to signal that a field has changed
and fire the OnChange event of the field.

Bookmark Methods
We mentioned earlier that bookmark support is required for TDataSet descendants. The follow-
ing abstract methods of TDataSet are overridden to provide this support:

function GetBookmarkFlag(Buffer: PChar): TBookmarkFlag; override;
procedure SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag); override;
procedure GetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure SetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure InternalGotoBookmark(Bookmark: Pointer); override;
procedure InternalSetToRecord(Buffer: PChar); override;

For TDDGDataSet, you’ll see that the implementations of these methods revolve mostly around
manipulating the bookmark information tacked onto the end of the record buffer.

GetBookmarkFlag() and SetBookmarkFlag()
Bookmark flags are used internally by TDataSet to determine whether a particular record is the
first or last in the dataset. For this purpose, you must override the GetBookmarkFlag() and
SetBookmarkFlag() methods. The TDDGDataSet implementation of these methods reads from
and writes to the record buffer to keep track of this information, as shown here:

function TDDGDataSet.GetBookmarkFlag(Buffer: PChar): TBookmarkFlag;
begin
Result := PDDGBookmarkInfo(Buffer + FRecordSize)^.BookmarkFlag;

end;

procedure TDDGDataSet.SetBookmarkFlag(Buffer: PChar;
Value: TBookmarkFlag);

begin
PDDGBookmarkInfo(Buffer + FRecordSize)^.BookmarkFlag := Value;

end;

GetBookmarkData() and SetBookmarkData()
The GetBookmarkData() and SetBookmarkData() methods provide a means for TDataSet to
manipulate a record’s bookmark data without repositioning the current record. As you can see,
these methods are implemented in a manner similar to the methods described in the preceding
example:

Database Development

PART IV
368

35.65227_Ch30CDx 11/30/99 12:22 PM Page 368

procedure TDDGDataSet.GetBookmarkData(Buffer: PChar; Data: Pointer);
begin
PInteger(Data)^ :=PDDGBookmarkInfo(Buffer + FRecordSize)^.BookmarkData;

end;

procedure TDDGDataSet.SetBookmarkData(Buffer: PChar; Data: Pointer);
begin
PDDGBookmarkInfo(Buffer + FRecordSize)^.BookmarkData :=PInteger(Data)^;

end;

InternalGotoBookmark()
The InternalGotoBookmark() method is called to reposition the current record to that repre-
sented by the Bookmark parameter. Because a bookmark value is the same as the record num-
ber for TDDGDataSet, the implementation of this method is straightforward:

procedure TDDGDataSet.InternalGotoBookmark(Bookmark: Pointer);
begin
FRecordPos := Integer(Bookmark);

end;

InternalSetToRecord()
InternalSetToRecord() is similar to InternalGotoBookmark() except that it receives as a
parameter a record buffer instead of a bookmark value. The job of this method is to position
the dataset to the record provided in the Buffer parameter. This implementation of a record
buffer contains the bookmark information because the bookmark value is the same as the
record position; therefore, the implementation of this method is a one-liner:

procedure TDDGDataSet.InternalSetToRecord(Buffer: PChar);
begin
// bookmark value is the same as an offset into the file
FRecordPos := PDDGBookmarkInfo(Buffer + FRecordSize)^.Bookmarkdata;

end;

Navigational Methods
You must override several abstract navigational methods in TDataSet in order to position the
dataset on the first or last record:

procedure InternalFirst; override;
procedure InternalLast; override;

The implementations of these methods are quite simple; InternalFirst() sets the FRecordPos
value to -1 (the BOF crack value), and InternalLast() sets the record position to the record
count. Because the record index is zero based, the count is 1 greater than the last index (the
EOF crack). Here’s an example:

procedure TDDGDataSet.InternalFirst;
begin

Extending Database VCL

CHAPTER 30
369

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 369

FRecordPos := -1;
end;

procedure TDDGDataSet.InternalLast;
begin
FRecordPos := FIndexList.Count;

end;

Editing Methods
Three abstract TDataSet methods must be overridden in order to allow for the editing, append-
ing, inserting, and deleting of records:

procedure InternalAddRecord(Buffer: Pointer; Append: Boolean); override;
procedure InternalDelete; override;
procedure InternalPost; override;

InternalAddRecord()
InternalAddRecord() is called when a record is inserted or appended to the dataset. The
Buffer parameter points to the record buffer to be added to the dataset, and the Append para-
meter is True when a record is being appended and False when a record is being inserted. The
TDDGDataSet implementation of this method seeks to the end of the data file, writes the record
data to the file, and then adds or inserts the data file seek value into the appropriate position in
the index list:

procedure TDDGDataSet.InternalAddRecord(Buffer: Pointer;
Append: Boolean);

var
RecPos: Integer;
begin
Seek(FDataFile, FileSize(FDataFile));
BlockWrite(FDataFile, PDDGData(Buffer)^, 1);
if Append then
begin
FIndexList.Add(Pointer(FileSize(FDataFile) - 1));
InternalLast;

end
else begin
if FRecordPos = -1 then RecPos := 0
else RecPos := FRecordPos;
FIndexList.Insert(RecPos, Pointer(FileSize(FDataFile) - 1));

end;
FIndexList.SaveToFile(FIdxName);

end;

InternalDelete()
The InternalDelete() method deletes the current record from the dataset. Because it’s not
practical to remove a record from the middle of the data file, the current record is deleted from

Database Development

PART IV
370

35.65227_Ch30CDx 11/30/99 12:22 PM Page 370

the index list. This, in effect, orphans the deleted record in the data file by removing the index
entry for a data record. Here’s an example:

procedure TDDGDataSet.InternalDelete;
begin
FIndexList.Delete(FRecordPos);
if FRecordPos >= FIndexList.Count then Dec(FRecordPos);

end;

Extending Database VCL

CHAPTER 30
371

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

NOTE

This method of deletion means that the data file will not shrink in size even as
records are deleted (similar to dBASE files). If you intend to use this type of dataset
for commercial work, a good addition would be a file-pack method, which removes
orphaned records from the data file.

InternalPost()
The InternalPost() method is called by TDataSet.Post(). In this method, you should write
the data from the active record buffer to the data file. You’ll note that the implementation of
this method is quite similar to that of InternalAddRecord(), as shown here:

procedure TDDGDataSet.InternalPost;
var
RecPos, InsPos: Integer;

begin
if FRecordPos = -1 then
RecPos := 0

else begin
if State = dsEdit then RecPos := Integer(FIndexList[FRecordPos])
else RecPos := FileSize(FDataFile);

end;
Seek(FDataFile, RecPos);
BlockWrite(FDataFile, PDDGData(ActiveBuffer)^, 1);
if State <> dsEdit then
begin
if FRecordPos = -1 then InsPos := 0
else InsPos := FRecordPos;
FIndexList.Insert(InsPos, Pointer(RecPos));

end;
FIndexList.SaveToFile(FIdxName);

end;

Miscellaneous Methods
Several other abstract methods must be overridden in order to create a working TDataSet
descendant. These are general housekeeping methods, and because these methods can’t be

35.65227_Ch30CDx 11/30/99 12:22 PM Page 371

pigeonholed into a particular category, we’ll call them miscellaneous methods. These methods
are as follows:

procedure InternalClose; override;
procedure InternalHandleException; override;
procedure InternalInitFieldDefs; override;
procedure InternalOpen; override;
function IsCursorOpen: Boolean; override;

InternalClose()
InternalClose() is called by TDataSet.Close(). In this method, you should deallocate all
resources associated with the dataset that were allocated by InternalOpen() or that were allo-
cated throughout the course of using the dataset. In this implementation, the data file is closed,
and we ensure that the index list has been persisted to disk. Additionally, the FRecordPos is set
to the BOF crack, and the data file record is zeroed out:

procedure TDDGDataSet.InternalClose;
begin
if TFileRec(FDataFile).Mode <> 0 then
CloseFile(FDataFile);

FIndexList.SaveToFile(FIdxName);
FIndexList.Clear;
if DefaultFields then
DestroyFields;

FRecordPos := -1;
FillChar(FDataFile, SizeOf(FDataFile), 0);

end;

InternalHandleException()
InternalHandleException() is called if an exception is raised while this component is being
read from or written to a stream. Unless you have a specific need to handle these exceptions,
you should implement this method as follows:

procedure TDDGDataSet.InternalHandleException;
begin
// standard implementation for this method:
Application.HandleException(Self);

end;

InternalInitFieldDefs()
In the InternalInitFieldDefs() method is where you should define the fields contained in
the dataset. This is done by instantiating TFieldDef objects, passing the TDataSet’s FieldDefs
property as the Owner. In this case, three TFieldDef objects are created, representing the three
fields in this dataset:

Database Development

PART IV
372

35.65227_Ch30CDx 11/30/99 12:22 PM Page 372

procedure TDDGDataSet.InternalInitFieldDefs;
begin
// create FieldDefs which map to each field in the data record
FieldDefs.Clear;
TFieldDef.Create(FieldDefs, ‘Name’, ftString, SizeOf(TNameStr), False,
1);
TFieldDef.Create(FieldDefs, ‘Height’, ftFloat, 0, False, 2);
TFieldDef.Create(FieldDefs, ‘ShoeSize’, ftInteger, 0, False, 3);

end;

InternalOpen()
The InternalOpen() method is called by TDataSet.Open(). In this method, you should open
the underlying data source, initialize any internal fields or properties, create the field defs if
necessary, and bind the field defs to the data. The following implementation of this method
opens the data file, loads the index list from a file, initializes the FRecordPos field and the
BookmarkSize property, and creates and binds the field defs. You’ll see from the following
code that this method also gives the user a chance to create the database files if they aren’t
found on disk:

procedure TDDGDataSet.InternalOpen;
var
HFile: THandle;

begin
// make sure table and index files exist
FIdxName := ChangeFileExt(FTableName, feDDGIndex);
if not (FileExists(FTableName) and FileExists(FIdxName)) then
begin
if MessageDlg(‘Table or index file not found. Create new table?’,
mtConfirmation, [mbYes, mbNo], 0) = mrYes then

begin
HFile := FileCreate(FTableName);
if HFile = INVALID_HANDLE_VALUE then
DatabaseError(‘Error creating table file’);

FileClose(HFile);
HFile := FileCreate(FIdxName);
if HFile = INVALID_HANDLE_VALUE then
DatabaseError(‘Error creating index file’);

FileClose(HFile);
end
else
DatabaseError(‘Could not open table’);

end;
// open data file
FileMode := fmShareDenyNone or fmOpenReadWrite;
AssignFile(FDataFile, FTableName);

Extending Database VCL

CHAPTER 30
373

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 373

Reset(FDataFile);
try
FIndexList.LoadFromFile(FIdxName); //initialize index TList from file
FRecordPos := -1; //initial record pos before BOF
BookmarkSize := SizeOf(Integer); //initialize bookmark size for VCL
InternalInitFieldDefs; //initialize FieldDef objects
// Create TField components when no persistent fields have been
// created
if DefaultFields then CreateFields;
BindFields(True); //bind FieldDefs to actual data

except
CloseFile(FDataFile);
FillChar(FDataFile, SizeOf(FDataFile), 0);
raise;

end;
end;

Database Development

PART IV
374

NOTE

Any resource allocations made in InternalOpen() should be freed in
InternalClose().

IsCursorOpen()
The IsCursorOpen() method is called internal to TDataSet while the dataset is being opened
in order to determine whether data is available even though the dataset is inactive. The
TDDGData implementation of this method returns True only if the data file has been opened, as
shown here:

function TDDGDataSet.IsCursorOpen: Boolean;
begin
// “Cursor” is open if data file is open. File is open if FDataFile’s
// Mode includes the FileMode in which the file was open.
Result := TFileRec(FDataFile).Mode <> 0;

end;

TIP

The preceding method illustrates an interesting feature of Object Pascal: a file of
record or untyped file can be typecast to a TFileRec in order to obtain low-level
information about the file. TFileRec is described in Chapter 12, “Working with Files.”

35.65227_Ch30CDx 11/30/99 12:22 PM Page 374

Optional Record Number Methods
If you want to take advantage of TDBGrid’s ability to scroll relative to the cursor position in the
dataset, you must override three methods:

function GetRecordCount: Integer; override;
function GetRecNo: Integer; override;
procedure SetRecNo(Value: Integer); override;

Although this feature makes sense for this implementation, in many cases this capability isn’t
practical or even possible. For example, if you’re working with a huge amount of data, it might
not be practical to obtain a record count, or if you’re communicating with a SQL server, this
information might not even be available.

This TDataSet implementation is fairly simple, and these methods are appropriately straight-
forward to implement:

function TDDGDataSet.GetRecordCount: Integer;
begin
Result := FIndexList.Count;

end;

function TDDGDataSet.GetRecNo: Integer;
begin
UpdateCursorPos;
if (FRecordPos = -1) and (RecordCount > 0) then
Result := 1

else
Result := FRecordPos + 1;

end;

procedure TDDGDataSet.SetRecNo(Value: Integer);
begin
if (Value >= 0) and (Value <= FIndexList.Count-1) then
begin
FRecordPos := Value - 1;
Resync([]);

end;
end;

TDDGDataSet
Listing 30.5 shows the DDG_DS unit, which contains the complete implementation of the
TDDGDataSet unit.

Extending Database VCL

CHAPTER 30
375

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 375

LISTING 30.5 The DDG_DS.pas Unit

unit DDG_DS;

interface

uses Windows, Db, Classes, DDG_Rec;

type

// Bookmark information record to support TDataset bookmarks:
PDDGBookmarkInfo = ^TDDGBookmarkInfo;
TDDGBookmarkInfo = record
BookmarkData: Integer;
BookmarkFlag: TBookmarkFlag;

end;

// List used to maintain access to file of record:
TIndexList = class(TList)
public
procedure LoadFromFile(const FileName: string); virtual;
procedure LoadFromStream(Stream: TStream); virtual;
procedure SaveToFile(const FileName: string); virtual;
procedure SaveToStream(Stream: TStream); virtual;

end;

// Specialized DDG TDataset descendant for our “table” data:
TDDGDataSet = class(TDataSet)
private
function GetDataFileSize: Integer;

public
FDataFile: TDDGDataFile;
FIdxName: string;
FIndexList: TIndexList;
FTableName: string;
FRecordPos: Integer;
FRecordSize: Integer;
FBufferSize: Integer;
procedure SetTableName(const Value: string);

protected
{ Mandatory overrides }
// Record buffer methods:
function AllocRecordBuffer: PChar; override;
procedure FreeRecordBuffer(var Buffer: PChar); override;
procedure InternalInitRecord(Buffer: PChar); override;
function GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult; override;

Database Development

PART IV
376

35.65227_Ch30CDx 11/30/99 12:22 PM Page 376

function GetRecordSize: Word; override;
procedure SetFieldData(Field: TField; Buffer: Pointer); override;
// Bookmark methods:
procedure GetBookmarkData(Buffer: PChar; Data: Pointer); override;
function GetBookmarkFlag(Buffer: PChar): TBookmarkFlag; override;
procedure InternalGotoBookmark(Bookmark: Pointer); override;
procedure InternalSetToRecord(Buffer: PChar); override;
procedure SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag);
override;

procedure SetBookmarkData(Buffer: PChar; Data: Pointer); override;
// Navigational methods:
procedure InternalFirst; override;
procedure InternalLast; override;
// Editing methods:
procedure InternalAddRecord(Buffer: Pointer; Append: Boolean);
override;

procedure InternalDelete; override;
procedure InternalPost; override;
// Misc methods:
procedure InternalClose; override;
procedure InternalHandleException; override;
procedure InternalInitFieldDefs; override;
procedure InternalOpen; override;
function IsCursorOpen: Boolean; override;
{ Optional overrides }
function GetRecordCount: Integer; override;
function GetRecNo: Integer; override;
procedure SetRecNo(Value: Integer); override;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean;
override;

// Additional procedures
procedure EmptyTable;

published
property Active;
property TableName: string read FTableName write SetTableName;
property BeforeOpen;
property AfterOpen;
property BeforeClose;
property AfterClose;
property BeforeInsert;
property AfterInsert;
property BeforeEdit;

Extending Database VCL

CHAPTER 30
377

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

continues

35.65227_Ch30CDx 11/30/99 12:22 PM Page 377

LISTING 30.5 Continued

property AfterEdit;
property BeforePost;
property AfterPost;
property BeforeCancel;
property AfterCancel;
property BeforeDelete;
property AfterDelete;
property BeforeScroll;
property AfterScroll;
property OnDeleteError;
property OnEditError;

// Additional Properties
property DataFileSize: Integer read GetDataFileSize;

end;

procedure Register;

implementation

uses BDE, DBTables, SysUtils, DBConsts, Forms, Controls, Dialogs;

const
feDDGTable = ‘.ddg’;
feDDGIndex = ‘.ddx’;
// note that file is not being locked!

