
CHAPTER 4
State-Based Attacks

What’s In This Chapter?
The concept of state, or the ability to remember information as a user trav-
els from page to page within a site, is an important one for Web testers. The
Web is stateless in the sense that it does not remember which page a user is
viewing or the order in which pages may be viewed. A user is always free
to click the Back button or to force a page to reload. Thus, developers of
Web applications must take it upon themselves to code state information 
so they can enforce rules about page access and session management. This
chapter contains a series of attacks that will help determine if your Web
application does this important task correctly and securely.

This chapter presents the most common and notorious Web 
vulnerabilities. 

Introduction
All Web sites have a designated “home” or “default” page that Web design-
ers intend as the starting point for visitors. From that start page, users can
navigate the various pages of the site by clicking hyperlink objects embed-
ded in the various pages of the site. Hyperlinks can be text, images, or other
objects on the page.

This is the way it is supposed to work anyway. The problem is that the
Web has no built-in mechanism that specifies which sequence of Web pages
and forms are presented to the user. This aspect of the Web is called state-
lessness to denote that each page is delivered to users without knowledge
of where the users were previously or restrictions about where they can go
next. Users can simply type in the URL of the page they want to load, 
skipping the start page and any other page they do not need to view. 

If restrictions about page access are important, it is up to the Web appli-
cation to enforce this.

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 41



Statelessness is ideal when browsing for information (or surfing, as it
has become commonly known), but more has been demanded of the Web
than surfing static, standalone pages, and statelessness can lead to any
number of failures and security violations. Imagine surfing past the pages
where credit card numbers are entered and going directly to the page where
the receipt is displayed—obviously not something you want your own Web
application to do!

The burden of including state information in a Web application 
falls squarely on the shoulders of the Web developer and the tools for
adding such state information to a Web application are not particularly
sophisticated. 

The first option is using forms and CGI parameters, which allow the
transfer of small amounts of data and information to be passed from page
to page, essentially allowing the developer to bind together pairs of pages.
More sophisticated state requirements mean that data needs to be stored,
either on the client or the server, and then made available to various pages
that have to check these values when they are loaded. 

For example, we may store a flag on the server that indicates whether a
user has entered a valid credit card. The Web application will then only
allow the purchase pages to be loaded (and the purchase to be confirmed) if
that flag is set to the correct value. 

Shopping carts, purchase history, shipment tracking, and other such
features require some state to be made available to the Web application.
These features and the need to store state in general (and attacks on that
state data) are the subject of this chapter. 

42 How to Break Web Software

Hidden FieldsATTACK 6

One of the most basic ways of preserving state in Web pages is to hide data
in the page. That way as a user browses pages, state information can be car-
ried along, allowing the Web application to give the user a smooth brows-
ing experience. 

The most common ways of doing this are to place data in hidden form
fields or to append data as CGI parameters to hyperlinks. Both methods
have the same effect, but hidden fields are less obvious to the user. 

When a form is submitted to the Web server, each of the form fields is
passed to the server as GET or POST parameters. (Don’t worry about these at
the moment. We look at these in detail in the next attack.) But it’s not only
the fields that the user can see that are passed; hidden fields are passed, too,

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 42



and the Web application can read them just like normal fields, and under-
stand whatever data they contain. Developers sometimes favor hidden
fields because they are easy to include at design time. Hidden fields have
two other benefits. First, nontechnical people can maintain them in applica-
tions like FrontPage, Dreamweaver, and so on. Second, they are not obvious
to a casual user. 

The problem is that hackers are not casual users. They can and will read
hidden fields. If the information these fields contain is useful in an attack,
you can safely assume that hackers will use it that way. 

You can store numerous things in hidden form fields. Not all of them
are state related, but you should treat them with suspicion when they are
discovered. The basis of this attack is to look for hidden fields within forms,
analyze what they are used for, and try to change their values in ways that
would benefit an attacker. 

to Apply This Attack
The easiest way to determine if this attack is possible is to view the source
of the page and search for the string "hidden". Most form elements follow
this structure:

<input name="is" value="1234" ... >

along with the possibility of other, additional attributes. The type "hidden"
is one such attribute that appears in the source of a Web page, as follows: 

<input name="id" value="1234" type="hidden">

The most primitive way of modifying these form elements is to save the
page locally (using File, Save As in your browser while the page is dis-
played) and remove the "type=hidden" text from the source (remember-
ing, as always, to change any relative links to absolute links so that
everything still points to the correct location when you reload the locally
saved copy of the page). This effectively changes the hidden field to a stan-
dard text box, which you can see and modify directly in the browser. 

