
C H A P T E R 7

Notification Services and
the Service Broker

In the last chapter, I explained how you can use a feature called Replica-
tion to send data from one system to another. That discussion was

framed in regard to high availability, but of course you can use Replica-
tion for many other applications that require data interchange.

In this chapter, we examine a more targeted approach for data distri-
bution. Using Notification Services, you can trigger specific datagrams to
users based on conditions in your database, from notifying someone that
a stock price has changed to alerting that a machine has just gone offline.
Any type of event that you track in your database is available for use in
Notification Services. Unlike Replication, you can use Notification Ser-
vices to send data to an e-mail address, a cell phone, or using the Simple
Messaging Service (SMS) to any device that conforms to that standard.

There are a couple of ways you can use Notification Services. You
can treat it primarily as a task that the maintenance database administra-
tor (DBA) is responsible for or you can enable it for your developers. In
this chapter, I focus on the DBA side of things, but you should be aware
of its many applications.

You can use SQL Server 2005 as part of a robust service-oriented
architecture (SOA). An SOA allows you to build applications in a new
way, distributing the load across multiple servers using messages
between them. SQL Server 2005 provides the Service Broker as a pro-
grammable object that you can use as a store-and-forward mechanism.
Although you might not write these programs, as the DBA you will be
responsible to set up and manage this part of the framework for an SOA.

In the second part of the chapter, I explain how you can help
develop and manage an SOA using the Service Broker. I show you a
sample application using the Service Broker in the “Take Away” section
at the end of the chapter.

365

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 365

In the early days of computing, users did not get immediate
responses from their programs. Developers wrote code in either
machine language or something close to it, saved it on a media such as
magnetic tape or punch cards, and submitted it to a computer. The com-
puter would run the program and create an output, either more punch
cards or a printout. The users would receive the printouts as their
results, disconnected from the computer. This is called “batch process-
ing”; and most of us could not imagine working this way any more.

In modern applications, users connect to the database either directly
or through a data-access layer in the system. They input data and receive
immediate feedback using a video screen. This book was produced with
a program using that computing method, and you might even be reading
it that way.

But there are times when batch processing or disconnected comput-
ing is useful. In some applications, the user is not near the computer
when the results are tabulated or created but may still need the data.
Other systems might also need access to the data but not all at once. The
feedback between the data and the user does not have to be immediate.

The value in this paradigm is that you can spread out the system over
large areas and balance the loads between the components. Not needing
the immediate feedback lowers the amount of resources a system
requires.

You are already using at least one disconnected system in your daily
routine. E-mail, for instance, is created on one computer at a certain
time, stored on another computer at a later time, and picked up and read
on still another computer at a later time. The e-mail server provides the
reception, storage, and delivery of the message as a service. In effect, e-
mail is a part of an SOA. In an SOA, a server provides interfaces and data
that are available to any program that knows how to talk to the service.
The service can also be coded to accept input, or perform some other
action based on the connection.

SOA systems are not new; in fact, Microsoft provides many SOA
mechanisms in programs such as BizTalk or as separate add-ons to SQL
Server 2000. In Microsoft SQL Server 2005, Microsoft includes the Ser-
vice Broker directly integrated into the database engine.

If Microsoft already has SOA systems available in other products,
why include it in SQL Server 2005? The reason has to do with the
requirements that an SOA has. If you are going to allow systems to be

366 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 366

disconnected, your SOA has to guarantee that the traffic between the
systems is encapsulated into messages so that the sending program is
identified, so it can receive the proper answer from the service. You also
have to make sure that the messages are ordered properly. For instance,
the program might send the third line of a purchase order before it sends
the header. The service needs to be aware of the order and the encapsu-
lation so that it can respond to the purchase order only when it is com-
plete, just as in a database transaction.

To manage all this, SOA systems use a database. In other mechanisms,
you need to manage not only the SOA system but a complete database as
well. By including the SOA within the database engine, the data, meta-
data, tracking data, and mechanisms are all contained within the same
architecture. There is just one system to learn, implement, and manage.

Another type of SOA is a “push”-oriented data system. I explained a
little about this type of data movement in the last chapter when we
examined SQL Server’s Replication features. In that environment, data
is either sent or picked up by another database. Although that is a useful
feature, you will often need to send data to a medium other than a data-
base, such as e-mail or an SMS device. In SQL Server 2005, Microsoft
includes the Notification Services system that can do just that.

Many people in your technology department are normally involved
in creating an SOA, simply because of the vast array of technical skills
required to implement and maintain it. As the DBA, you will be asked to
manage and maintain the system, working with developers, business
analysts, and others.

Notification Services

Notification Services is one of those products that does what it says: It
provides a means of notifying a user that an event has occurred in a data-
base. The system uses several components to accomplish this goal, from
the databases that store data about the events to the control files and
databases that shepherd the process.

Let’s begin by examining a few applications for Notification Services
and how you can distribute them. The most obvious uses involve applica-
tions that require immediate feedback for a user. These include changes in
prices, levels, inventory, and any other information that is time sensitive.

Notification Services 367

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 367

Other uses for Notification Services might not be as obvious. Mar-
keting studies show that clients are most frustrated when they feel that a
company is not responsive. You can code your applications to notify a
customer as to which stage an order is in, such as when it is complete,
when it leaves the building, or any other action that makes a change to a
status code in a database. You can also set up a notification that an order
was received and when it was placed.