{ TIndexList }

procedure TIndexList.LoadFromFile(const FileName: string);
var
F: TFileStream;

begin
F := TFileStream.Create(FileName, fmOpenRead or fmShareDenyWrite);
try
LoadFromStream;

finally
F.Free;

end;
end;

procedure TIndexList.LoadFromStream(Stream: TStream);
var
Value: Integer;

begin

Database Development

PART IV
378

35.65227_Ch30CDx 11/30/99 12:22 PM Page 378

while Stream.Position < Stream.Size do
begin
Stream.Read(Value, SizeOf(Value));
Add(Pointer(Value));

end;
ShowMessage(IntToStr(Count));

end;

procedure TIndexList.SaveToFile(const FileName: string);
var
F: TFileStream;

begin
F := TFileStream.Create(FileName, fmCreate or fmShareExclusive);
try
SaveToStream(F);

finally
F.Free;

end;
end;

procedure TIndexList.SaveToStream(Stream: TStream);
var
i: Integer;
Value: Integer;

begin
for i := 0 to Count - 1 do
begin
Value := Integer(Items[i]);
Stream.Write(Value, SizeOf(Value));

end;
end;

{ TDDGDataSet }

constructor TDDGDataSet.Create(AOwner: TComponent);
begin
FIndexList := TIndexList.Create;
FRecordSize := SizeOf(TDDGData);
FBufferSize := FRecordSize + SizeOf(TDDGBookmarkInfo);
inherited Create(AOwner);

end;

destructor TDDGDataSet.Destroy;
begin
inherited Destroy;
FIndexList.Free;

Extending Database VCL

CHAPTER 30
379

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

Lcontinues

35.65227_Ch30CDx 11/30/99 12:22 PM Page 379

LISTING 30.5 Continued

end;

function TDDGDataSet.AllocRecordBuffer: PChar;
begin
Result := AllocMem(FBufferSize);

end;

procedure TDDGDataSet.FreeRecordBuffer(var Buffer: PChar);
begin
FreeMem(Buffer);

end;

procedure TDDGDataSet.InternalInitRecord(Buffer: PChar);
begin
FillChar(Buffer^, FBufferSize, 0);

end;

function TDDGDataSet.GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult;

var
IndexPos: Integer;

begin
if FIndexList.Count < 1 then

Result := grEOF
else begin
Result := grOk;
case GetMode of
gmPrior:
if FRecordPos <= 0 then
begin
Result := grBOF;
FRecordPos := -1;

end
else
Dec(FRecordPos);

gmCurrent:
if (FRecordPos < 0) or (FRecordPos >= RecordCount) then

Result := grError;
gmNext:
if FRecordPos >= RecordCount-1 then
Result := grEOF

else
Inc(FRecordPos);

end;
if Result = grOk then

Database Development

PART IV
380

35.65227_Ch30CDx 11/30/99 12:22 PM Page 380

begin
IndexPos := Integer(FIndexList[FRecordPos]);
Seek(FDataFile, IndexPos);
BlockRead(FDataFile, PDDGData(Buffer)^, 1);
with PDDGBookmarkInfo(Buffer + FRecordSize)^ do
begin
BookmarkData := FRecordPos;
BookmarkFlag := bfCurrent;

end;
end
else if (Result = grError) and DoCheck then
DatabaseError(‘No records’);

end;
end;

function TDDGDataSet.GetRecordSize: Word;
begin
Result := FRecordSize;

end;

function TDDGDataSet.GetFieldData(Field: TField; Buffer: Pointer):
Boolean;

begin
Result := True;
case Field.Index of
0:
begin
Move(ActiveBuffer^, Buffer^, Field.Size);
Result := PChar(Buffer)^ <> #0;

end;
1: Move(PDDGData(ActiveBuffer)^.Height, Buffer^, Field.DataSize);
2: Move(PDDGData(ActiveBuffer)^.ShoeSize, Buffer^, Field.DataSize);

end;
end;

procedure TDDGDataSet.SetFieldData(Field: TField; Buffer: Pointer);
begin
case Field.Index of
0: Move(Buffer^, ActiveBuffer^, Field.Size);
1: Move(Buffer^, PDDGData(ActiveBuffer)^.Height, Field.DataSize);
2: Move(Buffer^, PDDGData(ActiveBuffer)^.ShoeSize, Field.DataSize);

end;
DataEvent(deFieldChange, Longint(Field));

end;

procedure TDDGDataSet.GetBookmarkData(Buffer: PChar; Data: Pointer);

Extending Database VCL

CHAPTER 30
381

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

continues

35.65227_Ch30CDx 11/30/99 12:22 PM Page 381

LISTING 30.5 Continued

begin
PInteger(Data)^ :=PDDGBookmarkInfo(Buffer + FRecordSize)^.BookmarkData;

end;

function TDDGDataSet.GetBookmarkFlag(Buffer: PChar): TBookmarkFlag;
begin
Result := PDDGBookmarkInfo(Buffer + FRecordSize)^.BookmarkFlag;

end;

procedure TDDGDataSet.InternalGotoBookmark(Bookmark: Pointer);
begin
FRecordPos := Integer(Bookmark);

end;

procedure TDDGDataSet.InternalSetToRecord(Buffer: PChar);
begin
// bookmark value is the same as an offset into the file
FRecordPos := PDDGBookmarkInfo(Buffer + FRecordSize)^.Bookmarkdata;

end;

procedure TDDGDataSet.SetBookmarkData(Buffer: PChar; Data: Pointer);
begin
PDDGBookmarkInfo(Buffer + FRecordSize)^.BookmarkData :=PInteger(Data)^;

end;

procedure TDDGDataSet.SetBookmarkFlag(Buffer: PChar;
Value: TBookmarkFlag);

begin
PDDGBookmarkInfo(Buffer + FRecordSize)^.BookmarkFlag := Value;

end;

procedure TDDGDataSet.InternalFirst;
begin
FRecordPos := -1;

end;

procedure TDDGDataSet.InternalInitFieldDefs;
begin
// create FieldDefs which map to each field in the data record
FieldDefs.Clear;
TFieldDef.Create(FieldDefs, ‘Name’, ftString, SizeOf(TNameStr), False,
1);

TFieldDef.Create(FieldDefs, ‘Height’, ftFloat, 0, False, 2);
TFieldDef.Create(FieldDefs, ‘ShoeSize’, ftInteger, 0, False, 3);

end;

Database Development

PART IV
382

35.65227_Ch30CDx 11/30/99 12:22 PM Page 382

procedure TDDGDataSet.InternalLast;
begin
FRecordPos := FIndexList.Count;

end;

procedure TDDGDataSet.InternalClose;
begin
if TFileRec(FDataFile).Mode <> 0 then
CloseFile(FDataFile);

FIndexList.SaveToFile(FIdxName);
FIndexList.Clear;
if DefaultFields then
DestroyFields;

FRecordPos := -1;
FillChar(FDataFile, SizeOf(FDataFile), 0);

end;

procedure TDDGDataSet.InternalHandleException;
begin
// standard implementation for this method:
Application.HandleException(Self);

end;

procedure TDDGDataSet.InternalDelete;
begin
FIndexList.Delete(FRecordPos);
if FRecordPos >= FIndexList.Count then Dec(FRecordPos);

end;

procedure TDDGDataSet.InternalAddRecord(Buffer: Pointer;
Append: Boolean);

var
RecPos: Integer;

begin
Seek(FDataFile, FileSize(FDataFile));
BlockWrite(FDataFile, PDDGData(Buffer)^, 1);
if Append then
begin
FIndexList.Add(Pointer(FileSize(FDataFile) - 1));
InternalLast;

end
else begin
if FRecordPos = -1 then RecPos := 0
else RecPos := FRecordPos;
FIndexList.Insert(RecPos, Pointer(FileSize(FDataFile) - 1));

Extending Database VCL

CHAPTER 30
383

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

Lcontinues

35.65227_Ch30CDx 11/30/99 12:22 PM Page 383

LISTING 30.5 Continued

end;
FIndexList.SaveToFile(FIdxName);

end;

procedure TDDGDataSet.InternalOpen;
var
HFile: THandle;

begin
// make sure table and index files exist
FIdxName := ChangeFileExt(FTableName, feDDGIndex);
if not (FileExists(FTableName) and FileExists(FIdxName)) then
begin
if MessageDlg(‘Table or index file not found. Create new table?’,
mtConfirmation, [mbYes, mbNo], 0) = mrYes then

begin
HFile := FileCreate(FTableName);
if HFile = INVALID_HANDLE_VALUE then
DatabaseError(‘Error creating table file’);

FileClose(HFile);
HFile := FileCreate(FIdxName);
if HFile = INVALID_HANDLE_VALUE then
DatabaseError(‘Error creating index file’);

FileClose(HFile);
end
else
DatabaseError(‘Could not open table’);

end;
// open data file
FileMode := fmShareDenyNone or fmOpenReadWrite;
AssignFile(FDataFile, FTableName);
Reset(FDataFile);
try
FIndexList.LoadFromFile(FIdxName); //initialize index TList from file
FRecordPos := -1; //initial record pos before BOF
BookmarkSize := SizeOf(Integer); //initialize bookmark size for VCL
InternalInitFieldDefs; //initialize FieldDef objects
// Create TField components when no persistent fields have been
// created
if DefaultFields then CreateFields;
BindFields(True); //bind FieldDefs to actual data

except
CloseFile(FDataFile);
FillChar(FDataFile, SizeOf(FDataFile), 0);
raise;

end;
end;

Database Development

PART IV
384

35.65227_Ch30CDx 11/30/99 12:22 PM Page 384

procedure TDDGDataSet.InternalPost;
var
RecPos, InsPos: Integer;

begin
if FRecordPos = -1 then
RecPos := 0

else begin
if State = dsEdit then RecPos := Integer(FIndexList[FRecordPos])
else RecPos := FileSize(FDataFile);

end;
Seek(FDataFile, RecPos);
BlockWrite(FDataFile, PDDGData(ActiveBuffer)^, 1);
if State <> dsEdit then
begin
if FRecordPos = -1 then InsPos := 0
else InsPos := FRecordPos;
FIndexList.Insert(InsPos, Pointer(RecPos));

end;
FIndexList.SaveToFile(FIdxName);

end;

function TDDGDataSet.IsCursorOpen: Boolean;
begin
// “Cursor” is open if data file is open. File is open if FDataFile’s
// Mode includes the FileMode in which the file was open.
Result := TFileRec(FDataFile).Mode <> 0;

end;

function TDDGDataSet.GetRecordCount: Integer;
begin
Result := FIndexList.Count;

end;

function TDDGDataSet.GetRecNo: Integer;
begin
UpdateCursorPos;
if (FRecordPos = -1) and (RecordCount > 0) then
Result := 1

else
Result := FRecordPos + 1;

end;

procedure TDDGDataSet.SetRecNo(Value: Integer);
begin
if (Value >= 0) and (Value <= FIndexList.Count-1) then
begin

Extending Database VCL

CHAPTER 30
385

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

Lcontinues

35.65227_Ch30CDx 11/30/99 12:22 PM Page 385

LISTING 30.5 Continued

FRecordPos := Value - 1;
Resync([]);

end;
end;

procedure TDDGDataSet.SetTableName(const Value: string);
begin
CheckInactive;
FTableName := Value;
if ExtractFileExt(FTableName) = ‘’ then
FTableName := FTableName + feDDGTable;

FIdxName := ChangeFileExt(FTableName, feDDGIndex);

end;

procedure Register;
begin
RegisterComponents(‘DDG’, [TDDGDataSet]);

end;

function TDDGDataSet.GetDataFileSize: Integer;
begin
Result := FileSize(FDataFile);

end;

procedure TDDGDataSet.EmptyTable;
var
HFile: THandle;

begin
Close;

DeleteFile(FTableName);
HFile := FileCreate(FTableName);
FileClose(HFile);

DeleteFile(FIdxName);
HFile := FileCreate(FIdxName);
FileClose(HFile);

Open;
end;

end.

Database Development

PART IV
386

35.65227_Ch30CDx 11/30/99 12:22 PM Page 386

Summary
This chapter demonstrated how to extend your Delphi database applications to incorporate fea-
tures that aren’t encapsulated by VCL. Additionally, you learned some of the rules and
processes for making direct calls into the BDE from Delphi applications. You also learned the
specifics for extending the behavior of TTable with regard to dBASE and Paradox tables.
Finally, you went step by step through the challenging process of creating a working TDataSet
descendant. In the next chapter, “Internet-Enabling your Applications with WebBroker,” you’ll
learn how to create server-side applications for the Web and deliver data to Web clients in real
time.

Extending Database VCL

CHAPTER 30
387

30

E
X

TEN
D

IN
G

D
A

TA
B

A
SE

V
C

L

35.65227_Ch30CDx 11/30/99 12:22 PM Page 387

35.65227_Ch30CDx 11/30/99 12:22 PM Page 388

CHAPTER

15
The Generic with Mono

IN THIS APPENDIX
• A list of the C Heads 0

• A list of the C Heads 0

• Some of the C Heads might be very,
very long 0

• These are C Heads only 0

• Some of the C Heads might be very,
very long 0

• A list of the C Heads 0

• A list of the C Heads 0

APPENDIX

A

IN THIS APPENDIX
• Layers of Handlers, Layers

of Severity 390

• Runtime Errors 391

APPENDIX

A
Error Messages and
Exceptions

44.65227_AppACDx 11/30/99 12:25 PM Page 389

One difference between good software and great software is that whereas good software runs
well, great software runs well and fails well. In Delphi programs, errors that are detected at
runtime usually are reported and handled as exceptions. This allows your code the opportunity
to respond to problems and recover (by backing up and trying another approach) or at least to
“degrade gracefully” (free allocated resources, close files, and display an error message),
instead of just crashing and making a mess of your system. Most exceptions in Delphi pro-
grams are raised and handled completely within the program; very few runtime errors actually
will bring a Delphi program to a screeching halt.

This appendix lists the most common error messages that a Delphi application can report and
provides field notes to help you find the cause of the error condition. Because each component
you add to your Delphi environment often has its own set of error messages, this list can never
be complete, so we’ll focus on the most common or most insidious error messages you’re
likely to face while developing and debugging your Delphi applications.

Layers of Handlers, Layers of Severity
Every Delphi program has two default exception handlers, one below the other. VCL provides
the default exception handler you’ll see most of the time. VCL wraps an exception handler
around the window procedure entry points of every VCL object. If an exception occurs while
your program is responding to a Windows message (which is what your program spends 99
percent of its lifetime doing) and the exception is not handled by your code or a VCL compo-
nent, the exception eventually will wind up stopping at the VCL default exception handler in
the window procedure. That exception handler calls Application.HandleException, which
will show the exception instance’s text message to the user in a pop-up message box. After
that, your program continues running and processing additional window messages.

The lowest-level exception handler lives at the heart of the Delphi RTL, several subbasements
below the default VCL exception handler. If an exception occurs outside the context of mes-
sage processing—such as during program startup or shutdown or during the execution of the
VCL default exception handler—and the exception goes unhandled, it eventually will wind up
stopping at the RTL default exception handler. At this level, there’s no recourse for recovery—
no message loop to keep things going. When activated, the RTL default exception handler dis-
plays a detailed error message to the user and then terminates the application.

In addition to the exception message text, the RTL default exception handler also reports the
address of the code that raised the exception, in the form of a hexadecimal address. Use the
Search, Find Error option in the Delphi IDE and enter this address in the dialog box. Delphi
will move the cursor to the place in your source code that corresponds to this address, if it can
locate the address and the source code.

Appendixes

PART VI
390

44.65227_AppACDx 11/30/99 12:25 PM Page 390

If Delphi responds with “Address Not Found,” this could mean that the error occurred in
another module (for example, a “wild” pointer overwrote memory in use by some other appli-
cation). More often, however, “Address Not Found” indicates that you have disabled line-
number information in the unit that the address corresponds to ({$D-}) or that you don’t have
source code for that unit. Double-check that you’re compiling your project with compiler
debug info enabled, in the Project, Options dialog box, Compiler page, Debugging section.
While you have the Project, Options dialog box open, check to see that the search path on the
Directories/Conditionals page contains all the source code directories you want to use during
debugging. If the Delphi IDE can’t find a source file, it can’t show you the source code line
that corresponds to the exception error address. Use Project, Build All to recompile all your
units with the new compiler settings.

Runtime Errors
This section will give you some pointers on what you should do when you experience errors in
the form of exceptions or Win32 API function failures. These types of errors are rarely fatal,
but you should know how to tackle them when the need arises.

Exceptions
Here we describe additional exceptions that Delphi’s VCL components can raise. Keep in mind
that custom components and your own code can (and often should) define additional exception
classes specific to the task at hand.

Several of the exception classes listed here describe related error conditions: families of errors.
The relationship of the exception classes to each other is captured by creating a general-pur-
pose exception class to represent the entire family and specific exception classes that inherit
from the general-purpose class. When you want to handle all errors in that family the same
way, use the general-purpose exception class in the on clause of your except block. When you
want to handle only certain specific errors from that family, use the specific exception classes
in on clauses in your except block.

In the following list, we use indentation to group related exception classes together beneath
their common generic ancestor class:

• Exception. This is the ancestor of all exception classes. There is nothing wrong with
using this class to raise exceptions in quick-and-dirty code, but in production code, you’ll
want to be able to distinguish between the multitude of families of errors that your appli-
cation can encounter. The best way to distinguish a family of related error conditions
from the rest of the pack is to use a custom exception class to report those related errors.

Error Messages and Exceptions

APPENDIX A
391

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

44.65227_AppACDx 11/30/99 12:25 PM Page 391

• EAbort. Referred to as Delphi’s “silent” exception, this exception is trapped by the VCL
default exception handler, but VCL does not inform the user that the exception occurred.
Use EAbort when you want to take advantage of the exception’s capability to abort and
unwind out of a complicated process, but you don’t want the user to see an error mes-
sage. Remember, the terms exception and error are not equivalent: exceptions are a
means of changing program flow to facilitate error handling (among other things).

• EAccessViolation. An access violation has occurred in the operating system. Usually
caused by a Nil or “wild” pointer.

• EAssertionFailed. The statement passed to the Assert() procedure evaluated to False.

