
1

C H A P T E R 1

INTRODUCING .NET

Welcome to .NET! I might as well have said, “Welcome to the Solar
System,” because like the solar system, .NET is huge. And it’s complex.
And it’s filled with black holes and other things that don’t always make
sense. Yet it (.NET, not the universe) turns out to be a fantastic system in
which to develop software applications.

The .NET Framework was not developed in a vacuum (unlike the
universe); Microsoft designed it and its related development languages—
especially C# and Visual Basic—to address various issues that plagued
Windows software developers and users. To fully understand why .NET
was necessary, we need to take a short trip down computer memory lane.

Before .NET

Practical general-purpose computers have been around since the mid-
twentieth century. However, they were inaccessible to most people
because (a) they cost millions of dollars, (b) they consumed gobs of elec-
tricity, (c) maintenance and programming could only be done by highly-
trained specialists, and (d) they tended to clash with the living room
furniture.

Fast forward about 30 years. IBM comes out with the “personal” com-
puter. These “desktop” computers represented a great advance in technol-
ogy, but only a minority of people ever used them. They continued to be
expensive (thousands of dollars), and maintenance and programming still
required significant investments in training. IBM PCs also looked hideous
around the living room furniture.

Then came the Apple Macintosh. With its sleek design and its user-
friendly functionality, it introduced the joy of computing to the masses.
And while programming it was not always straightforward, it did give nice
results. It’s no wonder that Bill Gates decided to copy—oops, I mean
improve upon—its functionality.

8009_ch01.qxd 10/4/06 3:47 PM Page 1

Microsoft Windows 1.0 brought a greater level of usability to the
IBM/Intel computing platform. But it wasn’t a free ride for programmers.
MS-DOS development was hard enough without the addition of the “mes-
sage pumps” and the hundreds of Application Programming Interface
(API) calls needed by Windows programs. Visual Basic 1.0, introduced in
1991, greatly simplified the development process, but with the advent of
32-bit systems, ActiveX and COM components, and the Web, even VB
programmers soon felt overwhelmed.

Throughout the 1990s, the situation only seemed to worsen. Microsoft
saw increased competition in the form of the Java language and the Linux
operating system. Hackers were exploiting buffer overruns and other secu-
rity issues present in the Windows platform. Users experienced myriad
computer problems stemming from conflicting standards, competing data
integration technologies, registry bloat, and “DLL hell.” In frustration, an
Excel user’s group set fire to the entire Microsoft campus in Redmond.

Well, it didn’t get that bad. But Microsoft did see that it needed to
address the overall software development and usability issues on its beloved
Windows platform. Its solution came in the form of the .NET Framework.

Back to Introducing .NET

When Microsoft announced its plans for .NET, it surprised many develop-
ers, especially Visual Basic developers, who saw it as a giant step backward
for “Rapid Application Development.” But the release of the .NET
Framework version 1.0 in 2002 did bring many needed benefits.

■ .NET introduced a unified programming environment. All .NET-
enabled languages compile to “Microsoft Intermediate Language”
before being assembled into platform-specific machine code. Visual
Basic and C# are language wrappers around this common .NET
“language.” Because all .NET-enabled compilers speak the same
underlying language, they no longer suffer from the many data and
language conflicts inherent in other component-based systems such
as COM. The .NET version of Visual Studio also unified the stan-
dard user interface that lets programmers craft source code.

2 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 2

■ .NET committed developers to object-oriented technologies. Not
only does .NET fully embrace the object-oriented programming
paradigm, everything in .NET is contained in an object: all data val-
ues, all source code blocks, and the plumbing for all user-initiated
events. Everything appears in the context of an object.

■ .NET simplified Windows programming. Programming in Visual
Basic before .NET was easy enough, until it came time to interact
with one of the API libraries, something that happened a lot in pro-
fessional programming. With .NET, most of these APIs are replaced
with a hierarchy of objects providing access to many commonly
needed Windows features. Because the hierarchy is extensible,
other vendors can add new functionality without disrupting the
existing framework.

■ .NET enhanced security. Users and administrators can now establish
security rules for different .NET features to limit malicious pro-
grams from doing their damage. .NET’s “managed” environment
also resolved buffer overrun issues and memory leaks through fea-
tures such as strong data typing and garbage collection.

■ .NET enhanced developer productivity through standards. The
.NET Framework is built upon and uses many new and existing
standards, such as XML and SOAP. This enhances data interchange
not only on the Windows platform, but also in interactions with
other platforms and systems.

■ .NET enhanced Web-based development. Until .NET, a lot of Web-
based development was done using scripting languages. .NET
brings the power of compiled, desktop development to the Internet.

■ .NET simplified the deployment of applications. If .NET is installed
on a system, releasing a program is as simple as copying its EXE file
to the target system (although an install program is much more user-
friendly). Features such as side-by-side deployment, ClickOnce
deployment (new in 2005), and an end to file version conflicts and
“DLL hell” (the presence of multiple versions of the same DLL on
a system, or the inability to remove a version of a DLL) make desk-
top and Web-based deployments a snap.

If you didn’t understand some of the terms used in this section, that’s all
right. You will encounter them again, with explanations, in later chapters.

Back to Introducing .NET 3
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 3

The .NET Object

To fully understand software development in .NET, you must understand
what an object is. (If you are familiar with object-oriented programming—
OOP—then you can probably skip down to the next section, although you
will miss some really great content.) Although some of this section’s infor-
mation will also appear in Chapter 8, “Classes and Inheritance,” it is so
important to the discussion of .NET that a portion appears here as well.

Objects and Data
From a programming standpoint, a computer performs four basic tasks:

1. It stores data in the computer’s memory area.
2. It supports processing of this data through basic operations,

including addition and subtraction, Boolean algebra, and text
string manipulation.

3. It allows the user to interact with the data stored in memory.
4. It provides a way to bring the data in and out of memory, through

input and output devices such as keyboards and printers, and
through long-term storage media, such as hard drives.

The core of these four activities is data. Computers exist to manipulate
data. Operating systems provide the basic foundation for these activities,
but it is software applications that make these features—the ability to
manipulate data—real and meaningful to the user. High-level program-
ming languages are the primary tools used to develop these applications,
each of which uses some general methods to make data manipulation fea-
tures available to the programmer. Back in the good old days of assembly
language development, if you knew the memory address of a piece of
data, you could access and manipulate it directly. In early flavors of
BASIC and in most other “procedural” languages, data was accessed
through variables.

As languages grew in complexity and purpose, so did their view of data.
In the LISP (short for “List Processing” or “Lots of Irritating Silly
Parentheses”) language, any data value exists within a larger list or set of
data. But in .NET languages, data is viewed through the object.

4 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 4

Objects are collections of data values and associated source code.
Whereas in older BASIC dialects, each data element was more or less
independent through its named variable, related data values in OOP lan-
guages can be grouped into objects. Objects often include source code
designed to manipulate the data values of that object.