For the system administrator, you can use Notification Services to
help reactively manage your systems. Normally, a reactive mode of man-
aging anything in IT is a bad idea, but using Notification Services you
can build in the look-ahead logic so that a server watches objects (like
backups or other maintenance) for you and can alert you when a thresh-
old is reached.

So just what is Notification Services? It is an infrastructure within
SQL Server 2005 that involves a service, instances, and applications, and a
set of programs your developers create to interface with the system. In this
chapter, I focus on the Notification Services instances and applications.

The easiest way to create the system is programmatically using noti-
fication management objects (NMOs). You can find several examples of
this type of programming if you installed the sample and applications on
your server.

You can also create and manage Notification Services using the
native tools within SQL Server 2005 using XML files. We take a look at
the structure of these files and examine the results of its implementation
so that you can see how to manage and maintain it. In practice, most
applications are coded using NMOs, but you can always create the
instance and application XML files with an Export from the Object
Explorer right-click menu in SQL Server Management Studio.

Notification Services Architecture

There is a lot of excellent information in Books Online regarding Notifi-
cation Services, but it is not arranged in a holistic view of the system.
There is a good reason for that. Notification Services uses several com-
ponents within the SQL Server 2005 platform to accomplish its goals. In
addition to all the capabilities that Microsoft delivers, your developers
can extend every part of the system with custom programs and inter-
faces. To get a picture of how this all fits together, let’s start at the back of
the system and work forward to the user who receives the notification.

368 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 368

Because Notification Services has so many components, I am going
to cover it three times. In the first, I give you a broad overview, then I
explain it again with a little more detail, and then I cover the various
basic components by explaining the Instance Configuration File (ICF)
and the Application Definition File (ADF). Even with all of this informa-
tion, you are only seeing a quick overview of this topic.

In Notification Services, several terms are used that already have mean-
ings within SQL Server, such as instance, publisher, subscriber, and so
forth. In this chapter, pay close attention to the definitions that Notification
Services uses for these common terms.

At the back of the process is SQL Server 2005, which stores the data
the users need to see and all of the metadata that Notification Services
requires to operate. On top of SQL Server is the NSServer.exe program,
which runs all of the instances, which make up the notifications for the
users. To create these instances, you have two options: Your developers
can create them with programs that use NMOs, or you can create them
using an XML document called an ICF.

With an instance created, you create one or more Notification Ser-
vices applications within it that listen for events, which are changes that
your users are interested in knowing about. Events might involve data-
base activities but also can track changes in Analysis Services, files on a
file system, and other activities.

These events are matched with subscriptions, which are sent to the
subscribers (users) over various protocols to devices such as cell phones
or e-mail. Once again, your developers can create Notification Services
applications using NMOs or you can create them with an XML docu-
ment called an ADF detailing the parts of the application.

If you create the instances and applications using XML files, you
import them using SQL Server Management Studio or the
NSControl.exe command-line program.

That is the first overview, which leaves out quite a bit of detail. Let’s
examine the process a bit further. After the instance and applications are
created and running, the instance uses a program called NSServer.exe
that runs in the background watching for events using an event provider.
Event providers watch for database changes, file system changes, and
other events. It then applies matching rules to pair up the subscriptions

Notification Services 369

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 369

and the events and then sends the data on to a provider. A provider is a
piece of software that receives the data and formats it for delivery.

Providers are called by the application, and a generator matches up
subscriptions to the events. Subscriptions are groups of data that a sub-
scriber (the user) cares about. Notification Services populates the entire
subscription, which is read by a distributor. Distributors use special-
delivery services to talk not only to other databases but to file systems,
e-mail and telephones, and any other kind of communication system
your developers create.

The distributor formats the output using a content formatter and
then sends it on to the delivery protocol provider, which can send data
over SMTP, HTTP, and SMS. The subscriber receives the data in that
format, over that protocol.

As the third explanation of the process, let’s take an even deeper look
at two of the primary components that you will work with: the ICF and
the ADF. Using these XML files, you set up the instances and applica-
tions that enable your developers to create a complete Notification Ser-
vices system. All the pieces I have been talking about begin to come
together as you examine these files.

Instances and the Instance Configuration File

An instance of Notification Services is a collection of applications that
run as a unit on a SQL Server. You can have one or more instances on a
single SQL Server. You can create an instance programmatically using
NMOs or by using SQL Server Management Studio and an XML file
called an ICF. That is the approach I take here.

370 Chapter 7 Notification Services and the Service Broker

DBA 101: XML

If you are not familiar with XML, it is not difficult to learn. It is an ASCII file
with special characters (called tags) in front of the text you want to mark off
in some way. It is the same principle as HTML, but the tags in XML are not
set by an independent body. You can make up any tag you want. All you have
to remember is to “start” the tags (in this format: <thing>) and “end” or
close the tag (using the format </thing>), add a bit of header information,
and keep the tags nested properly (in which case, the document is said to be
well formed).

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 370

The ICF contains the name of the instance, a database for its con-
trol, the name of the applications that can talk to the instance, and
encryption and delivery information. You can also place a version stamp
in the file, which I recommend for production applications. The format
for the file is detailed in Books Online under the topic “Instance Config-
uration File Reference.”

