
Software is easy to criticize and hard to do. The bigger the software, the
more that is true. It is thus like speech—the more you say, the easier it is

for the reader to find something to criticize, and the more likely the critic
will get it wrong. Brevity may be the soul of wit, but it is wit that is the soul
of brevity.

And, indeed, our software is nothing if not loquacious, slang-riven, ill-
bred, bloated, and raw. Is it any wonder that software is as prone to mis-
interpretation as is our language, any wonder that our software, like our
language, can be “twisted by knaves to make a trap for fools?” No, it is not,
but, as with language, everything we collectively are now depends on soft-
ware. Software is so very essential that it is unlikely that the world’s popula-
tion would be as great as it now is without software—software to transport,
to transact, to transcribe, to translate, to transmit, to transform. In other
words, the evidence is unarguable that we have to get software right, just as
the evidence is unarguable that getting software right does not, and will not,
come naturally.

As Dr. McGraw reminds us, breaking something is easier than designing
something that cannot be broken, though I personally prefer Sam Rayburn’s
earthy formulation, viz.: “Any jackass can kick down a barn, but it takes a
good carpenter to build one.” And that is what makes secure software in
particular the pinnacle of concern because the very definition of secure soft-
ware is that it withstands sentient opponents. Parsing that definition in its
contrapositive: If a product does not have sentient opponents, then it does
not have security requirements. This is best examined by looking at why
products fail—if your product fails because of a collection of clueless users
(“Hey, watch this!”), alpha particles, or discharged batteries, security is not
your issue. If your product fails because some gleeful clown discovers that
he can be the super-user by typing 5000 lowercase As into some prompt,

Foreword

xix

32697 00 i-xxxvi r10jk.ps 1/4/06 1:23 PM Page xix

said clown may not be all that sentient, but nevertheless your product has
security requirements.

This can’t be a completely bright line, but it is an instructive distinction.
Secure software is, by definition, designed with failure in mind. Secure soft-
ware resists failure even when that failure is devoutly wished for by the
opponent. Secure software is designed for the failure case as much as or
more than the success case. Designers and implementers alike envision an
opponent who can think.

As Dr. McGraw says throughout this book, baking in security only hap-
pens when there is intent to do so. My father used to scold me when my
excuse for this or that was “I didn’t mean to do it, Daddy.” His stinging
comeback, for which I am a better man, was always “But did you mean not
to?” Given what I do for a living, I read vulnerability reports every day.
Every one of them says, “I didn’t mean to do it, Daddy.” Sometimes they
even try to say, “I didn’t do it, but if I did I didn’t mean to, and anyway you
didn’t notice, so all you have to do is install this tiny little fix unless you
want what happens next to be your fault; aren’t I a good boy?” I want to
scream “Did you mean not to?” even though the honest answer will at best
be “I thought I meant not to.”

There is not enough security expertise to go around. Good people are
hard to find, and the need for them rises faster than the supply of them.
What do you do when some skill is rare but needful? You convert rare
expertise into a process that others can follow, but the kind of process has to
be one that reinforces disciplined thinking, avoids patronizing the people on
whom it must be imposed, and can be measured sufficiently well to know if
it works. Better still if the process is one where you don’t have to take all or
nothing, where you can get real value out of doing only some of it. Better to
do it all, but at the limit any process will have diminishing return so partial
value for partial effort is a good thing. Dr. McGraw, describing himself as
not naturally a process person, does exactly what I asked for above.

A good idea is one where, once you’ve heard it, you say, “Well, that’s
obvious.” Much of what you will find in this book has that quality—you
will be tempted to say, “Well, that’s obvious.” For example, the idea that
code review is the highest power weapon you can train on software security.
For example, that you can’t know how much of a fight your software will
have to put up when challenged unless you study hard how it might come
under intentional abuse. Of course, the process is only good if you use it.
Buffer overflows remain the most common attack method, and we’ve

xx Foreword

32697 00 i-xxxvi r10jk.ps 1/4/06 1:23 PM Page xx

known how to avoid them for years, so knowing what to do is provably
insufficient.

You might say, “What makes Cigital’s process better than XYZ’s
process?” For that there is one clear logical response: The question is moot.
There is so little effective being done that there must be something wrong.
That “something wrong” is either a shortage of skill or a shortage of disci-
pline. If it is a shortage of skill, experts are duty bound to share what works
in a way that others can use. There may be many workable processes, but
this book shows there is at least one. With this book, the clock is ticking;
any continuing failure must trace to a shortage of discipline. We’ll know
soon enough.

If the reader would prefer some numbers even in the Foreword, here are
three: There’s a new Windows virus every four hours. Perhaps 15% of all
desktop machines are running malware of some sort. Embedded systems
outnumber desktop machines by between one and two orders of magnitude,
and they are almost never field upgradeable. The raison d’être for this book
is thus shown useful.

My own research has satisfied me that the spread between the firms with
the best software security practices and the worst is growing wider; my best
guess is a disparity (measured by ratios of flaw density between best and
worst) that is doubling every twelve months. If you believe, as I and Dr.
McGraw do, that security is a subset of reliability, you have merely to bor-
row availability calculus: With five systems components in an e-commerce
application, each of which has 98% uptime, you should expect to be down
2.5 hours per day.

Security is to software what mutation is to natural selection, but with
the overwhelmingly important difference: With software security you are in
control of your survival advantage. If that sounds attractive, adopt at least
some of the McGraw/Cigital program. It won’t be easy and it won’t be fun,
but as the U.S. Army Ranger Handbook says:

Two of the gravest general dangers to survival are the desire for
comfort and a passive outlook.

Ball’s in your court.

Dan Geer
September 17, 2005
Cambridge, MA

Foreword xxi

32697 00 i-xxxvi r10jk.ps 1/4/06 1:23 PM Page xxi