• EBitsError. Raised when the Bits or Size property of a TBits object is out of bounds.

• EComponentError. This exception is raised in two situations. The first situation is when
you use RegisterClasses() to attempt to register a component outside the Register()
procedure. The second is when the name of your component is invalid or not unique.

• EControlC. The user has interrupted with the Ctrl+C key combination. This exception
only occurs within console-mode applications.

• EDbEditError. The user entered text into a TMaskEdit or TDbEdit component that’s
incompatible with the current edit mask.

• EDdeError. An error occurred during a DDE operation with any of the TDdeClientConv,
TDdeClientItem, TDdeServerConv, and TDdeServerItem components.

• EExternalException. This exception occurs when an unrecognized exception is raised
by the operating system.

• EInOutError. This exception is raised when any I/O error occurs in your program. This
exception will only occur when I/O checking is enabled using {$I+} in code or by
enabling I/O Checking on the Compiler page of the Project Options dialog in IDE.

• EIntError. This is the ancestor of all integer math exceptions. Here are the descendents
of this class:

• EDivByZero. This exception is raised when you divide an integral number by zero.
This exception is raised as a result of runtime error 200. This code example will
cause an EDivByZero exception:

var
I: integer;

begin
I := 0;
I := 10 div I; { exception raised here }

end;

• EIntOverflow. This exception is raised when you attempt to perform an operation
that overflows an integral variable beyond that variable type’s capacity. This excep-

Appendixes

PART VI
392

44.65227_AppACDx 11/30/99 12:25 PM Page 392

tion is raised as a result of runtime error 215. This exception will only be raised if
overflow checking is enabled using {$Q+} in code or by enabling Overflow
Checking on the Compiler page of the Project Options dialog in the IDE. The fol-
lowing code will cause this exception to be raised:

var
l: longint;

begin
l := MaxLongint;
l := l * l; { exception raised here }

end;

• ERangeError. This exception is raised when you attempt to index an array beyond
its declared bounds or when you attempt to store a value that’s too large in an inte-
gral type variable. This exception is raised as a result of runtime error 201. Range
checking must be enabled with {$R+} in code or by enabling Range Checking on
the Compiler page of the Project Options dialog in the IDE for this error to occur.
The following example will cause Delphi to raise this exception:

var
a: array[1..16] of integer;
i: integer;

begin
i := 17;
a[i] := 1; { exception raised here }

end;

• EIntfCastError. An attempt was made to cast an object or interface to an unsupported
interface.

• EInvalidCast. This exception is raised when you attempt to use the as operator to type-
cast a class to an incompatible class. This exception is raised as a result of runtime error
219. The following code will cause this exception to be raised:

var
B: TObject;

begin
B := TButton.Create(nil);
{ exception raised here - TMemo is not an ancestor of TButton }
with B as TMemo do
...

end;

• EInvalidGraphic. This exception is raised when you attempt to use LoadFromFile() on
a file that’s not a compatible graphics format in a class expecting a graphics file.

• EInvalidGraphicOperation. This exception is raised when you attempt to perform an
illegal operation on a graphic object. For example, resizing a TIcon is illegal.

Error Messages and Exceptions

APPENDIX A
393

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

44.65227_AppACDx 11/30/99 12:25 PM Page 393

• EInvalidOperation. This exception occurs when you try to display or perform any other
operation that requires a window handle on a control without a parent. Here’s an exam-
ple:

var
b: TBitBtn;

begin
b := TBitBtn.Create(Self);
b.SetFocus; { exception raised here }

end;

• EInvalidPointer. This exception is raised usually when you attempt to free an invalid
or already-freed portion of memory in a call to Dispose(), FreeMem(), or a class
destructor. This example causes an EInvalidPointer exception to be raised:

var
p: pointer;

begin
GetMem(p, 8);
FreeMem(p, 8);
FreeMem(p, 8); { exception raised here }

end;

• EListError. This exception will be raised if you try to index past the end of a TList
descendant. Here’s an example:

var
S: TStringList;
Strng: String;

begin
S := TStringList.Create;
S.Add(‘One String’);
Strng := S.Strings[2]; { exception raised here }

end;

• EMathError. This is the ancestor object from which the following floating-point excep-
tions are derived:

• EInvalidOp. This exception is raised when an invalid instruction is sent to the
numeric coprocessor. This exception is uncommon unless you control the
coprocessor directly with BASM code.

• EOverflow. This exception is raised as a result of floating-point overflow (that is,
when a value becomes too large to hold in a floating point variable). This excep-
tion corresponds to runtime error 205.

• EUnderflow. Raised as a result of floating-point underflow (that is, when a value
becomes too small to hold in a floating point variable). This exception corresponds
to runtime error 206.

• EZeroDivide. Raised when a floating point number is divided by zero.

Appendixes

PART VI
394

44.65227_AppACDx 11/30/99 12:25 PM Page 394

• EMCIDeviceError. This exception indicates that an error occurred in the TMediaPlayer
component. Most commonly, this exception is raised when the user attempts to play
some media whose type is unsupported by the hardware.

• EMenuError. This is a generic exception that occurs in almost any error condition involv-
ing a TMenu, TMenuItem, or TPopupMenu component.

• EOleCtrlError. This exception is reserved for ActiveX control wrapper errors, but it’s
currently not being used in VCL.

• EOleError. This exception is raised when an OLE Automation error occurs.

• EOleSysError. This exception is raised by the OleCheck() and OleError() rou-
tines when an error occurs while calling an OLE API function.

• EOleException. Raised when an error occurs inside of a safecall function
or procedure.

• EOutlineError. This is a generic exception that’s raised when an error occurs while
working with a TOutline component.

• EOutOfMemory. This exception is raised when you call New(), GetMem(), or a class con-
structor and not enough memory is available on the heap for the allocation. This excep-
tion corresponds to runtime error 203.

• EOutOfResources. This exception occurs when Windows cannot fill an allocation
request for a Windows resource, such as a window handle. This exception often
reflects bugs in your video driver, especially if you’re running in a high-color
(32KB or 64KB colors) mode. If this error goes away when you switch to using
the standard Windows VGA driver or to a lesser mode of your normal video driver,
it’s very likely that you’ve found a bug in your video driver. Contact your video
card manufacturer for a driver update.

• EPackageError. Raised when an error occurs loading, initializing, or finalizing a pack-
age.

• EParserError. Raised when Delphi is unable to parse your text form file back to the
binary DFM format. Generally, this is the result of a syntax error while editing the form
in the IDE.

• EPrinter. This is a generic exception that will be raised when an error occurs while
you’re trying to use the TPrinter object.

• EPrivilege. This exception indicates that an attempt was made to execute a privileged
instruction.

• EPropertyError. This exception is raised when an error occurs inside of a component
property editor.

• ERegistryException. The TRegistry and TRegIniFile objects raise this exception
when an error occurs while reading from or writing to the system Registry.

Error Messages and Exceptions

APPENDIX A
395

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

44.65227_AppACDx 11/30/99 12:25 PM Page 395

• EStackOverflow. This exception represents a serious operating system–level error in
management of the stack. This error should be rare since an application’s stack is dynam-
ically expanded as needed by the operating system, but can occur in low-memory condi-
tions.

• EReportError. This is a generic exception for an error that occurs while working with a
report component.

• EResNotFound. This exception is raised when there are problems loading a form from a
DFM file. This exception usually indicates that you’ve edited the DFM file to make it
invalid, the DFM or EXE file has become corrupted, or the DFM file was not linked into
the EXE. Make sure you haven’t deleted or altered the {$R *.DFM} directive in your
form unit.

• EStreamError. This exception is the base class of all stream exceptions. This exception
usually indicates a problem loading a TStrings from a stream or setting the capacity of a
memory stream. The following descendent exception classes signal other specific error
conditions:

• EFCreateError. Raised when an error occurs while creating a stream file. This
exception often indicates that a file can’t be created because the filename is invalid
or in use by another process.

• EFilerError. This exception is raised when you attempt to register the same class
twice using the RegisterClasses() procedure. This class also serves as the base
for other filer-related exceptions:

• EClassNotFound. This exception is raised when Delphi reads a component
class name from a stream but cannot find a declaration for the component in
its corresponding unit. Remember that code and declarations that are not
used by a program will not be copied into the EXE file by Delphi’s smart
linker.

• EInvalidImage. This exception is raised when you attempt to read compo-
nents from an invalid resource file.

• EMethodNotFound. This exception is raised when a method specified in the
DFM file or resource does not exist in the corresponding unit. This can hap-
pen if you’ve deleted code from the unit, recompiled the EXE, ignored the
many warnings about the DFM file containing references to deleted code,
and run the EXE anyway.

• EReadError. This exception occurs when your application doesn’t read the
number of bytes from a stream that it’s supposed to (for example, unexpected
end of file) or when Delphi cannot read a property.

Appendixes

PART VI
396

44.65227_AppACDx 11/30/99 12:25 PM Page 396

• EFOPenError. This exception is raised when the specified stream file cannot be
opened; it usually occurs when the file does not exist.

• EStringListError. This is a generic exception that’s raised when an error condition
results while working with a TStringList object.

• EThread. This is a TThread-related exception. Currently, this exception is only raised
when a user attempts to call Synchronize() on a waiting thread.

• ETreeViewError. This exception is raised when you pass an invalid item index to a
TTreeView method or property.

• EWin32Error. This exception is raised when an error occurs calling a Win32 API func-
tion. The message associated with this exception has error code and error string informa-
tion.

Win32 System Errors
When you encounter an error in calling a Win32 API function or procedure, the error code is
typically obtained by calling the GetLastError() function. Because the value returned from
GetLastError() is a DWORD number, it’s sometimes difficult to match that with an actual expla-
nation of what might be the problem. To help you better decipher error codes, Table A.1 con-
tains a list of the constant identifiers and values for the errors and a short description for each.

TABLE A.1 Win32 Error Codes

Constant Value Description

ERROR_SUCCESS 0 The operation completed successfully.

ERROR_INVALID_FUNCTION 1 The function is incorrect.

ERROR_FILE_NOT_FOUND 2 The system cannot find the file specified.

ERROR_PATH_NOT_FOUND 3 The system cannot find the path specified.

ERROR_TOO_MANY_OPEN_FILES 4 The system cannot open the file.

ERROR_ACCESS_DENIED 5 Access is denied.

ERROR_INVALID_HANDLE 6 The handle is invalid.

ERROR_ARENA_TRASHED 7 The storage control blocks were destroyed.

ERROR_NOT_ENOUGH_MEMORY 8 Not enough storage is available to process this
command.

ERROR_INVALID_BLOCK 9 The storage control block address is invalid.

ERROR_BAD_ENVIRONMENT 10 The environment is incorrect.

ERROR_BAD_FORMAT 11 An attempt was made to load a program with
an incorrect format.

Error Messages and Exceptions

APPENDIX A
397

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 397

TABLE A.1 Continued

Constant Value Description

ERROR_INVALID_ACCESS 12 The access code is invalid.

ERROR_INVALID_DATA 13 The data is invalid.

ERROR_OUTOFMEMORY 14 Not enough storage is available to complete
this operation.

ERROR_INVALID_DRIVE 15 The system cannot find the drive specified.

ERROR_CURRENT_DIRECTORY $10 The directory cannot be removed.

ERROR_NOT_SAME_DEVICE 17 The system cannot move the file to a different
disk drive.

ERROR_NO_MORE_FILES 18 There are no more files.

ERROR_WRITE_PROTECT 19 The media is write-protected.

ERROR_BAD_UNIT 20 The system cannot find the device specified.

ERROR_NOT_READY 21 The device is not ready.

ERROR_BAD_COMMAND 22 The device does not recognize the command.

ERROR_CRC 23 A data error (cyclic redundancy check) has
occurred.

ERROR_BAD_LENGTH 24 The program issued a command, but the com-
mand length is incorrect.

ERROR_SEEK 25 The drive cannot locate a specific area or
track on the disk.

ERROR_NOT_DOS_DISK 26 The specified disk or diskette cannot be
accessed.

ERROR_SECTOR_NOT_FOUND 27 The drive cannot find the sector requested.

ERROR_OUT_OF_PAPER 28 The printer is out of paper.

ERROR_WRITE_FAULT 29 The system cannot write to the specified
device.

ERROR_READ_FAULT 30 The system cannot read from the specified
device.

ERROR_GEN_FAILURE 31 A device attached to the system is not func-
tioning.

ERROR_SHARING_VIOLATION $20 The process cannot access the file because
another process is using it.

ERROR_LOCK_VIOLATION 33 The process cannot access the file because
another process has locked a portion of the
file.

Appendixes

PART VI
398

44.65227_AppACDx 11/30/99 12:25 PM Page 398

Constant Value Description

ERROR_WRONG_DISK 34 The wrong diskette is in the drive. Insert %2
(Volume Serial Number: %3) into drive %1.

ERROR_SHARING_BUFFER_EXCEEDED 36 Too many files have been opened for sharing.

ERROR_HANDLE_EOF 38 The end of the file has been reached.

ERROR_HANDLE_DISK_FULL 39 The disk is full.

ERROR_NOT_SUPPORTED 50 The network request is not supported.

ERROR_REM_NOT_LIST 51 The remote computer is not available.

ERROR_DUP_NAME 52 A duplicate name exists on the network.

ERROR_BAD_NETPATH 53 The network path was not found.

ERROR_NETWORK_BUSY 54 The network is busy.

ERROR_DEV_NOT_EXIST 55 The specified network resource or device is
no longer available.

ERROR_TOO_MANY_CMDS 56 The network BIOS command limit has been
reached.

ERROR_ADAP_HDW_ERR 57 A network adapter hardware error occurred.

ERROR_BAD_NET_RESP 58 The specified server cannot perform the
requested operation.

ERROR_UNEXP_NET_ERR 59 An unexpected network error has occurred.

ERROR_BAD_REM_ADAP 60 The remote adapter is not compatible.

ERROR_PRINTQ_FULL 61 The printer queue is full.

ERROR_NO_SPOOL_SPACE 62 Space to store the file waiting to be printed is
not available on the server.

ERROR_PRINT_CANCELLED 63 Your file waiting to be printed was deleted.

ERROR_NETNAME_DELETED $40 The specified network name is no longer
available.

ERROR_NETWORK_ACCESS_DENIED 65 Network access is denied.

ERROR_BAD_DEV_TYPE 66 The network resource type is not correct.

ERROR_BAD_NET_NAME 67 The network name cannot be found.

ERROR_TOO_MANY_NAMES 68 The name limit for the local computer net-
work adapter card was exceeded.

ERROR_TOO_MANY_SESS 69 The network BIOS session limit was
exceeded.

ERROR_SHARING_PAUSED 70 The remote server has been paused or is in the
process of being started.

Error Messages and Exceptions

APPENDIX A
399

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 399

TABLE A.1 Continued

Constant Value Description

ERROR_REQ_NOT_ACCEP 71 No more connections can be made to this
remote computer at this time because there
are already as many connections as the com-
puter can accept.

ERROR_REDIR_PAUSED 72 The specified printer or disk device has been
paused.

ERROR_FILE_EXISTS 80 The file exists.

ERROR_CANNOT_MAKE 82 The directory or file cannot be created.

ERROR_FAIL_I24 83 A failure has occurred on INT 24.

ERROR_OUT_OF_STRUCTURES 84 Storage to process this request is not avail-
able.

ERROR_OUT_OF_STRUCTURES 85 The local device name is already in use.

ERROR_INVALID_PASSWORD 86 The specified network password is not cor-
rect.

ERROR_INVALID_PARAMETER 87 The parameter is incorrect.

ERROR_NET_WRITE_FAULT 88 A write fault occurred on the network.

ERROR_NO_PROC_SLOTS 89 The system cannot start another process at
this time.

ERROR_TOO_MANY_SEMAPHORES 100 Another system semaphore cannot be created.

ERROR_EXCL_SEM_ALREADY_OWNED 101 The exclusive semaphore is owned by another
process.

ERROR_SEM_IS_SET 102 The semaphore is set and cannot be closed.

ERROR_TOO_MANY_SEM_REQUESTS 103 The semaphore cannot be set again.

ERROR_INVALID_AT_INTERRUPT_TIME 104 Exclusive semaphores cannot be requested at
interrupt time.

ERROR_SEM_OWNER_DIED 105 The previous ownership of this semaphore has
ended.

ERROR_SEM_USER_LIMIT 106 Insert the diskette for drive %1.

ERROR_DISK_CHANGE 107 The program has stopped because an alternate
diskette was not inserted.

ERROR_DRIVE_LOCKED 108 The disk is in use or locked by another
process.

ERROR_BROKEN_PIPE 109 The pipe has been ended.

ERROR_OPEN_FAILED 110 The system cannot open the device or file
specified.

Appendixes

PART VI
400

44.65227_AppACDx 11/30/99 12:25 PM Page 400

Constant Value Description

ERROR_BUFFER_OVERFLOW 111 The filename is too long.

ERROR_DISK_FULL 112 The disk does not contain enough space.

ERROR_NO_MORE_SEARCH_HANDLES 113 No more internal file identifiers are available.

ERROR_INVALID_TARGET_HANDLE 114 The target internal file identifier is incorrect.

ERROR_INVALID_CATEGORY 117 The IOCTL call made by the application pro-
gram is not correct.

ERROR_INVALID_VERIFY_SWITCH 118 The verify-on-write switch parameter value is
not correct.

ERROR_BAD_DRIVER_LEVEL 119 The system does not support the command
requested.

ERROR_CALL_NOT_IMPLEMENTED 120 This function is only valid in Windows NT
mode.

