
101

CHAPTER 3

Eclipse Infrastructure

This chapter discusses the architecture behind the code generated in the pre-
vious chapter. Before diving deeper into every aspect of the program, it’s time
to step back and look at Eclipse as a whole.

The simple example plug-in that was started and described in Chapter 2—
the Favorites plug-in—provides a concrete basis on which to discuss the
Eclipse architecture.

3.1 Structural Overview

Eclipse isn’t a single monolithic program, but rather a small kernel called a
plug-in loader surrounded by hundreds (and potentially thousands) of plug-
ins (see Figure 3–1) of which the Favorites example plug-in is one. Each plug-
in may rely on services provided by another plug-in, and each may in turn pro-
vide services on which yet other plug-ins may rely.

This modular design lends itself to discrete chunks of functionality that
can be more readily reused to build applications not envisioned by Eclipse’s
original developers.

QualityEclipse.book Page 101 Tuesday, February 28, 2006 3:02 PM

102 CHAPTER 3 • Eclipse Infrastructure

Figure 3–1 Eclipse plug-in structure.
An example of how plug-ins depend on one another.

3.1.1 Plug-in structure

The behavior of every plug-in is in code, yet the dependencies and services of
a plug-in (see Section 2.3.1, The Plug-in manifests, on page 71) are declared
in the MANIFEST.MF and plugin.xml files (see Figure 3–2). This structure
facilitates lazy-loading of plug-in code on an as-needed basis, thus reducing
both the startup time and the memory footprint of Eclipse.

On startup, the plug-in loader scans the MANIFEST.MF and plugin.xml
files for each plug-in and then builds a structure containing this information.
This structure takes up some memory, but it allows the loader to find a
required plug-in much more quickly, and it takes up a lot less space than load-
ing all the code from all the plug-ins all the time.

QualityEclipse.book Page 102 Tuesday, February 28, 2006 3:02 PM

3.1 Structural Overview 103

Figure 3–2 Declaring a new extension.
This is an example of how a new extension is declared in the plug-in manifest

with lines highlighting how the plug-in manifest references various plug-in artifacts.

Plug-ins Are Loaded But Not Unloaded In Eclipse 3.1, plug-
ins are loaded lazily during a session but not unloaded, causing the mem-
ory footprint to grow as the user requests more functionality. In future
versions of Eclipse, this issue may be addressed by unloading plug-ins when
they are no longer required (see eclipse.org/equinox; and for more specifics
on deactivating plug-ins see dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/
equinoxhome/dynamicPlugins/deactivatingPlugins.html).

QualityEclipse.book Page 103 Tuesday, February 28, 2006 3:02 PM

104 CHAPTER 3 • Eclipse Infrastructure

3.1.2 Workspace

The Eclipse IDE displays and modifies files located in a workspace. The work-
space is a directory hierarchy containing both user files such as projects,
source code, and so on, and plug-in state information such as preferences (see
Section 3.4.4, Plug-in preferences, on page 116). The plug-in state informa-
tion located in the workspace directory hierarchy is associated only with that
workspace, yet the Eclipse IDE, its plug-ins, the plug-in static resources (see
Section 3.4.3, Static plug-in resources, on page 115) and plug-in configuration
files (see Section 3.4.5, Plug-in configuration files, on page 116) are shared by
multiple workspaces.

3.2 Plug-in Directory or JAR file

The Favorites plug-in directory (or JAR file, see the first entry below) contains
files similar to a typical plug-in, including *.jar files containing code, various
images used by the plug-in, and the plug-in manifest.

favorites.jar—A file containing the actual Java classes comprising the
plug-in. Typically, the JAR file is named for the last segment in the plug-
in’s identifier, but it could have any name, as long as that name is
declared in the META-INF/MANIFEST.MF file. In this case, since the
Favorites plug-in identifier is com.qualityeclipse.favorites, the
JAR file is named favorites.jar.

icons—Image files are typically placed in an icons or images subdirec-
tory and referenced in the plugin.xml and by the plug-in’s various
classes. Image files and other static resource files that are shipped as
part of the plug-in can be accessed using methods in the plug-in class (see
Section 3.4.3, Static plug-in resources, on page 115).

META-INF/MANIFEST.MF—A file describing the runtime aspects of
the plug-in such as identifier, version, and plug-in dependencies (see Sec-
tion 2.3.1, The Plug-in manifests, on page 71 and see Section 3.3.2, Plug-
in runtime, on page 110).

plugin.xml—A file in XML format describing extensions and extension
points (see Section 3.3.4, Extensions and extension points, on page 112).

The plug-in directory must have a specific name and be placed inside a
specific directory so that Eclipse can find and load it. The directory name must
be a concatenation of the plug-in identifier, an underscore, and the plug-in ver-
sion in dot-separated form, as in:

com.qualityeclipse.favorites_1.0.0

QualityEclipse.book Page 104 Tuesday, February 28, 2006 3:02 PM

3.2 Plug-in Directory or JAR file 105

The plug-in directory must be located in the plugins directory as a sibling to
all the other Eclipse plug-ins, as is the case for the Favorites plug-in.

As of Eclipse 3.1, the plug-in can be delivered as a single JAR file contain-
ing the same files as a plug-in directory (see Section 2.4.1, Building manually,
on page 81). If you wish to deliver the plug-in as a single JAR file rather than
a directory of files, then it must be named in exactly the same way with a
“.jar” suffix, as in

com.qualityeclipse.favorites_1.0.0.jar

Whenever we refer to a “plug-in directory,” we are also referring to this alter-
nate JAR file format.