An alternative way of identifying hidden fields is to use the browser’s
Document Object Model (DOM). Both Internet Explorer and Firefox have
programming interfaces that allow developers to query the document
within the browser and change some of its attributes. This functionality was
originally intended for dynamic HTML so that scripting languages like
JavaScript or VBScript could implement dynamic UI functionality, as
described in Chapter 3, “Attacking the Client.” 

Consider the DOM code that follows, which iterates over a document in
Internet Explorer and prints the names and values of all hidden fields:

using System;
using mshtml; // access to IE's DOM

State-Based Attacks 43

WHEN

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 43



IHTMLElementCollection tags;  // interface to HTML
document

// iterate through all HTML tags
tags = HTMLDocument.all;
foreach (IHTMLElement tag in tags)
{
// Is the current tag an input tag?
if (string.Compare(tag.tagName,?INPUT?,true) == 0)
{
// cast to an input tag
IHTMLInputElement inputTag =

(IHTMLInputElement)tag;

// Is it a hidden input field?
if (inputTag.type==?hidden?) 
{
Console.Write(?hidden form field

??+inputTag.name+???+
?found. Value is ??+ inputTag.value+?? ?

// change the field value here
//  inputTag.value=="somevalue";

}  
}

}

It is straightforward to modify this code to change any of the hidden field
values to whatever value an attacker considers advantageous.

If you don’t want to write the code yourself, the PageSpy tool on the
CD in the back of this book uses this technique to list the hidden fields on a
page and allow changes—all from a simple graphical user interface (GUI).

to Perform This Attack
There is no easy recipe for this attack; it all depends on what hidden fields
you find on the page and the data they contain. The most universally useful
advice is to change values of hidden form fields and see what happens as
subsequent pages load. This should make problems with hidden fields
apparent. Consider the following example.

A really naive mistake that early Web developers made often and that
people still make today is saving product information on a page and pass-
ing that information to subsequent pages as in the application shown in
Figure 4-1. For example, as in Figure 4-2, we may want to save a product’s
price in a hidden field to help the server calculate totals as the user browses
a site. If an attacker recognizes this field and modifies it, he can reduce the
price of the product to whatever he likes. 

44 How to Break Web Software

HOW

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 44



State-Based Attacks 45

FIGURE 4-1 An e-commerce application.

FIGURE 4-2 Viewing the source of the application reveals a hidden field with the item’s price. What
would happen if we changed this value?

This is really the idea: Watch for information in all hidden fields, and
ask yourself whether an attacker would find the information advantageous. 

Another important thing to note is that hidden fields are data passed
from a client machine to a Web server. Because hidden fields have no data
type associated with them, changing their values to be illegal, overly long
strings and special characters may result in crashing or otherwise adversely
affecting the Web server.

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 45



Finally, you can use hidden fields to store data such as the previous
page visited or the last selected action. This data can ensure that users fol-
low the required flow of the application and don’t jump to pages they
shouldn’t be able to access. Hidden fields can also store session informa-
tion, as we shall see in a later attack.

to Protect Against This Attack
Avoid hidden fields wherever possible, and most especially on information
like price, quantity, page sequence, and other information you do not want
your users to change. Before using these fields for anything, evaluate the
data that the field contains for its security risk. Where you use hidden
fields, limit their exposure by obfuscating the field name (for example, by
using something less obvious than “price” or “password”) and encrypting
or hashing the value to something less recognizable to the attacker. 

This technique, however, relies on security by obscurity, and is almost
always broken over time. Something named cX24y is no more secure than
something named price, but it is harder to tell what the former is and
determine if it is important. If you do use hidden fields for something (they
are not entirely evil—a common usage is to include them in search forms so
the script that performs the functionality knows how to “brand” or frame
the results), ensure that the data is what you expect. Attackers can and will
modify these values.

46 How to Break Web Software

HOW

CGI ParametersATTACK 7

Although hidden form fields are a good way of passing data between
pages, there is a big drawback in using this method: The user has to submit
a form to an “action handler,” usually by pressing a button. It may seem
like a small point, but users are more used to clicking on hyperlinks or
images for their navigation than form Submit buttons.

CGI parameters are ideal for this task. After the parameters reach the
server they are accessed in the same way as form fields. (See the difference
between GET and POST form methods in the next sidebar, “The Difference
Between GET and POST Parameters.”) You easily can attach CGI parameters
to any hyperlink.

to Perform This Attack
CGI parameters are passed in a page request’s URL after the ? character and
are name-value pairs separated by & characters.

WHEN

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 46



It’s easy to tell if the current page uses CGI parameters, because they
will be clearly shown on the browser’s address bar. Links from a given page
and their parameters should display on the browser’s status bar if this func-
tionality is enabled.