I display the minimal ICF file here so that we can talk a little about
the parts that are required. In a moment, I show you the results of
importing an ICF file into the database using SQL Server Management
Studio. If you want a useful example of Notification Services, it is best to
consult the examples from Microsoft, if you installed them. Setting up a
complete system with an interface and databases and explaining it all
would take up much more than a single chapter and would involve you in
parts of the system that a DBA does not normally handle. I do recom-
mend you use the examples, however, because they will shortcut all the
development for you and allow you to concentrate on managing a Notifi-
cation Services system.

Notification Services 371

In XML, the words that are tagged are called elements, and any other infor-
mation about those words are called attributes. Elements are enclosed by
tags, and attributes go inside the brackets. Here is an example of an ele-
ment called name with the value of Buck, and an attribute of first:

<name type="first">Buck</name>

Another item that you will see in XML files is the comment. It looks like this:

<!— This is a comment —>

Comments are actually a form of directives. Directives are special characters
(such as question marks) that tell the XML parser to act in a certain way (in
this case, ignoring the text that follows).
An important difference from HTML to keep in mind is that XML is case sen-
sitive. Buck is not the same as buck. When you are matching the tags, this
often comes back to bite you.
There is a lot more to know about XML, of course, but these basics will help
you read the files I show here.

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 371

Here is the minimal version that you need to fill out for a basic
instance. Each section is commented out (<!— comment —>) so that we
can more easily discuss it:

<?xml version="1.0" encoding="utf-8"?>

<NotificationServicesinstance

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.microsoft.com/MicrosoftNotificationServices

/ConfigurationFileSchema">

<!— Notification Services instance Name —>

<instanceName></instanceName>

<!— Database Engine instance —>

<SqlServerSystem></SqlServerSystem>

<!— Applications —>

<Applications>

<Application>

<ApplicationName></ApplicationName>

<BaseDirectoryPath></BaseDirectoryPath>

<ApplicationDefinitionFilePath></ApplicationDefinitionFilePath

>

</Application>

</Applications>

<!— Delivery Channels —>

<DeliveryChannels>

<DeliveryChannel>

<DeliveryChannelName></DeliveryChannelName>

<ProtocolName></ProtocolName>

</DeliveryChannel>

</DeliveryChannels>

</NotificationServicesinstance>

It looks like there is a lot going on here, but it is actually quite easy to
follow. The first five lines of the file represent an XML header, which
details what the file is and how it will be used. That does not change for
any of your instances. The rest of the sections control the creation of the
instance, similar to the old .INI files of earlier Windows programs.

372 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 372

<!— Notification Services instance Name —>

The first section, specified in the <instanceName> element, sets the
instance name for the system as well as the service it creates to run this
instance. From here on out, the applications and other parts of this noti-
fication system’s grouping will refer to this name. I usually keep these
short and as descriptive as possible. The instance Name becomes the
name of the service that runs in the operating system, prefaced by NS$.
For example, the following entry creates a service called NS$AWInven-
tory:

<instanceName>AWInventory</instanceName>

<!— Database Engine instance —>

The <SqlServerSystem> element sets the name of the SQL Server
instance (no relation to the Notification Services instance set up with this
file) where the Notification Services instance will run. It is the name of
the server where you want the service to run.

<!— Applications —>

Each instance holds one or more applications that can talk to it. The
<Applications> element is a parent element that contains other infor-
mation that relates to the applications that will run under this instance.
In effect, it is pointing to the ADF that you will also need to create prior
to importing the instance using the ICF.

If you try to import an ICF before the ADF is complete, you will get an error.

This section includes the name of the application and its location
and name on the hard drive. You can store these files in a shared folder,
as long as the SQL Server and service accounts have access to it.

Notification Services 373

DBA 101: XML Hierarchies

If you read down the file until you see the “opening” tag of <Applications>
and the “closing” tag </Applications>, you will see that there are other
items between them. In XML, this is how you nest items to make them “chil-
dren” of other elements.

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 373

In this example, I create only one application for the instance, but
you can have as many as the resources for your system allows. It is best to
plan out the entire system before you begin this process so that the
instances are broken out logically to contain the applications that make
the most sense to group together.

The first child element in the <Applications> tag is <Applica-
tion>, which is another parent tag. You repeat this element for each
application that the instance will host. Within that parent element is the
<ApplicationName> element, which sets the name of that particular
application.

Each application needs a directory to store its ADF. This file, which
I create in a moment, holds the same kind of information created for the
instance but sets up the application.

The next element, <ApplicationDefinitionFilePath>, sets the
name of the ADF file. If you store only the filename here, the file needs
to be stored directly in the BaseDirectoryPath location.

The reason you have two elements available is because in actual pro-
duction, you will normally have several applications that run on a single
instance. You want to keep these applications separate so that various
developers can have the access they need to work with only the applica-
tions they are assigned to. Keeping the applications in separate directo-
ries allows you a greater level of security.

<!— Delivery Channels —>

The instance controls how the system communicates with the outside
world. The first parent element, called <DeliveryChannels>, begins the
section describing all the ways that this instance can communicate.

You open the delivery method with the <DeliveryChannel> ele-
ment, and then type in the <DeliveryChannelName> element to have the
type you want, from e-mail to file. Within that instruction, you need to
specify the protocol the channel will use. You do that with the value of
the <ProtocolName> element.

There are lots of ways to send information, each with its own proto-
col settings. So that we can maintain the overview process here, I will
direct you to Books Online using the topic search I mentioned earlier to
learn about the various methods you have available.