ERROR_SEM_TIMEOUT 121 The semaphore timeout period has expired.

ERROR_INSUFFICIENT_BUFFER 122 The data area passed to a system call is too
small.

ERROR_INVALID_NAME 123 The filename, directory name, or volume label
syntax is incorrect.

ERROR_INVALID_LEVEL 124 The system call level is not correct.

ERROR_NO_VOLUME_LABEL 125 The disk has no volume label.

ERROR_MOD_NOT_FOUND 126 The specified module could not be found.

ERROR_PROC_NOT_FOUND 127 The specified procedure could not be found.

ERROR_WAIT_NO_CHILDREN $80 There are no child processes to wait for.

ERROR_CHILD_NOT_COMPLETE 129 The %1 application cannot run in Windows
NT mode.

ERROR_DIRECT_ACCESS_HANDLE 130 An attempt was made to use a file handle to
an open disk partition for an operation other
than raw disk I/O.

ERROR_NEGATIVE_SEEK 131 An attempt was made to move the file pointer
before the beginning of the file.

ERROR_SEEK_ON_DEVICE 132 The file pointer cannot be set on the specified
device or file.

ERROR_IS_JOIN_TARGET 133 A JOIN or SUBST command cannot be used
for a drive that contains previously joined
drives.

Error Messages and Exceptions

APPENDIX A
401

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 401

TABLE A.1 Continued

Constant Value Description

ERROR_IS_JOINED 134 An attempt was made to use a JOIN or SUBST
command on a drive that has already been
joined.

ERROR_IS_SUBSTED 135 An attempt was made to use a JOIN or SUBST
command on a drive that has already been
substituted.

ERROR_NOT_JOINED 136 The system tried to delete the join of a drive
that’s not joined.

ERROR_NOT_SUBSTED 137 The system tried to delete the substitution of a
drive that’s not substituted.

ERROR_JOIN_TO_JOIN 138 The system tried to join a drive to a directory
on a joined drive.

ERROR_SUBST_TO_SUBST 139 The system tried to substitute a drive to a
directory on a substituted drive.

ERROR_JOIN_TO_SUBST 140 The system tried to join a drive to a directory
on a substituted drive.

ERROR_SUBST_TO_JOIN 141 The system tried to perform a SUBST com-
mand on a drive to a directory on a joined
drive.

ERROR_BUSY_DRIVE 142 The system cannot perform a JOIN or SUBST
operation at this time.

ERROR_SAME_DRIVE 143 The system cannot join or substitute a drive to
or for a directory on the same drive.

ERROR_DIR_NOT_ROOT 144 The directory is not a subdirectory of the root
directory.

ERROR_DIR_NOT_EMPTY 145 The directory is not empty.

ERROR_IS_SUBST_PATH 146 The path specified is being used in a substi-
tute.

ERROR_IS_JOIN_PATH 147 Not enough resources are available to process
this command.

ERROR_PATH_BUSY 148 The path specified cannot be used at this time.

ERROR_IS_SUBST_TARGET 149 An attempt was made to join or substitute a
drive for which a directory on the drive is the
target of a previous substitute.

Appendixes

PART VI
402

44.65227_AppACDx 11/30/99 12:25 PM Page 402

Constant Value Description

ERROR_SYSTEM_TRACE 150 System trace information was not specified in
your CONFIG.SYS file or tracing is disal-
lowed.

ERROR_INVALID_EVENT_COUNT 151 The number of specified semaphore events for
DosMuxSemWait is not correct.

ERROR_TOO_MANY_MUXWAITERS 152 DosMuxSemWait did not execute; too many
semaphores are already set.

ERROR_INVALID_LIST_FORMAT 153 The DosMuxSemWait list is not correct.

ERROR_LABEL_TOO_LONG 154 The volume label you entered exceeds the 11-
character limit. The first 11 characters were
written to disk. Any characters that exceeded
the 11-character limit were automatically
deleted.

ERROR_TOO_MANY_TCBS 155 Cannot create another thread.

ERROR_SIGNAL_REFUSED 156 The recipient process has refused the signal.

ERROR_DISCARDED 157 The segment is already discarded and cannot
be locked.

ERROR_NOT_LOCKED 158 The segment is already unlocked.

ERROR_BAD_THREADID_ADDR 159 The address for the thread ID is not correct.

ERROR_BAD_ARGUMENTS 160 The argument string passed to DosExecPgm is
not correct.

ERROR_BAD_PATHNAME 161 The specified path is invalid.

ERROR_SIGNAL_PENDING 162 A signal is already pending.

ERROR_MAX_THRDS_REACHED 164 No more threads can be created in the system.

ERROR_LOCK_FAILED 167 A region of a file cannot be locked.

ERROR_BUSY 170 The requested resource is in use.

ERROR_CANCEL_VIOLATION 173 A lock request was not outstanding for the
supplied cancel region.

ERROR_ATOMIC_LOCKS_NOT_SUPPORTED 174 The file system does not support atomic
changes to the lock type.

ERROR_INVALID_SEGMENT_NUMBER 180 The system detected a segment number that
was not correct.

ERROR_INVALID_ORDINAL 182 The operating system cannot run %1.

ERROR_ALREADY_EXISTS 183 Cannot create a file when that file already
exists.

Error Messages and Exceptions

APPENDIX A
403

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 403

TABLE A.1 Continued

Constant Value Description

ERROR_INVALID_FLAG_NUMBER 186 The flag passed is not correct.

ERROR_SEM_NOT_FOUND 187 The specified system semaphore name was
not found.

ERROR_INVALID_STARTING_CODESEG 188 The operating system cannot run %1.

ERROR_INVALID_STACKSEG 189 The operating system cannot run %1.

ERROR_INVALID_MODULETYPE 190 The operating system cannot run %1.

ERROR_INVALID_EXE_SIGNATURE 191 Windows NT mode cannot run %1.

ERROR_EXE_MARKED_INVALID 192 The operating system cannot run %1.

ERROR_BAD_EXE_FORMAT 193 %1 is not a valid Windows NT application.

ERROR_ITERATED_DATA_EXCEEDS_64k 194 The operating system cannot run %1.

ERROR_INVALID_MINALLOCSIZE 195 The operating system cannot run %1.

ERROR_DYNLINK_FROM_INVALID_RING 196 The operating system cannot run this applica-
tion program.

ERROR_IOPL_NOT_ENABLED 197 The operating system is not presently config-
ured to run this application.

ERROR_INVALID_SEGDPL 198 The operating system cannot run %1.

ERROR_AUTODATASEG_EXCEEDS_64k 199 The operating system cannot run this applica-
tion program.

ERROR_RING2SEG_MUST_BE_MOVABLE 200 The code segment cannot be greater than or
equal to 64KB.

ERROR_RELOC_CHAIN_XEEDS_SEGLIM 201 The operating system cannot run %1.

ERROR_INFLOOP_IN_RELOC_CHAIN 202 The operating system cannot run %1.

ERROR_ENVVAR_NOT_FOUND 203 The system could not find the environment
option that was entered.

ERROR_NO_SIGNAL_SENT 205 No process in the command subtree has a sig-
nal handler.

ERROR_FILENAME_EXCED_RANGE 206 The filename or extension is too long.

ERROR_RING2_STACK_IN_USE 207 The ring 2 stack is in use.

ERROR_META_EXPANSION_TOO_LONG 208 The global filename characters (such as * and
?) are entered incorrectly or too many global
filename characters are specified.

ERROR_INVALID_SIGNAL_NUMBER 209 The signal being posted is not correct.

ERROR_THREAD_1_INACTIVE 210 The signal handler cannot be set.

Appendixes

PART VI
404

44.65227_AppACDx 11/30/99 12:25 PM Page 404

Constant Value Description

ERROR_LOCKED 212 The segment is locked and cannot be reallo-
cated.

ERROR_TOO_MANY_MODULES 214 Too many dynamic link modules are attached
to this program or dynamic link module.

ERROR_NESTING_NOT_ALLOWED 215 Calls can’t be nested to LoadModule.

ERROR_BAD_PIPE 230 The pipe state is invalid.

ERROR_PIPE_BUSY 231 All pipe instances are busy.

ERROR_NO_DATA 232 The pipe is being closed.

ERROR_PIPE_NOT_CONNECTED 233 No process is on the other end of the pipe.

ERROR_MORE_DATA 234 More data is available.

ERROR_VC_DISCONNECTED 240 The session was cancelled.

ERROR_INVALID_EA_NAME 254 The specified extended attribute name was
invalid.

ERROR_EA_LIST_INCONSISTENT 255 The extended attributes are inconsistent.

ERROR_NO_MORE_ITEMS 259 No more data is available.

ERROR_CANNOT_COPY 266 The Copy API cannot be used.

ERROR_DIRECTORY 267 The directory name is invalid.

ERROR_EAS_DIDNT_FIT 275 The extended attributes did not fit in the
buffer.

ERROR_EA_FILE_CORRUPT 276 The extended attribute file on the mounted file
system is corrupt.

ERROR_EA_TABLE_FULL 277 The extended attribute table file is full.

ERROR_INVALID_EA_HANDLE 278 The specified extended attribute handle is
invalid.

ERROR_EAS_NOT_SUPPORTED 282 The mounted file system does not support
extended attributes.

ERROR_NOT_OWNER 288 An attempt has been made to release a mutex
not owned by the caller.

ERROR_TOO_MANY_POSTS 298 Too many posts were made to a semaphore.

ERROR_PARTIAL_COPY 299 Only part of a Read/Write
ProcessMemory request was completed.

ERROR_MR_MID_NOT_FOUND 317 The system cannot find a message for mes-
sage number $%1 in message file for %2.

ERROR_INVALID_ADDRESS 487 Attempt to access invalid address.

Error Messages and Exceptions

APPENDIX A
405

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 405

TABLE A.1 Continued

Constant Value Description

ERROR_ARITHMETIC_OVERFLOW 534 The arithmetic result exceeded 32 bits.

ERROR_PIPE_CONNECTED 535 A process is on the other end of the pipe.

ERROR_PIPE_LISTENING 536 A pipe is waiting for a process to open the
other end of the pipe.

ERROR_EA_ACCESS_DENIED 994 Access to the extended attribute was denied.

ERROR_OPERATION_ABORTED 995 The I/O operation has been aborted because
of a thread exit or an application request.

ERROR_IO_INCOMPLETE 996 The overlapped I/O event is not in a signaled
state.

ERROR_IO_PENDING 997 The overlapped I/O operation is in progress.

ERROR_NOACCESS 998 Access to the memory location is invalid.

ERROR_SWAPERROR 999 An error has occurred in performing in page
operation.

ERROR_STACK_OVERFLOW 1001 Recursion is too deep and the stack over-
flowed.

ERROR_INVALID_MESSAGE 1002 The window cannot act on the sent message.

ERROR_CAN_NOT_COMPLETE 1003 This function cannot be completed.

ERROR_INVALID_FLAGS 1004 Flags are invalid.

ERROR_UNRECOGNIZED_VOLUME 1005 The volume does not contain a recognized file
system. Make sure that all required file sys-
tem drivers are loaded and that the volume is
not corrupt.

ERROR_FILE_INVALID 1006 The volume for a file has been externally
altered such that the opened file is no longer
valid.

ERROR_FULLSCREEN_MODE 1007 The requested operation cannot be performed
in full-screen mode.

ERROR_NO_TOKEN 1008 An attempt was made to reference a token
that does not exist.

ERROR_BADDB 1009 The configuration Registry database is cor-
rupt.

ERROR_BADKEY 1010 The configuration Registry key is invalid.

ERROR_CANTOPEN 1011 The configuration Registry key could not be
opened.

Appendixes

PART VI
406

44.65227_AppACDx 11/30/99 12:25 PM Page 406

Constant Value Description

ERROR_CANTREAD 1012 The configuration Registry key could not be
read.

ERROR_CANTWRITE 1013 The configuration Registry key could not be
written.

ERROR_REGISTRY_RECOVERED 1014 One of the files in the Registry database had
to be recovered by use of a log or alternate
copy. The recovery was successful.

ERROR_REGISTRY_CORRUPT 1015 The Registry is corrupt. The structure of one
of the files that contains Registry data is cor-
rupt, the system’s image of the file in memory
is corrupt, or the file could not be recovered
because the alternate copy or log was absent
or corrupt.

ERROR_REGISTRY_IO_FAILED 1016 An I/O operation initiated by the Registry
failed and was unable to be recovered. The
Registry could not read in, write out, or flush
one of the files that contains the system’s
image of the Registry.

ERROR_NOT_REGISTRY_FILE 1017 The system has attempted to load or restore a
file into the Registry, but the specified file is
not in a Registry file format.

ERROR_KEY_DELETED 1018 An illegal operation was attempted on a
Registry key that has been marked for dele-
tion.

ERROR_NO_LOG_SPACE 1019 The system could not allocate the required
space in a Registry log.

ERROR_KEY_HAS_CHILDREN 1020 A symbolic link could not be created in a
Registry key that already has subkeys or val-
ues.

ERROR_CHILD_MUST_BE_VOLATILE 1021 A stable subkey under a volatile parent key
could not be created.

ERROR_NOTIFY_ENUM_DIR 1022 A “notify change” request is being completed,
and the information is not being returned in
the caller’s buffer. The caller now needs to
enumerate the files to find the changes.

ERROR_DEPENDENT_SERVICES_RUNNING 1051 A stop control has been sent to a service upon
which other running services depend.

Error Messages and Exceptions

APPENDIX A
407

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 407

TABLE A.1 Continued

Constant Value Description

ERROR_INVALID_SERVICE_CONTROL 1052 The requested control is not valid for this ser-
vice.

ERROR_SERVICE_REQUEST_TIMEOUT 1053 The service did not respond to the start or
control request in a timely fashion.

ERROR_SERVICE_NO_THREAD 1054 A thread could not be created for the service.

ERROR_SERVICE_DATABASE_LOCKED 1055 The service database is locked.

ERROR_SERVICE_ALREADY_RUNNING 1056 An instance of the service is already running.

ERROR_INVALID_SERVICE_ACCOUNT 1057 The account name is invalid or does not exist.

ERROR_SERVICE_DISABLED 1058 The specified service is disabled and cannot
be started.

ERROR_CIRCULAR_DEPENDENCY 1059 A circular service dependency was specified.

ERROR_SERVICE_DOES_NOT_EXIST 1060 The specified service does not exist as an
installed service.

ERROR_SERVICE_CANNOT_ACCEPT_CTRL 1061 The service cannot accept control messages at
this time.

ERROR_SERVICE_NOT_ACTIVE 1062 The service has not been started.

ERROR_FAILED_SERVICE_CONTROLLER 1063 The service process could not connect to the
service controller.

ERROR_EXCEPTION_IN_SERVICE 1064 An exception occurred in the service when
handling the control request.

ERROR_DATABASE_DOES_NOT_EXIST 1065 The database specified does not exist.

ERROR_SERVICE_SPECIFIC_ERROR 1066 The service has returned a service-specific
error code.

ERROR_PROCESS_ABORTED 1067 The process terminated unexpectedly.

ERROR_SERVICE_DEPENDENCY_FAIL 1068 The dependency service or group failed to
start.

ERROR_SERVICE_LOGON_FAILED 1069 The service did not start due to a logon fail-
ure.

ERROR_SERVICE_START_HANG 1070 After starting, the service hung up in a start-
pending state.

ERROR_INVALID_SERVICE_LOCK 1071 The specified service database lock is invalid.

ERROR_SERVICE_MARKED_FOR_DELETE 1072 The specified service has been marked for
deletion.

ERROR_SERVICE_EXISTS 1073 The specified service already exists.

Appendixes

PART VI
408

44.65227_AppACDx 11/30/99 12:25 PM Page 408

Constant Value Description

ERROR_ALREADY_RUNNING_LKG 1074 The system is currently running with the last-
known-good configuration.

ERROR_SERVICE_DEPENDENCY_DELETED 1075 The dependency service does not exist or has
been marked for deletion.

ERROR_BOOT_ALREADY_ACCEPTED 1076 The current boot has already been accepted
for use as the last-known-good control set.

ERROR_SERVICE_NEVER_STARTED 1077 No attempts to start the service have been
made since the last boot.

ERROR_DUPLICATE_SERVICE_NAME 1078 The name is already in use as either a service
name or a service display name.

ERROR_END_OF_MEDIA 1100 The physical end of the tape has been
reached.

ERROR_FILEMARK_DETECTED 1101 A tape access reached a filemark.

ERROR_BEGINNING_OF_MEDIA 1102 The beginning of the tape or partition was
encountered.

ERROR_SETMARK_DETECTED 1103 A tape access reached the end of a set of files.

ERROR_NO_DATA_DETECTED 1104 No more data is on the tape.

ERROR_PARTITION_FAILURE 1105 The tape could not be partitioned.

ERROR_INVALID_BLOCK_LENGTH 1106 During the access of a new tape of a multivol-
ume partition, the current block size is incor-
rect.

ERROR_DEVICE_NOT_PARTITIONED 1107 The tape partition information could not be
found when a tape was loaded.

ERROR_UNABLE_TO_LOCK_MEDIA 1108 The media-eject mechanism could not be
locked.

ERROR_UNABLE_TO_UNLOAD_MEDIA 1109 The media could not be loaded.

ERROR_MEDIA_CHANGED 1110 The media in the drive may have changed.

ERROR_BUS_RESET 1111 The I/O bus was reset.

ERROR_NO_MEDIA_IN_DRIVE 1112 No media was in the drive.

ERROR_NO_UNICODE_TRANSLATION 1113 No mapping for the Unicode character exists
in the target multibyte code page.