State-Based Attacks 47

FIGURE 4-3 Example of CGI parameters in a browser’s address bar.

FIGURE 4-4 CGI parameters in the status bar when a user hovers over a link.

Other than their location, we attack CGI parameters in the same way
that we attacked hidden fields.

to Perform This Attack
There is no single way of performing this attack. From an attacker’s point of
view, it all depends on what parameters he sees being passed from page to
page and what their values are. As with the previous attack, we have to
consider what advantage the information contained in the parameters rep-
resents to an attacker. 

Begin by browsing your target site and noting the address bar. Also use
your mouse to hover over clickable objects and note the URL that’s usually
shown at the bottom of the screen in the information bar. The data in a URL
after the question mark are CGI parameters. We need to understand what
the data represents and whether its exposure would benefit an attacker. 

You can modify CGI parameters by editing the page’s HTML, as in the
hidden forms attack earlier, but for GET parameters, it is usually much eas-
ier to request a target page, change the values in the browser’s address bar,
and request the page again. There are many attacks against CGI parameters,
all of which overlap with other attacks discussed in this book.

HOW

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 47



For example, if a parameter looks like it’s to be used to select an item
from a database (that is, the URL looks something like http://www.
companytotest.com?item=1234), try changing the value and seeing what
happens.1

This effectively asks the database for a different record than the one
originally requested. Perhaps this is not a severe security risk in most cir-
cumstances, but imagine if the request was for a patient’s record in a health-
care provider’s online system. You’ve just breached the patient’s privacy in
the worst sort of way. This is exactly the situation we are trying to prevent,
so apply this attack in a creative way, and make sure these bugs are
reported and fixed before your site goes live.

It helps to consider the common uses of CGI parameters, so let’s spend
some time talking about them.

CGI parameters are often used to pass user preferences. Take Google,
for example. If you look at any Google search, you’ll see the hl parameter,
which specifies what language to “brand” Google, as shown in Figure 4-5. 

48 How to Break Web Software

1 We might also want to inject SQL statements or script tags to perform SQL injection and
cross-site scripting attacks. Those topics will be discussed in later chapters.

FIGURE 4-5 User preference parameters.

What happens if that parameter is changed, say to 'ru'? In this case,
Google changes its output to Russian. Changing the parameter to xx-
hacker results in Figure 4-6.

FIGURE 4-6 Modifying user preference parameters.

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 48



Another common use of CGI parameters is to keep track of which
pages a user has navigated successfully. For example, some pages might be
restricted to users who have been through a registration or authentication
process. These parameters often have short names (single characters aren’t
uncommon) and can carry the values of 1 (true/on) or 0 (false/off).
Modifying the value may fool the Web application into believing that the
attacker has already registered.

Because Web applications are notoriously difficult to debug (attaching a
debugger and single stepping through code isn’t easy), some developers
add hidden debug parameters to their application. When these parameters
are present, the developers send additional output to the browser, often giv-
ing a trace of internal application details such as database connections, SQL
queries, and variable states. 

In normal use, these parameters aren’t present, so the end user is none
the wiser. Adding &debug=on, &debug=1, or &debug=true to the end of
the list of CGI parameters (order of parameters generally isn’t important,
but commonly debug parameters are appended after existing ones) is a sim-
ple test to see if the developer has added this debug functionality. However,
it’s much easier to look at the application code to see if there are if
(debug)… statements. Say that instead of using simple Boolean values, the
developer uses a “magic” number, like 3141592654, to turn debug mode on.
Using manual, black-box testing, you may never discover this number—
looking at the source is much easier.

So far, we’ve talked about CGI parameters passed in the browser’s
address bar, which are known as GET parameters. We also mentioned POST
parameters, which you’ll be learning more about in the upcoming sidebar
titled “The Difference Between GET and POST Parameters.” POST parame-
ters are not as obvious to the end user, or as easy to change, and are passed
to the Web server in a slightly different way than GET parameters. This
means that we cannot as easily modify them using techniques we have
introduced thus far; we must use something to help us. Enter Paros Proxy 0,
the authors’ favorite Web testing tool.

Paros is described more fully in Appendix C, “Tools,” but it allows you
to see and modify all HTTP traffic to and from the Web server.

Numerous types of data are passed using CGI parameters. CGI is one
of the only mechanisms of passing data to subsequently loaded pages.
Therefore, a comprehensive list of attacks is impossible, and testers need to
carefully consider how each parameter may be misused. CGI parameters
are the delivery vector for most other attacks (cross-site scripting, SQL injec-
tion, directory traversal, and so on) that we will be discussing. That’s why
knowing what parameters there are and how to change them is important.