With all of the basic elements defined, we need to create the ADF.

374 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 374

Applications and the Application Definition File

One or more applications are contained within a single instance of Noti-
fication Services. When you create an application, you will also create or
specify a database that stores the events, the subscriptions, notification
data, and other application metadata about the application. If you do not
have a database, you can have the XML file (or the NMO program) cre-
ate one for you.

Once again, we will look at a basic XML file and examine the ele-
ments it contains:

<?xml version="1.0" encoding="utf-8" ?>

<Application xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.microsoft.com/MicrosoftNotificationServices

/ApplicationDefinitionFileSchema">

<!— Version —>

<!— History —>

<!— Database Definition —>

<!— Event Classes —>

<!— Subscription Classes —>

<SubscriptionClasses></SubscriptionClasses>

<!— Notification Classes —>

<NotificationClasses></NotificationClasses>

<!— Event Providers —>

<!— Generator Settings —>

<Generator>

<SystemName>%SystemName%</SystemName>

</Generator>

<!— Distributor Settings —>

<Distributors>

<Distributor>

<SystemName>%SystemName%</SystemName>

</Distributor>

</Distributors>

Notification Services 375

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 375

<!— Application Execution Settings —>

<!— Important: At minimum, you should define

a vacuuming schedule and turn off some or all

distributor logging. —>

</Application>

This file has quite a few subelements, so once again I recommend
that you look up the topic in Books Online using the search topic “Appli-
cation Definition File Reference.” There you will find all of these ele-
ments hyperlinked, in alphabetic order. Using this minimal template and
those search results, you can quickly build the file you want.

In this minimal file, the first four lines set the header for the XML
file and tell SQL Server 2005 how to handle it.

<!— Version —>

The first section here is the <Version> element. Within that are various
child elements that set a version number and build. The <Version> ele-
ment is optional, but I normally include it so that I can track where I am
in the build process. It is a good habit to get into.

<!— History —>

The History section is similar to the Version section, in that it provides
tracking data for your system. You can include data here to track what
changes you have made to the ADF.

<!— Database Definition —>

In the <Database Definition> elements, you set the name, schema, and
physical structures for the application. If you do not provide one, the sys-
tem creates a database using the defaults for the server. In a moment, I
create a Notification Services application and show you the types of
things that end up in this database.

<!— Event Classes —>

It is in the Event Classes section that things really become interesting.
In this section, beginning with the <EventClasses> parent element, you
set up one or more <EventClass> elements that define what events the
system responds to.

<!— Subscription Classes —>

In the Subscription Classes section, using the parent tag of
<SubscriptionClasses>, you set up one or more subscriptions for the
application using <SubscriptionClass> elements. Here you describe

376 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 376

the name, the schema for the subscription, any indexes you want on the
tables, and event and schedule rules. All of these elements set up how
often the events are captured and what can be subscribed to.

<!— Notification Classes —>

Using the <NotificationClasses> parent tag in this section, you set up
one or more notifications for the application using <NotificationClass>
elements. These elements define where your application stores the noti-
fications, what filter is used to format them, and what protocols the
transport uses. You can also set whether the notifications are sent one at
a time or if they use a “digest,” which groups them all together to be sent
at the end of a specified period.

All of these settings are similar to what you will see in a newsgroup;
and if you think about it that way, you will have the concept.

<!— Event Providers —>

As I explained earlier, an event is a change in data that you care about.
For instance, a stock price change or a project change would be an
event. Microsoft delivers several of these with SQL Server 2005, and you
can also write your own. Here are a few of the event providers that your
system can use.

Analysis Services MDX statements

File Watcher XML output, requires a schema document

SQL Server Runs a SQL statement to detect changes; Can be non-Microsoft
because it uses linked servers

Custom Uses IEventProvider and IScheduledEventProvider

The most prevalent event that I have seen used is the SQL Server
event. This allows you to watch a table for changes and deliver the infor-
mation to a user via a subscription.

Each of the event types has specific elements they require to be able
to process them.

<!— Generator Settings —>

The generator is the component within Notification Services that
matches changes in data (events) to those who should learn about the
changes (subscribers). It runs in the background on your server using
the NSServer.exe program.

In this section, you use elements to define the name of the system
that will act as the generator and set the amount of threads it will use.

Notification Services 377

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 377

Figure 7-1

<!— Distributor Settings —>

The distributor is the component within Notification Services that for-
mats and sends the data. You can store the distributor on one or more
servers to help balance the load on your system. You use elements in this
section to set the name of the distributor, the threads it uses, and an
optional duration setting.

<!— Application Execution Settings —>

In this section, you set up all of the information around the processing of
your events, such as limiting the amount of time that is spent on a partic-
ular task as well as the order in which applications are processed. An
important element to set is the <Vacuum> value, which sets how often the
cleanup process runs.

With all of those components in mind, let’s take a look at how all of it
fits together within the framework of a complete application. I have a sin-
gle application that I plan to set up to watch an inventory level. I have cre-
ated the ICF and the ADF and placed them in a directory on my local test
system. I will import those into my instance of SQL Server 2005.

Installing the Instance and Creating the Application
In Figure 7-1, I have opened SQL Server Management Studio and right-
clicked the Notification Services object in the Object Explorer.

378 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 378

Notification Services 379

Figure 7-2

With that set, I click the OK button to process the file. My system
shows the screen in Figure 7-3 while it processes.