3.2.1 Link files

Alternatively, plug-in directories comprising a product may be placed in a sep-
arate product-specific directory, and then a link file can be provided for
Eclipse so that the program can find and load these plug-ins. Not only does
this approach satisfy Ready for Rational Software (RFRS) requirements, but
it also allows for multiple installations of Eclipse to be linked to the same set
of plug-ins. You must make several modifications to the Favorites example so
that it can use this alternate approach.

To begin, remove the existing Favorites plug-in in its current form from
the Development Workbench using the steps outlined in Section 2.8.5,
Uninstalling the Favorites plug-in, on page 98. Next, modify the Ant-based
build-favorites.xml file so that the Favorites plug-in conforms to the new
structure by inserting QualityEclipse/Favorites/eclipse in two places;
then replace the following

<property name="plugin.jar" location=
 "${build.temp}/jars/plugins/${plugin.dir}.jar" />

with this (location must be on a single line)

<property name="plugin.jar" location=
 "${build.temp}/jars/QualityEclipse/Favorites/
 eclipse/plugins/${plugin.dir}.jar" />

Next, replace this:

<mkdir dir="${build.temp}/jars/plugins" />

QualityEclipse.book Page 105 Tuesday, February 28, 2006 3:02 PM

106 CHAPTER 3 • Eclipse Infrastructure

with this (all on a single line):

<mkdir dir="${build.temp}/jars/QualityEclipse/Favorites/
 eclipse/plugins" />

When making these modifications, be sure that the location string is all on a
single line; Ant does not handle paths that span multiple lines. When the
modified build-favorites.xml is executed, the resulting zip file contains a
new structure:

QualityEclipse/Favorites/eclipse/plugins/
 com.qualityeclipse.favorites_1.0.0.jar

The zip file can be unzipped to any location, but for this example, assume
that the file is unzipped into the root directory of the C drive so that the plug-
in directory is:

C:\QualityEclipse\Favorites\eclipse\plugins\
 com.qualityeclipse.favorites_1.0.0.jar

The locations for the Eclipse product directory and the Quality-Eclipse
product directory are determined by the user and thus are not known at build
time. Because of this, the link file that points to the Quality-Eclipse product
directory must be manually created for now. Create the links subdirectory in
the Eclipse product directory (e.g., C:\eclipse\links) and create a new file
named com.qualityeclipse.favorites.link that contains this single
line:

path=C:/QualityEclipse/Favorites

To do this in Windows, you can use Notepad to create and save the file as
a txt file, which you can then rename appropriately. Note that the path in the
*.link file must use forward slashes rather than backslashes. The new
*.link file will be used by Eclipse once Eclipse has been restarted.

3.2.2 Hybrid approach

Some products use a hybrid approach, delivering the product in multiple
forms. When installing, the installer places product plug-ins directly in the
Eclipse plug-ins directory, whereas when installing into Rational Application

No Relative Paths in Link Files Eclipse 3.1 does not allow link
files to contain relative paths. This restriction may be changed in future
versions (see bugs.eclipse.org/bugs/show_bug.cgi?id=35037 for Bugzilla entry
35037).

QualityEclipse.book Page 106 Tuesday, February 28, 2006 3:02 PM

3.3 Plug-in Manifest 107

Developer or any of the other Rational IDE family of products, the product
plug-ins are placed in a separate product directory and a link file is created. In
addition, these products are available in various zip file formats, each targeted
at a specific type and version of an Eclipse or WebSphere product. This hybrid
approach facilitates a simpler and smaller zip-based installation for Eclipse
where Ready for Rational Software (RFRS) certification is not required, and
a cleaner and easier installer-based installation for the Rational IDE family of
products.

After you install the QualityEclipse product and create the link file as just
described, the QualityEclipse product is ready for use. Verify that you have
correctly installed the QualityEclipse product in its new location by restarting
Eclipse and opening the Favorites view. After you have installed and verified
the product, be sure to uninstall it by deleting the link file so that the JUnit
tests described in Section 2.8, Writing Plug-in Tests, on page 92 will still run
successfully.

3.3 Plug-in Manifest

As stated earlier, there are two files—MANIFEST.MF and plugin.xml—per
plug-in defining various high-level aspects so that the plug-in does not have to
load until you need its functionality. The format and content for these files can
be found in the Eclipse help facility accessed by Help > Help Contents; look
under Platform Plug-in Developer Guide > Reference > Other Reference
Information > OSGi Bundle Manifest and Plug-in Manifest.

What is OSGi? Eclipse originally used a home-grown runtime
model/mechanism that was designed and implemented specifically for
Eclipse. This was good because it was highly optimized and tailored to
Eclipse, but less than optimal because there are many complicated issues,
and having a unique runtime mechanism prevented reusing the work done
in other areas (e.g., OSGi, Avalon, JMX, etc.). As of Eclipse 3.0, a new
runtime layer was introduced based upon technology from the OSGi
Alliance (www.osgi.org) that has a strong specification, a good component
model, supports dynamic behaviour, and is reasonably similar to the
original Eclipse runtime. With each new release of Eclipse, the Eclipse
runtime API and implementation (e.g. “plug-ins”) continues to align itself
more and more closely with the OSGi runtime model (e.g. “bundles”).