State-Based Attacks 49

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 49



to Protect Against This Attack
Perhaps the best advice to defend against this attack and many other
attacks that originate on the client machine is to parse all input for validity.
(You may want to refer to the sidebar “Validating Input” in the previous
chapter for an in-depth discussion.)

50 How to Break Web Software

FIGURE 4-7 Paros proxy.

HOW

The Difference Between GET and POST Parameters
Generally, the parameters you’ll see passed to a Web server are GET param-
eters—those you can see on the address bar. However, there’s another
method of passing parameters known as POST. Unless client-side code
(JavaScript, applets, and so on) generates POST requests, these requests are
only sent via forms. (If you look at the <form> tag, you’ll often see an
action="post" attribute.) But before we go into the difference between
the two parameter-passing mechanisms, let’s address why there are two
ways to accomplish the same thing. 

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 50



Cookies are small files of textual data that a Web application writes on a
client’s hard drive. The Web application can then reuse this data on subse-
quent visits to the site from that same computer. This allows the Web site to
remember a visitor and offer him customized or personalized content based
on the information stored in the cookie. 

When people talk about cookie poisoning, it’s mostly in the context of
session hijacking (another attack described later in this chapter). However,
there’s much more to cookies than just session identifiers.

Cookies are delivered in four forms that are the combination of two 
settings: persistent or nonpersistent, and secure or nonsecure. The browser

State-Based Attacks 51

The HTML specification gives the usage advice that GET requests are
idempotent operations (basically just receiving information—thus
“GET”), and POST operations should be for anything else that may involve
some state change in the application, such as updating a database, sending
e-mail, or ordering a product. There might be other reasons for using POST
over GET, such as when sending large quantities of data, because some Web
servers do not like receiving more than 8KB in the URL, but 1KB is a more
realistic limit. However, the reason for this distinction is that the browser
should not resend a POST request (for example, if the user clicks the Back
button, resubmits a form, or reloads a page) without informing the user
first. Just imagine that you’re ordering a product, there’s a delay, and you
click the Order button once more—have you just submitted two orders or
one? Some other significant differences exist, but we discuss them in later
attacks.

There’s also a technical difference between GET and POST values.
Whereas GET parameters are passed with the URL, POST parameters are
sent as part of the body of the request (that is, not in the HTTP Headers sec-
tion—see Figure 4-7). Also, the byte count of the parameters plus all data is
calculated and passed in the content-length HTTP header. Although
most Web servers are lenient about mismatches between the specified size
and actual size of POST parameters, lazy attackers don’t update the con-
tent-length. That’s why this is sometimes a good way to determine if
the request has been significantly tampered with.

Cookie PoisoningATTACK 8

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 51



places persistent cookies on the client hard disk until their expiry date. In
contrast, the browser destroys nonpersistent cookies (which are stored only
in memory) as soon as it closes. The secure setting for a cookie, though, is a
bit misleading. The cookie itself is not secured or encrypted in any way, but
it is a directive to the browser to send this cookie only over secure transport,
which is HTTP over SSL (HTTPS).

Although the data within a cookie is an obvious place to attack, cookies
also have the ability to expire after a specified date. This functionality often
ensures that users reidentify themselves after a period of time or sets some
time limit on accessing a resource. For example, a credit report might be
valid for only 30 days.

to Apply This Attack
Like it or loathe it, users are deluged with cookies whenever they use the
Web. You can set up all browsers to warn users when a cookie is written to
their hard drive, but software like CookiePal (http://www.kburra.com/
cpal.html) or CookieCrusher (http://www.thelimitsoft.com/cookie/) gives
users more fine-grain control over what cookies they accept or reject and
how they view the cookies they have on their computer. Firefox has a lot of
this functionality built in. 

to Perform This Attack
Cookies are stored in predefined locations, with predefined formats, so
modifying their data manually is easy. In Firefox/Netscape, cookies are
stored in a cookies.txt file with a format shown in Figure 4-8.

52 How to Break Web Software

WHEN

HOW

FIGURE 4-8 Netscape cookie format.

#HTTP Cookie File
#http://www.netscape.com/newsref/std/cookie_spec.html
#This is a generated file! Do not edit.
#To delete cookies, use the Cookie Manager

Site that issued cookie

Persistent cookie?

Domain path

Secure Cookie?

