
499

C H A P T E R 20
The I/O Package

From a programmer’s point of view,
the user is a peripheral that types when you issue a read request.

—Peter Williams

THE Java platform includes a number of packages that are concerned with the
movement of data into and out of programs. These packages differ in the kinds of
abstractions they provide for dealing with I/O (input/output).

The java.io package defines I/O in terms of streams. Streams are ordered
sequences of data that have a source (input streams) or destination (output
streams). The I/O classes isolate programmers from the specific details of the
underlying operating system, while enabling access to system resources through
files and other means. Most stream types (such as those dealing with files) support
the methods of some basic interfaces and abstract classes, with few (if any) addi-
tions. The best way to understand the I/O package is to start with the basic inter-
faces and abstract classes.

The java.nio package and its subpackages define I/O in terms of buffers and
channels. Buffers are data stores (similar to arrays) that can be read from or writ-
ten to. Channels represent connections to entities capable of performing I/O oper-
ations, including buffers, files, and sockets. The “n” in nio is commonly
understood as meaning “new” (the nio package predates the original stream-
based io package), but it originally stood for “non-blocking” because one of the
key differences between channel-based I/O and stream-based I/O is that channels
allow for non-blocking I/O operations, as well as interruptible blocking opera-
tions. This is a powerful capability that is critical in the design of high throughput
server-style applications.

The java.net package provides specific support for network I/O, based
around the use of sockets, with an underlying stream or channel-based model.

This chapter is mainly concerned with the stream-based model of the java.io
package. A short introduction to some of the capabilities of the java.nio package

STREAMS OVERVIEW500

is given in “A Taste of New I/O” on page 565, but the use of non-blocking I/O and
the java.net network I/O are advanced topics, beyond the scope of this book.

20.1 Streams Overview

The package java.io has two major parts: character streams and byte streams.
Characters are 16-bit UTF-16 characters, whereas bytes are (as always) 8 bits. I/O
is either text-based or data-based (binary). Text-based I/O works with streams of
human-readable characters, such as the source code for a program. Data-based I/O
works with streams of binary data, such as the bit pattern for an image. The char-
acter streams are used for text-based I/O, while byte streams are used for data-
based I/O. Streams that work with bytes cannot properly carry characters, and
some character-related issues are not meaningful with byte streams—though the
byte streams can also be used for older text-based protocols that use 7- or 8-bit
characters. The byte streams are called input streams and output streams, and the
character streams are called readers and writers. For nearly every input stream
there is a corresponding output stream, and for most input or output streams there
is a corresponding reader or writer character stream of similar functionality, and
vice versa.

Because of these overlaps, this chapter describes the streams in fairly general
terms. When we talk simply about streams, we mean any of the streams. When we
talk about input streams or output streams, we mean the byte variety. The charac-
ter streams are referred to as readers and writers. For example, when we talk about
the Buffered streams we mean the entire family of BufferedInputStream,
BufferedOutputStream, BufferedReader, and BufferedWriter. When we
talk about Buffered byte streams we mean both BufferedInputStream and
BufferedOutputStream. When we talk about Buffered character streams, we
mean BufferedReader and BufferedWriter.

The classes and interfaces in java.io can be broadly split into five groups:

◆ The general classes for building different types of byte and character
streams—input and output streams, readers and writers, and classes for con-
verting between them—are covered in Section 20.2 through to Section 20.4.

◆ A range of classes that define various types of streams—filtered streams,
buffered streams, piped streams, and some specific instances of those
streams, such as a line number reader and a stream tokenizer—are discussed
in Section 20.5.

◆ The data stream classes and interfaces for reading and writing primitive val-
ues and strings are discussed in Section 20.6.

THE I/O PACKAGE 501

◆ Classes and interfaces for interacting with files in a system independent
manner are discussed in Section 20.7.

◆ The classes and interfaces that form the object serialization mechanism,
which transforms objects into byte streams and allows objects to be recon-
stituted from the data read from a byte stream, are discussed in Section 20.8.

Some of the output streams provide convenience methods for producing for-
matted output, using instances of the java.util.Formatter class. You get for-
matted input by binding an input stream to a java.util.Scanner object. Details
of formatting and scanning are covered in Chapter 22.

The IOException class is used by many methods in java.io to signal excep-
tional conditions. Some extended classes of IOException signal specific prob-
lems, but most problems are signaled by an IOException object with a
descriptive string. Details are provided in Section 20.9 on page 563. Any method
that throws an IOException will do so when an error occurs that is directly
related to the stream. In particular, invoking a method on a closed stream may
result in an IOException. Unless there are particular circumstances under which
the IOException will be thrown, this exception is not documented for each indi-
vidual method of each class.

Similarly, NullPointerException and IndexOutOfBoundsException can
be expected to be thrown whenever a null reference is passed to a method, or a
supplied index accesses outside of an array. Only those situations where this does
not occur are explicitly documented.

All code presented in this chapter uses the types in java.io, and every exam-
ple has imported java.io.* even when there is no explicit import statement in
the code.

20.2 Byte Streams

The java.io package defines abstract classes for basic byte input and output
streams. These abstract classes are then extended to provide several useful stream
types. Stream types are almost always paired: For example, where there is a
FileInputStream to read from a file, there is usually a FileOutputStream to
write to a file.

Before you can learn about specific kinds of input and output byte streams, it
is important to understand the basic InputStream and OutputStream abstract
classes. The type tree for the byte streams of java.io in Figure 20–1 shows the
type hierarchy of the byte streams.

BYTE STREAMS502

All byte streams have some things in common. For example, all streams sup-
port the notion of being open or closed. You open a stream when you create it, and
can read or write while it is open. You close a stream with its close method,
defined in the Closeable1 interface. Closing a stream releases resources (such as
file descriptors) that the stream may have used and that should be reclaimed as
soon as they are no longer needed. If a stream is not explicitly closed it will hold
on to these resources. A stream class could define a finalize method to release
these resources during garbage collection but, as you learned on page 449, that
could be too late. You should usually close streams when you are done with them.

1 Yes, another misspelling.

Object

InputStreamOutputStream

File

RandomAccessFile

ByteArrayInputStream

FileInputStream

FilterInputStream

PipedInputStream

ObjectInputStream

SequenceInputStream

ByteArrayOutputStream

FileOutputStream

FilterOutputStream

PipedOutputStream

BufferedInputStream

DataInputStream

PushbackInputStream

BufferedOutputStream

DataOutputStream

PrintStream

FileDescriptor

ObjectOutputStream

ObjectInputValidation FilenameFilter

FIGURE 20–1: Type Tree for Byte Streams in java.io

ObjectStreamClass

DataOutput DataInput

Serializable

Externalizable

ObjectInput

ObjectOutput

Flushable Closeable

THE I/O PACKAGE 503

All byte streams also share common synchronization policies and concurrent
behavior. These are discussed in Section 20.5.1 on page 515.

20.2.1 InputStream

The abstract class InputStream declares methods to read bytes from a particular
source. InputStream is the superclass of most byte input streams in java.io,
and has the following methods:

public abstract int read() throws IOException
Reads a single byte of data and returns the byte that was read, as an integer
in the range 0 to 255, not –128 to 127; in other words, the byte value is
treated as unsigned. If no byte is available because the end of the stream has
been reached, the value –1 is returned. This method blocks until input is
available, the end of stream is found, or an exception is thrown. The read
method returns an int instead of an actual byte value because it needs to
return all valid byte values plus a flag value to indicate the end of stream.
This requires more values than can fit in a byte and so the larger int is used.

public int read(byte[] buf, int offset, int count)
throws IOException

Reads into a part of a byte array. The maximum number of bytes read is
count. The bytes are stored from buf[offset] up to a maximum of
buf[offset+count-1]—all other values in buf are left unchanged. The
number of bytes actually read is returned. If no bytes are read because the
end of the stream was found, the value –1 is returned. If count is zero then
no bytes are read and zero is returned. This method blocks until input is
available, the end of stream is found, or an exception is thrown. If the first
byte cannot be read for any reason other than reaching the end of the
stream—in particular, if the stream has already been closed—an
IOException is thrown. Once a byte has been read, any failure that occurs
while trying to read subsequent bytes is not reported with an exception but
is treated as encountering the end of the stream—the method completes nor-
mally and returns the number of bytes read before the failure occurred.

public int read(byte[] buf) throws IOException
Equivalent to read(buf, 0, buf.length).

public long skip(long count) throws IOException
Skips as many as count bytes of input or until the end of the stream is found.
Returns the actual number of bytes skipped. If count is negative, no bytes
are skipped.

BYTE STREAMS504

public int available() throws IOException
Returns the number of bytes that can be read (or skipped over) without
blocking. The default implementation returns zero.

public void close() throws IOException
Closes the input stream. This method should be invoked to release any
resources (such as file descriptors) associated with the stream. Once a stream
has been closed, further operations on the stream will throw an
IOException. Closing a previously closed stream has no effect. The default
implementation of close does nothing.

The implementation of InputStream requires only that a subclass provide the
single-byte variant of read because the other read methods are defined in terms
of this one. Most streams, however, can improve performance by overriding other
methods as well. The default implementations of available and close will usu-
ally need to be overridden as appropriate for a particular stream.

The following program demonstrates the use of input streams to count the
total number of bytes in a file, or from System.in if no file is specified:

import java.io.*;

class CountBytes {
 public static void main(String[] args)
 throws IOException
 {
 InputStream in;
 if (args.length == 0)
 in = System.in;
 else
 in = new FileInputStream(args[0]);

 int total = 0;
 while (in.read() != -1)
 total++;

 System.out.println(total + " bytes");
 }
}

This program takes a filename from the command line. The variable in represents
the input stream. If a file name is not provided, it uses the standard input stream
System.in; if one is provided, it creates an object of type FileInputStream,
which is a subclass of InputStream.

THE I/O PACKAGE 505

The while loop counts the total number of bytes in the file. At the end, the
results are printed. Here is the output of the program when used on itself:

318 bytes

You might be tempted to set total using available, but it won’t work on
many kinds of streams. The available method returns the number of bytes that
can be read without blocking. For a file, the number of bytes available is usually its
entire contents. If System.in is a stream associated with a keyboard, the answer
can be as low as zero; when there is no pending input, the next read will block.

20.2.2 OutputStream

The abstract class OutputStream is analogous to InputStream; it provides an
abstraction for writing bytes to a destination. Its methods are:

public abstract void write(int b) throws IOException
Writes b as a byte. The byte is passed as an int because it is often the result
of an arithmetic operation on a byte. Expressions involving bytes are type
int, so making the parameter an int means that the result can be passed
without a cast to byte. Note, however, that only the lowest 8 bits of the inte-
ger are written. This method blocks until the byte is written.

public void write(byte[] buf, int offset, int count)
throws IOException

Writes part of an array of bytes, starting at buf[offset] and writing count
bytes. This method blocks until the bytes have been written.

public void write(byte[] buf) throws IOException
Equivalent to write(buf, 0, buf.length).

public void flush() throws IOException
Flushes the stream. If the stream has buffered any bytes from the various
write methods, flush writes them immediately to their destination. Then,
if that destination is another stream, it is also flushed. One flush invocation
will flush all the buffers in a chain of streams. If the stream is not buffered,
flush may do nothing—the default implementation. This method is defined
in the Flushable interface.

public void close() throws IOException
Closes the output stream. This method should be invoked to release any
resources (such as file descriptors) associated with the stream. Once a stream
has been closed, further operations on the stream will throw an
IOException. Closing a previously closed stream has no effect.The default
implementation of close does nothing.

BYTE STREAMS506

The implementation of OutputStream requires only that a subclass provide
the single-byte variant of write because the other write methods are defined in
terms of this one. Most streams, however, can improve performance by overriding
other methods as well. The default implementations of flush and close will usu-
ally need to be overridden as appropriate for a particular stream—in particular,
buffered streams may need to flush when closed.

Here is a program that copies its input to its output, translating one particular
byte value to a different one along the way. The TranslateByte program takes
two parameters: a from byte and a to byte. Bytes that match the value in the string
from are translated into the value in the string to.

import java.io.*;

class TranslateByte {
 public static void main(String[] args)
 throws IOException
 {
 byte from = (byte) args[0].charAt(0);
 byte to = (byte) args[1].charAt(0);
 int b;
 while ((b = System.in.read()) != -1)
 System.out.write(b == from ? to : b);
 }
}

For example, if we invoked the program as

java TranslateByte b B

and entered the text abracadabra!, we would get the output

aBracadaBra!

Manipulating data from a stream after it has been read, or before it is written,
is often achieved by writing Filter streams, rather than hardcoding the manipu-
lation in a program. You’ll learn about filters in Section 20.5.2 on page 516.

Exercise 20.1: Rewrite the TranslateByte program as a method that translates
the contents of an InputStream onto an OutputStream, in which the mapping and
the streams are parameters. For each type of InputStream and OutputStream you
read about in this chapter, write a new main method that uses the translation
method to operate on a stream of that type. If you have paired input and output
streams, you can cover both in one main method.

THE I/O PACKAGE 507

20.3 Character Streams

The abstract classes for reading and writing streams of characters are Reader and
Writer. Each supports methods similar to those of its byte stream counterpart—
InputStream and OutputStream, respectively. For example, InputStream has a
read method that returns a byte as the lowest 8 bits of an int, and Reader has a
read method that returns a char as the lowest 16 bits of an int. And where
OutputStream has methods that write byte arrays, Writer has methods that
write char arrays. The character streams were designed after the byte streams to
provide full support for working with Unicode characters, and in the process the
contracts of the classes were improved to make them easier to work with. The type
tree for the character streams of java.io appears in Figure 20–2.