Figure 7-3

Within that panel, I specify the location of the ICF, as shown in
Figure 7-2.

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 379

380 Chapter 7 Notification Services and the Service Broker

Now I will enable the system by right-clicking it in the Object
Explorer again. This process sets the distributors, generators, and sub-
scriptions for the system. You can see that in Figure 7-4.

Figure 7-4

When that process completes, I right-click the service and select
Tasks,… and then Register from the menu that appears, as shown in
Figure 7-5.

This brings up a panel where I create the service, set the authoriza-
tion for the service, and set how the service will access the database. You
can see that in Figure 7-6.

I receive feedback that shows that the system is creating registry
entries, creating the service, and adding new performance counters.
With all that complete, I again right-click the name of the service and
select Start from the menu that appears. After confirming that I want
the system to start, the databases I specified in the ICF (AWInvento-
ryNSMain) and the ADF (NSMetaData) are created, and the service
starts.

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 380

Figure 7-5

Notification Services 381

Figure 7-6

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 381

Figure 7-7 shows a list of the tables within the instance database
called AWInventoryNSMain.

382 Chapter 7 Notification Services and the Service Broker

Figure 7-7

This database contains the elements I explained earlier within the
ICF document. There are a few other metadata tables here, especially
involving the time settings such as time zone and locales.

The tables in the application database called NSMetaData also con-
tain the elements I explained in the ADF and other metadata. You can
see all of that in Figure 7-8.

The service reads these databases and accesses the information,
ready for the client programs to subscribe, similar to what I explained for
replication.

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 382

Figure 7-8

Security

There are two parts to the security of your Notification Services system.
The first is to secure the locations where the ICFs and ADFs are located.

The reason you want these files secure is that those who can access
them can change them to reflect more data in the Events section than
you might want. The small files I described earlier are not representative
of what you create in a production environment. The production files are
much larger, so you might miss the addition of a new event or a change
to a current one.

After you have your instance running, you can alter it later by re-
importing the ICF and ADF. That is where the danger comes in on leav-
ing these areas unsecured. If your developers are using NMOs to code
the application rather than the control files, this is less of an issue.

The second part of securing the system is against the subscription
data. To secure this data, you simply use Windows accounts or SQL
Server accounts.

Notification Services 383

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 383

Monitoring and Performance Tuning

Notification Services can be used on servers that scale up, and they can
also be used on a cluster. Another method for tuning the application is to
spread it out onto multiple servers, including the generators and other
parts of the application. That is why it is important to plan out the system
ahead of time.

You can monitor a Notification Services system in SQL Server Man-
agement Studio by right-clicking the instance you are interested in and
selecting the Properties item. Once inside, click the Applications item
in the left pane, and in the Components for that application, check the
Status column, as shown in Figure 7-9.

384 Chapter 7 Notification Services and the Service Broker

Figure 7-9

You can also check the Subscriber status from this resource box.
Another monitoring tool is a suite of Performance Monitor objects and
counters that you can access from the System Monitor in Windows, as
you can see in Figure 7-10.

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 384

Figure 7-10

You can monitor all parts of the system based on what you are inter-
ested in examining, from the subscriber subsystem to the collection
methods.

Service Broker

In replication, data is exported from one server to another, but it always
stays in the format of a database. In Notification Services, data is deliv-
ered to subscribers, using phones, e-mail, or other formats. Although
you can send data between systems using these technologies, they are
often used in a unidirectional method, sending data from a server to
another system or user. Earlier I explained that there are distinct advan-
tages in using a disconnected system such as replication and Notification
Services, which are in effect store-and-forward mechanisms. The
SQL Server 2005 Service Broker extends this concept to the entire
application.

Service Broker 385

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 385

With the Service Broker, you can build an entire infrastructure that
is “loosely coupled.” That means that the system does not receive imme-
diate feedback from each application that the tasks are complete, just
that the task has been received.

Microsoft uses the analogy of the Post Office to explain the Service
Broker. For the DBA learning about an SOA, this is a great way to think
about the process. I use that analogy to describe what happens at a phys-
ical Post Office and then extend it to show the parts of the Service Bro-
ker. In the “Take Away” section, I show you a simple Service Broker
program example that you can extend to do useful work on your produc-
tion servers.

Using the Post Office to Understand the Service Broker

Let’s assume you want to place an order for a new computer through the
mail. You write a letter, place it in an envelope with instructions for the
final location (the address), and drop it into any receptacle that the Post
Office recognizes as a pick-up point. The message is picked up and
brought to the local Post Office, sorted, and sent to the next Post Office
in the chain all the way down the line until it reaches the Post Office
closest to the recipient. That Post Office delivers the message to the
recipient, who opens the envelope and reads your instructions. They ini-
tiate several actions in multiple departments, and you receive a confir-
mation message and then a follow-on package from the company, which
completes the transaction.

Most of us use this kind of system every day, without considering the
advantages it provides. For one thing, it provides a distribution of func-
tion. You write the message and receive the goods, without any knowl-
edge or concern about the route the message will take. The Post Office
carrier picks up the envelope without knowledge of its contents or final
destination. The Post Office sorts the message and routes it without
knowledge of the message. The recipient reads the message without
concern for its previous route or future destination. The process is then
reversed. As long as everyone does his or her part, there is no need to
have an active governing system that needs to know about every compo-
nent, from the routes to the message content. In other words, one per-
son does not have to follow the letter from beginning to end.