Date/Time of Expiry
(in seconds past midnight 1/1/1970)

Cookie Name Cookie Value

google.com TRUE / FALSE 2147368452 PREF ID=32f1ec3238a677c1:TM=1123881402:LM=-1123881402:S=A11X7zFFTKaRjeV

Internet Explorer stores its cookies in c:/documents and
setting/%USERNAME%/cookies/ as individual text files in a format that
needs some explanation.

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 52



Each text file in the cookies directory is formatted as
username@sitename[1].txt. Therefore, if Joe visited Amazon.com, all
his cookies for that site would be stored in the file joe@amazon[1].txt,
and on rare occasions, the file would have the [2] postfix. Cookies inside
the file are separated by * on a single line, with the cookies formatted as
shown in Figure 4-9.

State-Based Attacks 53

FIGURE 4-9 Internet Explorer cookie format.

visited Cookie name
true Value
bugtraq.com/ Site that issued cookie
1024 Some option flag (secure vs. non-secure?)
3880423168 Date of expiration
29626817 Time of expiration
512461968 Date of creation
29553392 Time of creation

What’s interesting about this cookie format is not the name, value, or
domain attributes, but the way the time and dates are stored.

Rather than storing the creation and expiry timestamps as the number
of seconds past midnight January 1, 1970 (the most common format),
Internet Explorer uses increments of 100 nanoseconds (10-7 seconds) since
January 1, 1601. Why Microsoft had to use such a fine-grained scale or go
back as far as the 1600s is beyond us, but it fits nicely into a 64-bit number.
When you’re saving cookies, however, this 64-bit value is broken into two
sections: time and date. Although the numbers seem difficult to interpret,
it’s possible to deduce the date and time from them. The bottom number of
the pair is the most significant because it shows time and date in units of
429.4967296 seconds since January 1, 1601. The top number shows the 
time since the last unit of 429.4967296 seconds has passed, in units of 10-7

seconds.
For example, suppose that we check our credit rating with a fictitious

site, Simplecreditrating.com. We are given our credit rating report online,
but it expires in 30 days. Simplecreditrating.com enforces this policy by
issuing a cookie with the report ID that expires in a month. We can find the
cookie here:

c:/documents and settings/mike/cookies/mike@
simplecreditreport[1].txt 

Now we can open the cookie in WordPad, as shown in Figure 4-10.
If we change the 29592292 value to 29598326, we can access the

report for an extra 30 days. The designer of this Web site probably didn’t
intend for us to do that. 

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 53



It’s not only the expiry timestamp of a cookie that we can change. We
can also change the value part of the cookie. We can change the report refer-
ence number, 11223344, to another value in an attempt to read someone
else’s credit report. 

Some Web applications have a “remember me” functionality, where
return visitors are automatically logged in or presented with custom con-
tent. Because cookies are the only way to store state information on the
client across sessions, this is the obvious place to look to try to break this
kind of functionality. Viewing cookies when this functionality is available
can reveal usernames and passwords, or “magic” identifiers that are sup-
plied to the Web server in lieu of a user having to authenticate. All of these
are attractive targets for attackers. 

In Attack 11, we’ll look at a related method whereby an attacker can
steal cookies.

to Protect Against This Attack
Designers of the Web never intended cookies to be secure. Cookies were to
be an extension to HTTP that gave it some aspect of client-side state.
However, because cookie files are the only way to store state information
across browser sessions, Web designers have used them considerably and
will likely continue to use them. 

If your Web application is relying on cookies to enforce expiration or
you really have to store sensitive data on the client, consider encrypting the
cookie. And don’t rely on the cookie’s own expiry date, because that’s easy
to tamper with.

54 How to Break Web Software

FIGURE 4-10 Cookie for a sample credit report application.

HOW

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 54



Because the Web is inherently stateless, users can jump to any page they
want to by typing the Universal Resource Locator (URL) in the browser’s
address bar and pressing Enter. Developers of Web applications often don’t
want to allow users this level of freedom because they might have a
sequence of operations that users have to follow, as depicted in Figure 4-11.

State-Based Attacks 55

URL JumpingATTACK 9

FIGURE 4-11 Common flow of functionality in an e-commerce application.

Browse
Site

Select
Items

Checkout Payment
Info

Delivery
Info

If the user were allowed to jump directly from the Checkout page to the
Delivery Info page, he may be able to receive his goods without paying for
them. This is only one such example. There are many occasions in a system
where one operation has to take place before another (for example, logging
in before reading an e-mail message, or selecting a group before posting a
forum message). The purpose of this attack is to identify actions in a Web
application that should be sequenced and attempt to jump into, around, or
over certain steps by browsing directly to them. 

to Apply This Attack
This attack often requires some understanding of the Web application and
exactly what it implements. You may want to go back to the page map we
developed in Chapter 2, “Gathering Information on the Target,” and think
about sequences of pages or operations and the implications of jumping
from page to page without clicking the links that the application provides.