QualityEclipse.book Page 107 Tuesday, February 28, 2006 3:02 PM

108 CHAPTER 3 • Eclipse Infrastructure

3.3.1 Plug-in declaration

Within each bundle manifest, there are entries for name, identifier, version,
plug-in class, and provider.

Bundle-Name: Favorites Plug-in

Bundle-SymbolicName: com.qualityeclipse.favorites; singleton:=true

Bundle-Version: 1.0.0

Bundle-Activator: com.qualityeclipse.favorites.FavoritesPlugin

Bundle-Vendor: Quality Eclipse

Strings in the plug-in manifest, such as the plug-in name, can be moved into a
separate plugin.properties file. This process facilitates internationaliza-
tion as discussed in Chapter 16, Internationalization.

3.3.1.1 Plug-in identifier

The plug-in identifier (Bundle-SymbolicName) is designed to uniquely identify
the plug-in and is typically constructed using Java package naming conventions
(e.g., com.<companyName>.<productName>, or in our case, com.quality-
eclipse.favorites). If several plug-ins are all part of the same product, then
each plug-in name can have four or even five parts to it as in com.quality-
eclipse.favorites.core and com.qualityeclipse.favorites.ui.

3.3.1.2 Plug-in version

Every plug-in specifies its version (Bundle-Version) using three numbers
separated by periods. The first number indicates the major version number,
the second indicates the minor version number, and the third indicates the ser-
vice level, as in 1.0.0. You can specify an optional qualifier that can include
alphanumeric characters as in 1.0.0.beta_1 or 1.0.0.2006-03-20 (no
whitespace). Eclipse does not use or interpret this optional qualifier in any
way, so the product builder can use it to encode the build type, build date, or
other useful information.

3.3.1.3 Plug-in name and provider

Both the name and the provider are human-readable text, so they can be any-
thing and are not required to be unique. To see the names, versions, and pro-
viders of the currently installed plug-ins, select Help > About Eclipse SDK to

Tip: For an outline of the current use of version numbers and a proposed
guideline for using plug-in version numbering to better indicate levels of
compatibility, see eclipse.org/equinox/documents/plugin-versioning.html.

QualityEclipse.book Page 108 Tuesday, February 28, 2006 3:02 PM

3.3 Plug-in Manifest 109

open the About dialog (see Figure 3–3), and then click the Plug-in Details but-
ton to open the Plug-ins dialog (see Figure 3–4).

Figure 3–3 The About Eclipse SDK dialog, showing information
about the Eclipse platform.

Figure 3–4 The About Eclipse SDK Plug-ins dialog, showing all the installed
plug-ins with the Favorites plug-in highlighted at the bottom.

3.3.1.4 Plug-in class declaration

Optionally, every plug-in can specify a plug-in class (Bundle-Activator) as
the Favorites plug-in does (see Section 3.4, Plug-in Class, on page 114).

QualityEclipse.book Page 109 Tuesday, February 28, 2006 3:02 PM

110 CHAPTER 3 • Eclipse Infrastructure

3.3.2 Plug-in runtime

The Bundle-ClassPath declaration in the MANIFEST.MF file is a comma sep-
arated list describing which libraries (*.jar files) contain the plug-in code.
The Export-Package declaration is a comma-separated list indicating which
packages within those libraries are accessible to other plug-ins (see Section
20.2.4, How Eclipse is different, on page 713 and Section 20.2.5, Related
plug-ins, on page 713).

Bundle-ClassPath: favorites.jar

Export-Package: com.qualityeclipse.favorites.views

3.3.3 Plug-in dependencies

The plug-in loader instantiates a separate class loader for each loaded plug-in,
and uses the Require-Bundle declaration of the manifest to determine which
other plug-ins—thus which classes—will be visible to that plug-in during exe-
cution (see Section 20.9, Plug-in ClassLoaders, on page 742 for information
about loading classes not specified in the Require-Bundle declaration).

Require-Bundle: org.eclipse.ui,

 org.eclipse.core.runtime

If a plug-in has been successfully compiled and built but, during
execution, throws a NoClassDefFoundError, it may indicate that the plug-in
project’s Java classpath is out of sync with the Require-Bundle declaration
in the MANIFEST.MF file. As discussed in Section 2.3.1, The Plug-in manifests,
on page 71, it is important to keep the classpath and the Require-Bundle
declaration in sync.

When the plug-in loader is about to load a plug-in, it scans the Require-
Bundle declaration of a dependent plug-in and locates all the required plug-
ins. If a required plug-in is not available, then the plug-in loader throws an
exception, generating an entry in the log file (see Section 3.6, Logging, on
page 122) and does not load the dependent plug-in. When a plug-in gathers
the list of plug-ins that extend an extension point it defines, it will not see any
disabled plug-ins. In this circumstance, no exception or log entry will be gen-
erated for the disabled plug-ins.

Tip: When delivering your plug-in as a single JAR, the Bundle-ClassPath
declaration should be empty so that Eclipse looks for classes in the plug-in
JAR and not in a JAR inside your plug-in.

QualityEclipse.book Page 110 Tuesday, February 28, 2006 3:02 PM

3.3 Plug-in Manifest 111

If a plug-in can successfully execute without a required plug-in, then that
required plug-in can be marked as optional in the plug-in manifest. To do so,
open the plug-in manifest editor and then switch to the Dependencies tab (see
Figure 2–10 on page 73). Select the required plug-in, click the Properties button
and then check the Optional checkbox in the Properties dialog (see Figure 3–5).