Another advantage is that a single message might cause a flurry of
activity at the receiving end. If you order something through the mail,

386 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 386

that triggers several departments at a company, such as purchasing, ship-
ping, marketing, and so on. All with just one small order that you sent:
you do not have to send an individual message to each department to
have them start working on your order. In fact, each department is work-
ing on several orders at one time.

The Service Broker works the same way. Each component has a spe-
cific function, and items can be “dropped off” at each point with the
guarantee that the component will perform its function having no
knowledge or control of any of the other parts. Developers can write
complex systems by coding their individual parts with the Service Broker
and letting each work on multiple activities at once.

Let’s take a look at each of the parts of the Service Broker as it
applies to the Post Office analogy. Along the way I explain how the two
relate and some of the information you will need to implement and
maintain your own system.

Just as in the case of Notification Services, the Service Broker introduces
entirely different uses for the same terminology used in replication and
elsewhere in IT parlance. Watch this section for new definitions of words
such as type and service.

The Postal System and the Service Broker

As a conceptual “umbrella” to the whole process is the idea of a postal
system. Someone (in the United States, Benjamin Franklin) originally
institutes and lays out the rules for getting messages from sender to
receiver. In the case of the Service Broker, the SQL Server 2005 data-
base engine works in terms of conversations, which are similar to a sin-
gle-direction motion in the postal system. For instance, the postal carrier
picks up your mail from your mailbox and carries it to the local Post
Office. That is a conversation in Service Broker terminology.

Happily, the message in the Service Broker is the same as the mes-
sage in the postal system, referring both to the enclosure (envelope) and
the payload inside it. The only difficulty is making sure you define
whether you are talking about the whole thing or just the payload inside.
I try to make that clear as we move along.

Service Broker 387

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 387

In a simple example where the recipient is in the same town that you
are, the message leaves the local Post Office and moves to the recipient’s
mailbox. That is another conversation. Taken together, the two conversa-
tions along with the message form what Microsoft calls a conversation
group.

In T-SQL, you can examine the conversation group with the command GET
CONVERSATION GROUP. You will often use this command to get the status
of a particular part of the system.

When your letter gets to the Post Office, it is stored there until it
moves on. In the Service Broker, this is handled by storage called the
queue.

Once inside the Post Office, the letter moves from place to place to
be properly sorted. Those internal processes that keep everything in the
right place in the Service Broker are called dialogs. The Post Office
stamps a “cancellation” across the message to show when it was received.
If you are in the United States, April 15 (the day our tax forms are due) is
one date you want to make sure you see on your envelope. Dialogs in the
Service Broker do the same thing. They stamp each message with an
order number so that they are guaranteed to be correct. This is impor-
tant in transaction-type applications because one line in an order might
change the one prior to it.

The Post Office has employed several people to do all the moving,
sorting, and delivering. In the Service Broker, the employees are called
services, and activations make them work. We discuss those further in a
moment.

The Post Office actually handles more than just one type of letter.
You might send a postcard, or letters of various sizes. You might send a
package, too, and even specify special handling instructions. In the case
of the Service Broker, this is referred to as a message type. Because
applications can send everything from text to music files, each is treated
a little differently. Most of the issues I have run into using the Service
Broker involve a mismatch of types.

The letter is finally read by the recipient. In the Service Broker, the
system sends an EndDialog message, which ends the conversation.

That is the broad overview of the physical layout; now let’s drill in a
little to the traffic flow from the sender to the receiver.

388 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 388

The Mail—Message Types and Contents

The postal process starts with the mail message itself. Whenever you
look at a piece of mail, it has at least two components: the envelope and
the contents of the message inside. The envelope has a required size, it
must have the addresses for both the sender and receiver in certain
places and be readable, and it must have the right amount of postage.
You form a contract between yourself and the Post Office that you will
follow the rules and they will deliver the letter.

Envelope—Message Types

To send a letter, you have to subscribe to the rules they lay out for
envelopes and postage. In the Service Broker, these are analogous to
message types. A Service Broker message type has two basic values: XML
and NONE.

In the XML type, SQL Server attempts to check the validity of the
document prior to processing it. Anything that can use text can use the
XML type. You can also specify that you want to process it with a particular
XML schema document to verify the contents.

If you are sending anything other than text, such as a binary file, you
can use the message type of NONE. That type instructs SQL Server not to
check the validity of the contents.

The message type is specified when you send the message with the
SEND and RECEIVE T-SQL commands, and you can create new ones with
the CREATE MESSAGE TYPE command in T-SQL. I show you this process
in the “Take Away” section at the end of the chapter.

Contents

You can send entire books in a single pass through the postal service, but
that is not always a good idea for the Service Broker. You are working
with a computer system that uses your regular network lines, so it is usu-
ally best to break down the messages into smaller pieces.

You create the message in your originating program, called the ini-
tiator. Most of the time the documents are passed around using XML
files.

Service Broker 389

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 389

The Sender—Initiators, Contracts

When you send mail, you are responsible for writing the message on
some type of paper, for recording the address properly (both yours and
the recipient’s) on the envelope, and using proper postage. The postal
service guarantees that if you follow those rules, they will deliver the let-
ter. That is a contract, and in the Service Broker you have exactly the
same type of arrangement.

The user or a program, called the initiator, enters the information
they want to send or receive. The program runs a stored procedure,
which creates a message and begins a conversation with the proper Ser-
vice Broker service program, which I explain in a moment.