Begin by browsing the application as a legitimate, well-behaved user,
and note the addresses of pages visited along with their sequence. Using
this list, randomly enter addresses and see if the application produces
meaningful error messages or disallows access to specific pages.

WHEN

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 55



to Perform This Attack
For a poorly developed Web application, this attack is a task of reconnais-
sance followed by entering page addresses into the browser’s address bar.
However, good Web developers understand the problem of users breaking
out of page sequences. As one means of protection against this attack, these
developers may compare the last visited page against the one a user should
have come from. 

Developers can achieve this protection technique with any of the 
following methods:

• Using hidden fields or CGI parameters to store a page address or 
identifier

• Using cookies to store last visited pages or identifiers
• Comparing where the user should have come from with the 

HTTP-REFERER field

The first method, using hidden fields or CGI parameters with page
addresses, is the most insecure method because it is subject to the attacks
described earlier. It really only stops unsophisticated attackers; nonetheless,
developers use the technique because of the simplicity of including the hid-
den data at design time. It’s relatively easy to change the field’s value or
even to add a required hidden field where necessary (in either the HTML
source or by capturing the page request using a proxy).

The second method, using cookies to store the last visited page, is
slightly more secure because cookies (especially temporary ones2) are
harder to modify as they are passed in the HTTP header—a place that users
can’t control through the browser.

56 How to Break Web Software

HOW

2 Temporary cookies are ones that expire when the browser closes. Generally, they are only
stored in memory, not on the hard drive where they are easier to locate and edit. But don’t get
the idea that temporary cookies are secure. They aren’t. However, they do require a more
sophisticated attacker who has more advanced debugging tools. 

FIGURE 4-12 Request for a page. Note the referer header.

GET /articles/news/today.asp HTTP/1.1
Accept: */*
Accept-Language: en-us
Connection: Keep-Alive
Host: localhost
Referer: http://www.myhomepage.com/links.asp
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT
5.0)
Accept-Encoding: gzip, deflate

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 56



HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Thu, 13 Jul 2000 05:46:53 GMT
Content-Length: 2291
Content-Type: text/html
Set-Cookie: chocolatechip=DR2EO53DNSK2EMM5K2LSLJ5NEKE;
path=/
Cache-control: private

<HTML>
[…html markup follows…]

Also note that in the HTTP request data, the referer field carries the
address of the page that initiated the request and may be used instead of
setting an explicit cookie. 

In fact, it’s pretty easy to change the HTTP header. In modifying the ref-
erer header and the cookie, you can use proxy tools such as Paros to change
the cookie’s or the referer’s value. You can also perform page requests man-
ually, as we will show in future attacks.

Regardless of which method the Web developer chooses to implement
or how you decide to attack it, the principle is the same: Request a page that
a user should not be able to jump directly to, and see if you can view it. If
not, modify the values of hidden fields, cookies, or the referer to try to force
it the hard way. If you see the page, you have a potential attack scenario
and a bug report to write. 

to Protect Against This Attack
There is no other way to protect against this attack except by restricting the
sequence in which you can view pages. This obviously requires storing the
last visited page, but as mentioned earlier, you can store this information in
numerous places, some of which an attacker can access. 

The most secure place for the last visited page to be stored is on the
server, because users only have control over information on the client
machine and the information that the browser sends over the network.
Many Web application servers can store variables on the server
(ColdFusion, Java Servlets, ASP, PHP, and so on), but this requires the use
of session variables and opens up the possibility of session hijacking
attacks, covered later in this chapter.

If there is one preferred method of storing the last visited page (without
server-side support), it would be in the HTTP-REFERER field. That field is
not more secure than the others, but when a Web application sends cookies

State-Based Attacks 57

FIGURE 4-13 The associated response. Note the server setting a cookie value.

HOW

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 57



to the user’s browser, it’s a signal that something interesting is being
stored,3 as shown in Figure 4-14.

58 How to Break Web Software

FIGURE 4-14 Cookie warning in Internet Explorer.

Utilizing the HTTP-REFERER is less likely to alert an attacker to its use
because it is sent with every page request. Some proxies, however, may
strip this information as a privacy precaution, so applications may not be
able to rely on it. Manually typing a URL in the address bar also prevents it
from being sent. 

To protect against the risk of users tampering with data that has to be
stored on the client, consider encrypting the data with a well-known stan-
dard and restrict storing the encryption/decryption keys on the server. (Be
extremely suspicious of roll-your-own cryptography. We talk about attack-
ing crypto in Chapter 8, “Authentication.”) 