Figure 3–5 The required plug-in properties dialog.

Making this change in the plug-in manifest editor appends
;resolution:=optional to the required plug-in in the Require-Bundle
declaration so that it now looks something like this:

Require-Bundle: org.eclipse.ui,

 org.eclipse.core.runtime;resolution:=optional

If your plug-in requires not just any version of another plug-in, you can
specify an exact version or a range of versions using the required plug-in prop-
erties dialog (see Figure 3–5). The following are some examples:

• [3.0.0.test,3.0.0.test]—requires a specific version
• [3.0.0,3.0.1)—requires version 3.0.0.x
• [3.0.0,3.1.0)—requires version 3.0.x
• [3.0.0,3.2.0)—requires version 3.0.x or 3.1.x
• [3.0.0,4.0.0)—requires version 3.x
• 3.0.0—requires version 3.0.0 or greater

The general syntax for a range is

[floor , ceiling)

where floor is the minimum version and ceiling is the maximum version.
The first character can be [or (and the last character may be] or) where
these characters indicate the following:

QualityEclipse.book Page 111 Tuesday, February 28, 2006 3:02 PM

112 CHAPTER 3 • Eclipse Infrastructure

• [= floor is included in the range
• (= floor is not included in the range
•] = ceiling is included in the range
•) = ceiling is not included in the range

You can specify a floor or minimum version with no extra characters indi-
cating that your plug-in needs any version greater than or equal to the speci-
fied version. Entering one of the preceding in the required plug-in properties
dialog (see Figure 3–5) modifies the Require-Bundle declaration so that it
now looks something like this:

Require-Bundle: org.eclipse.ui,

 org.eclipse.core.runtime;bundle-version="[3.0.0,3.1.0)"

Finally, check the Reexport this dependency checkbox (see Figure 3–5) to
specify that the dependent plug-in classes are made visible (are (re)exported)
to users of this plug-in. By default, dependent classes are not exported (i.e.,
they are not made visible).

Import-Package is similar to Require-Bundle except that Import-
Package specifies names of packages that are required for execution rather
than names of bundles. Using Import-Package can be thought of as specify-
ing the service required whereas using Require-Bundle is like specifying the
service provider. Import-Package makes it easier to swap out one bundle for
another that provides the same service, but harder to know who is providing
that service.

3.3.4 Extensions and extension points

A plug-in declares extension points so that other plug-ins can extend the func-
tionality of the original plug-in in a controlled manner (see Section 17.1, The
Extension Point Mechanism, on page 595). This mechanism provides a layer
of separation so that the original plug-in does not need to know about the
existence of the extending plug-ins at the time you build the original plug-in.
Plug-ins declare extension points as part of their plug-in manifest, as in the
views extension point declared in the org.eclipse.ui plug-in:

<extension-point

 id="views"

 name="%ExtPoint.views"

 schema="schema/views.exsd"/>

QualityEclipse.book Page 112 Tuesday, February 28, 2006 3:02 PM

3.3 Plug-in Manifest 113

You can find documentation for this extension point in the Eclipse help
(select Help > Help Contents, then in the Help dialog, select Platform Plug-in
Developer Guide > Reference > Extension Points Reference > Workbench >
org.eclipse.ui.views). It indicates that any plug-in using this extension point
must provide the name of a class that implements the interface org.
eclipse.ui.IViewPart (see Section 20.5, Types Specified in an Extension
Point, on page 723).

Other plug-ins declare extensions to the original plug-in’s functionality
similar to the Favorites plug-in’s view extensions. In this case, the Favorites
plug-in declares a new category of views with the name Quality Eclipse and
the class, com.qualityeclipse.favorites.views.FavoritesView, as a
new type of view as follows:

<extension point="org.eclipse.ui.views">

 <category

 name="Quality Eclipse"

 id="com.qualityeclipse.favorites">

 </category>

 <view

 name="Favorites"

 icon="icons/sample.gif"

 category="com.qualityeclipse.favorites"

 class="com.qualityeclipse.favorites.views.FavoritesView"

 id="com.qualityeclipse.favorites.views.FavoritesView">

 </view>

</extension>

Each type of extension point may require different attributes to define the
extension. Typically, ID attributes take a form similar to the plug-in identifier.
The category ID provides a way for the Favorites view to uniquely identify the
category that contains it. The name attribute of both the category and view is
human-readable text, while the icon attribute specifies a relative path from
the plug-in directory to the image file associated with the view.

This approach allows Eclipse to load information about the extensions
declared in various plug-ins without loading the plug-ins themselves, thus
reducing the amount of time and memory required for an operation. For
example, selecting the Windows > Show View > Other… menu opens a dialog
showing all the views provided by all the plug-ins known to Eclipse (see Sec-
tion 2.5, Installing and Running the Product, on page 86). Because each type
of view is declared in its plug-in’s manifest, the Eclipse runtime can present a
list of views to the user without actually loading each plug-in that contains the
view.

QualityEclipse.book Page 113 Tuesday, February 28, 2006 3:02 PM

114 CHAPTER 3 • Eclipse Infrastructure

3.4 Plug-in Class

By default, the plug-in class or Bundle-Activator provides methods for
accessing static resources associated with the plug-in, and for accessing and
initializing plug-in-specific preferences and other state information. A plug-in
class is not required, but if specified in the plug-in manifest, the plug-in class
is the first class notified after the plug-in loads and the last class notified when
the plug-in is about to shut down (see Section 3.5.2, Plug-ins and Bundles, on
page 120 and the source code listing in Section 2.3.2, The Plug-in class, on
page 77).