ERROR_DLL_INIT_FAILED 1114 A dynamic link library (DLL) initialization
routine failed.

ERROR_SHUTDOWN_IN_PROGRESS 1115 A system shutdown is in progress.

Error Messages and Exceptions

APPENDIX A
409

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 409

TABLE A.1 Continued

Constant Value Description

ERROR_NO_SHUTDOWN_IN_PROGRESS 1116 The system shutdown could not be aborted
because no shutdown was in progress.

ERROR_IO_DEVICE 1117 The request could not be performed because
of an I/O device error.

ERROR_SERIAL_NO_DEVICE 1118 No serial device was successfully initialized.
The serial driver will unload.

ERROR_IRQ_BUSY 1119 A device could not be opened that was shar-
ing an interrupt request (IRQ) with other
devices. At least one other device that uses
that IRQ was already opened.

ERROR_MORE_WRITES 1120 A serial I/O operation was completed by
another write to the serial port. (IOCTL_SER-
IAL_XOFF_COUNTER reached zero.)

ERROR_COUNTER_TIMEOUT 1121 A serial I/O operation completed because the
timeout period expired.
(IOCTL_SERIAL_XOFF_COUNTER did not
reach zero.)

ERROR_FLOPPY_ID_MARK_NOT_FOUND 1122 No ID address mark was found on the floppy
disk.

ERROR_FLOPPY_WRONG_CYLINDER 1123 A mismatch occurred between the floppy disk
sector ID field and the floppy disk controller
track address.

ERROR_FLOPPY_UNKNOWN_ERROR 1124 The floppy disk controller reported an error
that the floppy disk driver does not recognize.

ERROR_FLOPPY_BAD_REGISTERS 1125 The floppy disk controller returned inconsis-
tent results in its registers.

ERROR_DISK_RECALIBRATE_FAILED 1126 During a hard disk access, a recalibrate opera-
tion failed, even after retries.

ERROR_DISK_OPERATION_FAILED 1127 During a hard disk access, a disk operation
failed, even after retries.

ERROR_DISK_RESET_FAILED 1128 During a hard disk access, a disk controller
reset was needed, but even that failed.

ERROR_EOM_OVERFLOW 1129 The physical end of the tape was encountered.

ERROR_NOT_ENOUGH_SERVER_MEMORY 1130 Not enough server storage is available to
process this command.

Appendixes

PART VI
410

44.65227_AppACDx 11/30/99 12:25 PM Page 410

Constant Value Description

ERROR_POSSIBLE_DEADLOCK 1131 A potential deadlock condition has been
detected.

ERROR_MAPPED_ALIGNMENT 1132 The base address or the file offset specified
does not have the proper alignment.

ERROR_SET_POWER_STATE_VETOED 1140 An attempt to change the system power state
was vetoed by another application or driver.

ERROR_SET_POWER_STATE_FAILED 1141 The system BIOS failed an attempt to change
the system power state.

ERROR_OLD_WIN_VERSION 1150 The specified program requires a newer ver-
sion of Windows.

ERROR_APP_WRONG_OS 1151 The specified program is not a Windows or
MS-DOS program.

ERROR_SINGLE_INSTANCE_APP 1152 You cannot start more than one instance of the
specified program.

ERROR_RMODE_APP 1153 You cannot start more than one instance of the
specified program.

ERROR_INVALID_DLL 1154 One of the library files needed to run this
application is damaged.

ERROR_NO_ASSOCIATION 1155 No application is associated with the specified
file for this operation.

ERROR_DDE_FAIL 1156 An error occurred in sending the command to
the application.

ERROR_DLL_NOT_FOUND 1157 One of the library files needed to run this
application cannot be found.

ERROR_BAD_USERNAME 2202 The specified username is invalid.

ERROR_NOT_CONNECTED 2250 This network connection does not exist.

ERROR_OPEN_FILES 2401 This network connection has files open or
requests pending.

ERROR_ACTIVE_CONNECTIONS 2402 Active connections still exist.

ERROR_DEVICE_IN_USE 2404 The device is in use by an active process and
cannot be disconnected.

ERROR_BAD_DEVICE 1200 The specified device name is invalid.

ERROR_CONNECTION_UNAVAIL 1201 The device is not currently connected, but it is
a remembered connection.

ERROR_DEVICE_ALREADY_REMEMBERED 1202 An attempt was made to remember a device
that had previously been remembered.

Error Messages and Exceptions

APPENDIX A
411

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 411

TABLE A.1 Continued

Constant Value Description

ERROR_NO_NET_OR_BAD_PATH 1203 No network provider accepted the given net-
work path.

ERROR_BAD_PROVIDER 1204 The specified network provider name is
invalid.

ERROR_CANNOT_OPEN_PROFILE 1205 The network connection profile could not be
opened.

ERROR_BAD_PROFILE 1206 The network connection profile is corrupt.

ERROR_NOT_CONTAINER 1207 A noncontainer cannot be enumerated.

ERROR_EXTENDED_ERROR 1208 An extended error has occurred.

ERROR_INVALID_GROUPNAME 1209 The format of the specified group name is
invalid.

ERROR_INVALID_COMPUTERNAME 1210 The format of the specified computer name is
invalid.

ERROR_INVALID_EVENTNAME 1211 The format of the specified event name is
invalid.

ERROR_INVALID_DOMAINNAME 1212 The format of the specified domain name is
invalid.

ERROR_INVALID_SERVICENAME 1213 The format of the specified service name is
invalid.

ERROR_INVALID_NETNAME 1214 The format of the specified network name is
invalid.

ERROR_INVALID_SHARENAME 1215 The format of the specified share name is
invalid.

ERROR_INVALID_PASSWORDNAME 1216 The format of the specified password is
invalid.

ERROR_INVALID_MESSAGENAME 1217 The format of the specified message name is
invalid.

ERROR_INVALID_MESSAGEDEST 1218 The format of the specified message destina-
tion is invalid.

ERROR_SESSION_CREDENTIAL_CONFLIC 1219 The credentials supplied conflict with an
existing set of credentials.

ERROR_REMOTE_SESSION_LIMIT_EXCEE 1220 An attempt was made to establish a session to
a network server, but too many sessions are
already established to that server.

ERROR_DUP_DOMAINNAME 1221 Another computer on the network is already
using the workgroup or domain name.

Appendixes

PART VI
412

44.65227_AppACDx 11/30/99 12:25 PM Page 412

Constant Value Description

ERROR_NO_NETWORK 1222 The network is not present or not started.

ERROR_CANCELLED 1223 The user cancelled the operation.

ERROR_USER_MAPPED_FILE 1224 The requested operation cannot be performed
on a file with a user-mapped section open.

ERROR_CONNECTION_REFUSED 1225 The remote system refused the network con-
nection.

ERROR_GRACEFUL_DISCONNECT 1226 The network connection was gracefully
closed.

ERROR_ADDRESS_ALREADY_ASSOCIATED 1227 The network transport endpoint already has an
address associated with it.

ERROR_ADDRESS_NOT_ASSOCIATED 1228 An address has not yet been associated with
the network endpoint.

ERROR_CONNECTION_INVALID 1229 An operation was attempted on a nonexistent
network connection.

ERROR_CONNECTION_ACTIVE 1230 An invalid operation was attempted on an
active network connection.

ERROR_NETWORK_UNREACHABLE 1231 The transport cannot reach the remote net-
work.

ERROR_HOST_UNREACHABLE 1232 The transport cannot reach the remote system.

ERROR_PROTOCOL_UNREACHABLE 1233 The transport protocol cannot reach the
remote system.

ERROR_PORT_UNREACHABLE 1234 No service is operating at the destination net-
work endpoint on the remote system.

ERROR_REQUEST_ABORTED 1235 The request was aborted.

ERROR_CONNECTION_ABORTED 1236 The local system aborted the network connec-
tion.

ERROR_RETRY 1237 The operation could not be completed. A retry
should be performed.

ERROR_CONNECTION_COUNT_LIMIT 1238 A connection to the server could not be made
because the limit on the number of concurrent
connections for this account has been reached.

ERROR_LOGIN_TIME_RESTRICTION 1239 An attempt was made to log in during an
unauthorized time of day for this account.

ERROR_LOGIN_WKSTA_RESTRICTION 1240 The account is not authorized to log in from
this station.

Error Messages and Exceptions

APPENDIX A
413

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 413

TABLE A.1 Continued

Constant Value Description

ERROR_INCORRECT_ADDRESS 1241 The network address could not be used for the
operation requested.

ERROR_ALREADY_REGISTERED 1242 The service is already registered.

ERROR_SERVICE_NOT_FOUND 1243 The specified service does not exist.

ERROR_NOT_AUTHENTICATED 1244 The operation being requested was not per-
formed because the user has not been authen-
ticated.

ERROR_NOT_LOGGED_ON 1245 The operation being requested was not per-
formed because the user has not logged onto
the network. The specified service does not
exist.

ERROR_CONTINUE 1246 This is a return that wants the caller to con-
tinue with work in progress.

ERROR_ALREADY_INITIALIZED 1247 An attempt was made to perform an initializa-
tion operation when initialization has already
been completed.

ERROR_NO_MORE_DEVICES 1248 No more local devices exist.

ERROR_NOT_ALL_ASSIGNED 1300 Not all privileges referenced are assigned to
the caller.

ERROR_SOME_NOT_MAPPED 1301 Some mapping between account names and
security IDs was not done.

ERROR_NO_QUOTAS_FOR_ACCOUNT 1302 No system quota limits are specifically set for
this account.

ERROR_LOCAL_USER_SESSION_KEY 1303 No encryption key is available. A well-known
encryption key was returned.

ERROR_NULL_LM_PASSWORD 1304 The NT password is too complex to be con-
verted to a LAN Manager password. The
LAN Manager password returned is a null
string.

ERROR_UNKNOWN_REVISION 1305 The revision level is unknown.

ERROR_REVISION_MISMATCH 1306 The two revision levels are incompatible.

ERROR_INVALID_OWNER 1307 This security ID may not be assigned as the
owner of this object.

ERROR_INVALID_PRIMARY_GROUP 1308 This security ID may not be assigned as the
primary group of an object.

Appendixes

PART VI
414

44.65227_AppACDx 11/30/99 12:25 PM Page 414

Constant Value Description

ERROR_NO_IMPERSONATION_TOKEN 1309 A thread that’s not currently impersonating a
client has made an attempt to operate on an
impersonation token.

ERROR_CANT_DISABLE_MANDATORY 1310 The group may not be disabled.

ERROR_NO_LOGON_SERVERS 1311 No logon servers are currently available to
service the logon request.

ERROR_NO_SUCH_LOGON_SESSION 1312 A specified logon session does not exist. It
may already have been terminated.

ERROR_NO_SUCH_PRIVILEGE 1313 A specified privilege does not exist.

ERROR_PRIVILEGE_NOT_HELD 1314 A required privilege is not held by the client.

ERROR_INVALID_ACCOUNT_NAME 1315 The name provided is not a properly formed
account name.

ERROR_USER_EXISTS 1316 The specified user already exists.

ERROR_NO_SUCH_USER 1317 The specified user does not exist.

ERROR_GROUP_EXISTS 1318 The specified group already exists.

ERROR_NO_SUCH_GROUP 1319 The specified group does not exist.

ERROR_MEMBER_IN_GROUP 1320 Either the specified user account is already a
member of the specified group or the speci-
fied group cannot be deleted because it con-
tains a member.

ERROR_MEMBER_NOT_IN_GROUP 1321 The specified user account is not a member of
the specified group account.

ERROR_LAST_ADMIN 1322 The last remaining administration account
cannot be disabled or deleted.

ERROR_WRONG_PASSWORD 1323 The password cannot be updated. The value
provided as the current password is incorrect.

ERROR_ILL_FORMED_PASSWORD 1324 The password cannot be updated. The value
provided for the new password contains val-
ues that are not allowed in passwords.

ERROR_PASSWORD_RESTRICTION 1325 The password cannot be updated because a
password update rule has been violated.

ERROR_LOGON_FAILURE 1326 A logon failure has occurred: unknown user
name or bad password.

ERROR_ACCOUNT_RESTRICTION 1327 A logon failure has occurred: user account
restriction.

Error Messages and Exceptions

APPENDIX A
415

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 415

TABLE A.1 Continued

Constant Value Description

ERROR_INVALID_LOGON_HOURS 1328 A logon failure has occurred: Account logon
time restriction violation.

ERROR_INVALID_WORKSTATION 1329 A logon failure has occurred: The user is not
allowed to logon to this computer.

ERROR_PASSWORD_EXPIRED 1330 A logon failure has occurred: The specified
account password has expired.

ERROR_ACCOUNT_DISABLED 1331 A logon failure has occurred: The account has
been currently disabled.

ERROR_NONE_MAPPED 1332 No mapping between account names and
security IDs was done.

ERROR_TOO_MANY_LUIDS_REQUESTED 1333 Too many local user identifiers (LUIDs) were
requested at one time.

ERROR_LUIDS_EXHAUSTED 1334 No more local user identifiers (LUIDs) are
available.

ERROR_INVALID_SUB_AUTHORITY 1335 The subauthority part of a security ID is
invalid for this particular use.

ERROR_INVALID_ACL 1336 The Access Control List (ACL) structure is
invalid.

ERROR_INVALID_SID 1337 The security ID structure is invalid.

ERROR_INVALID_SECURITY_DESCR 1338 The security descriptor structure is invalid.

ERROR_BAD_INHERITANCE_ACL 1340 The inherited Access Control List (ACL) or
Access Control Entry (ACE) could not be
built.

ERROR_SERVER_DISABLED 1341 The server is currently disabled.

ERROR_SERVER_NOT_DISABLED 1342 The server is currently enabled.

ERROR_INVALID_ID_AUTHORITY 1343 The value provided was an invalid value for
an identifier authority.

ERROR_ALLOTTED_SPACE_EXCEEDED 1344 No more memory is available for security
information updates.

ERROR_INVALID_GROUP_ATTRIBUTES 1345 The specified attributes are invalid or incom-
patible with the attributes for the group as a
whole.

ERROR_BAD_IMPERSONATION_LEVEL 1346 Either a required impersonation level was not
provided or the provided impersonation level
is invalid.

Appendixes

PART VI
416

44.65227_AppACDx 11/30/99 12:25 PM Page 416

Constant Value Description

ERROR_CANT_OPEN_ANONYMOUS 1347 An anonymous-level security token cannot be
opened.

ERROR_BAD_VALIDATION_CLASS 1348 The validation information class requested
was invalid.

ERROR_BAD_TOKEN_TYPE 1349 The type of the token is inappropriate for its
attempted use.

ERROR_NO_SECURITY_ON_OBJECT 1350 A security operation could not be performed
on an object that has no associated security.

ERROR_CANT_ACCESS_DOMAIN_INFO 1351 A Windows NT server could not be contacted
or objects within the domain are protected
such that necessary information could not be
retrieved.

ERROR_INVALID_SERVER_STATE 1352 The Security Account Manager (SAM) or
Local Security Authority (LSA) server was in
the wrong state to perform the security opera-
tion.

ERROR_INVALID_DOMAIN_STATE 1353 The domain was in the wrong state to perform
the security operation.

ERROR_INVALID_DOMAIN_ROLE 1354 This operation is only allowed for the Primary
Domain Controller of the domain.

ERROR_NO_SUCH_DOMAIN 1355 The specified domain did not exist.

ERROR_DOMAIN_EXISTS 1356 The specified domain already exists.

ERROR_DOMAIN_LIMIT_EXCEEDED 1357 An attempt was made to exceed the limit on
the number of domains per server.

ERROR_INTERNAL_DB_CORRUPTION 1358 The requested operation could not be com-
pleted because of a catastrophic media failure
or a data structure corruption on the disk.

ERROR_INTERNAL_ERROR 1359 The security account database contains an
internal inconsistency.

ERROR_GENERIC_NOT_MAPPED 1360 Generic access types were contained in an
access mask that should already be mapped to
nongeneric types.

ERROR_BAD_DESCRIPTOR_FORMAT 1361 A security descriptor is not in the correct for-
mat (absolute or self-relative).

ERROR_NOT_LOGON_PROCESS 1362 The requested action is restricted for use by
logon processes only. The calling process has
not been registered as a logon process.

Error Messages and Exceptions

APPENDIX A
417

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 417

TABLE A.1 Continued

Constant Value Description

ERROR_LOGON_SESSION_EXISTS 1363 You cannot start a new logon session with an
ID that’s already in use.

ERROR_NO_SUCH_PACKAGE 1364 A specified authentication package is
unknown.

ERROR_BAD_LOGON_SESSION_STATE 1365 The logon session is not in a state that’s con-
sistent with the requested operation.

ERROR_LOGON_SESSION_COLLISION 1366 The logon session ID is already in use.

ERROR_INVALID_LOGON_TYPE 1367 A logon request contained an invalid logon
type value.

ERROR_CANNOT_IMPERSONATE 1368 You cannot impersonate via a named pipe
until data has been read from that pipe.

ERROR_RXACT_INVALID_STATE 1369 The transaction state of a Registry subtree is
incompatible with the requested operation.

ERROR_RXACT_COMMIT_FAILURE 1370 An internal security database corruption has
been encountered.

ERROR_SPECIAL_ACCOUNT 1371 You cannot perform this operation on built-in
accounts.

ERROR_SPECIAL_GROUP 1372 You cannot perform this operation on this
built-in special group.

ERROR_SPECIAL_USER 1373 You cannot perform this operation on this
built-in special user.