Objects generally represent some thing, often a thing that has a real-
world counterpart, whether physical or conceptual. For instance, your
code may include a House object that has data fields or properties for the
address, the exterior paint color, and the number of people living in the
house. Associated source code could manage that data; a Paint method
could alter the color value used for the exterior paint.

The data and code elements within an object are called members.
Some members are hidden inside the object and can be accessed only by
the object’s source code. Other members are more public; any code in your
application can use them, not just that subset of application code found
inside the object. Consider a television as an object (see Figure 1-1).

Figure 1-1 A TV: It’s an object, not just objectionable.

The public members of a TV are generally easy to use: the power but-
ton, channel selector, volume control, and so on. They are the conduits
through which the user controls the data values of the TV (its video and
audio output). There are also hidden members inside of the TV; you could
use these members to impact the picture and sound quality, although this
would be a bad idea for most users. You don’t want me messing with the
internal members of your TV set, trust me. In the same way, an object
doesn’t want code outside of the object to mess with its internal members

The .NET Object 5
1.

IN
TRO

DUCIN
G

.NET

Outside View Inside View

8009_ch01.qxd 10/4/06 3:47 PM Page 5

except through the public members. I don’t care how a TV works internally,
as long as I can get pictures and sound out of it by using the controls that
are exposed (power, channel, volume).

Objects and Interfaces
The public members of an object represent its interface. If code outside
of the object wants to manipulate the data belonging to that object, it uses
the members of the interface. It doesn’t have to figure out the hidden
members or how they work, and that’s good. It’s especially good if those
internal members ever change for any reason, which happens more often
then you think. Consider how the internals of TVs have changed just in the
last 30 years. Here’s a drawing of the TV my family had when I was a kid.
Compare it with modern flat-screen TVs available today (see Figure 1-2).

Figure 1-2 Are those really TVs?

My family’s TV was cool. It had an AM/FM stereophonic hi-fi radio, a
turntable that could play 33-1/3, 45, and 78 RPM records, and a large 19-
inch display with vivid black-and-white crystal-clear display. You could hide
two kids behind it when playing hide and seek. And my friend who had the
same model said that you could draw these really cool permanent lines on
the screen with a magnet. Who cares that the speaker panels looked like
vertical shag carpet? Who cares that the unit took up 30 percent of the
floor space in the room? Who cares that you could cook sausages on top of

6 Chapter 1 Introducing .NET

A New-Fangled ThingThe TV of My Childhood

Speakers

Record Player AM/FM

8009_ch01.qxd 10/4/06 3:47 PM Page 6

it from the heat generated by the vacuum tubes? It was more than a TV; it
was an entertainment center.

Now compare it to the wimpy little flat screen job on its right. If you
look closely, you find that the interface to the TV hasn’t really changed
much in three decades. There are still controls for power, volume, and
channel selection (although Horizontal Hold and Vertical Hold are gone,
sniff). What has changed is the internal configuration. Gone are the hum-
ming vacuum tubes, all replaced with efficient transistors and solid-state
components. But it doesn’t really make much difference to the TV viewer,
because the public interface remains the same.

Objects in OOP development work in the same way. As long as the
public interface remains the same, the object’s actual code and internal
data storage system—also known as the object’s implementation—can
change with no impact to the overall application.

Objects and Instances
The interface and implementation of an object really only represent its
design; these are the parts created through the source code. They exist
even before the program is compiled and installed on the user’s computer.
In fact, at this level, objects really aren’t even known as objects. In most
languages (including Visual Basic), the word class indicates the imple-
mentation of an object’s interface.

Once your application is installed on a computer and starts up, the
code creates instances of the class to store actual data in memory. These
instances are the true objects of OOP development. Depending on how
your code is written, a single class implementation might create just one or
hundreds of objects in memory at the same time.

In .NET, all of your code and data values appear inside of objects.
Pretty much everything you see in a running program is an object:
Windows forms are objects; a list box control on that form is an object; and
a single item in that list box is an object.

The Parts of the .NET Framework

So now you know all about objects, and you are probably thinking it’s time
to toss this book into the pile and start programming. But there are a few
more parts of the .NET Framework still to discuss. These parts show up ad

The Parts of the .NET Framework 7
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 7

nauseum in the .NET documentation, and they each have a three-letter
acronym (TLA), or thereabouts.

The Common Language Runtime
At the center of the .NET Framework is the Common Language
Runtime (CLR), so named not because it is common or ordinary, but
because all .NET-enabled languages share it in common. Everything you
do in a .NET program is managed by the CLR. When you create a vari-
able, thank the CLR and its data management system. When you say good-
bye to a piece of data, thank the CLR and how it manages the release of
data through its garbage collection system. Did you notice how the word
“manage” keeps showing up in those sentences? My editor sure did. But
“manage” is the mot juste, because that is what the CLR does. In fact, soft-
ware written for the .NET Framework is called managed code. Any code
that falls outside of the CLR’s control, including COM (ActiveX) compo-
nents used by your .NET application, is known as unmanaged code.

The CLR is a lot like Los Angeles International Airport. If you have
ever been to LAX, you know that there is a whole lot of activity going on.
Airplanes arrive and depart each minute. Cars by the thousands enter and
leave the two-level roadway and the central parking structures. People and
pickpockets move constantly between the eight main terminals and the
massive international terminal. There’s a lot happening, but so much of it
is managed. Planes cannot take off or land without approval from the con-
trol tower. Access points and gates manage the roadways and parking
garages. Friendly, courteous security personnel manage the flow of pas-
sengers and pickpockets into and out of the secure areas of the terminals.

The control and management structures in place at LAX ensure an
orderly and secure flow of people between its planes and the city of Los
Angeles. The control and management structures of the CLR ensure an
orderly and secure flow of data between .NET code and the rest of the
computer or connected network.

You’d probably like to know the secret of how the CLR is able to
process programs written in any .NET language, including Visual Basic,
C#, and Fortran. So would Microsoft’s competitors. Actually, they do know,
because there is no secret. All .NET-enabled languages convert (that is,
“compile”) your source code into Microsoft Intermediate Language (or
MSIL, pronounced “missile,” and more commonly abbreviated as just IL).

8 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 8

For those of you familiar with assembly language, it looks a lot like that.
For those of you not familiar with assembly language, it looks a lot like gib-
berish. For example, here is some Visual Basic source code for a console
application (a non-Windows text-based program, like the old MS-DOS
programs) that simply outputs “Hello, World!” from a code procedure
called “Main.”

Module Module1

Sub Main()

Console.WriteLine("Hello, World!")

End Sub

End Module

That’s the whole .NET program. When the Visual Basic compiler con-
verts it to IL, the “Main” procedure looks like this (slightly modified to fit
on this page).