3.4.1 Startup and shutdown

The plug-in loader notifies the plug-in class when the plug-in is loaded via the
start() method and when the plug-in shuts down via the stop() method.
These methods allow the plug-in to save and restore any state information
between Eclipse sessions.

3.4.2 Early plug-in startup

Eclipse loads plug-ins lazily, so it may not call the start() method when it
launches. Eclipse can provide resource change information indicating the
changes that occurred while the plug-in was inactive (see Section 9.5, Delayed
Changed Events, on page 387). If this is not enough and the plug-in must load

Tip: Historically, plug-ins have exposed their Plugin subclass as an entry
point. To better control access to your plug-in’s initialization, consider
either a Bundle-Activator other than your Plugin subclass or
moving public access methods to a new class and hiding your Plugin
subclass.

Be Careful When Overriding start() and stop() When
overriding these methods, be careful; always call the superclass implemen-
tation, and only take the minimum action necessary so that you do not
impact the speed or memory requirements during Eclipse startup or shut-
down.

QualityEclipse.book Page 114 Tuesday, February 28, 2006 3:02 PM

3.4 Plug-in Class 115

and start when Eclipse launches, the plug-in can use the
org.eclipse.ui.startup extension point by inserting the following into its
plug-in manifest:

<extension point="org.eclipse.ui.startup">
 <startup class="myPackage.myClass"/>
</extension>

Doing this requires that the myPackage.myClass class implement the
org.eclipse.ui.IStartup interface so that the workbench can call the
earlyStartup() method immediately after the UI completes its startup. For
more on early startup and the issues involved, see Section 20.10, Early Startup,
on page 747.

Like most plug-ins, the Favorites plug-in does not need to load and start
when Eclipse launches, so it does not use this extension point. If there is a need
for early startup, then place only what is necessary for it into a separate plug-
in and use the early startup extension point there so that the additional over-
head of early startup has only a small impact on startup time and memory
footprint.

3.4.3 Static plug-in resources

Plug-ins can include images and other file-based resources that are installed
into the plug-in directory along with the plug-in manifest and library file.
These files are static in nature and shared between multiple workbench
incarnations. Declarations, such as actions, views, and editors, in the plug-in
manifest can reference resources such as icons stored in the plug-in installation
directory. Additionally, the plug-in class provides methods for locating and
loading these resources:

find (IPath path)—Returns a uniform resource locator (URL) for the
given path or null if the URL could not be computed or created.

openStream (IPath file)—Returns an input stream for the specified
file. The file path must be specified relative to the plug-in’s installation
location (the plug-in directory).

QualityEclipse.book Page 115 Tuesday, February 28, 2006 3:02 PM

116 CHAPTER 3 • Eclipse Infrastructure

3.4.4 Plug-in preferences

Plug-in preferences and other workspace-specific state information are stored
in the workspace metadata directory hierarchy. For example, if Eclipse is
installed at C:\eclipse and the default workspace location is being used,
then the Favorites preferences would be stored in:

C:/eclipse/workspace/.metadata/.plugins
 /com.qualityeclipse.favorites/pref_store.ini

The plug-in class provides methods for accessing plug-in preferences and other
state-related files as follows:

getPluginPreferences()—Returns the preference store for this plug-
in (see Section 12.3, Preference APIs, on page 467).

getStateLocation()—Returns the location in the local filesystem of
the plug-in state area for this plug-in (see Section 7.5.2, Saving global
view information, on page 311). If the plug-in state area did not exist
prior to this call, it is created.

savePluginPreferences()—Saves the preference settings for this
plug-in; it does nothing if the preference store does not need saving.

You can supply default preferences to a plug-in in several ways. In order
to programmatically define default preference values, override the method
initializeDefaultPluginPreferences(). Alternatively, you can specify
default preferences in a preferences.ini file located in the plug-in directory
(see Section 12.3.4, Specifying default values in a file, on page 472). Using this
second approach also lets you easily internationalize the plug-in using a
preferences.properties file (see Section 16.1, Externalizing the Plug-in
Manifest, on page 576).

3.4.5 Plug-in configuration files

If you need to store plug-in information that needs to be shared among all
workspaces associated with a particular Eclipse installation, then use the
method Platform.getConfigurationLocation() and create a plug-in
specific subdirectory. If Eclipse is installed in a read-only location, then
Platform.getConfigurationLocation() will return null. You could add
the following field and method to the FavoritesPlugin class to return a
configuration directory for this plug-in. If Eclipse is installed in a read-only
location, then this method would gracefully degrade by returning the
workspace-specific state location rather than the configuration directory so
that plug-in state information could still be stored and retrieved.

QualityEclipse.book Page 116 Tuesday, February 28, 2006 3:02 PM

3.4 Plug-in Class 117

public static final String ID = "com.qualityeclipse.favorites";

public File getConfigDir() {
 Location location = Platform.getConfigurationLocation();
 if (location != null) {
 URL configURL = location.getURL();
 if (configURL != null
 && configURL.getProtocol().startsWith("file")) {
 return new File(configURL.getFile(), ID);
 }
 }
 // If the configuration directory is read-only,
 // then return an alternate location
 // rather than null or throwing an Exception.
 return getStateLocation().toFile();
}

Preferences can also be stored in the configuration directory by adding the
following field and method to the FavoritesPlugin class.

private IEclipsePreferences configPrefs;

public Preferences getConfigPrefs() {
 if (configPrefs == null)
 configPrefs = new ConfigurationScope().getNode(ID);
 return configPrefs;
}

If you add the preceding method to your plug-in class, then you should also
modify the stop() method to flush the configuration preferences to disk
when Eclipse shuts down.

public void stop(BundleContext context) throws Exception {
 if (configPrefs != null) {
 configPrefs.flush();
 configPrefs = null;
 }
 plugin = null;
 super.stop(context);
}

When you launch a Runtime Workbench (see Section 2.6, Debugging the
Product, on page 88), you can specify the configuration directory using the
Configration page of the Run dialog (see Figure 3–6).