The Postal Carrier—Physical Transport, Protocols, and Remote
Service Bindings

Although it is invisible much of the time, you are still using some method
to move this data from client to server. In the Post Office, postal carriers
drive vans or walk a route to pick up and deliver mail. In the Service Bro-
ker, physical transports (such as the network infrastructure) and proto-
cols (such as TCP/IP) handle the movement from one location to
another.

That might seem obvious, but it is important to consider it in the
overall picture. If the Post Office ignored the fact that they use vehicles
in their work, they might not perform the routine maintenance they
need or plan for redundant vehicles. It is the same in the Service Broker.
You need to be aware that there are physical parts to your system and
plan for maintenance and backups in case they fail.

You can secure the entire communication process with certificates if
you want. This provides a high level of encryption so that the message is
difficult to break.

The Post Office—Endpoints, Queues, and Activations

I have been explaining the Service Broker using Microsoft’s postal serv-
ice analogy, but I have moved in the direction of the client to the
receiver. I have done that on purpose so that you can see how it all fits
together, but in the postal service as well as the Service Broker, that is

390 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 390

not how things really get built. Before a user ever sits down to write a let-
ter, the Post Office has to be built first. That is the same way that it is in
the Service Broker; you normally build the middle first and work out
from there.

Each Post Office has a set of doors that only the postal carriers are
allowed to use. In the Service Broker, this is called an endpoint. End-
points are network connections directly into a service. The conversation
groups I described earlier send messages between services using end-
points. Much of the DBA’s time is spent creating and tracking endpoints.

In the Service Broker, the queue is similar to a single storage loca-
tion at the Post Office. A queue is the data repository for all the mes-
sages. Unlike the Post Office, one message can be sent from a queue to
multiple locations. I guess it is more like the Post Office than I care for;
many people do get lots of the same junk mail.

In the Post Office, an employee is assigned to work on certain kinds
of mail, in certain areas of the Post Office. In the Service Broker, each
queue is associated with a stored procedure or a managed program in
the CLR layer, called a service program. When a message is placed in
the queue, the service program is activated and begins to process the
message. Most of the work the developer does is within these stored pro-
cedures. In effect, these stored procedures are the workers in the Post
Office.

This brings up another advantage in having Service Broker running
directly within the database. This architecture removes the need for
multiple services to be installed on the operating system. Because the
queue is associated with a stored procedure, the stored procedure
“wakes up” each time there is work to do, but not before. Nothing has to
run in the background, constantly watching for work to do.

Another important part of this analogy is that whereas a postal
worker might send the message to the final recipient, the worker might
also send it to another postal worker for some additional processing. In
the Service Broker, the stored procedures might do the same thing.
Depending on what the stored procedure code is, the message might be
processed and a final message sent or sent to yet another procedure for
more processing.

Service Broker 391

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 391

The Recipient—Calling Programs

When the processing is complete, the conversation is terminated. Your
original calling program can either collect the status from the Service
Broker or move on without checking.

Security

Unlike other database applications, the Service Broker is based on pass-
ing messages between systems. Because of that, you are not as con-
cerned with individual user accounts. It is a bit more like the application
security explained in Chapter 4, “Security,” because a single account is
used to access the system on the user’s behalf.

In the Service Broker, you focus your security on two areas: dialog
and transport. Dialogs have to do with the messages, and transport has to
do with the network. Implementing both makes the system secure.

Dialog security is set up by creating a user in the application data-
base and then a certificate for that user. From there, you can use a Ser-
vice Binding mechanism to associate the user and the Service Broker.
The application uses that user to send and receive data.

For transport security, you set up a server login and a certificate in
the master database and then send the certificate to the calling programs
and the DBA for the application. The system uses this login to process
the transactions.

Monitoring and Performance Tuning

To manage and monitor the system, you get four new dynamic manage-
ment views and three Performance Monitor objects and counters.

The dynamic management views are as follows:

392 Chapter 7 Notification Services and the Service Broker

sys.dm_broker_activated_tasks Shows all of the stored procedure
activations

sys.dm_broker_connections Shows all of the Service Broker
network connections

sys.dm_broker_forwarded_messages Shows the messages that are in the
process of forwarding

sys.dm_broker_queue_monitors Shows the queue monitor that
manages activation for a queue

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 392

To display the Performance Monitor values, add the following
objects and counters to your trace.

SQL Server, Broker Activation Object Shows stored procedure activations

SQL Server, Broker Statistics Object Shows general Service Broker information

SQL Server, Broker / Shows the interaction between the
DBM Transport Object Service Broker and database mirroring

The two most important tuning strategies for the Service Broker are
planning the layout and optimizing the stored procedures that act as the
service programs in the application. Proper planning for the infrastructure
is normally why you have implemented the Service Broker to begin with.
When you analyze a solution, always ask whether an asynchronous architec-
ture is possible or preferable, and then implement the layout accordingly.

Like most applications, the biggest bang for the effort is in tuning
the T-SQL code that runs within the stored procedures. One strategy
that you might want to alert the developers about is the use of the WAIT-
FOR statement. This instructs the stored procedure to wait for an event to
occur prior to looping through the code. Adding this statement is impor-
tant in a disconnected architecture because the message might not be
complete when the service program is activated.