.method public static void Main() cil managed

{

.entrypoint

.custom instance void [mscorlib]System.

STAThreadAttribute::.ctor() = (01 00 00 00)

// Code size 11 (0xb)

.maxstack 8

IL_0000: ldstr "Hello, World!"

IL_0005: call

void [mscorlib]System.Console::WriteLine(string)

IL_000a: ret

} // end of method Module1::Main

Yes, it is gibberish. But that’s okay, because it fulfills the International
Computer Book Association’s requirement that every Chapter 1 include a
“Hello, World” code sample. Also, the CLR understands it, and that’s what
really counts in .NET. As long as you can get your code into IL, .NET will
process it. The Visual Basic compiler just happens to generate IL for you.
Other .NET language compilers, including C#, target IL as well. You can
even write your own IL code, but you’re probably reading the wrong book
for that. Just to put your mind at ease, this will be the last bit of IL you will
see in this book.

The Parts of the .NET Framework 9
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 9

The Common Language Specification
Languages that claim to support .NET cannot just say so for any old rea-
son. They truly have to be compatible with .NET and its workings. This is
done through the Common Language Specification (CLS). The CLS
defines a minimum set of features that a language must implement before
it is considered to be .NET-compliant, or more accurately, CLS-compliant.

A language can go way beyond that minimum if it wants, and .NET
includes many additional features upon which language-specific features
may be built. A language that only implements the minimum CLS-
specified features may not be able to fully interact with components from
languages that exceed the minimum specification. Visual Basic is, of
course, CLS-compliant, and in fact goes way beyond that minimum.

The Common Type System
Because the CLR is controlling your source code anyway, Microsoft
thought it would be good to have it control the source code’s data as well.
The .NET Framework does this through its Common Type System
(CTS), which defines all of the core data types and data mechanisms used
in .NET programs. This includes all numeric, string, and Boolean value
types. It also defines the object, the core data storage unit in .NET.

The CTS divides all data objects into two buckets. The first bucket,
called values types, stores actual data right in the bucket. If you have a
32-bit integer value, it gets put right in the value type bucket, ready for
your immediate use. The other bucket contains reference types. When
you look in this bucket, you see a map that tells you where to find the
actual data somewhere else in the computer’s memory. It seems like value
types are easier to use, and they are, but they come with a few restrictions
not imposed on reference types.

Programs and components written using the CTS standard can
exchange data with each other without any hindrances or limitations.
(There are a few .NET data types that fall outside of the “core” CTS types,
but you only need to avoid them when you want to specifically interact with
components that can only use the core CTS types.)

When you write your applications in Visual Basic, most of your code
will appear in classes. Classes are reference types that include both data
values and associated code. The data values included in a class are most
often the core CTS data types, but they can also contain objects that you
design elsewhere in your application. Visual Basic also includes

10 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 10

structures, the weaker yet quicker younger brother of classes. Structures
implement value types, and also include both data and code.

Classes and structures are just two of the data/code types available in
Visual Basic. Interfaces are class and structure skeletons; they include
design details of what should appear in a related class or structure, but
don’t include any actual implementation or working code. Delegates
define a single procedure (but not its implementation), and are used to
support events, those actions (initiated by the user, by the operating sys-
tem, or by your code) that tell your code, “Get to work now!” Sea otters
are aquatic mammals that are curiously related to the weasel, and like to
eat sea urchins. Modules are blocks of code and data, but unlike classes
and structures, you can’t create independent objects from them.
Enumerations group a set of related integer values, generally for use as a
list of choices.

In .NET parlance, all of these terms (class, structure, interface, dele-
gate, module, and enumeration, but not sea otter) are known collectively as
types. You probably already knew that .NET had some confusing elements
in it; you wouldn’t have bought a book about it if it was easy. But despite all
of the complex technology, it is this simple word “type” that causes the most
confusion. You will likely experience some angst throughout this book each
time you read it. The problem: It’s too general. Not only does it refer to
these core elements of the Common Type System, but it is also used when
talking about just the Visual Basic-specific value types (more often called
the Visual Basic “data types”). The nickname for structures is “user-defined
types,” yet another confusing use of “type.” Programmers who used Visual
Basic before its .NET incarnation also remember “Type” as the language
statement used to create user-defined types. Arrrgh! Microsoft should have
used some word other than “types” for the world of classes, interfaces, enu-
merations, and so on. “Bananas” would have been a better choice because
it is only sometimes used to discuss software. But “type” is the word, so you
better get used to seeing it. I will try to include as much context as possible
when using the word throughout this volume.

The members of a type usually consist of simple data fields and code
procedures, but you can also include other types as members. That is, a
class can include a nested class if it needs to. Only certain types support
nesting (see Chapter 8 for details). I also talk about access levels in that
chapter. Each member has an access level that says what code can use that
member. There are five access levels, ranging from Public (anybody and
their brother can use the member) to Private (you have to be inside the
type to even know it’s there).

The Parts of the .NET Framework 11
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 11

Chapter 6, “Data and Data Types,” discusses the .NET type system in
greater detail, including the information you crave on classes, structures,
and other bananas.

.NET Class Libraries
Computers are actually quite stupid. While I can count all the way to 17,
a computer tops out at 1; it only knows the digits 0 and 1. The CPU
includes a set of simple operators used to manipulate the digits 0 and 1,
and a few more operators that compare 1s and 0s in complex ways. The
computer’s last great trick is its ability to move 0s and 1s into and out of
memory, but whoop-dee-doo. Sure it does these things at nearly the speed
of light, but can it calculate π to three million decimal places?

Well, actually it can. Computers don’t know anything about the letters
of the alphabet, and they really only can handle the digits 0 and 1, yet here
I am using a computer to write an award-winning book. It is the ability to
combine the simple one-bit data values and operators into increasingly
complex libraries of functionality that make useful computers possible.1

The .NET Framework is built upon decades of increasingly complex
functionality. When you install the .NET Framework, the CLR and its
associated type system represent the core of the framework. By itself, the
framework includes all of the basic functionality needed to let you add 2
and 2 together and correctly get 4. And as a business application developer,
you spend a lot of time doing just that. But what if you want to do some-
thing more complex, something that you know some other programmer
has already done, like sorting a list of names or drawing a colored circle on
a form? To get that answer, go to the class libraries, the .NET Class
Libraries. These libraries, installed with the Framework, include a lot of
pre-written (increasingly complex) functionality that you don’t have to
write from scratch.

There are two class libraries in .NET: the Base Class Library (BCL)
and the Framework Class Library (FCL). The BCL is smaller, and con-
tains the most essential features that a program just couldn’t do without. It
includes only those classes that are an absolute must for supporting appli-
cations on the framework if Microsoft were, say, to port the framework
to Linux.