Read-Only Installation Be warned that if Eclipse is installed in a
read-only location, then this method will return null. In addition, neither
the following code nor the Preferences object returned by the method
below is thread safe.

QualityEclipse.book Page 117 Tuesday, February 28, 2006 3:02 PM

118 CHAPTER 3 • Eclipse Infrastructure

Figure 3–6 The Launch Configuration page for specifying the configuration directory.

3.4.6 Plugin and AbstractUIPlugin

All plug-in classes must implement the BundleActivator interface. Typically,
UI-based plug-ins (plug-ins requiring the org.eclipse.ui plug-in) have a
plug-in class that subclasses AbstractUIPlugin, while non-UI plug-ins sub-
class Plugin. Both classes provide basic plug-in services for the plug-in pro-
grammer, but there are important differences.

AbstractUIPlugin automatically saves plug-in preferences when the
plug-in shuts down. When subclassing the Plugin class directly, modify the
stop() method to always call savePluginPreferences() and saveDialog-
Settings() so that preferences will persist across sessions.

Older Preference Storage Methods AbstractUIPlugin

provides alternate preferences storage methods and classes that you should not
use. These methods, such as getPreferenceStore() and the associated
IPreferenceStore interface, predate Eclipse 3.1 and the Plugin class
preference methods, such as getPluginPreferences() and the associated
class Preferences. They exist only for backward compatibility. These older
preference storage methods do not provide any advantages when used in
AbstractUIPlugin, so use the Preferences interface and associated
methods unless the Eclipse API specifically requires the older interface (see
Chapter 12, Preference Pages, for more on preferences).

QualityEclipse.book Page 118 Tuesday, February 28, 2006 3:02 PM

3.5 Plug-in Model 119

Other methods provided by AbstractUIPlugin include:

createImageRegistry()—Returns a new image registry for this plug-
in. You can use the registry to manage images that are used frequently by
the plug-in. The default implementation of this method creates an empty
registry. Subclasses can override this method if necessary.

getDialogSettings()—Returns the dialog settings for this UI plug-in
(see Section 11.2.7, Dialog settings, on page 441). The dialog settings
hold persistent state data for the various wizards and dialogs of this
plug-in in the context of a workbench.

getImageRegistry()—Returns the image registry for this UI plug-in
(see Section 4.4.3, Images, on page 181 and Section 7.7, Image Caching,
on page 315).

initializeImageRegistry(ImageRegistry reg)—Initializes an
image registry with images that are used frequently by the plug-in.

loadDialogSettings()—Loads the dialog settings for this plug-in by
looking first for a dialog_settings.xml file in the plug-in’s metadata
directory, then for a file with the same name in the plug-in directory; fail-
ing both of these, it creates an empty settings object. This method can be
overridden, although this is typically unnecessary.

3.5 Plug-in Model

When Eclipse first launches, it scans each of the plug-in directories and builds
an internal model representing every plug-in it finds. This occurs by scanning
each plug-in manifest without loading the plug-ins. The methods in the next
two subsections are useful if you want to display information about plug-ins
or perform operations based on specific plug-in characteristics without taking
the time and memory usage hit associated with loading plug-ins.

3.5.1 Platform

The org.eclipse.core.runtime.Platform class provides information
about the currently executing Eclipse environment. Using this class, you can
obtain information about installed plug-ins (also known as Bundles), exten-
sions, extension points, command line arguments, job manager (see Section
20.8, Background Tasks—Jobs API, on page 739), installation location, and
more.

QualityEclipse.book Page 119 Tuesday, February 28, 2006 3:02 PM

120 CHAPTER 3 • Eclipse Infrastructure

The following are some methods of note.

asLocalURL(URL)—Translates a plug-in-relative URL to a locally acces-
sible URL.

find(Bundle bundle, IPath path)—Returns a URL to the resource
in the specified bundle.

getBundle(String)—Returns the bundle with the specified unique
identifier.

getBundleGroupProviders()—Returns an array of bundle providers
that contain bundle groups that contain currently installed bundles.

getExtensionRegistry()—Returns extension and extension point
information.

getJobManager()—Returns the platform job manager (see Section
20.8, Background Tasks—Jobs API, on page 739).

getLog(Bundle)—Returns the log for the specified bundle.

getProduct()—Returns the Eclipse product information.

inDebugMode()—Returns true if Eclipse is in debug mode, as it is when
the user specifies the -debug command line argument.

resolve(URL)—Resolves a plug-in-relative URL to a URL native to the
Java class library (e.g., file, http, etc.).

run(ISafeRunnable)—Runs the given runnable in a protected mode.
Exceptions thrown in the runnable are logged and passed to the
runnable’s exception handler.