Take Away

Both Notification Services and the Service Broker are more about the
programming constructs than administration. Other than the security
implications and a few more Performance Monitor objects and counters,
there is not a lot for the DBA to do in the system from day to day.

I thought it might be useful to work through a simple example of a
Service Broker application because it is the one that is the most accessi-
ble from standard T-SQL statements. Creating your own application
helps you to understand the process, and you can even use this simple
program as a starting point for a more advanced application.

I will keep the comments down to what I think you should know
along the way, because seeing the entire application process laid out is
useful to understanding the process quickly. You should be familiar with
the terms I explained in the chapter to follow along. If you are interested

Take Away 393

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 393

in extending this system, create the application on your test system just
as I have here. Then review the T-SQL statements that make up the
process to expand what the system can do.

Service Broker Example

In this section, I create a simple example of adding an employee to a
database. The requirement is for a junior human resources worker to be
able to add an entry into the company’s employee system. Because her
manager wants to review the entry prior to the employee receiving a per-
manent ID number, we have decided to create an application that takes
her entry and places it in a “holding” table until it is reviewed.

On my test system, I created a database called ServiceBrokerExam-
ple that has one table called Employee. That table has one column called
EmployeeInfo, with an xml column setting, because that is what my
application expects. Here is the code for all that in case you want to try it
on your system:

— Create the database

CREATE DATABASE ServiceBrokerExample

GO

— Create the table

USE [ServiceBrokerExample]

GO

CREATE TABLE [dbo].[Employee](

[EmployeeInfo] [xml] NULL

) ON [PRIMARY]

GO

With that all set, I begin the process by creating a message type for
the system. I instruct the type to check to make sure my data is in proper
XML format, but in production you will also often reference a full XML
schema document:

— Create the Message Type

CREATE MESSAGE TYPE

[ServiceBroker/Example/Employee/AddEmployee]

VALIDATION = WELL_FORMED_XML

GO

394 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 394

I then create a contract for the system, for each party to use. You can
see that it uses the AddEmployee message type that I just created:

— Create the Contract

CREATE CONTRACT

[ServiceBroker/Example/Employee/AddEmployeeContract]

([ServiceBroker/Example/Employee/AddEmployee]

SENT BY INITIATOR

)

GO

Here are my “postal workers” that read the data from the queue and
insert it into the database. I am using an XML conversion function to
move the data along and place it into the database. There are two stored
procedures here: one to do the inserts, and the other to check and empty
the queue. Do not let the complexity stop you; read through each section
line by line to see what’s happening here:

— Create the Insert SP

CREATE PROCEDURE [dbo].[AddEmployee]

@MB xml

AS

INSERT INTO Employee(EmployeeInfo)

VALUES (@MB)

GO

And now the stored procedure that reads the queue:

— Create the Update SP

CREATE PROCEDURE [dbo].[ProcessEmployee]

AS

BEGIN

BEGIN TRAN

DECLARE @CH uniqueidentifier

DECLARE @MB varbinary(max)

—dequeues the message

WAITFOR

(

RECEIVE TOP(1) @CH = conversation_handle, @MB =

message_body

FROM EmployeeQueue

),

TIMEOUT 1500

Take Away 395

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 395

—process the message

EXECUTE ProcessEmployee @MB

END CONVERSATION @CH

COMMIT TRAN

END

With the workers in place, I need to set up the “Post Office”—the
queue that will store all the data. When I create the queue, I assign the
service program (in this case, my stored procedure) that is assigned to
process it:

— Create the Queue

CREATE QUEUE EmployeeQueue

WITH STATUS = ON,

ACTIVATION

(

PROCEDURE_NAME = ProcessEmployee,

MAX_QUEUE_READERS = 5,

EXECUTE AS SELF

)

GO

I am almost there. Now I create the service that responds to the
requests from the conversations; I will also tie that to the contract I cre-
ated earlier:

— Create the Service

CREATE SERVICE AddEmployeeService

ON QUEUE [EmployeeQueue]

([ServiceBroker/Example/Employee/AddEmployeeContract])

GO

The system is now ready, and I can examine all the objects using the
SQL Server Management Studio. With the server ready for Service Bro-
ker conversations, I can set up a full sample event. I am only sending a
snippet of the code I would really use as the XML document, but this
snippet makes the code easier to read:

— Begin the dialog

DECLARE @CH uniqueidentifier

396 Chapter 7 Notification Services and the Service Broker

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 396

DECLARE @EmployeeName XML

SET @Employeename = '<name>Buck</name>'

BEGIN DIALOG CONVERSATION @CH

FROM SERVICE AddEmployeeService

TO SERVICE

'[ServiceBroker/Example/Employee/AddEmployeeService]'

ON CONTRACT

[ServiceBroker/Example/Employee/AddEmployeeContract];

SEND ON CONVERSATION @CH

MESSAGE TYPE

[ServiceBroker/Example/Employee/AddEmployee] (@EmployeeName)

GO

To check the results, I query the dynamic management views I men-
tioned earlier, as well as the destination table:

— Look at the results

SELECT * FROM sys.dm_broker_activated_tasks

SELECT * FROM sys.dm_broker_connections

SELECT * FROM sys.dm_broker_forwarded_messages

SELECT * FROM sys.dm_broker_queue_monitors

GO

SELECT *

FROM

Employee

GO

Take Away 397

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 397

07_Woody_ch07.qxd 5/12/06 4:42 PM Page 398

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