FIGURE 20–2: Type Tree for Character Streams in java.io

OutputStreamWriter

FileWriter

PrintWriter

StringReader

Object

ReaderWriter

File

StreamTokenizer

CharArrayReader

BufferedReader

LineNumberReader

PipedReader

BufferedWriter

FilterWriter

CharArrayWriter

PushbackReader

InputStreamReader

FilterReader

FileReader

PipedWriter

FileDescriptor

StringWriter

FilenameFilter

Closeable

Flushable

CHARACTER STREAMS508

As with the byte streams, character streams should be explicitly closed to
release resources associated with the stream. Character stream synchronization
policies are discussed in Section 20.5.1 on page 515.

20.3.1 Reader

The abstract class Reader provides a character stream analogous to the byte
stream InputStream and the methods of Reader essentially mirror those of
InputStream:

public int read() throws IOException
Reads a single character and returns it as an integer in the range 0 to 65535.
If no character is available because the end of the stream has been reached,
the value –1 is returned. This method blocks until input is available, the end
of stream is found, or an exception is thrown.

public abstract int read(char[] buf, int offset, int count)
throws IOException

Reads into a part of a char array. The maximum number of characters to
read is count. The read characters are stored from buf[offset] up to a
maximum of buf[offset+count-1]—all other values in buf are left
unchanged. The number of characters actually read is returned. If no charac-
ters are read because the end of the stream was found, –1 is returned. If
count is zero then no characters are read and zero is returned. This method
blocks until input is available, the end of stream is found, or an exception is
thrown. If the first character cannot be read for any reason other than finding
the end of the stream—in particular, if the stream has already been closed—
an IOException is thrown. Once a character has been read, any failure that
occurs while trying to read characters does not cause an exception, but is
treated just like finding the end of the stream—the method completes nor-
mally and returns the number of characters read before the failure occurred.

public int read(char[] buf) throws IOException
Equivalent to read(buf, 0, buf.length).

public int read(java.nio.CharBuffer buf) throws IOException
Attempts to read as many characters as possible into the specified character
buffer, without overflowing it. The number of characters actually read is
returned. If no characters are read because the end of the stream was found,
–1 is returned. This is equivalent to reading into an array that has the same
length as the buffer has available capacity, and then copying the array into
the buffer. This method is defined in the java.lang.Readable interface,
and has no counterpart in InputStream.

THE I/O PACKAGE 509

public long skip(long count) throws IOException
Skips as many as count characters of input or until the end of the stream is
found. Returns the actual number of characters skipped. The value of count
must not be negative.

public boolean ready() throws IOException
Returns true if the stream is ready to read; that is, there is at least one char-
acter available to be read. Note that a return value of false does not guar-
antee that the next invocation of read will block because data could have
become available by the time the invocation occurs.

public abstract void close() throws IOException
Closes the stream. This method should be invoked to release any resources
(such as file descriptors) associated with the stream. Once a stream has been
closed, further operations on the stream will throw an IOException. Clos-
ing a previously closed stream has no effect.

The implementation of Reader requires that a subclass provide an implemen-
tation of both the read method that reads into a char array, and the close method.
Many subclasses will be able to improve performance if they also override some
of the other methods.

There are a number of differences between Reader and InputStream. With
Reader the fundamental reading method reads into a char array and the other read
methods are defined in terms of this method. In contrast the InputStream class
uses the single-byte read method as its fundamental reading method. In the
Reader class subclasses must implement the abstract close method in contrast to
inheriting an empty implementation—many stream classes will at least need to
track whether or not they have been closed and so close will usually need to be
overridden. Finally, where InputStream had an available method to tell you
how much data was available to read, Reader simply has a ready method that
tells you if there is any data.

As an example, the following program counts the number of whitespace char-
acters in a character stream:

import java.io.*;

class CountSpace {
 public static void main(String[] args)
 throws IOException
 {
 Reader in;
 if (args.length == 0)
 in = new InputStreamReader(System.in);

CHARACTER STREAMS510

 else
 in = new FileReader(args[0]);
 int ch;
 int total;
 int spaces = 0;
 for (total = 0; (ch = in.read()) != -1; total++) {
 if (Character.isWhitespace((char) ch))
 spaces++;
 }
 System.out.println(total + " chars, "
 + spaces + " spaces");
 }
}

This program takes a filename from the command line. The variable in represents
the character stream. If a filename is not provided, the standard input stream,
System.in, is used after wrapping it in an InputStreamReader, which converts
an input byte stream into an input character stream; if a filename is provided, an
object of type FileReader is created, which is a subclass of Reader.

The for loop counts the total number of characters in the file and the number
of spaces, using the Character class’s isWhitespace method to test whether a
character is whitespace. At the end, the results are printed. Here is the output of
the program when used on itself:

453 chars, 111 spaces

20.3.2 Writer

The abstract class Writer provides a stream analogous to OutputStream but
designed for use with characters instead of bytes. The methods of Writer essen-
tially mirror those of OutputStream, but add some other useful forms of write:

public void write(int ch) throws IOException
Writes ch as a character. The character is passed as an int but only the low-
est 16 bits of the integer are written. This method blocks until the character
is written.

public abstract void write(char[] buf, int offset, int count)
throws IOException

Writes part of an array of characters, starting at buf[offset] and writing
count characters. This method blocks until the characters have been written.

public void write(char[] buf) throws IOException
Equivalent to write(buf, 0, buf.length).

THE I/O PACKAGE 511

public void write(String str, int offset, int count)
throws IOException

Writes count characters from the string str onto the stream, starting with
str.charAt(offset).

public void write(String str) throws IOException
Equivalent to write(str, 0, str.length()).

public abstract void flush() throws IOException
Flushes the stream. If the stream has buffered any characters from the vari-
ous write methods, flush immediately writes them to their destination.
Then, if that destination is another stream, it is also flushed. One flush invo-
cation will flush all the buffers in a chain of streams. If a stream is not buff-
ered flush will do nothing.

public abstract void close() throws IOException
Closes the stream, flushing if necessary. This method should be invoked to
release any resources (such as file descriptors) associated with the stream.
Once a stream has been closed, further operations on the stream will throw
an IOException. Closing a previously closed stream has no effect.

Subclasses of Writer must implement the array writing variant of write, the
close method, and the flush method. All other Writer methods are imple-
mented in terms of these three. This contrasts with OutputStream which uses the
single-byte variant of write method as the fundamental writing method, and
which provides default implementations of flush and close. As with Reader,
many subclasses can improve performance if they also override other methods.

Writer also implements the java.lang.Appendable interface—see
page 332. The append(char c) method is equivalent to write(c); the append
methods that take a CharSequence are equivalent to passing the String represen-
tations of the CharSequence objects to the write(String str) method.

20.3.3 Character Streams and the Standard Streams

The standard streams System.in, System.out, and System.err existed before
the character streams were invented, so these streams are byte streams even
though logically they should be character streams. This situation creates some
anomalies. It is impossible, for example, to replace System.in with a
LineNumberReader to keep track of the standard input stream’s current line num-
ber. By attaching an InputStreamReader—an object that converts a byte input
stream to a character input stream—to System.in, you can create a
LineNumberReader object to keep track of the current line number (see
“LineNumberReader” on page 527). But System.in is an InputStream, so you

INPUTSTREAMREADER AND OUTPUTSTREAMWRITER512

cannot replace it with a LineNumberReader, which is a type of Reader, not an
InputStream.

System.out and System.err are PrintStream objects. PrintStream has
been replaced by its equivalent character-based version PrintWriter. Generally,
you should avoid creating PrintStream objects directly. You’ll learn about the
Print stream classes in Section 20.5.8 on page 525.

20.4 InputStreamReader and OutputStreamWriter

The conversion streams InputStreamReader and OutputStreamWriter trans-
late between character and byte streams using either a specified character set
encoding or the default encoding for the local system. These classes are the “glue”
that lets you use existing 8-bit character encodings for local character sets in a
consistent, platform-independent fashion. An InputStreamReader object is
given a byte input stream as its source and produces the corresponding UTF-16
characters. An OutputStreamWriter object is given a byte output stream as its
destination and produces encoded byte forms of the UTF-16 characters written on
it. For example, the following code would read bytes encoded under ISO 8859-6
for Arabic characters, translating them into the appropriate UTF-16 characters:

public Reader readArabic(String file) throws IOException {
 InputStream fileIn = new FileInputStream(file);
 return new InputStreamReader(fileIn, "iso-8859-6");
}

By default, these conversion streams will work in the platform’s default char-
acter set encoding, but other encodings can be specified. Encoding values were
discussed in “Character Set Encoding” on page 320; they can be represented by
name or a Charset, or by a CharsetDecoder or CharsetEncoder object from
the java.nio.charset package.

public InputStreamReader(InputStream in)
Creates an InputStreamReader to read from the given InputStream using
the default character set encoding.

public InputStreamReader(InputStream in, Charset c)
Creates an InputStreamReader to read from the given InputStream using
the given character set encoding.

public InputStreamReader(InputStream in, CharsetDecoder c)
Creates an InputStreamReader to read from the given InputStream using
the given character set decoder.

THE I/O PACKAGE 513

public InputStreamReader(InputStream in, String enc)
throws UnsupportedEncodingException

Creates an InputStreamReader to read from the given InputStream using
the named character set encoding. If the named encoding is not supported an
UnsupportedEncodingException is thrown.

public OutputStreamWriter(OutputStream out)
Creates an OutputStreamWriter to write to the given OutputStream
using the default character set encoding.

public OutputStreamWriter(OutputStream out, Charset c)
Creates an OutputStreamWriter to write to the given OutputStream
using the given character set encoding.

public OutputStreamWriter(OutputStream out, CharsetEncoder c)
Creates an OutputStreamWriter to write to the given OutputStream
using the given character set encoder.

public OutputStreamWriter(OutputStream out, String enc)
throws UnsupportedEncodingException

Creates an OutputStreamWriter to write to the given OutputStream
using the named character set encoding. If the named encoding is not sup-
ported an UnsupportedEncodingException is thrown.

The read methods of InputStreamReader simply read bytes from their
associated InputStream and convert them to characters using the appropriate
encoding for that stream. Similarly, the write methods of OutputStreamWriter
take the supplied characters, convert them to bytes with the appropriate encoding,
and write them to the associated OutputStream.

In both classes, closing the conversion stream also closes the associated byte
stream. This may not always be desirable—such as when you are converting the
standard streams—so consider carefully when closing conversion streams.

Both classes also support the method getEncoding, which returns a string
representing either the historical or canonical name of the stream’s character
encoding, or null if the stream has been closed.

The FileReader and FileWriter classes are subclasses of these conversion
streams. This helps you read and write local files correctly in a consistent, Uni-
code-savvy fashion using the local encoding. However, if the default local encod-
ing isn’t what you need, you must use an explicit InputStreamReader or
OutputStreamWriter object. You will learn about the file related streams in
more detail in Section 20.7 on page 540.

You can also use the data output stream you will learn about in Section 20.6.2
on page 539 to write characters as bytes using a specific Unicode encoding.

A QUICK TOUR OF THE STREAM CLASSES514

There is no ReaderInputStream class to translate characters to bytes, nor a
WriterOutputStream class to translate bytes to characters.

20.5 A Quick Tour of the Stream Classes

The java.io package defines several types of streams. The stream types usually
have input/output pairs, and most have both byte stream and character stream vari-
ants. Some of these streams define general behavioral properties. For example:

◆ Filter streams are abstract classes representing streams with some filtering
operation applied as data is read or written by another stream. For example,
a FilterReader object gets input from another Reader object, processes
(filters) the characters in some manner, and returns the filtered result. You
build sequences of filtered streams by chaining various filters into one large
filter. Output can be filtered similarly (Section 20.5.2).

◆ Buffered streams add buffering so that read and write need not, for exam-
ple, access the file system for every invocation. The character variants of
these streams also add the notion of line-oriented text (Section 20.5.3).

◆ Piped streams are pairs such that, say, characters written to a PipedWriter
can be read from a PipedReader (Section 20.5.4).

A group of streams, called in-memory streams, allow you to use in-memory data
structures as the source or destination for a stream:

◆ ByteArray streams use a byte array (Section 20.5.5).

◆ CharArray streams use a char array (Section 20.5.6).

◆ String streams use string types (Section 20.5.7).

The I/O package also has input and output streams that have no output or input
counterpart:

◆ The Print streams provide print and println methods for formatting
printed data in human-readable text form (Section 20.5.8).

◆ LineNumberReader is a buffered reader that tracks the line numbers of the
input (characters only) (Section 20.5.9).

◆ SequenceInputStream converts a sequence of InputStream objects into a
single InputStream so that a list of concatenated input streams can be
treated as a single input stream (bytes only) (Section 20.5.10).

THE I/O PACKAGE 515

There are also streams that are useful for building parsers:

◆ Pushback streams add a pushback buffer you can use to put back data when
you have read too far (Section 20.5.11).

◆ The StreamTokenizer class breaks a Reader into a stream of tokens—rec-
ognizable “words”— that are often needed when parsing user input (charac-
ters only) (Section 20.5.12).

These classes can be extended to create new kinds of stream classes for spe-
cific applications.

Each of these stream types is described in the following sections. Before look-
ing at these streams in detail, however, you need to learn something about the syn-
chronization behavior of the different streams.

20.5.1 Synchronization and Concurrency

Both the byte streams and the characters streams define synchronization policies
though they do this in different ways. The concurrent behavior of the stream
classes is not fully specified but can be broadly described as follows.

Each byte stream class synchronizes on the current stream object when per-
forming operations that must be free from interference. This allows multiple
threads to use the same streams yet still get well-defined behavior when invoking
individual stream methods. For example, if two threads each try to read data from
a stream in chunks of n bytes, then the data returned by each read operation will
contain up to n bytes that appeared consecutively in the stream. Similarly, if two
threads are writing to the same stream then the bytes written in each write opera-
tion will be sent consecutively to the stream, not intermixed at random points.

The character streams use a different synchronization strategy from the byte
streams. The character streams synchronize on a protected lock field which, by
default, is a reference to the stream object itself. However, both Reader and
Writer provide a protected constructor that takes an object for lock to refer to.
Some subclasses set the lock field to refer to a different object. For example, the
StringWriter class that writes its character into a StringBuffer object sets its
lock object to be the StringBuffer object. If you are writing a reader or writer,
you should set the lock field to an appropriate object if this is not appropriate.
Conversely, if you are extending an existing reader or writer you should always
synchronize on lock and not this.