3.5.2 Plug-ins and Bundles

Information about the currently installed plug-ins, also known as Bundles, can
be obtained using Platform.getBundleGroupProviders() or Platform.
getBundle(String). Accessing a plug-in class, also known as a bundle
activator, requires the containing plug-in to be loaded whereas interacting
with the Bundle interface does not carry such a penalty. If you already have a
plug-in class, such as the Favorites plug-in, then you can obtain the Bundle
interface for that plug-in by using something like this:

FavoritesPlugin.getDefault().getBundle()

QualityEclipse.book Page 120 Tuesday, February 28, 2006 3:02 PM

3.5 Plug-in Model 121

After you obtain the Bundle object, several methods are of interest.

getBundleId()—Returns the bundle’s unique identifier (a long),
assigned by Eclipse when the bundle was installed.

getEntry(String)—Returns a URL for the specified '/'-separated
bundle relative path name where getEntry("/") returns the bundle
root. This provides access to resoures supplied with the plug-in that are
typically read-only. Relative plug-in information should be written to the
location provided by Plugin.getStateLocation().

getHeaders()—Returns a dictionary of headers and values defined in
the bundle’s MANIFEST.MF file (see Section 3.3.1, Plug-in declaration, on
page 108).

getState()—Returns the current state of a plug-in, such as
Bundle.UNINSTALLED, Bundle.INSTALLED, Bundle.RESOLVED,
Bundle.STARTING, Bundle.STOPPING, Bundle.ACTIVE.

getSymbolicName()—Returns the unique plug-in identifier (a
java.lang.String), which is the same as the Bundle-SymbolicName
declaration in the MANIFEST.MF.

The plug-in version number can be obtained using the getHeaders()
method.

 new PluginVersionIdentifier(
 bundle.getHeaders().get("Bundle-Version"))

3.5.3 Plug-in extension registry

You can access the plug-in extension registry using the Plaform.

getExtensionRegistry() method. It contains plug-in descriptors, each
representing a plug-in. The registry provides the following methods for
extracting information about the various plug-ins without loading them (see
Section 17.1, The Extension Point Mechanism, on page 595 for information
on creating extension points).

getConfigurationElementsFor(String extensionPointId)—
Returns all configuration elements from all extensions configured into
the identified extension point.

getExtensionPoint(String extensionPointId)—Returns the
extension point with the given extension point identifier in this plug-in
registry.

QualityEclipse.book Page 121 Tuesday, February 28, 2006 3:02 PM

122 CHAPTER 3 • Eclipse Infrastructure

Previously, extensions and extension-points did not change during execu-
tion, but that is slowly changing as the Eclipse plug-in model continues to
align itself with OSGi. If you are interested in changes during execution, use
addRegistryChangeListener(IRegistryChangeListener).

3.6 Logging

The RFRS requirements indicate that exceptions and other service-related
information should be appended to a log file. To facilitate this, the plug-in
class provides a method for accessing the plug-in logging mechanism via the
getLog() method. For convenience, the FavoritesLog wraps the ILog
interface returned by the getLog() method with several utility methods:

package com.qualityeclipse.favorites;

import org.eclipse.core.runtime.IStatus;
import org.eclipse.core.runtime.Status;

public class FavoritesLog {

The first group of methods that follow are for convenience, appending
information, error messages, and exceptions to the log for the Favorites
plug-in.

public static void logInfo(String message) {
 log(IStatus.INFO, IStatus.OK, message, null);
}

public static void logError(Throwable exception) {
 logError("Unexpected Exception", exception);
}

public static void logError(String message, Throwable exception) {
 log(IStatus.ERROR, IStatus.OK, message, exception);
}

Each of the preceding methods ultimately calls the following methods
which create a status object (see Section 3.6.1, Status objects, on page 123)
and then append that status object to the log.

Tip: For more on the plug-in registry, activation, and lifecycle, check out
the Equinox project at www.eclipse.org/equinox.

QualityEclipse.book Page 122 Tuesday, February 28, 2006 3:02 PM

3.6 Logging 123

public static void log(int severity, int code, String message,
 Throwable exception) {
 log(createStatus(severity, code, message, exception));
}

public static IStatus createStatus(int severity, int code,
 String message, Throwable exception) {
 return new Status(severity, FavoritesPlugin.ID, code,
 message, exception);
}

public static void log(IStatus status) {
 FavoritesPlugin.getDefault().getLog().log(status);
}

The log() and createStatus() methods take the following parameters.

severity—the severity; one of these:
 IStatus.OK, IStatus.WARNING, IStatus.ERROR,
 IStatus.INFO, or IStatus.CANCEL

code—the plug-in-specific status code or IStatus.OK

message—a human-readable message, localized to the current locale

exception—a low-level exception, or null if not applicable

3.6.1 Status objects

The IStatus type hierarchy in the org.eclipse.core.runtime package
provides a mechanism for wrapping, forwarding, and logging the result of an
operation, including an exception if there is one. A single error is represented
using an instance of Status (see method createStatus in the previous
source code), while a MultiStatus object that contains zero or more child
status objects represents multiple errors.

When creating a framework plug-in that will be used by many other plug-
ins, it is helpful to create status subtypes similar to IResourceStatus and
ResourceStatus; however, for the Favorites plug-in, the existing status types
that follow will do:

IStatus—A status object that represents the outcome of an operation.
All CoreExceptions carry a status object to indicate what went wrong.
Status objects are also returned by methods needing to provide details of
failures (e.g., validation methods).