ERROR_MEMBERS_PRIMARY_GROUP 1374 The user cannot be removed from a group
because the group is currently the user’s pri-
mary group.

ERROR_TOKEN_ALREADY_IN_USE 1375 The token is already in use as a primary
token.

ERROR_NO_SUCH_ALIAS 1376 The specified local group does not exist.

ERROR_MEMBER_NOT_IN_ALIAS 1377 The specified account name is not a member
of the local group.

ERROR_MEMBER_IN_ALIAS 1378 The specified account name is already a mem-
ber of the local group.

ERROR_ALIAS_EXISTS 1379 The specified local group already exists.

ERROR_LOGON_NOT_GRANTED 1380 A logon failure has occurred: The user has not
been granted the requested logon type at this
computer.

Appendixes

PART VI
418

44.65227_AppACDx 11/30/99 12:25 PM Page 418

Constant Value Description

ERROR_TOO_MANY_SECRETS 1381 The maximum number of secrets that may be
stored in a single system has been exceeded.

ERROR_SECRET_TOO_LONG 1382 The length of a secret exceeds the maximum
length allowed.

ERROR_INTERNAL_DB_ERROR 1383 The Local Security Authority database con-
tains an internal inconsistency.

ERROR_TOO_MANY_CONTEXT_IDS 1384 During a logon attempt, the user’s security
context accumulated too many security IDs.

ERROR_LOGON_TYPE_NOT_GRANTED 1385 A logon failure has occurred: The user has not
been granted the requested logon type at this
computer.

ERROR_NT_CROSS_ENCRYPTION_REQUIR 1386 A cross-encrypted password is necessary to
change a user password.

ERROR_NO_SUCH_MEMBER 1387 A new member could not be added to a local
group because the member does not exist.

ERROR_INVALID_MEMBER 1388 A new member could not be added to a local
group because the member has the wrong
account type.

ERROR_TOO_MANY_SIDS 1389 Too many security IDs have been specified.

ERROR_LM_CROSS_ENCRYPTION_REQUIR 1390 A cross-encrypted password is necessary to
change this user password.

ERROR_NO_INHERITANCE 1391 Indicates a TACL contains no inheritable
components.

ERROR_FILE_CORRUPT 1392 The file or directory is corrupt and unable to
be read.

ERROR_DISK_CORRUPT 1393 The disk structure is corrupt and unable to be
read.

ERROR_NO_USER_SESSION_KEY 1394 No user session key exists for the specified
logon session.

ERROR_LICENSE_QUOTA_EXCEEDED 1395 The service being accessed is licensed for a
particular number of connections. No more
connections can be made to the service at this
time because as many connections as the ser-
vice can accept already exist.

ERROR_INVALID_WINDOW_HANDLE 1400 The window handle is invalid.

ERROR_INVALID_MENU_HANDLE 1401 The menu handle is invalid.

Error Messages and Exceptions

APPENDIX A
419

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 419

TABLE A.1 Continued

Constant Value Description

ERROR_INVALID_CURSOR_HANDLE 1402 The cursor handle is invalid.

ERROR_INVALID_ACCEL_HANDLE 1403 The accelerator table handle is invalid.

ERROR_INVALID_HOOK_HANDLE 1404 The hook handle is invalid.

ERROR_INVALID_DWP_HANDLE 1405 The handle to a multiple-window position
structure is invalid.

ERROR_TLW_WITH_WSCHILD 1406 A top-level child window cannot be created.

ERROR_CANNOT_FIND_WND_CLASS 1407 A window class cannot be found.

ERROR_WINDOW_OF_OTHER_THREAD 1408 The window is invalid; it belongs to the other
thread.

ERROR_HOTKEY_ALREADY_REGISTERED 1409 The hotkey is already registered.

ERROR_CLASS_ALREADY_EXISTS 1410 The class already exists.

ERROR_CLASS_DOES_NOT_EXIST 1411 The class does not exist.

ERROR_CLASS_HAS_WINDOWS 1412 The class still has open windows.

ERROR_INVALID_INDEX 1413 The index is invalid.

ERROR_INVALID_ICON_HANDLE 1414 The icon handle is invalid.

ERROR_PRIVATE_DIALOG_INDEX 1415 You’re using private dialog window words.

ERROR_LISTBOX_ID_NOT_FOUND 1416 The list box identifier was not found.

ERROR_NO_WILDCARD_CHARACTERS 1417 No wildcards were found.

ERROR_CLIPBOARD_NOT_OPEN 1418 The thread does not have a Clipboard open.

ERROR_HOTKEY_NOT_REGISTERED 1419 The hotkey is not registered.

ERROR_WINDOW_NOT_DIALOG 1420 The window is not a valid dialog window.

ERROR_CONTROL_ID_NOT_FOUND 1421 The control ID was not found.

ERROR_INVALID_COMBOBOX_MESSAGE 1422 The message for a combo box was invalid
because it does not have an edit control.

ERROR_WINDOW_NOT_COMBOBOX 1423 The window is not a combo box.

ERROR_INVALID_EDIT_HEIGHT 1424 The height must be less than 256 pixels.

ERROR_DC_NOT_FOUND 1425 The device context (DC) handle is invalid.

ERROR_INVALID_HOOK_FILTER 1426 The hook procedure type is invalid.

ERROR_INVALID_FILTER_PROC 1427 The hook procedure is invalid.

ERROR_HOOK_NEEDS_HMOD 1428 You cannot set a nonlocal hook without a
module handle.

ERROR_GLOBAL_ONLY_HOOK 1429 This hook procedure can only be set globally.

Appendixes

PART VI
420

44.65227_AppACDx 11/30/99 12:25 PM Page 420

Constant Value Description

ERROR_JOURNAL_HOOK_SET 1430 The journal hook procedure is already
installed.

ERROR_HOOK_NOT_INSTALLED 1431 The hook procedure is not installed.

ERROR_INVALID_LB_MESSAGE 1432 The message for a single-selection list box is
invalid.

ERROR_SETCOUNT_ON_BAD_LB 1433 LB_SETCOUNT was sent to a nonlazy list box.

ERROR_LB_WITHOUT_TABSTOPS 1434 This list box does not support tab stops.

ERROR_DESTROY_OBJECT_OF_OTHER_TH 1435 You cannot destroy an object created by
another thread.

ERROR_CHILD_WINDOW_MENU 1436 Child windows cannot have menus.

ERROR_NO_SYSTEM_MENU 1437 The window does not have a system menu.

ERROR_INVALID_MSGBOX_STYLE 1438 The message box style is invalid.

ERROR_INVALID_SPI_VALUE 1439 The systemwide (SPI_*) parameter is invalid.

ERROR_SCREEN_ALREADY_LOCKED 1440 The screen is already locked.

ERROR_HWNDS_HAVE_DIFF_PARENT 1441 All handles to windows in a multiple-window
position structure must have the same parent.

ERROR_NOT_CHILD_WINDOW 1442 The window is not a child window.

ERROR_INVALID_GW_COMMAND 1443 The GW_* command is invalid.

ERROR_INVALID_THREAD_ID 1444 The thread identifier is invalid.

ERROR_NON_MDICHILD_WINDOW 1445 A message cannot be processed from a win-
dow that’s not a multiple-document interface
(MDI) window.

ERROR_POPUP_ALREADY_ACTIVE 1446 The pop-up menu is already active.

ERROR_NO_SCROLLBARS 1447 The window does not have scrollbars.

ERROR_INVALID_SCROLLBAR_RANGE 1448 The scrollbar range cannot be greater than
$7FFF.

ERROR_INVALID_SHOWWIN_COMMAND 1449 You cannot show or remove the window in
the way specified.

ERROR_EVENTLOG_FILE_CORRUPT 1500 The event log file is corrupt.

ERROR_EVENTLOG_CANT_START 1501 No event log file could be opened, so the
event-logging service did not start.

ERROR_LOG_FILE_FULL 1502 The event log file is full.

ERROR_EVENTLOG_FILE_CHANGED 1503 The event log file has changed between reads.

Error Messages and Exceptions

APPENDIX A
421

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 421

TABLE A.1 Continued

Constant Value Description

ERROR_INVALID_USER_BUFFER 1784 The supplied user buffer is not valid for the
requested operation.

ERROR_UNRECOGNIZED_MEDIA 1785 The disk media is not recognized. It might not
be formatted.

ERROR_NO_TRUST_LSA_SECRET 1786 The workstation does not have a trust secret.

ERROR_NO_TRUST_SAM_ACCOUNT 1787 The SAM database on the Windows NT
server does not have a computer account for
this workstation trust relationship.

ERROR_TRUSTED_DOMAIN_FAILURE 1788 The trust relationship between the primary
domain and the trusted domain failed.

ERROR_TRUSTED_RELATIONSHIP_FAILU 1789 The trust relationship between this worksta-
tion and the primary domain failed.

ERROR_TRUST_FAILURE 1790 The network logon failed.

ERROR_NETLOGON_NOT_STARTED 1792 A remote procedure call is already in progress
for this thread. An attempt was made to log
on, but the network logon service was not
started.

ERROR_ACCOUNT_EXPIRED 1793 The user’s account has expired.

ERROR_REDIRECTOR_HAS_OPEN_HANDLE 1794 The redirector is in use and cannot be
unloaded.

ERROR_PRINTER_DRIVER_ALREADY_INS 1795 The specified printer driver is already
installed.

ERROR_UNKNOWN_PORT 1796 The specified port is unknown.

ERROR_UNKNOWN_PRINTER_DRIVER 1797 The printer driver is unknown.

ERROR_UNKNOWN_PRINTPROCESSOR 1798 The print processor is unknown.

ERROR_INVALID_SEPARATOR_FILE 1799 The specified separator file is invalid.

ERROR_INVALID_PRIORITY 1800 The specified priority is invalid.

ERROR_INVALID_PRINTER_NAME 1801 The printer name is invalid.

ERROR_PRINTER_ALREADY_EXISTS 1802 The printer already exists.

ERROR_INVALID_PRINTER_COMMAND 1803 The printer command is invalid.

ERROR_INVALID_DATATYPE 1804 The specified data type is invalid.

ERROR_INVALID_ENVIRONMENT 1805 The environment specified is invalid.

ERROR_NOLOGON_INTERDOMAIN_TRUST 1807 No more bindings exist. The account used is
an interdomain trust account. Use your global
user account or local user account to access
this server.

Appendixes

PART VI
422

44.65227_AppACDx 11/30/99 12:25 PM Page 422

Constant Value Description

ERROR_NOLOGON_WORKSTATION_TRUST 1808 The account used is a computer account. Use
your global user account or local user account
to access this server.

ERROR_NOLOGON_SERVER_TRUST_ACCOU 1809 The account used is an server trust account.
Use your global user account or local user
account to access this server.

ERROR_DOMAIN_TRUST_INCONSISTENT 1810 The name or security ID (SID) of the domain
specified is inconsistent with the trust infor-
mation for that domain.

ERROR_SERVER_HAS_OPEN_HANDLES 1811 The server is in use and cannot be unloaded.

ERROR_RESOURCE_DATA_NOT_FOUND 1812 The specified image file did not contain a
resource section.

ERROR_RESOURCE_TYPE_NOT_FOUND 1813 The specified resource type cannot be found
in the image file.

ERROR_RESOURCE_NAME_NOT_FOUND 1814 The specified resource name cannot be found
in the image file.

ERROR_RESOURCE_LANG_NOT_FOUND 1815 The specified resource language ID cannot be
found in the image file.

ERROR_NOT_ENOUGH_QUOTA 1816 Not enough quota is available to process this
command.

ERROR_INVALID_TIME 1901 The specified time is invalid.

ERROR_INVALID_FORM_NAME 1902 The specified form name is invalid.

ERROR_INVALID_FORM_SIZE 1903 The specified form size is invalid.

ERROR_ALREADY_WAITING 1904 The specified printer handle is already being
waited on.

ERROR_PRINTER_DELETED 1905 The specified printer has been deleted.

ERROR_INVALID_PRINTER_STATE 1906 The state of the printer is invalid.

ERROR_PASSWORD_MUST_CHANGE 1907 The user must change his or her password
before logging on for the first time.

ERROR_DOMAIN_CONTROLLER_NOT_FOUN 1908 The domain controller for this domain could
not be found.

ERROR_ACCOUNT_LOCKED_OUT 1909 The referenced account is currently locked out
and may not be logged on to.

ERROR_NO_BROWSER_SERVERS_FOUND 6118 The list of servers for this workgroup is not
currently available.

ERROR_INVALID_PIXEL_FORMAT 2000 The pixel format is invalid.

Error Messages and Exceptions

APPENDIX A
423

A

E
R

R
O

R
M

ESSA
G

ES
A

N
D

E
X

C
EPTIO

N
S

continues

44.65227_AppACDx 11/30/99 12:25 PM Page 423

TABLE A.1 Continued

Constant Value Description

ERROR_BAD_DRIVER 2001 The specified driver is invalid.

ERROR_INVALID_WINDOW_STYLE 2002 The window style or class attribute is invalid
for this operation.

ERROR_METAFILE_NOT_SUPPORTED 2003 The requested metafile operation is not sup-
ported.

ERROR_TRANSFORM_NOT_SUPPORTED 2004 The requested transformation operation is not
supported.

ERROR_CLIPPING_NOT_SUPPORTED 2005 The requested clipping operation is not sup-
ported.

ERROR_UNKNOWN_PRINT_MONITOR 3000 The specified print monitor is unknown.

ERROR_PRINTER_DRIVER_IN_USE 3001 The specified printer driver is currently in use.

ERROR_SPOOL_FILE_NOT_FOUND 3002 The spool file was not found.

ERROR_SPL_NO_STARTDOC 3003 A StartDocPrinter call was not issued.

ERROR_SPL_NO_ADDJOB 3004 An AddJob call was not issued.

ERROR_PRINT_PROCESSOR_ALREADY_IN 3005 The specified print processor has already been
installed.

ERROR_PRINT_MONITOR_ALREADY_INST 3006 The specified print monitor has already been
installed.

ERROR_WINS_INTERNAL 4000 WINS encountered an error while processing
the command.

ERROR_CAN_NOT_DEL_LOCAL_WINS 4001 The local WINS cannot be deleted.

ERROR_STATIC_INIT 4002 The importation from the file failed.

ERROR_INC_BACKUP 4003 The backup failed. Was a full backup done
before?

ERROR_FULL_BACKUP 4004 The backup failed. Check the directory to
which you are backing up the database.

ERROR_REC_NON_EXISTENT 4005 The name does not exist in the WINS data-
base.

ERROR_RPL_NOT_ALLOWED 4006 Replication with an unconfigured partner is
not allowed.

Appendixes

PART VI
424

44.65227_AppACDx 11/30/99 12:25 PM Page 424

CHAPTER

15
The Generic with Mono

IN THIS APPENDIX
• A list of the C Heads 0

• A list of the C Heads 0

• Some of the C Heads might be very,
very long 0

• These are C Heads only 0

• Some of the C Heads might be very,
very long 0

• A list of the C Heads 0

• A list of the C Heads 0

APPENDIX

A
APPENDIX

B
BDE Error Codes

45.65227_AppBCDx 11/30/99 12:30 PM Page 425

When working with the Borland Database Engine, occasionally you’ll receive an error dialog
box indicating that some error has occurred in the engine. Most commonly, this happens when
customers or clients install your software on their machines and they have some configuration
problems with their machines that you’re trying to track down for them. Typically, the afore-
mentioned error dialog box provides you with a hexadecimal error code as the description of
the error. The question is how to turn that number into a meaningful error message. In order to
help you with this task, we’ve provided the following table. Table B.1 lists all the possible
BDE error codes as well as the BDE error strings associated with these error codes.

TABLE B.1 BDE Error Codes

Error Code

Decimal Hex Error String

0 0000 Successful completion.

33 0021 System error.

34 0022 Object of interest not found.

35 0023 Physical data corruption.

36 0024 I/O-related error.

37 0025 Resource or limit error.

38 0026 Data integrity violation.

39 0027 Invalid request.

40 0028 Lock violation.

41 0029 Access/security violation.

42 002A Invalid context.

43 002B OS error.

44 002C Network error.

45 002D Optional parameter.

46 002E Query processor.

47 002F Version mismatch.

48 0030 Capability not supported.

49 0031 System configuration error.

50 0032 Warning.

51 0033 Miscellaneous.

52 0034 Compatibility error.

62 003E Driver-specific error.

63 003F Internal symbol.

256 0100 KEYVIOL.

Rapid Database Application Development

PART VI
426

45.65227_AppBCDx 11/30/99 12:30 PM Page 426

Error Code

Decimal Hex Error String

257 0101 PROBLEMS.

258 0102 CHANGED.

512 0200 Production index file missing, corrupt, or cannot interpret index key.

513 0201 Open read-only.

514 0202 Open the table in read-only mode.

515 0203 Open and detach.

516 0204 Open the table and detach the production index file.

517 0205 Fail open.

518 0206 Do not open the table.

519 0207 Convert non-dBASE index.

520 0208 Convert production index to dBASE format.

521 0209 BLOB file not found.

522 020A Open without BLOB file.

523 020B Open the table without the BLOB file.

524 020C Empty all BLOB fields.

525 020D Reinitialize BLOB file and lose all BLOBs.

526 020E Fail open.

527 020F Do not open the table.

528 0210 Import non-dBASE BLOB file.

529 0211 Import BLOB file to dBASE format.

530 0212 Open as non-dBASE table.

531 0213 Open table and BLOB file in its native format.

532 0214 Production index language driver mismatch.

533 0215 Production index damaged.

534 0216 Rebuild production index.