12 Chapter 1 Introducing .NET

1. If you want to read a truly fascinating book on how complex software and hardware operations are
formed from the most basic uses of 0 and 1, read Charles Petzold’s book Code: The Hidden Language
of Computer Hardware and Software (Microsoft Press, 1999).

8009_ch01.qxd 10/12/06 8:18 PM Page 12

The FCL is larger, and includes everything else Microsoft thought you
would want to have in your programs, but was not absolutely essential to
have in the BCL. Don’t even ask how many classes there are in the FCL;
you don’t want to know. I bet that Microsoft doesn’t even really know the
full number. I am convinced that those wacky pranksters at Microsoft have
included “gag” classes in the FCL, but they are so deeply buried that few
programmers ever encounter them.

With thousands (yes, thousands!) of classes, enumerations, interfaces,
and other types included in the BCL and FCL, you would think that it
would be hard to find just the class you need. But it’s not that difficult, at
least not overwhelmingly difficult. The .NET Framework includes a fea-
ture called namespaces. All types in .NET appear in a hierarchy—a tree-
like structure—with just a few minimal entries at the root. Each node in
the hierarchy is a namespace. You uniquely identify any class or other type
in the libraries by naming all of the namespaces, from the root down to
the local namespace that contains the class, separating each node with a
period (.).

Unlike most hierarchies that have all branches starting from a single
root node, the .NET namespace hierarchy has multiple root nodes. The
largest root namespace is named System. It includes many classes, but it
also includes several next-tier hierarchy nodes (namespaces). Because the
framework includes features for both Windows-based and Web-based
application development, there are namespaces that contain the Windows-
specific and Web-specific development features. These namespaces
appear just within the System namespace, and are called Windows and
Web. All code related to on-screen Forms in the Windows namespaces
appears in the Forms namespace, and within this namespace is the actual
class that implements a form, named Form. Figure 1-3 presents an image
of this namespace subset.

Figure 1-3 A hierarchy of namespaces and classes

The Parts of the .NET Framework 13
1.

IN
TRO

DUCIN
G

.NET

System

Web

Windows

Forms

Form

= Namespace

= Class

8009_ch01.qxd 10/4/06 3:47 PM Page 13

In Visual Basic, you identify a class by qualifying it with all of its name-
spaces, starting from its root namespace. The Form class has the following
fully qualified name:

System.Windows.Forms.Form

All classes and types exist somewhere in the hierarchy, although not
every class descends from System. Many of the supporting features specific
to Visual Basic appear in the Microsoft.VisualBasic namespace, which has
“Microsoft” as its root node instead of “System.” When you create new
projects in Visual Basic, the name of the project is, by default, a new top-
level node in the hierarchy. If you create a new Windows application, the
default “Form1” form has the following fully qualified name:

WindowsApplication1.Form1

This new application’s namespace is not just a second-class appendage
hanging off of the System namespace. It is fully integrated into the full
.NET namespace hierarchy; the WindowsApplication1 namespace is a root
node, just like the System and Microsoft root nodes. Visual Basic includes
features that let you alter the default namespace for your application, or
place one of the application’s classes in a specific namespace. You can even
place your application’s classes in the System namespace branch. Changing
WindowsApplication1 to System.MySuperApp moves Form1 to:

System.MySuperApp.Form1

If your application is actually a component or library destined for use
in programs, your app’s classes will appear in the namespace you specify
when the other program loads your component into its application area.
Your code will look like it is part of the Microsoft-supplied namespaces. Is
that cool or what?

Although you can add your classes to the System namespace, you will
incur the wrath of other .NET programmers. The System namespace is
supposed to be for “system” (read: Microsoft-supplied) features, and that’s
it. Also, there’s a chance that two vendors might use the same namespace
path. So, to avoid potential namespace conflicts and dirty looks from other
programmers, you should name your application’s classes as:

CompanyName.ApplicationName.ClassName

14 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 14

A single class or other type cannot be split across multiple name-
spaces, even within the same hierarchy branch. However, two classes or
types may share a common name in different namespaces, even within the
same branch.

All classes of the BCL and FCL appear intermingled throughout the
entire namespace hierarchy. This means that you cannot necessarily tell
whether a particular class is from the BCL or the FCL. Frankly, it doesn’t
really matter; your code won’t care which library a class comes from, as
long as it is available for use on the user’s workstation.

Assemblies and Manifests
An assembly is a “unit of deployment” for the parts of a .NET application
or library. In 99.9% of cases, an assembly is simply a .NET executable file
(an “exe” file) or a .NET library of classes and other types (a “dll” file). It
is possible to split an assembly between multiple files, but usually it is one
file for one assembly.

What makes an ordinary exe or dll file an assembly is the presence of a
manifest. For single-file assemblies, the manifest appears right in the file;
it can also appear in a file of its own. The manifest is a chunk of data that
lists important details about the assembly, including its name, version
information, default culture, information on referencing external assem-
blies and types, and a list of all the files contained in the assembly. The
CLR will not recognize an assembly without its manifest, so don’t lose it.

Assemblies can include an optional strong name. This helps to ensure
the integrity and authenticity of an assembly through a digital signature
attached to the manifest. The strong name uses public key cryptography to
guarantee that the assembly is unique and has not been tampered with.
Visual Studio and the .NET Framework include tools that let you add a
strong name to an assembly.

When you deploy your application, you will normally place all assem-
bly files, configuration files, and any related files specific to your applica-
tion in the application’s install directory, just like in the old Jurassic days
before .NET. Shared assemblies designed to be used by more than one
application on a single machine can be stored in the global assembly
cache (GAC). All assemblies placed in the GAC must have strong names.
Some systems may only allow the system administrator to add assemblies
to the GAC.

The Parts of the .NET Framework 15
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 15

Metadata and Attributes
Assemblies are brought to you by the letter “m.” In addition to manifests
and type members, assemblies also contain metadata. The application
code and data elements stored in an assembly parallel the code and data
items found in the related Visual Basic source code; for each type and
member in your source code, there is associated executable code in the
deployed assembly. This makes sense, and is not much of a change from
pre-.NET deployments. What is different is that the Visual Basic compiler
now attaches additional information—metadata—to each type and mem-
ber in the assembly. This metadata documents the name of the associated
content, information about required data types, information on class inher-
itance for the element, and security permissions required before the
element can be used by the user or other software.

Your Visual Basic source code can enhance the metadata for any ele-
ment of your assembly through attributes. The metadata generated by an
attribute is more than just some ID number. Attributes implement full
.NET classes, with their own data values and associated logic. Any .NET
code that knows how to process attributes can examine the attributes for a
type or member and take action as needed. This includes Visual Studio, the
Visual Basic compiler, and your own custom applications.

How’s this for a mundane example: The .NET Framework includes an
attribute named ObsoleteAttribute. This attribute lets you mark types or
members of your assembly as obsolete or no longer supported. (Visual
Studio uses this attribute to display a warning whenever you attempt to use
an out-of-date BCL or FCL feature.) To use the attribute, add it to a mem-
ber of your application using angle brackets.