IJavaModelStatus—Represents the outcome of a Java model opera-
tion. Status objects are used inside JavaModelException objects to indi-
cate what went wrong.

QualityEclipse.book Page 123 Tuesday, February 28, 2006 3:02 PM

124 CHAPTER 3 • Eclipse Infrastructure

IResourceStatus—Represents a status related to resources in the
Resources plug-in and defines the relevant status code constants. Status
objects created by the Resources plug-in bear its unique identifier,
ResourcesPlugin.PI_RESOURCES, and one of these status codes.

MultiStatus—A concrete multistatus implementation, suitable either
for instantiating or subclassing.

OperationStatus—Describes the status of a request to execute, undo,
or redo an operation (see Section 6.6.2, Commands, on page 252).

Status—A concrete status implementation, suitable either for instanti-
ating or subclassing.

TeamStatus—Returned from some Team operations or is the payload of
some exceptions of type TeamException.

3.6.2 The Error Log view

The PDE provides an Error Log view for inspecting the Eclipse log file. To
open the Error Log view, select Window > Show View > Other…, and in the
Show View dialog, expand the PDE Runtime category to find the Error Log
view (see Figure 3–7). Double-clicking on an entry opens a dialog showing
details for the error log entry. If Eclipse is installed in C:\Eclipse and the
default workspace location is being used, you can find the Eclipse log file at
C:\Eclipse\workspace\.metadata\.log.

Figure 3–7 The Error Log view is provided by the Eclipse platform and displays
information and exceptions generated while Eclipse is running.

3.7 Eclipse Plug-ins

Commercial plug-ins are built on one or more base plug-ins that are shipped
as part of Eclipse. They are broken down into several groups, further sepa-
rated into UI and Core, as follows. UI plug-ins contain aspects of a user inter-
face or rely on other plug-ins that do, while you can use Core plug-ins in a
headless environment (an environment without a user interface).

QualityEclipse.book Page 124 Tuesday, February 28, 2006 3:02 PM

3.8 Summary 125

Core—A general low-level group of non-UI plug-ins comprising basic
services such as extension processing (see Chapter 9, Resource Change
Tracking, on page 375), resource tracking (see Chapter 17, Creating
New Extension Points, on page 595), and so on.

SWT—The Standard Widget Toolkit, a general library of UI widgets
tightly integrated with the underlying operating system (OS), but with an
OS-independent API (see Chapter 4, The Standard Widget Toolkit, on
page 127).

JFace—A general library of additional UI functionality built on top of
SWT (see Chapter 5, JFace Viewers, on page 185).

Workbench core—Plug-ins providing non-UI behavior specific to the
Eclipse IDE itself, such as projects, project natures, and builders (see
Chapter 14, Builders, Markers, and Natures, on page 497).

Workbench UI—Plug-ins providing UI behavior specific to the Eclipse
IDE itself, such as editors, views, perspectives, actions, and preferences
(see Chapters 6, 7, 8, 10, and 12).

Team—A group of plug-ins providing services for integrating different
types of source code control management systems (e.g., CVS) into the
Eclipse IDE.

Help—Plug-ins that provide documentation for the Eclipse IDE as part
of the Eclipse IDE (see Chapter 15, Implementing Help, on page 539).

JDT core—Non-UI-based Java Development Tooling (JDT) plug-ins for
the Eclipse IDE.

JDT UI—JDT UI plug-ins for the Eclipse IDE.

3.8 Summary

This chapter tried to give you a more in-depth understanding of Eclipse and
its structure in relation to creating plug-ins. The next two chapters explore the
user-interface elements that should be used to create your own plug-ins.

References

Chapter source (www.qualityeclipse.com/projects/source-ch-03.zip).

“Eclipse Platform Technical Overview,” Object Technology International,
Inc., February 2003, (www.eclipse.org/whitepapers/eclipse-overview.pdf).

QualityEclipse.book Page 125 Tuesday, February 28, 2006 3:02 PM

126 CHAPTER 3 • Eclipse Infrastructure

Melhem, Wassim, et al., “PDE Does Plug-ins,” IBM, September 8, 2003
(www.eclipse.org/articles/Article-PDE-does-plugins/PDE-intro.html).

Xenos, Stefan, “Inside the Workbench: A Guide to the Workbench Internals,”
IBM, October 20, 2005 (www.eclipse.org/articles/Article-UI-Workbench/
workbench.html).

Bolour, Azad, “Notes on the Eclipse Plug-in Architecture,” Bolour Comput-
ing, July 3, 2003 (www.eclipse.org/articles/Article-Plug-in-architecture/
plugin_architecture.html).

Rufer, Russ, “Sample Code for Testing a Plug-in into Existence,” Yahoo
Groups Message 1571, Silicon Valley Patterns Group (groups.yahoo.com/
group/siliconvalleypatterns/message/1571).

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns, Elements of Reusable Object-Oriented Software. Addition-Wesley,
Boston, 1995.

Buschmann, Frank, et al., Pattern-Oriented Software Architecture. John
Wiley & Sons, Hoboken, NJ, 1996.

Estberg, Don, “How the Minimum Set of Platform Plug-ins Are Related,”
Eclipse Wiki (eclipsewiki.editme.com/MinimumSetOfPlatformPlugins).

Watson, Thomas, “Deprecation of Version-Match Attribute,” equinox-dev
email, April 30, 2004.

QualityEclipse.book Page 126 Tuesday, February 28, 2006 3:02 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CourierNewPSMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