In many cases, a particular stream object simply wraps another stream
instance and delegates the main stream methods to that instance, forming a chain
of connected streams, as is the case with Filter streams. In this case, the syn-

A QUICK TOUR OF THE STREAM CLASSES516

chronization behavior of the method will depend on the ultimate stream object
being wrapped. This will only become an issue if the wrapping class needs to per-
form some additional action that must occur atomically with respect to the main
stream action. In most cases filter streams simply manipulate data before writing it
to, or after reading it from, the wrapped stream, so synchronization is not an issue.

Most input operations will block until data is available, and it is also possible
that output stream operations can block trying to write data—the ultimate source
or destination could be a stream tied to a network socket. To make the threads per-
forming this blocking I/O more responsive to cancellation requests an implemen-
tation may respond to Thread interrupt requests (see page 365) by unblocking the
thread and throwing an InterruptedIOException. This exception can report the
number of bytes transferred before the interruption occurred—if the code that
throws it sets the value.

For single byte transfers, interrupting an I/O operation is quite straight-
forward. In general, however, the state of a stream after a thread using it is inter-
rupted is problematic. For example, suppose you use a particular stream to read
HTTP requests across the network. If a thread reading the next request is inter-
rupted after reading two bytes of the header field in the request packet, the next
thread reading from that stream will get invalid data unless the stream takes steps
to prevent this. Given the effort involved in writing classes that can deal effec-
tively with these sorts of situations, most implementations do not allow a thread to
be interrupted until the main I/O operation has completed, so you cannot rely on
blocking I/O being interruptible. The interruptible channels provided in the
java.nio package support interruption by closing the stream when any thread
using the stream is interrupted—this ensures that there are no issues about what
would next be read.

Even when interruption cannot be responded to during an I/O operation many
systems will check for interruption at the start and/or end of the operation and
throw the InterruptedIOException then. Also, if a thread is blocked on a
stream when the stream is closed by another thread, most implementations will
unblock the blocked thread and throw an IOException.

20.5.2 Filter Streams

Filter streams—FilterInputStream, FilterOutputStream, FilterReader,
and FilterWriter—help you chain streams to produce composite streams of
greater utility. Each filter stream is bound to another stream to which it delegates
the actual input or output actions. Filter streams get their power from the ability
to filter—process—what they read or write, transforming the data in some way.

Filter byte streams add new constructors that accept a stream of the appro-
priate type (input or output) to which to connect. Filter character streams simi-

THE I/O PACKAGE 517

larly add a new constructor that accepts a character stream of the appropriate type
(reader or writer). However, many character streams already have constructors
that take another character stream, so those Reader and Writer classes can act as
filters even if they do not extend FilterReader or FilterWriter.

The following shows an input filter that converts characters to uppercase:

public class UppercaseConvertor extends FilterReader {
 public UppercaseConvertor(Reader in) {
 super(in);
 }

 public int read() throws IOException {
 int c = super.read();
 return (c == -1 ? c : Character.toUpperCase((char)c));
 }

 public int read(char[] buf, int offset, int count)
 throws IOException
 {
 int nread = super.read(buf, offset, count);
 int last = offset + nread;
 for (int i = offset; i < last; i++)
 buf[i] = Character.toUpperCase(buf[i]);
 return nread;
 }
}

We override each of the read methods to perform the actual read and then convert
the characters to upper case. The actual reading is done by invoking an appropri-
ate superclass method. Note that we don’t invoke read on the stream in itself—
this would bypass any filtering performed by our superclass. Note also that we
have to watch for the end of the stream. In the case of the no-arg read this means
an explicit test, but in the array version of read, a return value of –1 will prevent
the for loop from executing. In the array version of read we also have to be care-
ful to convert to uppercase only those characters that we stored in the buffer.

We can use our uppercase convertor as follows:

public static void main(String[] args)
 throws IOException
{
 StringReader src = new StringReader(args[0]);
 FilterReader f = new UppercaseConvertor(src);

A QUICK TOUR OF THE STREAM CLASSES518

 int c;
 while ((c = f.read()) != -1)
 System.out.print((char)c);
 System.out.println();
}

We use a string as our data source by using a StringReader (see Section 20.5.7
on page 523). The StringReader is then wrapped by our UppercaseConvertor.
Reading from the filtered stream converts all the characters from the string stream
into uppercase. For the input "no lowercase" we get the output:

NO LOWERCASE

You can chain any number of Filter byte or character streams. The original
source of input can be a stream that is not a Filter stream. You can use an
InputStreamReader to convert a byte input stream to a character input stream.

Filter output streams can be chained similarly so that data written to one
stream will filter and write data to the next output stream. All the streams, from
the first to the next-to-last, must be Filter output stream objects, but the last
stream can be any kind of output stream. You can use an OutputStreamWriter to
convert a character output stream to a byte output stream.

Not all classes that are Filter streams actually alter the data. Some classes
are behavioral filters, such as the buffered streams you’ll learn about next, while
others provide a new interface for using the streams, such as the print streams.
These classes are Filter streams because they can form part of a filter chain.

Exercise 20.2: Rewrite the TranslateByte class as a filter.

Exercise 20.3: Create a pair of Filter stream classes that encrypt bytes using any
algorithm you choose—such as XORing the bytes with some value—with your
DecryptInputStream able to decrypt the bytes that your EncryptOutputStream
class creates.

Exercise 20.4: Create a subclass of FilterReader that will return one line of input
at a time via a method that blocks until a full line of input is available.

20.5.3 Buffered Streams

The Buffered stream classes—BufferedInputStream, BufferedOutputStream,
BufferedReader, and BufferedWriter—buffer their data to avoid every read
or write going directly to the next stream. These classes are often used in con-

THE I/O PACKAGE 519

junction with File streams—accessing a disk file is much slower than using a
memory buffer, and buffering helps reduce file accesses.

Each of the Buffered streams supports two constructors: One takes a refer-
ence to the wrapped stream and the size of the buffer to use, while the other only
takes a reference to the wrapped stream and uses a default buffer size.

When read is invoked on an empty Buffered input stream, it invokes read
on its source stream, fills the buffer with as much data as is available—only block-
ing if it needs the data being waited for—and returns the requested data from that
buffer. Future read invocations return data from that buffer until its contents are
exhausted, and that causes another read on the source stream. This process con-
tinues until the source stream is exhausted.

Buffered output streams behave similarly. When a write fills the buffer, the
destination stream’s write is invoked to empty the buffer. This buffering can turn
many small write requests on the Buffered stream into a single write request
on the underlying destination.

Here is how to create a buffered output stream to write bytes to a file:

new BufferedOutputStream(new FileOutputStream(path));

You create a FileOutputStream with the path, put a BufferedOutputStream in
front of it, and use the buffered stream object. This scheme enables you to buffer
output destined for the file.

You must retain a reference to the FileOutputStream object if you want to
invoke methods on it later because there is no way to obtain the downstream
object from a Filter stream. However, you should rarely need to work with the
downstream object. If you do keep a reference to a downstream object, you must
ensure that the first upstream object is flushed before operating on the downstream
object because data written to upper streams may not have yet been written all the
way downstream. Closing an upstream object also closes all downstream objects,
so a retained reference may cease to be usable.

The Buffered character streams also understand lines of text. The newLine
method of BufferedWriter writes a line separator to the stream. Each system
defines what constitutes a line separator in the system String property
line.separator, which need not be a single character. You should use newLine
to end lines in text files that may be read by humans on the local system (see “Sys-
tem Properties” on page 663).

The method readLine in BufferedReader returns a line of text as a String.
The method readLine accepts any of the standard set of line separators: line feed
(\n), carriage return (\r), or carriage return followed by line feed (\r\n). This
implies that you should never set line.separator to use any other sequence.
Otherwise, lines terminated by newLine would not be recognized by readLine.
The string returned by readLine does not include the line separator. If the end of

A QUICK TOUR OF THE STREAM CLASSES520

stream is encountered before a line separator, then the text read to that point is
returned. If only the end of stream is encountered readLine returns null.

20.5.4 Piped Streams

Piped streams—PipedInputStream, PipedOutputStream, PipedReader, and
PipedWriter—are used as input/output pairs; data written on the output stream
of a pair is the data read on the input stream. The pipe maintains an internal buffer
with an implementation-defined capacity that allows writing and reading to pro-
ceed at different rates—there is no way to control the size of the buffer.

Pipes provide an I/O-based mechanism for communicating data between dif-
ferent threads. The only safe way to use Piped streams is with two threads: one
for reading and one for writing. Writing on one end of the pipe blocks the thread
when the pipe fills up. If the writer and reader are the same thread, that thread will
block permanently. Reading from a pipe blocks the thread if no input is available.

To avoid blocking a thread forever when its counterpart at the other end of the
pipe terminates, each pipe keeps track of the identity of the most recent reader and
writer threads. The pipe checks to see that the thread at the other end is alive
before blocking the current thread. If the thread at the other end has terminated,
the current thread will get an IOException.

The following example uses a pipe stream to connect a TextGenerator
thread with a thread that wants to read the generated text. First, the text generator:

class TextGenerator extends Thread {
 private Writer out;

 public TextGenerator(Writer out) {
 this.out = out;
 }

 public void run() {
 try {
 try {
 for (char c = 'a'; c <= 'z'; c++)
 out.write(c);
 } finally {
 out.close();
 }
 } catch (IOException e) {
 getUncaughtExceptionHandler().
 uncaughtException(this, e);

THE I/O PACKAGE 521

 }
 }
}

The TextGenerator simply writes to the output stream passed to its constructor.
In the example that stream will actually be a piped stream to be read by the main
thread:

class Pipe {
 public static void main(String[] args)
 throws IOException
 {
 PipedWriter out = new PipedWriter();
 PipedReader in = new PipedReader(out);
 TextGenerator data = new TextGenerator(out);
 data.start();
 int ch;
 while ((ch = in.read()) != -1)
 System.out.print((char) ch);
 System.out.println();
 }
}

We create the Piped streams, making the PipedWriter a parameter to the con-
structor for the PipedReader. The order is unimportant: The input pipe could be a
parameter to the output pipe. What is important is that an input/output pair be
attached to each other. We create the new TextGenerator object, with the
PipedWriter as the output stream for the generated characters. Then we loop,
reading characters from the text generator and writing them to the system output
stream. At the end, we make sure that the last line of output is terminated.

Piped streams need not be connected when they are constructed—there is a
no-arg constructor—but can be connected at a later stage via the connect method.
PipedReader.connect takes a PipedWriter parameter and vice versa. As with
the constructor, it does not matter whether you connect x to y, or y to x, the result
is the same. Trying to use a Piped stream before it is connected or trying to con-
nect it when it is already connected results in an IOException.

20.5.5 ByteArray Byte Streams

You can use arrays of bytes as the source or destination of byte streams by using
ByteArray streams. The ByteArrayInputStream class uses a byte array as its
input source, and reading on it can never block. It has two constructors:

A QUICK TOUR OF THE STREAM CLASSES522

public ByteArrayInputStream(byte[] buf, int offset, int count)
Creates a ByteArrayInputStream from the specified array of bytes using
only the part of buf from buf[offset] to buf[offset+count-1] or the
end of the array, whichever is smaller. The input array is used directly, not
copied, so you should take care not to modify it while it is being used as an
input source.

public ByteArrayInputStream(byte[] buf)
Equivalent to ByteArrayInputStream(buf, 0, buf.length).

The ByteArrayOutputStream class provides a dynamically growing byte array
to hold output. It adds constructors and methods:

public ByteArrayOutputStream()
Creates a new ByteArrayOutputStream with a default initial array size.

public ByteArrayOutputStream(int size)
Creates a new ByteArrayOutputStream with the given initial array size.

public int size()
Returns the number of bytes generated thus far by output to the stream.

public byte[] toByteArray()
Returns a copy of the bytes generated thus far by output to the stream. When
you are finished writing into a ByteArrayOutputStream via upstream filter
streams, you should flush the upstream objects before using toByteArray.

public void reset()
Resets the stream to reuse the current buffer, discarding its contents.

public String toString()
Returns the current contents of the buffer as a String, translating bytes into
characters according to the default character encoding.

public String toString(String enc)
throws UnsupportedEncodingException

Returns the current contents of the buffer as a String, translating bytes into
characters according to the specified character encoding. If the encoding is
not supported an UnsupportedEncodingException is thrown.

public void writeTo(OutputStream out) throws IOException
Writes the current contents of the buffer to the stream out.

20.5.6 CharArray Character Streams

The CharArray character streams are analogous to the ByteArray byte
streams—they let you use char arrays as a source or destination without ever
blocking. You construct CharArrayReader objects with an array of char:

THE I/O PACKAGE 523

public CharArrayReader(char[] buf, int offset, int count)
Creates a CharArrayReader from the specified array of characters using
only the subarray of buf from buf[offset] to buf[offset+count-1] or
the end of the array, whichever is smaller. The input array is used directly,
not copied, so you should take care not to modify it while it is being used as
an input source.

public CharArrayReader(char[] buf)
Equivalent to CharArrayReader(buf, 0, buf.length).

The CharArrayWriter class provides a dynamically growing char array to hold
output. It adds constructors and methods:

public CharArrayWriter()
Creates a new CharArrayWriter with a default initial array size.

public CharArrayWriter(int size)
Creates a new CharArrayWriter with the given initial array size.

public int size()
Returns the number of characters generated thus far by output to the stream.

public char[] toCharArray()
Returns a copy of the characters generated thus far by output to the stream.
When you are finished writing into a CharArrayWriter via upstream filter
streams, you should flush the upstream objects before using toCharArray.

public void reset()
Resets the stream to reuse the current buffer, discarding its contents.

public String toString()
Returns the current contents of the buffer as a String.

public void writeTo(Writer out) throws IOException
Writes the current contents of the buffer to the stream out.