535 0217 Rebuild all the production indexes.

1024 0400 Lookup table not found or corrupt.

1025 0401 BLOB file not found or corrupt.

1026 0402 Open read-only.

1027 0403 Open the table in read-only mode.

1028 0404 Fail open.

BDE Error Codes

APPENDIX B
427

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 427

TABLE B.1 Continued

Error Code

Decimal Hex Error String

1029 0405 Do not open the table.

1030 0406 Remove lookup.

1031 0407 Remove link to lookup table.

1280 0500 Dictionary object exists.

1281 0501 Skip this object.

1282 0502 Skip importing this object and its associated relationships.

1283 0503 Use existing object.

1284 0504 Use existing dictionary object for relationships.

1285 0505 Abort.

1286 0506 Abort the operation.

1287 0507 Dictionary object import failed.

4608 1200 SQL Unknown.

4609 1201 SQL Prepare.

4610 1202 SQL Execute.

4611 1203 SQL Error.

4612 1204 SQL STMT.

4613 1205 SQL Connect.

4614 1206 SQL Transact.

4615 1207 SQL BLOB I/O.

4616 1208 SQL Misc.

4617 1209 SQL Vendor.

4618 120A ORACLE - orlon.

4619 120B ORACLE - olon.

4620 120C ORACLE - ologof.

4621 120D ORACLE - ocon.

4622 120E ORACLE - ocof.

4623 120F ORACLE - oopen.

4624 1210 ORACLE - osql3.

4625 1211 ORACLE - odsc.

4626 1212 ORACLE - odefin.

4627 1213 ORACLE - obndrv.

Appendixes

PART VI
428

45.65227_AppBCDx 11/30/99 12:30 PM Page 428

Error Code

Decimal Hex Error String

4628 1214 ORACLE - obndrvn.

4629 1215 ORACLE - oexec.

4630 1216 ORACLE - ofetch.

4631 1217 ORACLE - ofen.

4632 1218 ORACLE - ocan.

4633 1219 ORACLE - oclose.

4634 121A ORACLE - oerhms.

4635 121B ORACLE - oparse.

4636 121C ORACLE - oflng.

4637 121D ORACLE - odessp.

4638 121E ORACLE - odescr.

4639 121F ORACLE - oexn.

4648 1228 INTRBASE - isc_attach_database.

4649 1229 INTRBASE - isc_blob_default_desc.

4650 122A INTRBASE - isc_blob_gen_bpb.

4651 122B INTRBASE - isc_blob_info.

4652 122C INTRBASE - isc_blob_lookup_desc.

4653 122D INTRBASE - isc_close_blob.

4654 122E INTRBASE - isc_commit_retaining.

4655 122F INTRBASE - isc_commit_transaction.

4656 1230 INTRBASE - isc_create_blob.

4657 1231 INTRBASE - isc_create_blob2.

4658 1232 INTRBASE - isc_decode_date.

4659 1233 INTRBASE - isc_detach_database.

4660 1234 INTRBASE - isc_dsql_allocate_statement.

4661 1235 INTRBASE - isc_dsql_execute.

4662 1236 INTRBASE - isc_dsql_execute2.

4663 1237 INTRBASE - isc_dsql_fetch.

4664 1238 INTRBASE - isc_dsql_free_statement.

4665 1239 INTRBASE - isc_dsql_prepare.

4666 123A INTRBASE - isc_dsql_set_cursor_name.

BDE Error Codes

APPENDIX B
429

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 429

TABLE B.1 Continued

Error Code

Decimal Hex Error String

4667 123B INTRBASE - isc_dsql_sql_info.

4668 123C INTRBASE - isc_encode_date.

4669 123D INTRBASE - isc_get_segment.

4670 123E INTRBASE - isc_interprete.

4671 123F INTRBASE - isc_open_blob.

4672 1240 INTRBASE - isc_open_blob2.

4673 1241 INTRBASE - isc_put_segment.

4674 1242 INTRBASE - isc_rollback_transaction.

4675 1243 INTRBASE - isc_sqlcode.

4676 1244 INTRBASE - isc_start_transaction.

4677 1245 INTRBASE - isc_vax_integer.

4688 1250 MSSQL - dbbind.

4689 1251 MSSQL - dbcmd.

4690 1252 MSSQL - dbcancel.

4691 1253 MSSQL - dbclose.

4692 1254 MSSQL - dbcollen.

4693 1255 MSSQL - dbcolname.

4694 1256 MSSQL - dbcoltype.

4695 1257 MSSQL - dbconvert.

4696 1258 MSSQL - dbdataready.

4697 1259 MSSQL - dbdatlen.

4698 125A MSSQL - dberrhandle.

4699 125B MSSQL - dbfreebuf.

4700 125C MSSQL - dbfreelogin.

4701 125D MSSQL - dbhasretstat.

4702 125E MSSQL - dbinit.

4703 125F MSSQL - dblogin.

4704 1260 MSSQL - dbmoretext.

4705 1261 MSSQL - dbmsghandle.

4706 1262 MSSQL - dbnextrow.

4707 1263 MSSQL - dbnumcols.

Appendixes

PART VI
430

45.65227_AppBCDx 11/30/99 12:30 PM Page 430

Error Code

Decimal Hex Error String

4708 1264 MSSQL - dbnumrets.

4709 1265 MSSQL - dbopen.

4710 1266 MSSQL - dbresults.

4711 1267 MSSQL - dbretdata.

4712 1268 MSSQL - dbretlen.

4713 1269 MSSQL - dbretstatus.

4714 126A MSSQL - dbrpcinit.

4715 126B MSSQL - dbrpcparam.

4716 126C MSSQL - dbrpcsend.

4717 126D MSSQL - dbsetlogintime.

4718 126E MSSQL - dbsetmaxprocs.

4719 126F MSSQL - dbsetopt.

4720 1270 MSSQL - dbsettime.

4721 1271 MSSQL - dbsqlexec.

4722 1272 MSSQL - dbsqlok.

4723 1273 MSSQL - dbsqlsend.

4724 1274 MSSQL - dbtxptr.

4725 1275 MSSQL - dbtxtimestamp.

4726 1276 MSSQL - dbtxtsnewval.

4727 1277 MSSQL - dbuse.

4728 1278 MSSQL - dbwinexit.

4729 1279 MSSQL - dbwritetext.

4738 1282 ODBC - SQLAllocConnect.

4739 1283 ODBC - SQLAllocEnv.

4740 1284 ODBC - SQLAllocStmt.

4741 1285 ODBC - SQLBindCol.

4742 1286 ODBC - SQLBindParameter.

4743 1287 ODBC - SQLCancel.

4744 1288 ODBC - SQLColumns.

4745 1289 ODBC - SQLConnect.

4746 128A ODBC - SQLDataSources.

BDE Error Codes

APPENDIX B
431

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 431

TABLE B.1 Continued

Error Code

Decimal Hex Error String

4747 128B ODBC - SQLDescribeCol.

4748 128C ODBC - SQLDisconnect.

4750 128E ODBC - SQLError.

4751 128F ODBC - SQLExecDirect.

4752 1290 ODBC - SQLExtendedFetch.

4753 1291 ODBC - SQLFetch.

4754 1292 ODBC - SQLFreeConnect.

4755 1293 ODBC - SQLFreeEnv.

4756 1294 ODBC - SQLFreeStmt.

4757 1295 ODBC - SQLGetConnectOption.

4758 1296 ODBC - SQLGetCursorName.

4760 1298 ODBC - SQLGetFunctions.

4761 1299 ODBC - SQLGetInfo.

4762 129A ODBC - SQLGetTypeInfo.

4763 129B ODBC - SQLNumResultCols.

4764 129C ODBC - SQLProcedures.

4765 129D ODBC - SQLProcedureColumns.

4766 129E ODBC - SQLRowCount.

4767 129F ODBC - SQLSetConnectOption.

4768 12A0 ODBC - SQLSetCursorName.

4769 12A1 ODBC - SQLSetParam.

4770 12A2 ODBC - SQLSetStmtOption.

4771 12A3 ODBC - SQLStatistics.

4772 12A4 ODBC - SQLTables.

4773 12A5 ODBC - SQLTransact.

4788 12B4 SYBASE - dbbind.

4789 12B5 SYBASE - dbcmd.

4790 12B6 SYBASE - dbcancel.

4791 12B7 SYBASE - dbclose.

4792 12B8 SYBASE - dbcollen.

4793 12B9 SYBASE - dbcolname.

Appendixes

PART VI
432

45.65227_AppBCDx 11/30/99 12:30 PM Page 432

Error Code

Decimal Hex Error String

4794 12BA SYBASE - dbcoltype.

4795 12BB SYBASE - dbconvert.

4796 12BC SYBASE - dbpoll.

4797 12BD SYBASE - dbdatlen.

4798 12BE SYBASE - dberrhandle.

4799 12BF SYBASE - dbfreebuf.

4800 12C0 SYBASE - dbloginfree.

4801 12C1 SYBASE - dbhasretstat.

4802 12C2 SYBASE - dbinit.

4803 12C3 SYBASE - dblogin.

4804 12C4 SYBASE - dbmoretext.

4805 12C5 SYBASE - dbmsghandle.

4806 12C6 SYBASE - dbnextrow.

4807 12C7 SYBASE - dbnumcols.

4808 12C8 SYBASE - dbnumrets.

4809 12C9 SYBASE - dbopen.

4810 12CA SYBASE - dbresults.

4811 12CB SYBASE - dbretdata.

4812 12CC SYBASE - dbretlen.

4813 12CD SYBASE - dbretstatus.

4814 12CE SYBASE - dbrpcinit.

4815 12CF SYBASE - dbrpcparam.

4816 12D0 SYBASE - dbrpcsend.

4817 12D1 SYBASE - dbsetlogintime.

4818 12D2 SYBASE - dbsetmaxprocs.

4819 12D3 SYBASE - dbsetopt.

4820 12D4 SYBASE - dbsettime.

4821 12D5 SYBASE - dbsqlexec.

4822 12D6 SYBASE - dbsqlok.

4823 12D7 SYBASE - dbsqlsend.

4824 12D8 SYBASE - dbtxptr.

BDE Error Codes

APPENDIX B
433

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 433

TABLE B.1 Continued

Error Code

Decimal Hex Error String

4825 12D9 SYBASE - dbtxtimestamp.

4826 12DA SYBASE - dbtxtsnewval.

4827 12DB SYBASE - dbuse.

4828 12DC SYBASE - dbwinexit.

4829 12DD SYBASE - dbwritetext.

4830 12DE SYBASE - dbcount.

4831 12DF SYBASE - dbdead.

4942 134E Unmapped SQL error code.

8449 2101 Cannot open a system file.

8450 2102 I/O error on a system file.

8451 2103 Data structure corruption.

8452 2104 Cannot find engine configuration file.

8453 2105 Cannot write to engine configuration file.

8454 2106 Cannot initialize with different configuration file.

8455 2107 System has been illegally reentered.

8456 2108 Cannot locate IDAPI32.DLL.

8457 2109 Cannot load IDAPI32.DLL.

8458 210A Cannot load an IDAPI service library.

8459 210B Cannot create or open temporary file.

8705 2201 At beginning of table.

8706 2202 At end of table.

8707 2203 Record moved because key value changed.

8708 2204 Record/key deleted.

8709 2205 No current record.

8710 2206 Could not find record.

8711 2207 End of BLOB.

8712 2208 Could not find object.

8713 2209 Could not find family member.

8714 220A BLOB file is missing.

8715 220B Could not find language driver.

8961 2301 Corrupt table/index header.

Appendixes

PART VI
434

45.65227_AppBCDx 11/30/99 12:30 PM Page 434

Error Code

Decimal Hex Error String

8962 2302 Corrupt file - other than header.

8963 2303 Corrupt memo/BLOB file.

8965 2305 Corrupt index.

8966 2306 Corrupt lock file.

8967 2307 Corrupt family file.

8968 2308 Corrupt or missing VAL file.

8969 2309 Foreign index file format.

9217 2401 Read failure.

9218 2402 Write failure.

9219 2403 Cannot access directory.

9220 2404 File Delete operation failed.

9221 2405 Cannot access file.

9222 2406 Access to table disabled because of previous error.

9473 2501 Insufficient memory for this operation.

9474 2502 Not enough file handles.

9475 2503 Insufficient disk space.

9476 2504 Temporary table resource limit.

9477 2505 Record size is too big for table.

9478 2506 Too many open cursors.

9479 2507 Table is full.

9480 2508 Too many sessions from this workstation.

9481 2509 Serial number limit (Paradox).

9482 250A Some internal limit (see context).

9483 250B Too many open tables.

9484 250C Too many cursors per table.

9485 250D Too many record locks on table.

9486 250E Too many clients.

9487 250F Too many indexes on table.

9488 2510 Too many sessions.

9489 2511 Too many open databases.

9490 2512 Too many passwords.

BDE Error Codes

APPENDIX B
435

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 435

TABLE B.1 Continued

Error Code

Decimal Hex Error String

9491 2513 Too many active drivers.

9492 2514 Too many fields in Table Create.

9493 2515 Too many table locks.

9494 2516 Too many open BLOBs.

9495 2517 Lock file has grown too large.

9496 2518 Too many open queries.

9498 251A Too many BLOBs.

9499 251B Filename is too long for a Paradox version 5.0 table.

9500 251C Row fetch limit exceeded.

9501 251D Long name not allowed for this table level.

9729 2601 Key violation.

9730 2602 Minimum validity check failed.

9731 2603 Maximum validity check failed.

9732 2604 Field value required.

9733 2605 Master record missing.

9734 2606 Master has detail records. Cannot delete or modify.

9735 2607 Master table level is incorrect.

9736 2608 Field value out of lookup table range.

9737 2609 Lookup Table Open operation failed.

9738 260A Detail Table Open operation failed.

9739 260B Master Table Open operation failed.

9740 260C Field is blank.

9741 260D Link to master table already defined.

9742 260E Master table is open.

9743 260F Detail tables exist.

9744 2610 Master has detail records. Cannot empty it.

9745 2611 Self-referencing referential integrity must be entered one at a time with
no other changes to the table.

9746 2612 Detail table is open.

9747 2613 Cannot make this master a detail of another table if its details are not
empty.

9748 2614 Referential integrity fields must be indexed.

Appendixes

PART VI
436

45.65227_AppBCDx 11/30/99 12:30 PM Page 436

Error Code

Decimal Hex Error String

9749 2615 A table linked by referential integrity requires password to open.

9750 2616 Field(s) linked to more than one master.

9985 2701 Number is out of range.

9986 2702 Invalid parameter.

9987 2703 Invalid filename.

9988 2704 File does not exist.

9989 2705 Invalid option.

9990 2706 Invalid handle to the function.

9991 2707 Unknown table type.

9992 2708 Cannot open file.

9993 2709 Cannot redefine primary key.

9994 270A Cannot change this RINTDesc.

9995 270B Foreign and primary key do not match.

9996 270C Invalid modify request.

9997 270D Index does not exist.

9998 270E Invalid offset into the BLOB.

9999 270F Invalid descriptor number.

10000 2710 Invalid field type.

10001 2711 Invalid field descriptor.

10002 2712 Invalid field transformation.

10003 2713 Invalid record structure.

10004 2714 Invalid descriptor.

10005 2715 Invalid array of index descriptors.

10006 2716 Invalid array of validity check descriptors.

10007 2717 Invalid array of referential integrity descriptors.

10008 2718 Invalid ordering of tables during restructure.

10009 2719 Name not unique in this context.

10010 271A Index name required.

10011 271B Invalid session handle.

10012 271C Invalid restructure operation.

10013 271D Driver not known to system.

BDE Error Codes

APPENDIX B
437

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 437

TABLE B.1 Continued

Error Code

Decimal Hex Error String

10014 271E Unknown database.

10015 271F Invalid password given.

10016 2720 No callback function.

10017 2721 Invalid callback buffer length.

10018 2722 Invalid directory.

10019 2723 Translate Error. Value out of bounds.

10020 2724 Cannot set cursor of one table to another.

10021 2725 Bookmarks do not match table.

10022 2726 Invalid index/tag name.

10023 2727 Invalid index descriptor.

10024 2728 Table does not exist.

10025 2729 Table has too many users.

10026 272A Cannot evaluate key or key does not pass filter condition.

10027 272B Index already exists.

10028 272C Index is open.

10029 272D Invalid BLOB length.

10030 272E Invalid BLOB handle in record buffer.

10031 272F Table is open.

10032 2730 Need to do (hard) restructure.

10033 2731 Invalid mode.

10034 2732 Cannot close index.

10035 2733 Index is being used to order table.

10036 2734 Unknown username or password.

10037 2735 Multilevel cascade is not supported.

10038 2736 Invalid field name.

10039 2737 Invalid table name.

10040 2738 Invalid linked cursor expression.

10041 2739 Name is reserved.

10042 273A Invalid file extension.

10043 273B Invalid language driver.

10044 273C Alias is not currently opened.

Appendixes

PART VI
438

45.65227_AppBCDx 11/30/99 12:30 PM Page 438

Error Code

Decimal Hex Error String

10045 273D Incompatible record structures.

10046 273E Name is reserved by DOS.

10047 273F Destination must be indexed.

10048 2740 Invalid index type.

10049 2741 Language drivers of table and index do not match.

10050 2742 Filter handle is invalid.

10051 2743 Invalid filter.

10052 2744 Invalid Table Create request.

10053 2745 Invalid Table Delete request.

10054 2746 Invalid Index Create request.

10055 2747 Invalid Index Delete request.

10056 2748 Invalid table specified.