Class MyClassWithOldMembers

<ObsoleteAttribute> Sub DoSomeWork()

End Sub

End Class

This code defines a single class (MyClassWithOldMembers) with a sin-
gle member procedure (DoSomeWork), a procedure that clearly does
some work. The procedure is tagged with the ObsoleteAttribute attribute.
By custom, all attribute names end in the word “Attribute.” You can leave
off this portion of the word if you wish, as long as the resulting word does
not conflict with any Visual Basic language keywords.

16 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 16

Class MyClassWithOldMembers

<Obsolete> Sub DoSomeWork()

End Sub

End Class

When you compile the class and store it in an assembly, the
<ObsoleteAttribute> attribute is stored as part of DoSomeWork’s definition.
You can now write a separate Visual Basic application that scans an assem-
bly and outputs the name and status of every type and member it finds.
When that analysis program encounters the obsolete member, it would
detect ObsoleteAttribute in the metadata, and output the status:

DoSomeWork Procedure: Obsolete, don’t use it!

Most attributes are designed with a specific purpose in mind. Some
attributes instruct Visual Studio to display the members of a class in spe-
cific ways. You’ve probably already played with the form-editing features
of Visual Studio to design a simple Windows desktop application. When
you add a control (such as a button or a list box) to a form and select that
control, Visual Studio lets you edit details of that control through the
Properties panel area (see Figure 1-4).

Figure 1-4 The Properties panel in Visual Studio

The Parts of the .NET Framework 17
1.

IN
TRO

DUCIN
G

.NET

I’m talking
about this
Properties
area.

8009_ch01.qxd 10/4/06 3:47 PM Page 17

The Button control is implemented as a class, and many of its class
members appear in the Properties panel, but not all of them. When the
Button class was designed, attributes were added to its members that tell
Visual Studio which members should appear in the Properties panel, and
which should not. Visual Studio dutifully examines these attributes, and
displays the requested properties only.

Versioning
Like you, my applications are perfect from their initial release, and I never
have a reason to modify them or add additional features. But there are soft-
ware development organizations—including one large company that, so as
not to cause embarrassment, I will refer to only by its initial letter of “M”—
that feel the need to “one-up” their competition by coming out with
“improved” versions of their previously released software offerings. Let’s
say that “M” happened to have a popular word processor that includes ver-
sion 1.0 of a spell-check component. “M” also happens to sell an email tool
that depends specifically on version 1.0 of that same shared component. If,
in a show of competitive machismo, “M” releases an update to the word
processor and the spell-check component (now version 2.0), what happens
to the email tool’s spell-checking ability?

Not that this ever happens in real life. But if it did, the replacement of
a vital shared component with a newer but somewhat incompatible version
could cause real problems. A related problem is the deployment of multi-
ple versions of a single component on the same workstation, all in differ-
ent directories. Can any of them be safely deleted?

.NET solves these problems through versioning. All assemblies that
use shared components identify exactly which versions of the shared com-
ponents they require. While an application can be reconfigured to use a
later version, it will only use the originally specified version of a shared
component by default.

Multiple versions of a single shared component can be added to the
GAC, a feature called side-by-side deployment. The CLR ensures
that the right application links up with the right component. You can
even run applications simultaneously that use different versions of the
same component.

18 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 18

From Source Code to EXE

Now you know pretty much everything there is to know about .NET except
for that pesky programming thing. Before delving into some actual code,
let’s take a little snack break and examine the lifetime of an application,
from start to finish (see Figure 1-5).

Figure 1-5 The real Visual Basic development process

So here’s what happens, step by step:

1. You, as the programmer, are responsible for preparing the basic
ingredients (a) of the application. For Visual Basic programs, this
means creating one or more source code files with a “.vb” exten-
sion. Your ingredients may also include other support files, such as
resource files (text and graphic files, often used for multi-language
support).

2. Your application is cooked by the Visual Basic compiler (b). The
result is an assembly, complete with a manifest and metadata. The
output is actually semi-compiled IL and includes ready-to-
execute versions of the original source code’s types and members,
including all member and type names. All this content can be

From Source Code to EXE 19
1.

IN
TRO

DUCIN
G

.NET

(c)(a) (b) (e)

(d)

8009_ch01.qxd 10/12/06 7:47 PM Page 19

“decompiled” (returned back to full IL, although not to full Visual
Basic) using a tool named ildasm.exe (the Microsoft Intermediate
Language Disassembler), which is included with the .NET
Framework. Because you probably don’t want just anyone disas-
sembling your application and looking at the code, Microsoft (and
other third parties) also supplies an obfuscator, which suffi-
ciently scrambles the content of your code to make it just difficult
enough to discourage prying eyes.

3. The assembly (c) is deployed to the user’s workstation. There are a
few different methods used to deploy the application, including (1)
generating a standard Windows Installer setup package, (2) gener-
ating a ClickOnce deployment, which is new with version 2.0 of
.NET, or (3) performing an xcopy install, which involves nothing
more than copying the EXE assembly itself to the destination
machine. No matter which deployment method you choose, the
.NET runtime (d) must also be installed on the user’s workstation.

4. The user eats—I mean runs—the program (e). The CLR does a
final just-in-time (JIT) compile of the IL assembly, to prepare it
for use on the local platform. It then presents the application to the
user, and manages all aspects of the application while it runs. The
user experiences a level of joy and satisfaction rarely encountered
when using other software applications.

As with the preparation of a Thanksgiving meal, the actual development
process is somewhat more involved than just reading a paragraph (or a
recipe book) about it. But it’s not so difficult that it can’t be put in a book,
a book like this one.

What About Visual Studio and Visual Basic?

Wait a minute, what about Visual Studio? That last section didn’t even
mention it. And it didn’t need to, because you do not need to use Visual
Studio to develop, compile, deploy, or run Visual Basic applications. The
entire .NET Framework—including the Visual Basic compiler—is avail-
able for free from Microsoft’s web site; download it and use it to develop
and deploy applications that are every bit as powerful and complex as, well,
Visual Studio.

20 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 20

The July 1983 issue of Datamation magazine includes a letter from
manly reader Ed Post entitled, “Real Programmers Don’t Use Pascal.”2 I
highly recommend that you read this article, as it will help you quickly sep-
arate the real programmers from the “quiche eaters.” And when you do,
run away as fast as you can from the real programmers. Oh sure, they can
reconstruct your source code from the obfuscated .NET assembly, but
they will be useless on a team project using Visual Studio.