20.5.7 String Character Streams

The StringReader reads its characters from a String and will never block. It
provides a single constructor that takes the string from which to read. For exam-
ple, the following program factors numbers read either from the command line or
System.in:

class Factor {
 public static void main(String[] args) {
 if (args.length == 0) {
 factorNumbers(new InputStreamReader(System.in));

A QUICK TOUR OF THE STREAM CLASSES524

 } else {
 for (String str : args) {
 StringReader in = new StringReader(str);
 factorNumbers(in);
 }
 }
 }
 // ... definition of factorNumbers ...
}

If the command is invoked without parameters, factorNumbers parses numbers
from the standard input stream. When the command line contains some argu-
ments, a StringReader is created for each parameter, and factorNumbers is
invoked on each one. The parameter to factorNumbers is a stream of characters con-
taining numbers to be parsed; it does not know whether they come from the command
line or from standard input.

StringWriter lets you write results into a buffer that can be retrieved as a
String or StringBuffer object. It adds the following constructors and methods:

public StringWriter()
Creates a new StringWriter with a default initial buffer size.

public StringWriter(int size)
Creates a new StringWriter with the specified initial buffer size. Provid-
ing a good initial size estimate for the buffer will improve performance in
many cases.

public StringBuffer getBuffer()
Returns the actual StringBuffer being used by this stream. Because the
actual StringBuffer is returned, you should take care not to modify it
while it is being used as an output destination.

public String toString()
Returns the current contents of the buffer as a String.

The following code uses a StringWriter to create a string that contains the
output of a series of println calls on the contents of an array:

public static String arrayToStr(Object[] objs) {
 StringWriter strOut = new StringWriter();
 PrintWriter out = new PrintWriter(strOut);
 for (int i = 0; i < objs.length; i++)
 out.println(i + ": " + objs[i]);
 return strOut.toString();
}

THE I/O PACKAGE 525

20.5.8 Print Streams

The Print streams—PrintStream and PrintWriter—provide methods that
make it easy to write the values of primitive types and objects to a stream, in a
human-readable text format—as you have seen in many examples. The Print
streams provide print and println methods for the following types:

These methods are much more convenient than the raw stream write methods.
For example, given a float variable f and a PrintStream reference out, the call
out.print(f) is equivalent to

out.write(String.valueOf(f).getBytes());

The println method appends a line separator after writing its argument to
the stream—a simple println with no parameters ends the current line. The line
separator string is defined by the system property line.separator and is not
necessarily a single newline character (\n).

Each of the Print streams acts as a Filter stream, so you can filter data on
its way downstream.

The PrintStream class acts on byte streams while the PrintWriter class
acts on character streams. Because printing is clearly character-related output, the
PrintWriter class is the class you should use. However, for historical reasons
System.out and System.err are PrintStreams that use the default character set
encoding—these are the only PrintStream objects you should use. We describe
only the PrintWriter class, though PrintStream provides essentially the same
interface.

PrintWriter has eight constructors.

public PrintWriter(Writer out, boolean autoflush)
Creates a new PrintWriter that will write to the stream out. If autoflush
is true, println invokes flush. Otherwise, println invocations are
treated like any other method, and flush is not invoked. Autoflush behavior
cannot be changed after the stream is constructed.

public PrintWriter(Writer out)
Equivalent to PrintWriter(out, false).

public PrintWriter(OutputStream out, boolean autoflush)
Equivalent to
PrintWriter(new OutputStreamWriter(out), autoflush).

char int float Object boolean
char[] long double String

A QUICK TOUR OF THE STREAM CLASSES526

public PrintWriter(OutputStream out)
Equivalent to PrintWriter(new OutputStreamWriter(out), false).

public PrintWriter(File file) throws FileNotFoundException
Equivalent to PrintWriter(new OutputStreamWriter(fos)), where
fos is a FileOutputStream created with the given file.

public PrintWriter(File file, String enc)
throws FileNotFoundException, UnsupportedEncodingException

Equivalent to PrintWriter(new OutputStreamWriter(fos, enc)),
where fos is a FileOutputStream created with the given file.

public PrintWriter(String filename) throws FileNotFoundException
Equivalent to PrintWriter(new OutputStreamWriter(fos)), where
fos is a FileOutputStream created with the given file name.

public PrintWriter(String filename, String enc)
throws FileNotFoundException, UnsupportedEncodingException

Equivalent to PrintWriter(new OutputStreamWriter(fos, enc)),
where fos is a FileOutputStream created with the given file name.

The Print streams implement the Appendable interface which allows them
to be targets for a Formatter. Additionally, the following convenience methods
are provided for formatted output—see “Formatter” on page 624 for details:

public PrintWriter format(String format, Object... args)
Acts like new Formatter(this).format(format, args), but a new
Formatter need not be created for each call. The current PrintWriter is
returned.

public PrintWriter
format(Locale l, String format, Object... args)

Acts like new Formatter(this, l).format(format, args), but a new
Formatter need not be created for each call. The current PrintWriter is
returned. Locales are described in Chapter 24.

There are two printf methods that behave exactly the same as the format meth-
ods—printf stands for “print formatted” and is an old friend from the C pro-
gramming language.

One important characteristic of the Print streams is that none of the output
methods throw IOException. If an error occurs while writing to the underlying
stream the methods simply return normally. You should check whether an error
occurred by invoking the boolean method checkError—this flushes the stream
and checks its error state. Once an error has occurred, there is no way to clear it. If
any of the underlying stream operations result in an InterruptedIOException,

THE I/O PACKAGE 527

the error state is not set, but instead the current thread is re-interrupted using
Thread.currentThread().interrupt().

20.5.9 LineNumberReader

The LineNumberReader stream keeps track of line numbers while reading text.
As usual a line is considered to be terminated by any one of a line feed (\n), a car-
riage return (\r), or a carriage return followed immediately by a linefeed (\r\n).

The following program prints the line number where the first instance of a
particular character is found in a file:

import java.io.*;

class FindChar {
 public static void main(String[] args)
 throws IOException
 {
 if (args.length != 2)
 throw new IllegalArgumentException(
 "need char and file");

 int match = args[0].charAt(0);
 FileReader fileIn = new FileReader(args[1]);
 LineNumberReader in = new LineNumberReader(fileIn);
 int ch;
 while ((ch = in.read()) != -1) {
 if (ch == match) {
 System.out.println("'" + (char)ch +
 "' at line " + in.getLineNumber());
 return;
 }
 }
 System.out.println((char)match + " not found");
 }
}

This program creates a FileReader named fileIn to read from the named file
and then inserts a LineNumberReader, named in, before it. LineNumberReader
objects get their characters from the reader they are attached to, keeping track of
line numbers as they read. The getLineNumber method returns the current line

A QUICK TOUR OF THE STREAM CLASSES528

number; by default, lines are counted starting from zero. When this program is run
on itself looking for the letter 'I', its output is

'I' at line 4

You can set the current line number with setLineNumber. This could be use-
ful, for example, if you have a file that contains several sections of information.
You could use setLineNumber to reset the line number to 1 at the start of each
section so that problems would be reported to the user based on the line numbers
within the section instead of within the file.

LineNumberReader is a BufferedReader that has two constructors: One
takes a reference to the wrapped stream and the size of the buffer to use, while the
other only takes a reference to the wrapped stream and uses a default buffer size.

Exercise 20.5: Write a program that reads a specified file and searches for a spec-
ified word, printing each line number and line in which the word is found.

20.5.10 SequenceInputStream

The SequenceInputStream class creates a single input stream from reading one
or more byte input streams, reading the first stream until its end of input and then
reading the next one, and so on through the last one. SequenceInputStream has
two constructors: one for the common case of two input streams that are provided
as the two parameters to the constructor, and the other for an arbitrary number of
input streams using the Enumeration abstraction (described in “Enumeration” on
page 617). Enumeration is an interface that provides an ordered iteration through a
list of objects. For SequenceInputStream, the enumeration should contain only
InputStream objects. If it contains anything else, a ClassCastException will be
thrown when the SequenceInputStream tries to get that object from the list.

The following example program concatenates all its input to create a single
output. This program is similar to a simple version of the UNIX utility cat—if no
files are named, the input is simply forwarded to the output. Otherwise, the pro-
gram opens all the files and uses a SequenceInputStream to model them as a
single stream. Then the program writes its input to its output:

import java.io.*;
import java.util.*;

class Concat {
 public static void main(String[] args)
 throws IOException
 {

THE I/O PACKAGE 529

 InputStream in; // stream to read characters from
 if (args.length == 0) {
 in = System.in;
 } else {
 InputStream fileIn, bufIn;
 List<InputStream> inputs =
 new ArrayList<InputStream>(args.length);
 for (String arg : args) {
 fileIn = new FileInputStream(arg);
 bufIn = new BufferedInputStream(fileIn);
 inputs.add(bufIn);
 }
 Enumeration<InputStream> files =
 Collections.enumeration(inputs);
 in = new SequenceInputStream(files);
 }
 int ch;
 while ((ch = in.read()) != -1)
 System.out.write(ch);
 }
 // ...
}

If there are no parameters, we use System.in for input. If there are parameters,
we create an ArrayList large enough to hold as many BufferedInputStream
objects as there are command-line arguments (see “ArrayList” on page 582).
Then we create a stream for each named file and add the stream to the inputs list.
When the loop is finished, we use the Collections class’s enumeration method
to get an Enumeration object for the list elements. We use this Enumeration in
the constructor for SequenceInputStream to create a single stream that concate-
nates all the streams for the files into a single InputStream object. A simple loop
then reads all the bytes from that stream and writes them on System.out.

You could instead write your own implementation of Enumeration whose
nextElement method creates a FileInputStream for each argument on demand,
closing the previous stream, if any.

20.5.11 Pushback Streams

A Pushback stream lets you push back, or “unread,” characters or bytes when you
have read too far. Pushback is typically useful for breaking input into tokens.
Lexical scanners, for example, often know that a token (such as an identifier) has

A QUICK TOUR OF THE STREAM CLASSES530

ended only when they have read the first character that follows it. Having seen that
character, the scanner must push it back onto the input stream so that it is available
as the start of the next token. The following example uses PushbackInputStream
to report the longest consecutive sequence of any single byte in its input:

import java.io.*;

class SequenceCount {
 public static void main(String[] args)
 throws IOException
 {
 PushbackInputStream
 in = new PushbackInputStream(System.in);
 int max = 0; // longest sequence found
 int maxB = -1; // the byte in that sequence
 int b; // current byte in input

 do {
 int cnt;
 int b1 = in.read(); // 1st byte in sequence
 for (cnt = 1; (b = in.read()) == b1; cnt++)
 continue;
 if (cnt > max) {
 max = cnt; // remember length
 maxB = b1; // remember which byte value
 }
 in.unread(b); // pushback start of next seq
 } while (b != -1); // until we hit end of input

 System.out.println(max + " bytes of " + maxB);
 }
}

We know that we have reached the end of one sequence only when we read the
first byte of the next sequence. We push this byte back using unread so that it is
read again when we repeat the do loop for the next sequence.

Both PushbackInputStream and PushbackReader support two construc-
tors: One takes a reference to the wrapped stream and the size of the pushback
buffer to create, while the other only takes a reference to the wrapped stream and
uses a pushback buffer with space for one piece of data (byte or char as appropri-
ate). Attempting to push back more than the specified amount of data will cause
an IOException.

THE I/O PACKAGE 531

Each Pushback stream has three variants of unread, matching the variants of
read. We illustrate the character version of PushbackReader, but the byte equiv-
alents for PushbackInputStream have the same behavior:

public void unread(int c) throws IOException
Pushes back the single character c. If there is insufficient room in the push-
back buffer an IOException is thrown.

public void unread(char[] buf, int offset, int count)
throws IOException

Pushes back the characters in the specified subarray. The first character
pushed back is buf[offset] and the last is buf[offset+count-1]. The
subarray is prepended to the front of the pushback buffer, such that the next
character to be read will be that at buf[offset], then buf[offset+1], and
so on. If the pushback buffer is full an IOException is thrown.

public void unread(char[] buf) throws IOException
Equivalent to unread(buf, 0, buf.length).

For example, after two consecutive unread calls on a PushbackReader with the
characters '1' and '2', the next two characters read will be '2' and '1' because
'2' was pushed back second. Each unread call sets its own list of characters by
prepending to the buffer, so the code

pbr.unread(new char[] {'1', '2'});
pbr.unread(new char[] {'3', '4'});
for (int i = 0; i < 4; i++)
 System.out.println(i + ": " + (char)pbr.read());

produces the following lines of output:

0: 3
1: 4
2: 1
3: 2

Data from the last unread (the one with '3' and '4') is read back first, and
within that unread the data comes from the beginning of the array through to the
end. When that data is exhausted, the data from the first unread is returned in the
same order. The unread method copies data into the pushback buffer, so changes
made to an array after it is used with unread do not affect future calls to read.

A QUICK TOUR OF THE STREAM CLASSES532

20.5.12 StreamTokenizer

Tokenizing input text is a common application, and the java.io package provides
a StreamTokenizer class for simple tokenization. A more general facility for
scanning and converting input text is provided by the java.util.Scanner
class—see “Scanner” on page 641.

You can tokenize a stream by creating a StreamTokenizer with a Reader
object as its source and then setting parameters for the scan. A scanner loop
invokes nextToken, which returns the token type of the next token in the stream.
Some token types have associated values that are found in fields in the
StreamTokenizer object.

This class is designed primarily to parse programming language-style input; it
is not a general tokenizer. However, many configuration files look similar enough
to programming languages that they can be parsed by this tokenizer. When design-
ing a new configuration file or other data, you can save work if you make it look
enough like a language to be parsed with StreamTokenizer.

When nextToken recognizes a token, it returns the token type as its value and
also sets the ttype field to the same value. There are four token types:

◆ TT_WORD: A word was scanned. The String field sval contains the word
that was found.