3 By default, Internet Explorer is set to allow all cookies. To change this functionality, go to
Tools, Internet Options. Click on the Privacy tab, and then select Advanced.

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 58



Of all the state-based attacks that have been discussed thus far, session
hijacking has the most exposure in the Web development literature. The rea-
son for this is simple: You can use session management to solve a lot of the
problems of storing state in a Web application. The issue is that if you do it
incorrectly, it is open to attack. 

Session management works by each user having a unique identifier
that travels with him during his use of a Web site. This generally occurs
with the server issuing a number to each new user on the initial home page
of the site. All further requests would include this identifier so that Web
applications can distinctly identify users and store their associated state
information on the server.

You can use several methods to break session management by swap-
ping the session identifier of one user with the session identifier of another
user. The methods are as follows:

• Modifying data randomly, hoping to become another user
• Figuring out the sequence of unique identifiers that the site uses
• “Fixing” the session identifier of another user

Session identifiers are presented to the server as hidden fields, appended to
URLs, or stored in cookies. Storing the session identifier in a cookie and
then passing it to the server as each page is loaded is the most common.
Session hijacking is the culmination of all the attacks that have been pre-
sented in this section.

to Apply This Attack
The most obvious way of identifying when to apply this attack is when you
see a cookie sent to the browser. The cookie must contain some session
identifier. A recent survey of Web sites showed that the following are the
most common names for session cookies:

• ASPSESSIONID

• JSESSIONID

• PHPSESSID

• CFID

• CFTOKEN

State-Based Attacks 59

Session HijackingATTACK 10

WHEN

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 59



However, treat with suspicion any cookie that uses the moniker “ID” or
looks like a unique number. When cookies are unavailable (some users dis-
able them), you can append an identifier as a CGI parameter or insert it
(munge it) into the page URL as Amazon.com does.

60 How to Break Web Software

FIGURE 4-15 Session ID munging when cookies are not available.

to Perform This Attack
The attacker’s objective in session hijacking is to masquerade as another
legitimate user by using that person’s identifying credentials—the session
identifier. The most common way of achieving this is to steal that user’s ses-
sion identifier by various means. (The cross-site scripting attack is often
associated with this goal, although monitoring network traffic is another
avenue.) However, as we shall see later, it is also possible to “give” a user a
compromised session. 

Poorly implemented session handlers open the door to guessing previ-
ous or future session identifiers. The most obvious is where IDs are allo-
cated sequentially, so the next person to visit the application will get the
n+1 (or some other identifiable pattern) value. Therefore, we should first try
to gather a number of session identifiers and see if we can find a pattern
that will allow us to predict what identifiers a Web site will use for future
and past visitors.

If we know or can figure out a session identifier, we can replace the
value of the session variable (hidden field, CGI parameter, or cookie) with
another valid one and then request a page again. However, with or without
this knowledge, it may be necessary to try the attack several times as legiti-
mate users log into and out of the Web site. 

Some Web applications may provide helpful error messages when an
invalid session is requested, which helps with this attack, but the main clue
that the attack is successful is when personalized information of another
user appears, as in Figure 4-16. 

Another form of attacking session management is called session fixa-
tion. It is subtly different from session hijacking because hijacking suggests
that there is something in-place to take. Session fixation occurs when the 
session ID is stolen before a legitimate user ever gets it. The attacker can
then take the session from the legitimate user any time it is advantageous 
to do so. 

HOW

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 60



As Figure 4-17 shows, this attack works by an attacker either generating
a compromised session, or, depending on the session management mecha-
nism, providing a link to the Web site with the session identifier already

State-Based Attacks 61

FIGURE 4-16 Personalized information in a Web application.

FIGURE 4-17 Setting up a session fixation attack.

1

2

3

4

5

6

Attacker’s 
Machine

Victim’s
Machine

Loginsessionid=1234

GET/account.jsp?sessionid=1234

GET/account.jsp?sessionid=1234

Username and Password

Target Web
Application

http://online.worldbank.dom
/login.jsp?sessionid=1234

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 61



provided in the URL. The unsuspecting user logs in or clicks on the link
and uses the Web application. Because the session is a valid one, the legiti-
mate user doesn’t notice a difference. However, the critical problem is that
the attacker now knows the legitimate user’s session identifier and can
assume his identity.

The most probable targets for session fixation attacks are Webmail-type
systems. This is because taking over a user’s shopping cart doesn’t really
achieve anything (an attacker is unlikely to want to pay for someone else’s
goods!), but being able to read or send another user’s e-mail after he has
finished is a conceivable attack.

to Protect Against This Attack
Session management is a necessity of Web applications, and if done cor-
rectly, it can be an effective protection mechanism against a number of
attacks, including session hijacking. That’s why it’s typical for Web devel-
opers to utilize sessions, despite their security implications. Here’s some
advice about doing it right. 