A “real programmer” could code any .NET application using Notepad,
and it would run. Actually, they would use emacs or vi instead of Notepad
(because Windows does not include a keypunch interface), but the results
would be the same. They would growl as you blissfully type away in Visual
Studio’s elegant, well-designed, and fully customizable and extensible user
interface. They would gripe and bare their cheese-cracker-with-peanut-
butter-encrusted teeth at you while you use the IntelliSense and
AutoCompletion features built into the Visual Studio code editor. They
would consume another slice of quiche-shaped cold pizza while you drag-
and-drop both Windows and web-based user interfaces.

Yes, the real programmer could generate full applications with just a
text (or hex) editor and a .NET compiler, but you would get the glory,
because you would be done in a fraction of the time it would take the
FORTRAN lover to eek out his code.

Visual Studio 2005

Because this is a book on Visual Basic development and not on Visual
Studio usage, I won’t be delving too much into Visual Studio’s features or
its user interface elements. It is a great application, and its tight integration
with the .NET Framework makes it the best tool for developing applica-
tions with .NET. But as the real programmer would tell you, it is really just
a glorified text editor. Visual Studio hides a lot of the complexity of .NET
code, and its automatic generation of the code needed to build your appli-
cation’s user interface is a must-have. Most of its features exist to simplify
the process of adding code to your application.

Although I will not be including a 20-page review of Visual Studio right
here, you will find images of Visual Studio throughout the text, placed so
as to advance your understanding of the topics under discussion in each

Visual Studio 2005 21
1.

IN
TRO

DUCIN
G

.NET

2. Datamation, Volume 29, Number 7, July 1983, pp. 263–265. I also found the text of the article on the
Internet by doing a search on the title. A similar version of the text, with only minor editorial changes, also
exists under the name “Real Programmers Don’t Write Pascal.”

8009_ch01.qxd 10/12/06 8:18 PM Page 21

chapter. When you start up Visual Studio for the first time, it displays the
Start Page. (The screenshots in this book are taken from the Professional
Edition of Visual Studio 2005.)

Figure 1-6 The Visual Studio “Start Page”

Visual Studio 2005 is the third major release of the product since
.NET’s initial introduction in 2002. Each release (in 2002, 2003, and 2005)
corresponded to a related release of the .NET Framework (versions 1.0,
1.1, and 2.0, respectively) and of the .NET implementation of Visual Basic.
The 2003 release was a relatively minor update to Visual Basic and the
Framework, but the 2005 release is major. It is packed with new usability
features, and comes in five delicious flavors.

■ Visual Studio 2005 Express Edition. This entry-level product is
geared toward the home hobbyist and weekend programmer who
wants to learn .NET and one of its core programming languages, but
won’t be snuggling up to it on a daily basis. Visual Studio 2005
Express Edition is actually multiple Express Edition language prod-
ucts bundled together, including Visual Basic 2005 Express Edition

22 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 22

(although Visual Basic 2005 Express Edition is also provided sepa-
rately). Microsoft’s goal is to introduce as many people as possible to
the joys of .NET programming, so it offers the Express Edition at no
cost. The package includes a simplified Visual-Studio-like user inter-
face, but it does impose a few restrictions on your program-crafting
ability. You can still edit the source code directly and craft applica-
tions of any complexity, but the Express UI won’t always assist you
with this. For instance, you cannot develop web applications with the
Express product unless you install the separate Visual Web
Developer product. Also, Express doesn’t include much support for
deployment; applications designed with the Express Edition are gen-
erally expected to be used on your own workstation only.

■ Visual Studio 2005 Standard Edition. Visual Studio’s Standard
Edition is just like the Express Edition, with a few extras thrown in,
such as documentation on how to use the BCL and FCL (amazing),
and deployment support through the ClickOnce deployment fea-
ture. It also includes support for mobile devices, such as cell phones
and PDAs.

■ Visual Studio 2005 Professional Edition. This is the minimum level
required by programmers who will develop applications on a daily
basis for money. It’s the version that I use, and it includes all of the
“power” features needed by a single programmer for both desktop
and web-based development. The straightjacketed Express user
interface is out, replaced by the full Visual Studio “mighty”
Integrated Development Environment (IDE). But wait, there’s
more. You also get SQL Server 2005 Developer Edition. All instruc-
tions in this book that relate to using the development environment
refer to the Professional Edition. But if you are following along
using the Express or Standard Editions, you will be just fine because
the interfaces are quite similar.

■ Visual Studio 2005 Tools for the Microsoft Office System. This
“TOS” version is the Professional Edition, but all support for mobile
devices is removed, replaced by special components that target the
Microsoft Office suite.

■ Visual Studio 2005 Team System. The crème de la crème of the
Visual Studio product line is Team System. It includes features
needed by development teams that work on projects together, fea-
tures such as project management tools and source code control.
Visual Studio 2005 Team Foundation Server, a separate product,
can be installed on a shared server, and enhances the features of the
Team System package.

Visual Studio 2005 23
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 23

Microsoft is pushing its new version of SQL Server—SQL Server 2005—
this time around. An Express Edition is available for entry-level program-
mers; a Developer’s Edition is included in the Visual Studio 2005
Professional Edition and beyond. A special “Everywhere” edition targets
mobile platforms. Of course, there’s the complete SQL Server product
available for full-scale deployments. Microsoft continues to support
Microsoft Access, but it is encouraging the use of SQL Server for even
small projects due to its tighter integration with .NET (starting with the
2005 release).

Beyond the database support, Visual Studio 2005 has been endowed
with several new usability and feature enhancements.

■ Edit and Continue. This blast from the past was in Visual Basic since
version 1.0, but it has been conspicuously absent since the first
.NET release in 2002. Edit and Continue allows you to modify
Visual Basic source code while actively running and debugging the
application within Visual Studio, and continue running the modified
application without a restart. The programmers at “M” have surely
given their blood, sweat, and tears to this feature, so use it well.

■ Enhanced compile-time warnings and errors. Visual Studio always
flagged invalid statements in your code, but it now flags warnings on
code that will compile, and may give unexpected results when exe-
cuted. Figure 1-7 shows a warning for a declared variable that has
yet to be used in code.

Figure 1-7 Fair warning

When actual syntax errors appear in code, Visual Studio now makes
recommendations on how to fix them (in many cases), and will fix
them for you at the click of a mouse button. In Figure 1-8, clicking
on the “Insert the missing ‘Next’” line in the Error Correction win-
dow will add in the missing “Next” keyword. If that small red circle
and the black arrow to its right look familiar, that’s because they’re
from the Smart Tags feature found in Microsoft Office products.

24 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 24

Figure 1-8 Easy error correction

■ ClickOnce Deployments. This new method of distributing .NET
applications imposes fewer requirements on the installing user. For
instance, a ClickOnce deployment does not require administrator-
level security to install and use the application. Of course, some fea-
tures may be disabled if the user lacks sufficient privileges.