10058 274A Invalid time.

10059 274B Invalid date.

10060 274C Invalid date/time.

10061 274D Tables in different directories.

10062 274E Mismatch in the number of arguments.

10063 274F Function not found in service library.

10064 2750 Must use baseorder for this operation.

10065 2751 Invalid procedure name.

10066 2752 The field map is invalid.

10241 2801 Record locked by another user.

10242 2802 Unlock failed.

10243 2803 Table is busy.

10244 2804 Directory is busy.

10245 2805 File is locked.

10246 2806 Directory is locked.

10247 2807 Record already locked by this session.

10248 2808 Object not locked.

10249 2809 Lock timeout.

10250 280A Key group is locked.

BDE Error Codes

APPENDIX B
439

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 439

TABLE B.1 Continued

Error Code

Decimal Hex Error String

10251 280B Table lock was lost.

10252 280C Exclusive access was lost.

10253 280D Table cannot be opened for exclusive use.

10254 280E Conflicting record lock in this session.

10255 280F A deadlock was detected.

10256 2810 A user transaction is already in progress.

10257 2811 No user transaction is currently in progress.

10258 2812 Record lock failed.

10259 2813 Couldn’t perform the edit because another user changed the record.

10260 2814 Couldn’t perform the edit because another user deleted or moved the
record.

10497 2901 Insufficient field rights for operation.

10498 2902 Insufficient table rights for operation. Password required.

10499 2903 Insufficient family rights for operation.

10500 2904 This directory is read-only.

10501 2905 Database is read-only.

10502 2906 Trying to modify read-only field.

10503 2907 Encrypted dBASE tables not supported.

10504 2908 Insufficient SQL rights for operation.

10753 2A01 Field is not a BLOB.

10754 2A02 BLOB already opened.

10755 2A03 BLOB not opened.

10756 2A04 Operation not applicable.

10757 2A05 Table is not indexed.

10758 2A06 Engine not initialized.

10759 2A07 Attempt to reinitialize engine.

10760 2A08 Attempt to mix objects from different sessions.

10761 2A09 Paradox driver not active.

10762 2A0A Driver not loaded.

10763 2A0B Table is read only.

10764 2A0C No associated index.

Appendixes

PART VI
440

45.65227_AppBCDx 11/30/99 12:30 PM Page 440

Error Code

Decimal Hex Error String

10765 2A0D Table(s) open. Cannot perform this operation.

10766 2A0E Table does not support this operation.

10767 2A0F Index is read only.

10768 2A10 Table does not support this operation because it is not uniquely
indexed.

10769 2A11 Operation must be performed on the current session.

10770 2A12 Invalid use of keyword.

10771 2A13 Connection is in use by another statement.

10772 2A14 Passthrough SQL connection must be shared.

11009 2B01 Invalid function number.

11010 2B02 File or directory does not exist.

11011 2B03 Path not found.

11012 2B04 Too many open files. You may need to increase MAXFILEHANDLE limit
in IDAPI configuration.

11013 2B05 Permission denied.

11014 2B06 Bad file number.

11015 2B07 Memory blocks destroyed.

11016 2B08 Not enough memory.

11017 2B09 Invalid memory block address.

11018 2B0A Invalid environment.

11019 2B0B Invalid format.

11020 2B0C Invalid access code.

11021 2B0D Invalid data.

11023 2B0F Device does not exist.

11024 2B10 Attempt to remove current directory.

11025 2B11 Not same device.

11026 2B12 No more files.

11027 2B13 Invalid argument.

11028 2B14 Argument list is too long.

11029 2B15 Execution format error.

11030 2B16 Cross-device link.

11041 2B21 Math argument.

BDE Error Codes

APPENDIX B
441

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 441

TABLE B.1 Continued

Error Code

Decimal Hex Error String

11042 2B22 Result is too large.

11043 2B23 File already exists.

11047 2B27 Unknown internal operating system error.

11058 2B32 Share violation.

11059 2B33 Lock violation.

11060 2B34 Critical DOS error.

11061 2B35 Drive not ready.

11108 2B64 Not exact read/write.

11109 2B65 Operating system network error.

11110 2B66 Error from Novell file server.

11111 2B67 Novell server out of memory.

11112 2B68 Record already locked by this workstation.

11113 2B69 Record not locked.

11265 2C01 Network initialization failed.

11266 2C02 Network user limit exceeded.

11267 2C03 Wrong NET file version.

11268 2C04 Cannot lock network file.

11269 2C05 Directory is not private.

11270 2C06 Directory is controlled by other NET file.

11271 2C07 Unknown network error.

11272 2C08 Not initialized for accessing network files.

11273 2C09 Share not loaded. It is required to share local files.

11274 2C0A Not on a network. Not logged in or wrong network driver.

11275 2C0B Lost communication with SQL server.

11277 2C0D Cannot locate or connect to SQL server.

11278 2C0E Cannot locate or connect to network server.

11521 2D01 Optional parameter is required.

11522 2D02 Invalid optional parameter.

11777 2E01 Obsolete.

11778 2E02 Obsolete.

11779 2E03 Ambiguous use of ! (inclusion operator).

Appendixes

PART VI
442

45.65227_AppBCDx 11/30/99 12:30 PM Page 442

Error Code

Decimal Hex Error String

11780 2E04 Obsolete.

11781 2E05 Obsolete.

11782 2E06 A SET operation cannot be included in its own grouping.

11783 2E07 Only numeric and date/time fields can be averaged.

11784 2E08 Invalid expression.

11785 2E09 Invalid OR expression.

11786 2E0A Obsolete.

11787 2E0B Bitmap.

11788 2E0C CALC expression cannot be used in INSERT, DELETE, CHANGETO, and
SET rows.

11789 2E0D Type error in CALC expression.

11790 2E0E CHANGETO can be used in only one query form at a time.

11791 2E0F Cannot modify CHANGED table.

11792 2E10 A field can contain only one CHANGETO expression.

11793 2E11 A field cannot contain more than one expression to be inserted.

11794 2E12 Obsolete.

11795 2E13 CHANGETO must be followed by the new value for the field.

11796 2E14 Checkmark or CALC expressions cannot be used in FIND queries.

11797 2E15 Cannot perform operation on CHANGED table together with a
CHANGETO query.

11798 2E16 Chunk.

11799 2E17 More than 255 fields in ANSWER table.

11800 2E18 AS must be followed by the name for the field in the ANSWER table.

11801 2E19 DELETE can be used in only one query form at a time.

11802 2E1A Cannot perform operation on DELETED table together with a DELETE
query.

11803 2E1B Cannot delete from the DELETED table.

11804 2E1C Example element is used in two fields with incompatible types or with
a BLOB.

11805 2E1D Cannot use example elements in an OR expression.

11806 2E1E Expression in this field has the wrong type.

11807 2E1F Extra comma found.

BDE Error Codes

APPENDIX B
443

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 443

TABLE B.1 Continued

Error Code

Decimal Hex Error String

11808 2E20 Extra OR found.

11809 2E21 One or more query rows do not contribute to the ANSWER.

11810 2E22 FIND can be used in only one query form at a time.

11811 2E23 FIND cannot be used with the ANSWER table.

11812 2E24 A row with GROUPBY must contain SET operations.

11813 2E25 GROUPBY can be used only in SET rows.

11814 2E26 Use only INSERT, DELETE, SET, or FIND in leftmost column.

11815 2E27 Use only one INSERT, DELETE, SET, or FIND per line.

11816 2E28 Syntax error in expression.

11817 2E29 INSERT can be used in only one query form at a time.

11818 2E2A Cannot perform operation on INSERTED table together with an
INSERT query.

11819 2E2B INSERT, DELETE, CHANGETO, and SET rows may not be checked.

11820 2E2C Field must contain an expression to insert (or be blank).

11821 2E2D Cannot insert into the INSERTED table.

11822 2E2E Variable is an array and cannot be accessed.

11823 2E2F Label.

11824 2E30 Rows of example elements in CALC expression must be linked.

11825 2E31 Variable name is too long.

11826 2E32 Query may take a long time to process.

11827 2E33 Reserved word or one that can’t be used as a variable name.

11828 2E34 Missing comma.

11829 2E35 Missing right parenthesis.

11830 2E36 Missing right quote.

11831 2E37 Cannot specify duplicate column names.

11832 2E38 Query has no checked fields.

11833 2E39 Example element has no defining occurrence.

11834 2E3A No grouping is defined for SET operation.

11835 2E3B Query makes no sense.

11836 2E3C Cannot use patterns in this context.

11837 2E3D Date does not exist.

Appendixes

PART VI
444

45.65227_AppBCDx 11/30/99 12:30 PM Page 444

Error Code

Decimal Hex Error String

11838 2E3E Variable has not been assigned a value.

11839 2E3F Invalid use of example element in summary expression.

11840 2E40 Incomplete query statement. Query only contains a SET definition.

11841 2E41 Example element with ! makes no sense in expression.

11842 2E42 Example element cannot be used more than twice with a ! query.

11843 2E43 Row cannot contain expression.

11844 2E44 Obsolete.

11845 2E45 Obsolete.

11846 2E46 No permission to insert or delete records.

11847 2E47 No permission to modify field.

11848 2E48 Field not found in table.

11849 2E49 Expecting a column separator in table header.

11850 2E4A Expecting a column separator in table.

11851 2E4B Expecting a column name in table.

11852 2E4C Expecting table name.

11853 2E4D Expecting consistent number of columns in all rows of table.

11854 2E4E Cannot open table.

11855 2E4F Field appears more than once in table.

11856 2E50 This DELETE, CHANGE, or INSERT query has no ANSWER.

11857 2E51 Query is not prepared. Properties unknown.

11858 2E52 DELETE rows cannot contain quantifier expression.

11859 2E53 Invalid expression in INSERT row.

11860 2E54 Invalid expression in INSERT row.

11861 2E55 Invalid expression in SET definition.

11862 2E56 Row use.

11863 2E57 SET keyword expected.

11864 2E58 Ambiguous use of example element.

11865 2E59 Obsolete.

11866 2E5A Obsolete.

11867 2E5B Only numeric fields can be summed.

11868 2E5C Table is write protected.

BDE Error Codes

APPENDIX B
445

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 445

TABLE B.1 Continued

Error Code

Decimal Hex Error String

11869 2E5D Token not found.

11870 2E5E Cannot use example element with ! more than once in a single row.

11871 2E5F Type mismatch in expression.

11872 2E60 Query appears to ask two unrelated questions.

11873 2E61 Unused SET row.

11874 2E62 INSERT, DELETE, FIND, and SET can be used only in the leftmost
column.

11875 2E63 CHANGETO cannot be used with INSERT, DELETE, SET, or FIND.

11876 2E64 Expression must be followed by an example element defined in a SET.

11877 2E65 Lock failure.

11878 2E66 Expression is too long.

11879 2E67 Refresh exception during query.

11880 2E68 Query canceled.

11881 2E69 Unexpected database engine error.

11882 2E6A Not enough memory to finish operation.

11883 2E6B Unexpected exception.

11884 2E6C Feature not implemented yet in query.

11885 2E6D Query format is not supported.

11886 2E6E Query string is empty.

11887 2E6F Attempted to prepare an empty query.

11888 2E70 Buffer too small to contain query string.

11889 2E71 Query was not previously parsed or prepared.

11890 2E72 Function called with bad query handle.

11891 2E73 QBE syntax error.

11892 2E74 Query extended syntax field count error.

11893 2E75 Field name in sort or field clause not found.

11894 2E76 Table name in sort or field clause not found.

11895 2E77 Operation is not supported on BLOB fields.

11896 2E78 General BLOB error.

11897 2E79 Query must be restarted.

11898 2E7A Unknown answer table type.

Appendixes

PART VI
446

45.65227_AppBCDx 11/30/99 12:30 PM Page 446

Error Code

Decimal Hex Error String

11926 2E96 Blob cannot be used as grouping field.

11927 2E97 Query properties have not been fetched.

11928 2E98 Answer table is of unsuitable type.

11929 2E99 Answer table is not yet supported under server alias.

11930 2E9A Non-null BLOB field required. Can’t insert records.

11931 2E9B Unique index required to perform CHANGETO.

11932 2E9C Unique index required to delete records.

11933 2E9D Update of table on the server failed.

11934 2E9E Can’t process this query remotely.

11935 2E9F Unexpected end of command.

11936 2EA0 Parameter not set in query string.

11937 2EA1 Query string is too long.

11946 2EAA No such table or correlation name.

11947 2EAB Expression has ambiguous data type.

11948 2EAC Field in ORDER BY must be in resultset.

11949 2EAD General parsing error.

11950 2EAE Record or field constraint failed.

11951 2EAF Field in group by must be in resultset.

11952 2EB0 User-defined function is not defined.

11953 2EB1 Unknown error from user-defined function.

11954 2EB2 Single-row subquery produced more than one row.

11955 2EB3 Expressions in GROUP BY are not supported.

11956 2EB4 Queries on text or ASCII tables is not supported.

11957 2EB5 ANSI join keywords USING and NATURAL are not supported in this
release.

11958 2EB6 SELECT DISTINCT may not be used with UNION unless UNION ALL
is used.

11959 2EB7 GROUP BY is required when both aggregate and nonaggregate fields
are used in resultset.

11960 2EB8 INSERT and UPDATE operations are not supported on autoincrement
field type.

BDE Error Codes

APPENDIX B
447

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 447

TABLE B.1 Continued

Error Code

Decimal Hex Error String

11961 2EB9 UPDATE on primary key of a master table may modify more than one
record.

12033 2F01 Interface mismatch. Engine version different.

12034 2F02 Index is out of date.

12035 2F03 Older version (see context).

12036 2F04 VAL file is out of date.

12037 2F05 BLOB file version is too old.

12038 2F06 Query and engine DLLs are mismatched.

12039 2F07 Server is incompatible version.

12040 2F08 Higher table level required.

12289 3001 Capability not supported.

12290 3002 Not implemented yet.

12291 3003 SQL replicas not supported.

12292 3004 Non-BLOB column in table required to perform operation.

12293 3005 Multiple connections not supported.

12294 3006 Full dBASE expressions not supported.

12545 3101 Invalid database alias specification.

12546 3102 Unknown database type.

12547 3103 Corrupt system configuration file.

12548 3104 Network type unknown.

12549 3105 Not on the network.

12550 3106 Invalid configuration parameter.

12801 3201 Object implicitly dropped.

12802 3202 Object may be truncated.

12803 3203 Object implicitly modified.

12804 3204 Should field constraints be checked?

12805 3205 Validity check field modified.

12806 3206 Table level changed.

12807 3207 Copy linked tables?

12809 3209 Object implicitly truncated.

12810 320A Validity check will not be enforced.

12811 320B Multiple records found, but only one was expected.

Appendixes

PART VI
448

45.65227_AppBCDx 11/30/99 12:30 PM Page 448

Error Code

Decimal Hex Error String

12812 320C Field will be trimmed. Cannot put master records into problem table.

13057 3301 File already exists.

13058 3302 BLOB has been modified.

13059 3303 General SQL error.

13060 3304 Table already exists.

13061 3305 Paradox 1.0 tables are not supported.

13062 3306 Update aborted.

13313 3401 Different sort order.

13314 3402 Directory in use by earlier version of Paradox.

13315 3403 Needs Paradox 3.5–compatible language driver.

13569 3501 Data dictionary is corrupt.

13570 3502 Data dictionary info BLOB corrupted.

13571 3503 Data dictionary schema is corrupt.

13572 3504 Attribute type exists.

13573 3505 Invalid object type.

13574 3506 Invalid relation type.

13575 3507 View already exists.

13576 3508 No such view exists.

13577 3509 Invalid record constraint.

13578 350A Object is in a logical DB.

13579 350B Dictionary already exists.

13580 350C Dictionary does not exist.

13581 350D Dictionary database does not exist.

13582 350E Dictionary info is out of date. Needs refreshed.

13584 3510 Invalid dictionary name.

13585 3511 Dependent objects exist.

13586 3512 Too many relationships for this object type.

13587 3513 Relationships to the object exist.

13588 3514 Dictionary exchange file is corrupt.

13589 3515 Dictionary exchange file version mismatch.

13590 3516 Dictionary object type mismatch.

BDE Error Codes

APPENDIX B
449

B

B
D

E E
R

R
O

R
C

O
D

ES

continues

45.65227_AppBCDx 11/30/99 12:30 PM Page 449

TABLE B.1 Continued

Error Code

Decimal Hex Error String

13591 3517 Object exists in target dictionary.

13592 3518 Cannot access data dictionary.

13593 3519 Cannot create data dictionary.

13594 351A Cannot open database.

15873 3E01 Wrong driver name.

15874 3E02 Wrong system version.

15875 3E03 Wrong driver version.

15876 3E04 Wrong driver type.

15877 3E05 Cannot load driver.

15878 3E06 Cannot load language driver.

15879 3E07 Vendor initialization failed.

15880 3E08 Your application is not enabled for use with this driver.

Appendixes

PART VI
450

45.65227_AppBCDx 11/30/99 12:30 PM Page 450

	Chapter 6 Coding Standards Document
	Chapter 7 Using ActiveX Controls with Delphi
	Chapter 8 Graphics Programming with GDI and Fonts
	Chapter 10 Printing in Delphi 5
	Chapter 15 Porting to Delphi 5
	Chapter 16 MDI Applications
	Chapter 18 Multimedia Programming with Delphi
	Chapter 19 Testing and Debugging
	Chapter 30 Extending Database VCL
	Appendix A Error Messages and Exceptions
	Appendix B BDE Error Codes