Protection of a session needs to focus on the unique session identifier
because it is the only thing that distinguishes users. If the session ID is com-
promised, attackers can impersonate other users on the system. 

The first thing is to ensure that the sequence of identification numbers
issued by the session management system is unpredictable; otherwise, it’s
trivial to hijack another user’s session. Having a large number of possible
session IDs (meaning that they should be very long) means that there are a
lot more permutations for an attacker to try.

Developers also need to pay attention to the random qualities (those
that are nonsequential and hard to guess) of chosen individual IDs so that
an attacker cannot easily determine the algorithm used to generate the 
session IDs.

Taking care to generate good session IDs is just the beginning. After
you’ve generated the ID, you must protect it, which is a concept called 
session management. Good session management consists of the following:

• Using cookies for storing session values. 
Cookies are generally more difficult to modify than hidden fields or
CGI parameters. You can protect them by using mechanisms like setting
the secure flag (so they cannot be “sniffed” unencrypted on the net-
work). In addition, you can restrict cookies to a particular site or even a
section of a site (using the path attribute of the cookie4), or set them to
expire automatically.

• Not allowing users to choose their own session identifiers. 
Some session management systems allow users to reactivate their ses-
sion if they have a valid session ID but it has been expired. There is no

62 How to Break Web Software

HOW

4 The path attribute is not a completely trustworthy mechanism. It’s just one more tool in a
Web developer’s arsenal. 

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 62



good reason why an existing session should be reactivated because a
new session can be created with a different session identifier but the
same stored state. If an attacker discovers that session identifiers are
being reused, he can gather a number of valid ones and have an imme-
diate advantage in a session fixation attack. 

• Ensuring that each user gets a “clean” session identifier number with
each visit and revisits to your site. 
Users should get a new session number each time they visit your site,
because that makes the attacker’s job of giving them a compromised ID
irrelevant. You can check this by comparing the referring page against
the URL of the site. If they are different, you should create a new ses-
sion identifier. However, a downside to this is that it might break the
“remember me” and “single-click shopping” that some e-commerce
sites use.

• Time-out session identifiers so someone cannot reuse them after a pre-
determined period of time. 
Storing session variables on the server allows the Web application to
keep track of what sessions have been created and when. If no one has
used a session for a specified period (based on user activity or a prede-
fined time), you should expire it. This gives the attacker a smaller win-
dow of opportunity to guess (or brute force) valid session identifiers. 

• Allowing users to log out and clear their session. 
When a user logs out, this action should invalidate identification num-
bers from both the client and the server. Not only should it clear the
current sessions, but it should clear all other sessions that the users may
have initiated but have failed to log out of because of forgetfulness
(browsing away from the site) or some other issue like server failure. 

• Utilizing the HTTP referer field to identify multiple clients browsing
with the same ID. 
If the Web application can “track” users through the site and has clear
paths of browsing that users follow, it’s possible to discover situations
where two or more people are using the same identifier. The basic idea
is to know the correct page sequence of the site. If a request for a page
that should not be accessible is received, then either a URL-jumping
attack is in progress, or another user is using the same session identifier
and is out of step with the original user. In both situations, the session
identifier should be invalidated.

• Ensuring that session cookies are sent only over secure channels to pre-
vent them from being captured in transit. 
You wouldn’t want credit card numbers being sent in clear text across
the network, and because session identifiers are indirect references to
users’ information, you should protect them equally. Because cookies
are sent with every request matching a specified domain and path, it’s
easy for them to be inadvertently sent over a nonencrypted channel

State-Based Attacks 63

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 63



where an attacker may be listening. Therefore, you should set the
secure flag for all session identifier cookies to ensure that they are sent
only over HTTPS.

Even with these precautions, there’s the possibility of an attacker discover-
ing a current session ID by “stealing” a cookie through cross-site scripting,
so protecting against that attack is a crucial facet of protecting against this
one. Cross-site scripting is a topic for another chapter. 

References

http://www.parosproxy.org 
http://www.securityspace.com/s_survey/data/man.200507/
cookieReport.html 
http://www.dutchduck.com/help/cookies explorer/faq/ 
http://www.acros.si/papers/session_fixation.pdf 

64 How to Break Web Software

Whittaker_04i.qxd  1/12/06  1:41 PM  Page 64



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF00500072006500730073002d0052006500610064007900200050004400460073>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