◆ TT_NUMBER: A number was scanned. The double field nval contains the
value of the number. Only decimal floating-point numbers (with or without
a decimal point) are recognized. The tokenizer does not understand 3.4e79
as a floating-point number, nor 0xffff as a hexadecimal number.

◆ TT_EOL: An end-of-line was found.

◆ TT_EOF: The end-of-file was reached.

The input text is assumed to consist of bytes in the range \u0000 to \u00FF—
Unicode characters outside this range are not handled correctly. Input is composed
of both special and ordinary characters. Special characters are those that the
tokenizer treats specially—namely whitespace, characters that make up numbers,
characters that make up words, and so on. Any other character is considered ordi-
nary. When an ordinary character is the next in the input, its token type is itself.
For example, if the character '¿' is encountered in the input and is not special, the
token return type (and the ttype field) is the int value of the character '¿'.

THE I/O PACKAGE 533

As one example, let’s look at a method that sums the numeric values in a char-
acter stream it is given:

static double sumStream(Reader source) throws IOException {
 StreamTokenizer in = new StreamTokenizer(source);
 double result = 0.0;
 while (in.nextToken() != StreamTokenizer.TT_EOF) {
 if (in.ttype == StreamTokenizer.TT_NUMBER)
 result += in.nval;
 }
 return result;
}

We create a StreamTokenizer object from the reader and then loop, reading
tokens from the stream, adding all the numbers found into the burgeoning result.
When we get to the end of the input, we return the final sum.

Here is another example that reads an input source, looking for attributes of
the form name=value, and stores them as attributes in AttributedImpl objects,
described in “Implementing Interfaces” on page 127:

public static Attributed readAttrs(Reader source)
 throws IOException
{
 StreamTokenizer in = new StreamTokenizer(source);
 AttributedImpl attrs = new AttributedImpl();
 Attr attr = null;
 in.commentChar('#'); // '#' is ignore-to-end comment
 in.ordinaryChar('/'); // was original comment char
 while (in.nextToken() != StreamTokenizer.TT_EOF) {
 if (in.ttype == StreamTokenizer.TT_WORD) {
 if (attr != null) {
 attr.setValue(in.sval);
 attr = null; // used this one up
 } else {
 attr = new Attr(in.sval);
 attrs.add(attr);
 }
 } else if (in.ttype == '=') {
 if (attr == null)
 throw new IOException("misplaced '='");
 } else {
 if (attr == null) // expected a word

A QUICK TOUR OF THE STREAM CLASSES534

 throw new IOException("bad Attr name");
 attr.setValue(new Double(in.nval));
 attr = null;
 }
 }
 return attrs;
}

The attribute file uses '#' to mark comments. Ignoring these comments, the
stream is searched for a string token followed by an optional '=' followed by a
word or number. Each such attribute is put into an Attr object, which is added to
a set of attributes in an AttributedImpl object. When the file has been parsed,
the set of attributes is returned.

Setting the comment character to '#' sets its character class. The tokenizer
recognizes several character classes that are set by the following methods:

public void wordChars(int low, int hi)
Characters in this range are word characters: They can be part of a TT_WORD
token. You can invoke this several times with different ranges. A word con-
sists of one or more characters inside any of the legal ranges.

public void whitespaceChars(int low, int hi)
Characters in this range are whitespace. Whitespace is ignored, except to
separate tokens such as two consecutive words. As with the wordChars
range, you can make several invocations, and the union of the invocations is
the set of whitespace characters.

public void ordinaryChars(int low, int hi)
Characters in this range are ordinary. An ordinary character is returned as
itself, not as a token. This removes any special significance the characters
may have had as comment characters, delimiters, word components,
whitespace, or number characters. In the above example, we used
ordinaryChar to remove the special comment significance of the '/' char-
acter.

public void ordinaryChar(int ch)
Equivalent to ordinaryChars(ch, ch).

public void commentChar(int ch)
The character ch starts a single-line comment—characters after ch up to the
next end-of-line are treated as one run of whitespace.

public void quoteChar(int ch)
Matching pairs of the character ch delimit String constants. When a
String constant is recognized, the character ch is returned as the token, and

THE I/O PACKAGE 535

the field sval contains the body of the string with surrounding ch characters
removed. When string constants are read, some of the standard \ processing
is applied (for example, \t can be in the string). The string processing in
StreamTokenizer is a subset of the language’s strings. In particular, you
cannot use \uxxxx, \', \", or (unfortunately) \Q, where Q is the quote char-
acter ch. You can have more than one quote character at a time on a stream,
but strings must start and end with the same quote character. In other words,
a string that starts with one quote character ends when the next instance of
that same quote character is found. If a different quote character is found in
between, it is simply part of the string.

public void parseNumbers()
Specifies that numbers should be parsed as double-precision floating-point
numbers. When a number is found, the stream returns a type of TT_NUMBER,
leaving the value in nval. There is no way to turn off just this feature—to
turn it off you must either invoke ordinaryChars for all the number-related
characters (don’t forget the decimal point and minus sign) or invoke
resetSyntax.

public void resetSyntax()
Resets the syntax table so that all characters are ordinary. If you do this and
then start reading the stream, nextToken always returns the next character
in the stream, just as when you invoke InputStream.read.

There are no methods to ask the character class of a given character or to add
new classes of characters. Here are the default settings for a newly created
StreamTokenizer object:

wordChars('a', 'z'); // lower case ASCII letters
wordChars('A', 'Z'); // upper case ASCII letters
wordChars(128 + 32, 255); // "high" non-ASCII values
whitespaceChars(0, ' '); // ASCII control codes
commentChar('/');
quoteChar('"');
quoteChar('\'');
parseNumbers();

This leaves the ordinary characters consisting of most of the punctuation and
arithmetic characters (;, :, [, {, +, =, and so forth).

The changes made to the character classes are cumulative, so, for example,
invoking wordChars with two different ranges of characters defines both ranges
as word characters. To replace a range you must first mark the old range as ordi-
nary and then add the new range. Resetting the syntax table clears all settings, so

A QUICK TOUR OF THE STREAM CLASSES536

if you want to return to the default settings, for example, you must manually make
the invocations listed above.

Other methods control the basic behavior of the tokenizer:

public void eolIsSignificant(boolean flag)
If flag is true, ends of lines are significant and TT_EOL may be returned by
nextToken. If false, ends of lines are treated as whitespace and TT_EOL is
never returned. The default is false.

public void slashStarComments(boolean flag)
If flag is true, the tokenizer recognizes /*...*/ comments. This occurs
independently of settings for any comment characters. The default is false.

public void slashSlashComments(boolean flag)
If flag is true, the tokenizer recognizes // to end-of-line comments. This
occurs independently of the settings for any comment characters. The
default is false.

public void lowerCaseMode(boolean flag)
If flag is true, all characters in TT_WORD tokens are converted to their low-
ercase equivalent if they have one (using String.toLowerCase). The
default is false. Because of the case issues described in “Character” on
page 192, you cannot reliably use this for Unicode string equivalence—two
tokens might be equivalent but have different lowercase representations. Use
String.equalsIgnoreCase for reliable case-insensitive comparison.

There are three miscellaneous methods:

public void pushBack()
Pushes the previously returned token back into the stream. The next invoca-
tion of nextToken returns the same token again instead of proceeding to the
next token. There is only a one-token pushback; multiple consecutive invo-
cations to pushBack are equivalent to one invocation.

public int lineno()
Returns the current line number. Usually used for reporting errors you detect.

public String toString()
Returns a String representation of the last returned stream token, including
its line number.

Exercise 20.6: Write a program that takes input of the form name op value, where
name is one of three words of your choosing, op is +, -, or =, and value is a num-
ber. Apply each operator to the named value. When input is exhausted, print the
three values. For extra credit, use the HashMap class that was used for
AttributedImpl so that you can use an arbitrary number of named values.

THE I/O PACKAGE 537

20.6 The Data Byte Streams

Reading and writing text characters is useful, but you also frequently need to
transmit the binary data of specific types across a stream. The DataInput and
DataOutput interfaces define methods that transmit primitive types across a
stream. The classes DataInputStream and DataOutputStream provide a default
implementation for each interface. We cover the interfaces first, followed by their
implementations.

20.6.1 DataInput and DataOutput

The interfaces for data input and output streams are almost mirror images. The
parallel read and write methods for each type are

String values are read and written using a modified form of the UTF-8 character
encoding. This differs from standard UTF-8 in three ways: the null byte (\u0000)
is encoded in a 2-byte format so that the encoded string does not have embedded
null bytes; only 1-byte, 2-byte, or 3-byte formats are used; and supplementary
characters are encoded using surrogate pairs. Encoding Unicode characters into
bytes is necessary in many situations because of the continuing transition from 8-
bit to 16-bit character sets.

In addition to these paired methods, DataInput has several methods of its
own, some of which are similar to those of InputStream:

public abstract void readFully(byte[] buf, int offset, int count)
throws IOException

Reads into part of a byte array. The maximum number of bytes read is
count. The bytes are stored from buf[offset] up to a maximum of
buf[offset+count-1]. If count is zero then no bytes are read. This
method blocks until input is available, the end of the file (that is, stream) is

Read Write Type
readBoolean writeBoolean boolean
readChar writeChar char
readByte writeByte byte
readShort writeShort short
readInt writeInt int
readLong writeLong long
readFloat writeFloat float
readDouble writeDouble double
readUTF writeUTF String (in UTF format)

THE DATA BYTE STREAMS538

found—in which case an EOFException is thrown—or an exception is
thrown because of an I/O error.

public abstract void readFully(byte[] buf) throws IOException
Equivalent to readFully(buf, 0, buf.length).

public abstract int skipBytes(int count) throws IOException
Attempts to skip over count bytes, discarding any bytes skipped over.
Returns the actual number of bytes skipped. This method never throws an
EOFException.

public abstract int readUnsignedByte() throws IOException
Reads one input byte, zero-extends it to type int, and returns the result,
which is therefore in the range 0 through 255. This method is suitable for
reading a byte written by the writeByte method of DataOutput if the argu-
ment to writeByte was a value in the range 0 through 255.

public abstract int readUnsignedShort() throws IOException
Reads two input bytes and returns an int value in the range 0 through
65535. The first byte read is made the high byte. This method is suitable for
reading bytes written by the writeShort method of DataOutput if the
argument to writeShort was a value in the range 0 through 65535.

The DataInput interface methods usually handle end-of-file (stream) by throw-
ing EOFException when it occurs. EOFException extends IOException.

The DataOutput interface supports signatures equivalent to the three forms
of write in OutputStream and with the same specified behavior. Additionally, it
provides the following unmirrored methods:

public abstract void writeBytes(String s) throws IOException
Writes a String as a sequence of bytes. The upper byte in each character is
lost, so unless you are willing to lose data, use this method only for strings
that contain characters between \u0000 and \u00ff.

public abstract void writeChars(String s) throws IOException
Writes a String as a sequence of char. Each character is written as two
bytes with the high byte written first.

There are no readBytes or readChars methods to read the same number of char-
acters written by a writeBytes or writeChars invocation, therefore you must
use a loop on readByte or readChar to read strings written with these methods.
To do that you need a way to determine the length of the string, perhaps by writing
the length of the string first, or by using an end-of-sequence character to mark its
end. You could use readFully to read a full array of bytes if you wrote the length
first, but that won’t work for writeChars because you want char values, not
byte values.

THE I/O PACKAGE 539

20.6.2 The Data Stream Classes

For each Data interface there is a corresponding Data stream. In addition, the
RandomAccessFile class implements both the input and output Data interfaces
(see Section 20.7.2 on page 541). Each Data class is an extension of its corre-
sponding Filter class, so you can use Data streams to filter other streams. Each
Data class has constructors that take another appropriate input or output stream.
For example, you can use the filtering to write data to a file by putting a
DataOutputStream in front of a FileOutputStream object. You can then read the
data by putting a DataInputStream in front of a FileInputStream object:

public static void writeData(double[] data, String file)
 throws IOException
{
 OutputStream fout = new FileOutputStream(file);
 DataOutputStream out = new DataOutputStream(fout);
 out.writeInt(data.length);
 for (double d : data)
 out.writeDouble(d);
 out.close();
}

public static double[] readData(String file)
 throws IOException
{
 InputStream fin = new FileInputStream(file);
 DataInputStream in = new DataInputStream(fin);
 double[] data = new double[in.readInt()];
 for (int i = 0; i < data.length; i++)
 data[i] = in.readDouble();
 in.close();
 return data;
}

The writeData method first opens the file and writes the array length. It then
loops, writing the contents of the array. The file can be read into an array with
readData. These methods can be rewritten more simply using the Object
streams you will learn about in Section 20.8 on page 549.

Exercise 20.7: Add a method to the Attr class of Chapter 3 that writes the contents
of an object to a DataOutputStream and add a constructor that will read the state
from a DataInputStream.

WORKING WITH FILES540

20.7 Working with Files

The java.io package provides a number of classes that help you work with files
in the underlying system. The File stream classes allow you to read from and
write to files and the FileDescriptor class allows the system to represent under-
lying file system resources as objects. RandomAccessFile lets you deal with files
as randomly accessed streams of bytes or characters. Actual interaction with the
local file system is through the File class, which provides an abstraction of file
pathnames, including path component separators, and useful methods to manipu-
late file names.

20.7.1 File Streams and FileDescriptor

The File streams—FileInputStream, FileOutputStream, FileReader, and
FileWriter—allow you to treat a file as a stream for input or output. Each type is
instantiated with one of three constructors:

◆ A constructor that takes a String that is the name of the file.

◆ A constructor that takes a File object that refers to the file (see Section
20.7.3 on page 543).

◆ A constructor that takes a FileDescriptor object (see below).

If a file does not exist, the input streams will throw a FileNotFoundException.
Accessing a file requires a security check and a SecurityException is thrown if
you do not have permission to access that file—see “Security” on page 677.