■ Code Snippets, Project and Item Templates, and Starter Kits. These
features make it easier to integrate pre-written code into your new
projects. The Code Snippets feature lets you save a hierarchy of
short code blocks for quick insertion into your source code. They
include fill-in-the-blank areas if you need them. If you install the
source code supplied with this book, you will have a chance to try
out Project Templates and Code Snippets, as the samples use those
technologies.

■ Generics. Both the .NET Framework and Visual Basic include
support for generics, a new feature discussed in Chapter 16,
“Generics.” Generics allow you to enforce the use of specific data
types on classes that would otherwise impose no such restrictions.

■ Operator Overloading. Visual Basic adds new support for over-
loaded operators. This feature lets you assign special meanings to
standard language operators, such as the addition operator (+).
Instead of adding just numbers together, you develop code to add
your own complex classes together; you define what “adding” means
for your class.

■ My. That’s right: just “My.” My is a new Visual Basic feature that
provides simple and centralized access to FCL features that would
normally be spread throughout that class library. You can read more
about it in the very next chapter.

Visual Studio 2005 25
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 25

Despite all of these great new features, Microsoft still refuses to
implement the most requested Visual Studio feature, “Procedure
AutoCompletion,” in which Visual Studio would create the entire content
of a source code procedure based on your entry of its name and the use of
the Control+Space key combination. Instead, they fritter away their time
on other so-called productivity features. With Procedure AutoCompletion,
you could write entire applications in minutes. Until that feature becomes
available, you and I will have to continue writing software, crafting the
quality code that users have come to expect from our fingers.

Summary

Over fifteen years ago, Visual Basic transformed the Windows develop-
ment landscape, with its drag-and-drop programming model and its glitzy
event-driven development structure. But Windows has changed a lot since
those days of Windows 3.x. As Windows has changed, Visual Basic has
changed right along with it. Visual Basic 2005, through its association with
the .NET Framework, provides access to the programming tools needed to
develop quality applications for the Windows desktop, the Internet, and
the next generation of mobile devices.

And Microsoft is not halting this progress with the 2005 release. The
next version of Visual Basic, code-named “Orcas,” promises to include even
more advanced features that will take full advantage of Windows Vista and
its .NET Framework 3.0 (formerly named WinFX) programming interface.

The Project

Welcome to the Project section, the part of each chapter where you have
an opportunity to get “hands on” with Visual Studio 2005 and Visual Basic.
Development of the Library project, the main project focus of this book,
formally begins in Chapter 3, “Introducing the Project,” but there’s still
project work to do in the meantime. In this chapter, I’ll introduce you to
the sample source code provided with this book, and we’ll take a stab at
using it.

Because most Project sections, including this one, will involve Visual
Studio, make sure you have it installed and ready to use. Also, because
each Project section is designed for you to use interactively with the sup-
plied source code, I will assume that you have downloaded and installed

26 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 26

the source code (see Appendix A, “Installing the Software,” for instruc-
tions), and are viewing the source code with one eye while you read this
section with the other. I will print sections of the source code in the book,
but with tens of thousands of source code lines in the Library project, I will
not be able to print every line here. You will certainly get a lot out of each
Project section by simply reading them, but you will get even more if you
have access to the full source code.

In this chapter’s project, we’ll load a sample program into Visual Studio
and run it. There are two ways to do this. The first way is just to open the
existing project directly from the installation directory. Browse to the
directory where you installed this book’s source code, open the “Chapter 1”
subdirectory, and double-click the Chapter1.vbproj file. This will open the
project directly in Visual Studio, ready to use.

The second way is to use the chapter-specific project templates to cre-
ate new projects in Visual Studio. The Setup program for this book’s source
code modified your installation of Visual Studio, adding new entries in the
New Project dialog window. Each of these new “project templates” can be
used as the starting point for a new Visual Basic project. To load the
Chapter 1 sample program using the template, start Visual Studio. The
Start Page will appear, as shown way back in Figure 1-6. From the File
menu, select New Project to display the New Project dialog box (see
Figure 1-9).

Figure 1-9 The New Project dialog box—so many choices

The Project 27
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 27

Your New Project dialog box may differ slightly depending on the
features you chose to install with Visual Studio. The available projects are
grouped by the description in the Project types field. For instance,
Figure 1-9 shows the various default project types you can create in Visual
Basic, including Windows Applications (standard desktop applications for
the Windows platform, Class Libraries (a DLL of class-defined features),
and Console Applications (command-line text-based applications). To cre-
ate a new application, first select the project type, select the Template to
use, and finally enter the name of the new project in the Name field.
Clicking the OK button creates a new project.

To use the sample Chapter 1 project, select the Start-to-Finish Visual
Basic 2005 entry within the Visual Basic project type, and then select
Chapter 1 Sample from the Template field (see Figure 1-10). Finally, click
OK to create the new sample project.

Figure 1-10 Selecting the Chapter 1 Sample project

Once the project loads, access the program’s main form by double-
clicking on the Form1.vb file in the Solution Explorer (see Figure 1-11).

Figure 1-11 The main form of the sample application

28 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 28

This default presentation of Visual Studio Professional Edition
includes three editing components: (1) the main editing area, where the
view of “Form1” appears; (2) the Solution Explorer panel, which pro-
vides access to all files included in the project; and (3) the Properties
panel, which lets you edit various aspects of the currently selected item in
the main editor area or elsewhere in the user interface.

The sample project is pretty basic. It includes one form with a single
action button. Clicking this button in the running application displays a
simple message. Run the project by pressing the F5 key. When the main
form appears, clicking on the Go Ahead, Click Me button to display the
message in Figure 1-12 (goal, sweet goal).

Figure 1-12 Hello again, world!

So, how about all of that complex code I had to write to develop this
multifaceted application? It’s all there for the viewing. From the Solution
Explorer panel, right-click on the Form1.vb entry, and select View Code
from the shortcut menu. (As with most source code samples presented in
this book, I have had to slightly adjust the code so that it displays properly
on the printed page. Generally, this involves splitting a long logical line into
two or more shorter ones.)

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

MsgBox("Hello, World!")

End Sub

End Class

The Project 29
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 29

We’ll get into the intricacies of such code in later chapters, but here is
the gist.

■ The main form, Form1, is represented in code by a class, named
Form1.

■ The form includes a command button named Button1 that exposes
a Click event. This event is handled by the Button1_Click proce-
dure, a member of the Form1 class.

■ The “event handler,” Button1_Click, includes a single statement, a
“MsgBox” statement. This statement does the heavy lifting by pre-
senting the ever-friendly message box to the world.

That’s all of the code that I wrote for Form1.vb. It sure seems pretty short
for all the work it does. There has to be more code hiding somewhere. And
sure enough, there are actually half-a-dozen or so more files included in
the project. Visual Studio hides these by default, since it manages some or
all of the content in these files on your behalf. To view the files, click on
the Show All Files button (the second toolbar button from the left in the
Solution Explorer panel). Look at all those files! To see the additional
files associated with Form1, expand it by clicking on the plus sign to its left
(see Figure 1-13).