With a byte or character output stream, the first two constructor types create
the file if it does not exist, or truncate it if it does exist. You can control truncation
by using the overloaded forms of these two constructors that take a second argu-
ment: a boolean that, if true, causes each individual write to append to the file. If
this boolean is false, the file will be truncated and new data added. If the file
does not exist, the file will be created and the boolean will be ignored.

The byte File streams also provide a getChannel method for integration
with the java.nio facilities. It returns a java.nio.channels.FileChannel
object for accessing the file.

A FileDescriptor object represents a system-dependent value that
describes an open file. You can get a file descriptor object by invoking getFD on a
File byte stream—you cannot obtain the file descriptor from File character
streams. You can test the validity of a FileDescriptor by invoking its boolean
valid method—file descriptors created directly with the no-arg constructor of
FileDescriptor are not valid.

THE I/O PACKAGE 541

FileDescriptor objects create a new File stream to the same file as another
stream without needing to know the file’s pathname. You must be careful to avoid
unexpected interactions between two streams doing different things with the same file.
You cannot predict what happens, for example, when two threads write to the same file
using two different FileOutputStream objects at the same time.

The flush method of FileOutputStream and FileWriter guarantees that
the buffer is flushed to the underlying file. It does not guarantee that the data is
committed to disk—the underlying file system may do its own buffering. You can
guarantee that the data is committed to disk by invoking the sync method on the
file’s FileDescriptor object, which will either force the data to disk or throw a
SyncFailedException if the underlying system cannot fulfill this contract.

20.7.2 RandomAccessFile

The RandomAccessFile class provides a more sophisticated file mechanism than
the File streams do. A random access file behaves like a large array of bytes
stored in the file system. There is a kind of cursor, or index into the implied array,
called the file pointer; input operations read bytes starting at the file pointer and
advance the file pointer past the bytes read. If the random access file is created in
read/write mode, then output operations are also available; output operations write
bytes starting at the file pointer and advance the file pointer past the bytes written.

RandomAccessFile is not a subclass of InputStream, OutputStream,
Reader, or Writer because it can do both input and output and can work with
both characters and bytes. The constructor has a parameter that declares whether
the stream is for input or for both input and output.

RandomAccessFile supports read and write methods of the same names
and signatures as the byte streams. For example, read returns a single byte.
RandomAccessFile also implements the DataInput and DataOutput interfaces
(see page 537) and so can be used to read and write data types supported in those
interfaces. Although you don’t have to learn a new set of method names and
semantics for the same kinds of tasks you do with the other streams, you cannot
use a RandomAccessFile where any of the other streams are required.

The constructors for RandomAccessFile are

public RandomAccessFile(String name, String mode)
throws FileNotFoundException

Creates a random access file stream to read from, and optionally write to, a
file with the specified name. The basic mode can be either "r" or "rw" for
read or read/write, respectively. Variants of "rw" mode provide additional
semantics: "rws" mode specifies that on each write the file contents and
metadata (file size, last modification time, etc.) are written synchronously

WORKING WITH FILES542

through to the disk; "rwd" mode specifies that only the file contents are writ-
ten synchronously to the disk. Specifying any other mode will get you an
IllegalArgumentException. If the mode contains "rw" and the file does
not exist, it will be created or, if that fails, a FileNotFoundException is
thrown.

public RandomAccessFile(File file, String mode)

throws FileNotFoundException
Creates a random access file stream to read from, and optionally write to, the
file specified by the File argument. Modes are the same as for the String-
based constructor.

Since accessing a file requires a security check, these constructors could
throw a SecurityException if you do not have permission to access the file in
that mode—see “Security” on page 677.

The “random access” in the name of the class refers to the ability to set the
read/write file pointer to any position in the file and then perform operations. The
additional methods in RandomAccessFile to support this functionality are:

public long getFilePointer() throws IOException
Returns the current location of the file pointer (in bytes) from the beginning
of the file.

public void seek(long pos) throws IOException
Sets the file pointer to the specified number of bytes from the beginning of
the file. The next byte written or read will be the posth byte in the file, where
the initial byte is the 0th. If you position the file pointer beyond the end of
the file and write to the file, the file will grow.

public int skipBytes(int count) throws IOException
Attempts to advance the file pointer count bytes. Any bytes skipped over
can be read later after seek is used to reposition the file pointer. Returns the
actual number of bytes skipped. This method is guaranteed never to throw
an EOFException. If count is negative, no bytes are skipped.

public long length() throws IOException
Returns the file length.

public void setLength(long newLength) throws IOException
Sets the length of the file to newLength. If the file is currently shorter, the
file is grown to the given length, filled in with any byte values the implemen-
tation chooses. If the file is currently longer, the data beyond this position is
discarded. If the current position (as returned by getFilePointer) is
greater than newLength, the position is set to newLength.

THE I/O PACKAGE 543

You can access the FileDescriptor for a RandomAccessFile by invoking
its getFD method. You can obtain a FileChannel for a RandomAccessFile by
invoking its getChannel method.

Exercise 20.8: Write a program that reads a file with entries separated by lines
starting with %% and creates a table file with the starting position of each such entry.
Then write a program that uses that table to print a random entry (see the
Math.random method described in “Math and StrictMath” on page 657).

20.7.3 The File Class

The File class (not to be confused with the file streams) provides several com-
mon manipulations that are useful with file names. It provides methods to separate
pathnames into subcomponents and to ask the file system about the file a path-
name refers to.

A File object actually represents a path, not necessarily an underlying file.
For example, to find out whether a pathname represents an existing file, you create
a File object with the pathname and then invoke exists on that object.

A path is separated into directory and file parts by a char stored in the static
field separatorChar and available as a String in the static field separator.
The last occurrence of this character in the path separates the pathname into direc-
tory and file components. (Directory is the term used on most systems; some sys-
tems call such an entity a “folder” instead.)

File objects are created with one of four constructors:

public File(String path)
Creates a File object to manipulate the specified path.

public File(String dirName, String name)
Creates a File object for the file name in the directory named dirName. If
dirName is null, only name is used. If dirName is an empty string, name is
resolved against a system dependent default directory. Otherwise, this is
equivalent to using File(dirName + File.separator + name).

public File(File fileDir, String name)
Creates a File object for the file name in the directory named by the File
object fileDir. Equivalent to using File(fileDir.getPath(), name).

public File(java.net.URI uri)
Creates a File object for the pathname represented by the given file: URI

(Uniform Resource Identifier). If the given URI is not a suitable file URI then
IllegalArgumentException is thrown.

WORKING WITH FILES544

Five “get” methods retrieve information about the components of a File
object’s pathname. The following code invokes each of them after creating a File
object for the file "FileInfo.java" in the "ok" subdirectory of the parent of the
current directory (specified by ".."):

File src = new File(".." + File.separator + "ok",
 "FileInfo.java");
System.out.println("getName() = " + src.getName());
System.out.println("getPath() = " + src.getPath());
System.out.println("getAbsolutePath() = "
 + src.getAbsolutePath());
System.out.println("getCanonicalPath() = "
 + src.getCanonicalPath());
System.out.println("getParent() = " + src.getParent());

And here is the output:

getName() = FileInfo.java
getPath() = ../ok/FileInfo.java
getAbsolutePath() = /vob/java_prog/src/../ok/FileInfo.java
getCanonicalPath() = /vob/java_prog/ok/FileInfo.java
getParent() = ../ok

The canonical path is defined by each system. Usually, it is a form of the absolute
path with relative components (such as ".." to refer to the parent directory)
renamed and with references to the current directory removed. Unlike the other
“get” methods, getCanonicalPath can throw IOException because resolving
path components can require calls to the underlying file system, which may fail.

The methods getParentFile, getAbsoluteFile, and getCanonicalFile
are analogous to getParent, getAbsolutePath, and getCanonicalPath, but
they return File objects instead of strings.

You can convert a File to a java.net.URL or java.net.URI object by
invoking toURL or toURI, respectively.

The overriding method File.equals deserves mention. Two File objects
are considered equal if they have the same path, not if they refer to the same
underlying file system object. You cannot use File.equals to test whether two
File objects denote the same file. For example, two File objects may refer to the
same file but use different relative paths to refer to it, in which case they do not
compare equal. Relatedly, you can compare two files using the compareTo
method, which returns a number less than, equal to, or greater than zero as the cur-
rent file’s pathname is lexicographically less than, equal to, or greater than the
pathname of the argument File. The compareTo method has two overloaded

THE I/O PACKAGE 545

forms: one takes a File argument and the other takes an Object argument and so
implements the Comparable interface.

Several boolean tests return information about the underlying file:

◆ exists returns true if the file exists in the file system.

◆ canRead returns true if a file exists and can be read.

◆ canWrite returns true if the file exists and can be written.

◆ isFile returns true if the file is not a directory or other special type of file.

◆ isDirectory returns true if the file is a directory.

◆ isAbsolute returns true if the path is an absolute pathname.

◆ isHidden returns true if the path is one normally hidden from users on the
underlying system.

All the methods that inspect or modify the actual file system are security
checked and can throw SecurityException if you don’t have permission to per-
form the operation. Methods that ask for the filename itself are not security
checked.

File objects have many other methods for manipulating files and directories.
There are methods to inspect and manipulate the current file:

public long lastModified()
Returns a long value representing the time the file was last modified or zero
if the file does not exist.

public long length()
Returns the file length in bytes, or zero if the file does not exist.

public boolean renameTo(File newName)
Renames the file, returning true if the rename succeeded.

public boolean delete()
Deletes the file or directory named in this File object, returning true if the
deletion succeeded. Directories must be empty before they are deleted.

There are methods to create an underlying file or directory named by the current
File:

public boolean createNewFile()
Creates a new empty file, named by this File. Returns false if the file
already exists or if the file cannot be created. The check for the existence of
the file and its subsequent creation is performed atomically with respect to
other file system operations.

WORKING WITH FILES546

public boolean mkdir()
Creates a directory named by this File, returning true on success.

public boolean mkdirs()
Creates all directories in the path named by this File, returning true if all
were created. This is a way to ensure that a particular directory is created,
even if it means creating other directories that don’t currently exist above it
in the directory hierarchy. Note that some of the directories may have been
created even if false is returned.

However, files are usually created by FileOutputStream or FileWriter objects
or RandomAccessFile objects, not using File objects.

Two methods let you change the state of the underlying file, assuming that one
exists:

public boolean setLastModified(long time)
Sets the “last modified” time for the file or returns false if it cannot do so.

public boolean setReadOnly()
Makes the underlying file unmodifiable in the file system or returns false
if it cannot do so. The file remains unmodifiable until it is deleted or exter-
nally marked as modifiable again—there is no method for making it modifi-
able again.

There are methods for listing the contents of directories and finding out about root
directories:

public String[] list()
Lists the files in this directory. If used on something that isn’t a directory, it
returns null. Otherwise, it returns an array of file names. This list includes
all files in the directory except the equivalent of "." and ".." (the current
and parent directory, respectively).

public String[] list(FilenameFilter filter)
Uses filter to selectively list files in this directory (see FilenameFilter
described in the next section).

public static File[] listRoots()
Returns the available filesystem roots, that is, roots of local hierarchical file
systems. Windows platforms, for example, have a root directory for each
active drive; UNIX platforms have a single / root directory. If none are avail-
able, the array has zero elements.

The methods listFiles() and listFiles(FilenameFilter) are analo-
gous to list() and list(FilenameFilter), but return arrays of File objects
instead of arrays of strings. The method listFiles(FileFilter) is analogous
to the list that uses a FilenameFilter.

THE I/O PACKAGE 547

Three methods relate primarily to temporary files (sometimes called “scratch
files”)—those files you need to create during a run of your program for storing
data, or to pass between passes of your computation, but which are not needed
after your program is finished.

public static File createTempFile(String prefix, String suffix,
File directory) throws IOException

Creates a new empty file in the specified directory, using the given prefix and
suffix strings to generate its name. If this method returns successfully then it
is guaranteed that the file denoted by the returned abstract pathname did not
exist before this method was invoked, and neither this method nor any of its
variants will return the same abstract pathname again in the current invoca-
tion of the virtual machine. The prefix argument must be at least three
characters long, otherwise an IllegalArgumentException is thrown. It is
recommended that the prefix be a short, meaningful string such as "hjb" or
"mail". The suffix argument may be null, in which case the suffix
".tmp" will be used. Note that since there is no predefined separator
between the file name and the suffix, any separator, such as '.', must be part
of the suffix. If the directory argument is null then the system-dependent
default temporary-file directory will be used. The default temporary-file
directory is specified by the system property java.io.tmpdir.

public static File createTempFile(String prefix, String suffix)
throws IOException

Equivalent to createTempFile(prefix, suffix, null).

public void deleteOnExit()
Requests the system to remove the file when the virtual machine termi-
nates—see “Shutdown” on page 672. This request only applies to a normal
termination of the virtual machine and cannot be revoked once issued.

When a temporary file is created, the prefix and the suffix may first be adjusted to
fit the limitations of the underlying platform. If the prefix is too long then it will
be truncated, but its first three characters will always be preserved. If the suffix is
too long then it too will be truncated, but if it begins with a period (.) then the
period and the first three characters following it will always be preserved. Once
these adjustments have been made the name of the new file will be generated by
concatenating the prefix, five or more internally generated characters, and the suf-
fix. Temporary files are not automatically deleted on exit, although you will often
invoke deleteOnExit on File objects returned by createTempFile.

Finally, the character File.pathSeparatorChar and its companion string
File.pathSeparator represent the character that separates file or directory
names in a search path. For example, UNIX separates components in the program

WORKING WITH FILES548

search path with a colon, as in ".:/bin:/usr/bin", so pathSeparatorChar is a
colon on UNIX systems.

Exercise 20.9: Write a method that, given one or more pathnames, will print all the
information available about the file it represents (if any).

Exercise 20.10: Write a program that uses a StreamTokenizer object to break an
input file into words and counts the number of times each word occurs in the file,
printing the result. Use a HashMap to keep track of the words and counts.

20.7.4 FilenameFilter and FileFilter

The FilenameFilter interface provides objects that filter unwanted files from a
list. It supports a single method:

boolean accept(File dir, String name)
Returns true if the file named name in the directory dir should be part of
the filtered output.

Here is an example that uses a FilenameFilter object to list only directories:

import java.io.*;

class DirFilter implements FilenameFilter {
 public boolean accept(File dir, String name) {
 return new File(dir, name).isDirectory();
 }

 public static void main(String[] args) {
 File dir = new File(args[0]);
 String[] files = dir.list(new DirFilter());
 System.out.println(files.length + " dir(s):");
 for (String file : files)
 System.out.println("\t" + file);
 }
}

First we create a File object to represent a directory specified on the command
line. Then we create a DirFilter object and pass it to list. For each name in the
directory, list invokes the accept method on the filtering object and includes the
name in the list if the filtering object returns true. For our accept method, true
means that the named file is a directory.

THE I/O PACKAGE 549

The FileFilter interface is analogous to FilenameFilter, but works with
a single File object:

boolean accept(File pathname)
Returns true if the file represented by pathname should be part of the fil-
tered output.

Exercise 20.11: Using FilenameFilter or FileFilter, write a program that
takes a directory and a suffix as parameters and prints all files it can find that have
that suffix.

20.8 Object Serialization

The ability to save objects in a byte stream that can be transferred across the net-
work (perhaps for use in remote method invocations), saved to disk in a file or
database, and later reconstituted to form a live object, is an essential aspect of
many real-world applications.

The process of converting an object’s representation into a stream of bytes is
known as serialization, while reconstituting an object from a byte stream is dese-
rialization. When talking about the classes, interfaces, and language features
involved in this overall process, we generally just use the term serialization and
understand that it includes deserialization as well.

A number of classes and interfaces are involved with serialization. You have
already learned about the basic mechanisms for reading and writing primitive
types and strings using the Data stream classes (see page 537). This section cov-
ers the object byte streams—ObjectInputStream and ObjectOutputStream—
that allow you to serialize and deserialize complete objects. Various other classes
and interfaces provide specific support for the serialization process. In addition,
the field modifier transient provides a language-level means of marking data
that should not be serialized.

20.8.1 The Object Byte Streams

The Object streams—ObjectInputStream and ObjectOutputStream—allow
you to read and write object graphs in addition to the well-known types (primi-
tives, strings, and arrays). By “object graph” we mean that when you use
writeObject to write an object to an ObjectOutputStream, bytes representing
the object—including all other objects that it references—are written to the
stream. This process of transforming an object into a stream of bytes is called seri-

OBJECT SERIALIZATION550

alization. Because the serialized form is expressed in bytes, not characters, the
Object streams have no Reader or Writer forms.

When bytes encoding a serialized graph of objects are read by the method
readObject of ObjectInputStream—that is, deserialized—the result is a graph
of objects equivalent to the input graph.

Suppose, for example, that you have a HashMap object that you wish to store
into a file for future use. You could write the graph of objects that starts with the
hash map this way:

FileOutputStream fileOut = new FileOutputStream("tab");
ObjectOutputStream out = new ObjectOutputStream(fileOut);
HashMap<?,?> hash = getHashMap();
out.writeObject(hash);

As you can see, this approach is quite straightforward. The single writeObject
on hash writes the entire contents of the hash map, including all entries, all the
objects that the entries refer to, and so on, until the entire graph of interconnected
objects has been visited. A new copy of the hash map could be reconstituted from
the serialized bytes:

FileInputStream fileIn = new FileInputStream("tab");
ObjectInputStream in = new ObjectInputStream(fileIn);
HashMap<?,?> newHash = (HashMap<?,?>) in.readObject();

Serialization preserves the integrity of the graph itself. Suppose, for example,
that in a serialized hash map, an object was stored under two different keys:

When the serialized hash map is deserialized, the two analogous entries in the new
copy of the hash map will have references to a single copy of the rose.jpg
object, not references to two separate copies of rose.jpg.2

2 The first key field is the word “rose” in Tibetan.

hash

key: " "
entry:

key: "rose"
entry:

rose.jpg

THE I/O PACKAGE 551

Sometimes, however, sharing objects in this way is not what is desired. In that
case you can use ObjectOutputStream’s writeUnshared method to write the
object as a new distinct object, rather than using a reference to an existing serial-
ization of that object. Any object written into the graph by writeUnshared will
only ever have one reference to it in the serialized data. The readUnshared
method of ObjectInputStream reads an object that is expected to be unique. If
the object is actually a reference to an existing deserialized object then an
ObjectStreamException is thrown; similarly, if the deserialization process later
tries to create a second reference to an object returned by readUnshared, an
ObjectStreamException is thrown. These uniqueness checks only apply to the
actual object passed to writeUnshared or read by readUnshared, not to any
objects they refer to.

20.8.2 Making Your Classes Serializable

When an ObjectOutputStream writes a serialized object, the object must imple-
ment the Serializable marker interface. This marker interface declares that the
class is designed to have its objects serialized.

Being serializable can be quite simple. The default serialization process is to
serialize each field of the object that is neither transient nor static. Primitive
types and strings are written in the same encoding used by DataOutputStream;
objects are serialized by calling writeObject. With default serialization, all seri-
alized fields that are object references must refer to serializable object types.
Default serialization also requires either that your superclass have a no-arg con-
structor (so that deserialization can invoke it) or that it also be Serializable (in
which case declaring your class to implement Serializable is redundant but
harmless). For most classes this default serialization is sufficient, and the entire
work necessary to make a class serializable is to mark it as such by declaring that
it implements the Serializable interface:

public class Name implements java.io.Serializable {
 private String name;
 private long id;
 private transient boolean hashSet = false;
 private transient int hash;
 private static long nextID = 0;

 public Name(String name) {
 this.name = name;
 synchronized (Name.class) {
 id = nextID++;

OBJECT SERIALIZATION552

 }
 }

 public int hashCode() {
 if (!hashSet) {
 hash = name.hashCode();
 hashSet = true;
 }
 return hash;
 }

 // ... override equals, provide other useful methods
}

The class Name can be written to an ObjectOutputStream either directly
with writeObject, or indirectly if it is referenced by an object written to such a
stream. The name and id fields will be written to the stream; the fields nextID,
hashSet, and hash will not be written, nextID because it is static and the oth-
ers because they are declared transient. Because hash is a cached value that can
easily be recalculated from name, there is no reason to consume the time and
space it takes to write it to the stream.

Default deserialization reads the values written during serialization. Static
fields in the class are left untouched—if the class needs to be loaded then the nor-
mal initialization of the class takes place, giving the static fields an initial value.
Each transient field in the reconstituted object is set to the default value for its
type. When a Name object is deserialized, the newly created object will have name
and id set to the same values as those of the original object, the static field
nextID will remain untouched, and the transient fields hashSet and hash will
have their default values (false and 0). These defaults work because when
hashSet is false the value of hash will be recalculated.

You will occasionally have a class that is generally serializable but has spe-
cific instances that are not serializable. For example, a container might itself be
serializable but contain references to objects that are not serializable. Any attempt
to serialize a non-serializable object will throw a NotSerializableException.

20.8.3 Serialization and Deserialization Order

Each class is responsible for properly serializing its own state—that is, its fields.
Objects are serialized and deserialized down the type tree—from the highest-level
class that is Serializable to the most specific class. This order is rarely impor-

THE I/O PACKAGE 553

tant when you’re serializing, but it can be important when you’re deserializing.
Let us consider the following type tree for an HTTPInput class:

When deserializing an HTTPInput object, ObjectInputStream first allocates
memory for the new object and then finds the first Serializable class in the
object’s type hierarchy—in this case URLInput. The stream invokes the no-arg
constructor of that class’s superclass (the object’s last non-serializable class),
which in this case is InputSource. If other state from the superclass must be pre-
served, URLInput is responsible for serializing that state and restoring it on dese-
rialization. If your non-serializable superclass has state, you will almost certainly
need to customize the first serializable class (see the next section). If the first seri-
alizable class directly extends Object (as the earlier Name class did), customizing
is easy because Object has no state to preserve or restore.

Once the first serializable class has finished with its part of its superclass’s
state, it will set its own state from the stream. Then ObjectInputStream will
walk down the type tree, deserializing the state for each class using readObject.
When ObjectInputStream reaches the bottom of the type tree, the object has
been completely deserialized.

As the stream is deserialized, other serialized objects will be found that were
referenced from the object currently being deserialized. These other objects are
deserialized as they are encountered. Thus, if URLInput had a reference to a
HashMap, that hash map and its contents would be deserialized before the
HTTPInput part of the object was deserialized.

Before any of this can happen, the relevant classes must first be loaded. This
requires finding a class of the same name as the one written and checking to see
that it is the same class. You’ll learn about versioning issues shortly. Assuming it
is the same class, the class must be loaded. If the class is not found or cannot be
loaded for any reason, readObject will throw a ClassNotFoundException.

Object

InputSource

URLInput

HTTPInput

Serializable

OBJECT SERIALIZATION554

20.8.4 Customized Serialization

The default serialization methods work for many classes but not for all of them.
For some classes default deserialization may be improper or inefficient. The
HashMap class is an example of both problems. Default serialization would write
all the data structures for the hash map, including the hash codes of the entries.
This serialization is both wrong and inefficient.

It is wrong because hash codes may be different for deserialized entries. This
will be true, for example, of entries using the default hashCode implementation.

It is inefficient because a hash map typically has a significant number of
empty buckets. There is no point in serializing empty buckets. It would be more
efficient to serialize the referenced keys and entries and rebuild a hash map from
them than to serialize the entire data structure of the map.

For these reasons, java.util.HashMap provides private writeObject and
readObject methods.3 These methods are invoked by ObjectOutputStream and
ObjectInputStream, respectively, when it is time to serialize or deserialize a
HashMap object. These methods are invoked only on classes that provide them,
and the methods are responsible only for the class’s own state, including any state
from non-serializable superclasses. A class’s writeObject and readObject
methods, if provided, should not invoke the superclass’s readObject or
writeObject method. Object serialization differs in this way from clone and
finalize.

Let us suppose, for example, that you wanted to improve the Name class so
that it didn’t have to check whether the cached hash code was valid each time. You
could do this by setting hash in the constructor, instead of lazily when it is asked
for. But this causes a problem with serialization—since hash is transient it does
not get written as part of serialization (nor should it), so when you are deserializ-
ing you need to explicitly set it. This means that you have to implement
readObject to deserialize the main fields and then set hash, which implies that
you have to implement writeObject so that you know how the main fields were
serialized.

public class BetterName implements Serializable {
 private String name;
 private long id;
 private transient int hash;

3 These methods are private because they should never be overridden and they should
never be invoked by anyone using or subclassing your class. The serialization mechanism
gains access to these private methods using reflection to disable the language level access
control (see page 426). Of course this can only happen if the current security policy allows
it—see “Security” on page 677.

THE I/O PACKAGE 555

 private static long nextID = 0;

 public BetterName(String name) {
 this.name = name;
 synchronized (BetterName.class) {
 id = nextID++;
 }
 hash = name.hashCode();
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {
 out.writeUTF(name);
 out.writeLong(id);
 }

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 name = in.readUTF();
 id = in.readLong();
 hash = name.hashCode();
 }

 public int hashCode() {
 return hash;
 }

 // ... override equals, provide other useful methods
}

We use writeObject to write out each of the non-static, non-transient fields. It
declares that it can throw IOException because the write methods it invokes can
do so, and, if one does throw an exception, the serialization must be halted. When
readObject gets the values from the stream, it can then set hash properly. It, too,
must declare that it throws IOException because the read methods it invokes can
do so, and this should stop deserialization. The readObject method must declare
that it throws ClassNotFoundException because, in the general case, deserializ-

OBJECT SERIALIZATION556

ing fields of the current object could require other classes to be loaded—though
not in the example.

There is one restriction on customized serialization: You cannot directly set a
final field within readObject because final fields can only be set in initializ-
ers or constructors. For example, if name was declared final the class
BetterName would not compile. You will need to design your classes with this
restriction in mind when considering custom serialization. The default serializa-
tion mechanism can bypass this restriction because it uses native code. This means
that default serialization works fine with classes that have final fields. For cus-
tom serialization it is possible to use reflection to set a final field—see “Final
Fields” on page 420—but the security restrictions for doing this means that it is
seldom applicable. One circumstance in which it is applicable, for example, is if
your classes are required to be installed as a standard extension and so have the
necessary security privileges—see “Security Policies” on page 680.

The readObject and writeObject methods for BetterName show that you
can use the methods of DataInput and DataOutput to transmit arbitrary data on
the stream. However, the actual implementations replicate the default serialization
and then add the necessary setup for hash. The read and write invocations of these
methods could have been replaced with a simple invocation of methods that per-
form default serialization and deserialization:

private void writeObject(ObjectOutputStream out)
 throws IOException
{
 out.defaultWriteObject();
}

private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
{
 in.defaultReadObject();
 hash = name.hashCode();
}

In fact, as you may have surmised, given that writeObject performs nothing but
default serialization, we need not have implemented it at all.

A writeObject method can throw NotSerializableException if a partic-
ular object is not serializable. For example, in rare cases, objects of a class might
be generally serializable, but a particular object might contain sensitive data.

You will occasionally find that an object cannot be initialized properly until
the graph of which it is a part has been completely deserialized. You can have the
ObjectInputStream invoke a method of your own devising by calling the

THE I/O PACKAGE 557

stream’s registerValidation method with a reference to an object that imple-
ments the interface ObjectInputValidation. When deserialization of the top-
level object at the head of the graph is complete, your object’s validateObject
method will be invoked to make any needed validation operation or check.