Figure 1-13 Viewing hidden files through the Solution Explorer

Double-click on the Form1.Designer.vb entry to see the code that
Visual Studio automatically wrote for this form. (Dramatic pause.) Wow!
Look at all of that scary code. Actually, it’s not that bad. By the end of this
book, you will have a firm grasp on all of it. Here in Chapter 1, it’s not really
necessary to comprehend it all, but there are a few interesting lines to note.

30 Chapter 1 Introducing .NET

Click Here

Then Here

8009_ch01.qxd 10/12/06 7:47 PM Page 30

I’m including line numbers to make it easier to find the matching code in
Visual Studio. If you want to view line numbers in Visual Studio
(Professional Edition instructions listed here):

1. Select the Tools ➤ Options menu item to display Visual Studio’s
options.

2. Select Text Editor ➤ Basic ➤ Editor from the tree-view to the
left. If the Show all settings field is checked, the last component
in the tree-view will be General, not Editor.

3. Select (check) the Line Numbers field on the right.
4. Click OK to apply the changes.

If you’re new to Visual Basic or .NET programming, don’t worry now if all
this code doesn’t make sense; it will all become clear as you pass through
the pages of this book.

1 <Global.Microsoft.VisualBasic.CompilerServices. _

DesignerGenerated()> _

2 Partial Public Class Form1

20 <System.Diagnostics.DebuggerNonUserCode()> _

21 Protected Overloads Overrides Sub Dispose _

(ByVal disposing As Boolean)

These lines show attributes in action. These two attributes
(DesignerGenerated and DebuggerNonUserCode) are somewhat like the
Obsolete attribute discussed earlier, in that they provide some informa-
tional identity to the related code. DesignerGenerated modifies the entire
section of Form1’s code, while DebuggerNonUserCode only modifies the
Dispose member. For clarity, both attributes include their full namespace
paths. The Global keyword at the beginning of the DesignerGenerated
attribute is actually a Visual Basic keyword that says, “Start at the very
tippy-top of the namespace hierarchy; this is not a relative path.”

2 Partial Public Class Form1

Did you see the word Partial right there on line 2? I know I did. Hey,
wait a minute; “Public Class Form1” also appeared in the Form1.vb file,
but without the Partial keyword. Visual Basic 2005 includes a new feature
that lets you divide a single class (Form1 in this case) among multiple

The Project 31
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 31

source code files by including the Partial keyword with at least one of the
parts. Pretty cool, eh? It allows Visual Studio to add complex initialization
code for your form (as found in this Form1.Designer.vb file) without it
bothering your main source code file (Form1.vb).

3 Inherits System.Windows.Forms.Form

The Inherits keyword defines the inheritance relationship between
this new Form1 class and the previously written System.Windows.Forms.
Form class. Form is the “base” class, while Form1 is the “derived” class;
Form1 inherits all of the functionality of the Form class, including its ini-
tial look and feel. I’ll discuss these class relationships in more detail in
Chapter 8.

44 Friend WithEvents Button1 As System.Windows.Forms.Button

Line 44 defines the Go Ahead, Click Me button that appears in the
center of the form. All controls that appear on your form are separate
instances of classes. (Friend is a declaration statement described in the next
chapter.) The WithEvents keyword indicates that this instance of the Button
class will respond to events, such as a user clicking on it with the mouse.
This line doesn’t actually create an instance of the Button class; that hap-
pens back on line 22.

22 Me.Button1 = New System.Windows.Forms.Button

The New keyword creates new instances of classes. In this case, that
new instance is assigned to the Button1 class member defined on line 44.
At this moment, Button1 is a default instance of the Button class; it doesn’t
have any of its custom settings, such as its size and position, or the Go
Ahead, Click Me display text. All of that is set in lines 27 to 31.

27 Me.Button1.Location = New System.Drawing.Point(64, 104)

28 Me.Button1.Name = "Button1"

29 Me.Button1.Size = New System.Drawing.Size(152, 23)

30 Me.Button1.TabIndex = 0

31 Me.Button1.Text = "Go Ahead, Click Me!"

32 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 32

Finally, the button is “glued” onto the form on line 38.

38 Me.Controls.Add(Me.Button1)

This adds the Button1 instance to the list of Controls managed by
Form1. The Me keyword used throughout this code refers to the Form1
class itself, so Me.Button1 refers to the Button1 class member specifically
in the current Form1 class.

Most of the code in this file appears in the InitializeComponent mem-
ber procedure.

21 Private Sub InitializeComponent()

...

43 End Sub

When Visual Basic creates an instance of Form1 to display on the
screen, it calls the InitializeComponent procedure to do the work of
adding the controls to the form. Actually, Visual Basic calls the form’s con-
structor, which in turn calls InitializeComponent. Constructors are spe-
cial class members that perform any needed initialization on a class
instance. They are called automatically by .NET each time a class instance
is created. In Visual Basic, all constructors use the name New, as with the
following code:

Friend Class ClassWithConstructor

Public Sub New()

' ----- All initialization code goes here.

End Sub

End Class

I’ll talk much more about constructors in Chapter 8, but for now,
locate the constructor in the code for Form1. (Very long pause.) What?
There is no constructor? So, if there isn’t a constructor, how is the
InitializeComponent member ever called?

That’s what I’d like to know. Actually, when the Visual Basic compiler
generates the IL code for Form1, it adds a constructor silently, a construc-
tor that calls InitializeComponent. How about that! Why didn’t Microsoft
simply include the constructor’s code right in the source code? It’s a

The Project 33
1.

IN
TRO

DUCIN
G

.NET

8009_ch01.qxd 10/4/06 3:47 PM Page 33

simplicity-for-the-programmer thing. They needed to have a default con-
structor that would call InitializeComponent, but they didn’t want a con-
flict to arise if you added your own default constructor in the non-Designer
file. So they hid all of the code until it came time to actually compile the
form. Clearly, it’s all rather hush-hush, so let’s move on.

Well, that’s pretty much the entire code, at least the part that matters
to us now. Although we will rarely, if ever, examine the Visual Studio-
generated code for the forms in the Library project, it’s good to see what’s
going on behind the scenes. If you were a Visual Basic 6 programmer, you
probably looked at the source code for your forms through Notepad at one
time or another. If you did, you noticed that the form and all of its controls
were defined with a hierarchy of special commands, and not with actual
Visual Basic code. In .NET, that’s all changed; the form and all of its con-
trols are created with ordinary Visual Basic code, so you can access it all
and see what is really going on.

Now, turn to Chapter 2, “Introducing Visual Basic,” where I delve into
the Visual Basic language itself.

34 Chapter 1 Introducing .NET

8009_ch01.qxd 10/4/06 3:47 PM Page 34

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