Normally, an object is serialized as itself on the output stream, and a copy of
the same type is reconstituted during deserialization. You will find a few classes
for which this is not correct. For example, if you have a class that has objects that
are supposed to be unique in each virtual machine for each unique value (so that
== will return true if and only if equals also would return true), you would
need to resolve an object being deserialized into an equivalent one in the local
virtual machine. You can control these by providing writeReplace and
readResolve methods of the following forms and at an appropriate access level:

<access> Object writeReplace() throws ObjectStreamException
Returns an object that will replace the current object during serialization.
Any object may be returned including the current one.

<access> Object readResolve() throws ObjectStreamException
Returns an object that will replace the current object during deserialization.
Any object may be returned including the current one.

In our example, readResolve would check to find the local object that was equiv-
alent to the one just deserialized—if it exists it will be returned, otherwise we can
register the current object (for use by readResolve in the future) and return this.
These methods can be of any accessibility; they will be used if they are accessible
to the object type being serialized. For example, if a class has a private
readResolve method, it only affects deserialization of objects that are exactly of
its type. A package-accessible readResolve affects only subclasses within the
same package, while public and protected readResolve methods affect objects of
all subclasses.

20.8.5 Object Versioning

Class implementations change over time. If a class’s implementation changes
between the time an object is serialized and the time it is deserialized, the
ObjectInputStream can detect this change. When the object is written, the
serial version UID (unique identifier), a 64-bit long value, is written with it. By
default, this identifier is a secure hash of the full class name, superinterfaces, and
members—the facts about the class that, if they change, signal a possible class
incompatibility. Such a hash is essentially a fingerprint—it is nearly impossible
for two different classes to have the same UID.

When an object is read from an ObjectInputStream, the serial version UID

is also read. An attempt is then made to load the class. If no class with the same

OBJECT SERIALIZATION558

name is found or if the loaded class’s UID does not match the UID in the stream,
readObject throws an InvalidClassException. If the versions of all the
classes in the object’s type are found and all the UIDs match, the object can be
deserialized.

This assumption is very conservative: Any change in the class creates an
incompatible version. Many class changes are less drastic than this. Adding a
cache to a class can be made compatible with earlier versions of the serialized
form, as can adding optional behavior or values. Rather then relying on the default
serial version UID, any serializable class should explicitly declare its own serial
version UID value. Then when you make a change to a class that can be compati-
ble with the serialized forms of earlier versions of the class, you can explicitly
declare the serial version UID for the earlier class. A serial version UID is declared
as follows:

private static final
 long serialVersionUID = -1307795172754062330L;

The serialVersionUID field must be a static, final field of type long. It should
also be private since it is only applied to the declaring class. The value of
serialVersionUID is provided by your development system. In many develop-
ment systems, it is the output of a command called serialver. Other systems
have different ways to provide you with this value, which is the serial version UID

of the class before the first incompatible modification. (Nothing prevents you
from using any number as this UID if you stamp it from the start, but it is usually a
really bad idea. Your numbers will not be as carefully calculated to avoid conflict
with other classes as the secure hash is.)

Now when the ObjectInputStream finds your class and compares the UID

with that of the older version in the file, the UIDs will be the same even though the
implementation has changed. If you invoke defaultReadObject, only those
fields that were present in the original version will be set. Other fields will be left
in their default state. If writeObject in the earlier version of the class wrote val-
ues on the field without using defaultWriteObject, you must read those values.
If you try to read more values than were written, you will get an EOFException,
which can inform you that you are deserializing an older form that wrote less
information. If possible, you should design classes with a class version number
instead of relying on an exception to signal the version of the original data.

When an object is written to an ObjectOutputStream, the Class object for
that object is also written. Because Class objects are specific to each virtual
machine, serializing the actual Class object would not be helpful. So Class
objects on a stream are replaced by ObjectStreamClass objects that contain the
information necessary to find an equivalent class when the object is deserialized.

THE I/O PACKAGE 559

This information includes the class’s full name and its serial version UID. Unless
you create one, you will never directly see an ObjectStreamClass object.

As a class evolves it is possible that a new superclass is introduced for that
class. If an older serialized form of the class is deserialized it will not contain any
serialized data for that superclass. Rather than making this an error, the system
will set all fields declared by the superclass to their default initialized values. To
override this default behavior, the new superclass (which must implement
Serializable, of course) can declare the following method:

private void readObjectNoData() throws ObjectStreamException

If, as an object is deserialized, the serialized data lists the superclass as a known
superclass then the superclass’s readObject method will be invoked (if it exists),
otherwise the superclass’s readObjectNoData method will be invoked. The
readObjectNoData method can then set appropriate values in the object’s super-
class fields.

20.8.6 Serialized Fields

The default serialization usually works well, but for more sophisticated classes
and class evolution you may need to access the original fields. For example, sup-
pose you were representing a rectangle in a geometric system by using two oppo-
site corners. You would have four fields: x1, y1, x2, and y2. If you later want to
use a corner, plus width and height, you would have four different fields: x, y,
width, and height. Assuming default serialization of the four original fields you
would also have a compatibility problem: the rectangles that were already serial-
ized would have the old fields instead of the new ones. To solve this problem you
could maintain the serialized format of the original class and convert between the
old and new fields as you encounter them in readObject or writeObject. You
do this using serialized field types to view the serialized form as an abstraction
and to access individual fields:

public class Rectangle implements Serializable {
 private static final
 long serialVersionUID = -1307795172754062330L;
 private static final
 ObjectStreamField[] serialPersistentFields = {
 new ObjectStreamField("x1", Double.TYPE),
 new ObjectStreamField("y1", Double.TYPE),
 new ObjectStreamField("x2", Double.TYPE),
 new ObjectStreamField("y2", Double.TYPE),
 };

OBJECT SERIALIZATION560

 private transient double x, y, width, height;

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException
 {
 ObjectInputStream.GetField fields;
 fields = in.readFields();
 x = fields.get("x1", 0.0);
 y = fields.get("y1", 0.0);
 double x2 = fields.get("x2", 0.0);
 double y2 = fields.get("y2", 0.0);
 width = (x2 - x);
 height = (y2 - y);
 }

 private void writeObject(ObjectOutputStream out)
 throws IOException
 {
 ObjectOutputStream.PutField fields;
 fields = out.putFields();
 fields.put("x1", x);
 fields.put("y1", y);
 fields.put("x2", x + width);
 fields.put("y2", y + height);
 out.writeFields();
 }
}

Rectangle keeps the serialVersionUID of the original version to declare that
the versions are compatible. Changing fields that would be used by default serial-
ization is otherwise considered to be an incompatible change.

To represent each of the old fields that will be found in the serialized data, you
create an ObjectStreamField object. You construct each ObjectStreamField
object by passing in the name of the field it represents, and the Class object for
the type of the field it represents. An overloaded constructor also takes a boolean
argument that specifies whether the field refers to an unshared object—that is, one
written by writeUnshared or read by readUnshared. The serialization mecha-
nism needs to know where to find these ObjectStreamField objects, so they
must be defined in the static, final array called serialPersistentFields.

THE I/O PACKAGE 561

The fields x, y, width, and height are marked transient because they are
not serialized—during serialization these new fields must be converted into appro-
priate values of the original fields so that we preserve the serialized form. So
writeObject uses an ObjectOutputStream.PutField object to write out the
old form, using x and y as the old x1 and y1, and calculating x2 and y2 from the
rectangle’s width and height. Each put method takes a field name as one argu-
ment and a value for that field as the other—the type of the value determines
which overloaded form of put is invoked (one for each primitive type and
Object). In this way the default serialization of the original class has been emu-
lated and the serialized format preserved.

When a Rectangle object is deserialized, the reverse process occurs. Our
readObject method gets an ObjectInputStream.GetField that allows access
to fields by name from the serialized object. There is a get method for returning
each primitive type, and one for returning an Object reference. Each get method
takes two parameters: the name of the field and a value to return if it is not defined
in the serialized object. The return value’s type chooses which overload of get is
used: A short return value will use the get that returns a short, for example. In
our example, all values are double: We get the x1 and y1 fields to use for one cor-
ner of the rectangle, and the old x2 and y2 fields to calculate width and height.

Using the above technique the new Rectangle class can deserialize old rect-
angle objects and a new serialized rectangle can be deserialized by the original
Rectangle class, provided that both virtual machines are using compatible ver-
sions of the serialization stream protocol. The stream protocol defines the actual
layout of serialized objects in the stream regardless of whether they use default
serialization or the serialized field objects. This means that the serialized form of
an object is not dependent on, for example, the order in which you invoke put, nor
do you have to know the order in which to invoke get—you can use get or put to
access fields in any order any number of times.

20.8.7 The Externalizable Interface

The Externalizable interface extends Serializable. A class that implements
Externalizable takes complete control over its serialized state, assuming
responsibility for all the data of its superclasses, any versioning issues, and so on.
You may need this, for example, when a repository for serialized objects mandates
restrictions on the form of those objects that are incompatible with the provided
serialization mechanism. The Externalizable interface has two methods:

public interface Externalizable extends Serializable {
 void writeExternal(ObjectOutput out)
 throws IOException;

OBJECT SERIALIZATION562

 void readExternal(ObjectInput in)
 throws IOException, ClassNotFoundException;
}

These methods are invoked when the object is serialized and deserialized, respec-
tively. They are normal public methods, so the exact type of the object determines
which implementation will be used. Subclasses of an externalizable class will
often need to invoke their superclass’s implementation before serializing or dese-
rializing their own state—in contrast to classes that use normal serialization.

You should note that the methods of the interface are public and so can be
invoked by anyone at anytime. In particular, a malicious program might invoke
readExternal to make an object overwrite its state from some serialized stream,
possibly with invented content. If you are designing classes where such security
counts you have to take this into account either by not using Externalizable or
by writing your readExternal method to be only invoked once, and never at all if
the object was created via one of your constructors.

20.8.8 Documentation Comment Tags

As you can see from the Rectangle code, the serialized form of an object can be
an important thing, separate from its runtime form. This can happen over time due
to evolution, or by initial design when the runtime form is not a good serialized
form. When you write serializable classes that others will reimplement, you
should document the persistent form so that other programmer’s can properly re-
implement the serialized form as well as the runtime behavior. You do this with
the special javadoc tags @serial, @serialField, and @serialData.

Use @serial to document fields that use default serialization. For example,
the original Rectangle class could have looked like this:

/** X-coordinate of one corner.
 * @serial */
private double x1;
/** Y-coordinate of one corner.
 * @serial */
private double y1;
/** X-coordinate of opposite corner.
 * @serial */
private double x2;
/** Y-coordinate of opposite corner.
 * @serial */
private double y2;

THE I/O PACKAGE 563

The @serial tag can include a description of the meaning of the field. If none is
given (as above), then the description of the runtime field will be used. The
javadoc tool will add all @serial information to a page, known as the serialized
form page.

The @serial tag can also be applied to a class or package with the single
argument include or exclude, to control whether serialization information is
documented for that class or package. By default public and protected types are
included, otherwise they are excluded. A class level @serial tag overrides a
package level @serial tag.

The @serialField tag documents fields that are created by GetField and
PutField invocations, such as those in our Rectangle example. The tag takes
first the field name, then its type, and then a description. For example:

/** @serialField x1 double X-coordinate of one corner. */
/** @serialField y1 double Y-coordinate of one corner. */
/** @serialField x2 double X-coordinate of other corner. */
/** @serialField y2 double Y-coordinate of other corner. */
private transient double x, y, width, height;

You use the @serialData tag in the doc comment for a writeObject method
to document any additional data written by the method. You can also use
@serialData to document anything written by an Externalizable class’s
writeExternal method.

20.9 The IOException Classes

Every I/O-specific error detected by classes in java.io is signaled by an
IOException or a subclass. Most I/O classes are designed to be general, so most
of the exceptions cannot be listed specifically. For example, InputStream meth-
ods that throw IOException cannot detail which particular exceptions might be
thrown, because any particular input stream class might throw a subclass of
IOException for particular error conditions relevant to that stream. And the filter
input and output streams pass through exceptions only from their downstream
objects, which can also be of other stream types.

The specific subclasses of IOException used in the java.io package are

CharConversionException extends IOException
Thrown when a character conversion problem occurs in a character stream
operation that must convert local character codes to Unicode or vice versa.

EOFException extends IOException
Thrown when the end of the file (stream) is detected while reading.

THE IOEXCEPTION CLASSES564

FileNotFoundException extends IOException
Thrown when the attempt to access the file specified by a given pathname
fails—presumably because the file does not exist.

InterruptedIOException extends IOException
Thrown when a blocking I/O operation detects that the current thread has
been interrupted before or during the operation. In principle, except for the
Print stream methods, interrupting a thread should cause this exception if
the thread is performing a blocking I/O operation. In practice most imple-
mentations only check for interruption before performing an operation and
do not respond to interruption during the operation (see page 515) so you
cannot rely on the ability to interrupt a blocked thread. This exception is also
used to signify that a time-out occurred during network I/O.

InvalidClassException extends ObjectStreamException
Thrown when the serialization mechanism detects a problem with a class:
The serial version of the class does not match that read from the stream, the
class contains unknown data types, or the class does not have an accessible
no-arg constructor when needed.

InvalidObjectException extends ObjectStreamException
Thrown when the validateObject method cannot make the object valid,
thus aborting the deserialization.

NotActiveException extends ObjectStreamException
Thrown when a serialization method, such as defaultReadObject, is
invoked when serialization is not under way on the stream.

NotSerializableException extends ObjectStreamException
Thrown either by the serialization mechanism or explicitly by a class when
a class cannot be serialized.

ObjectStreamException extends IOException
The superclass for all the Object stream related exceptions.

OptionalDataException extends ObjectStreamException
Thrown when the optional data (that is, not part of default serialization) in
the object input stream is corrupt or was not read by the reading method.

StreamCorruptedException extends ObjectStreamException
Thrown when internal object stream state is missing or invalid.

SyncFailedException extends IOException
Thrown by FileDescriptor.sync when the data cannot be guaranteed to
have been written to the underlying media.

UnsupportedEncodingException extends IOException
Thrown when an unknown character encoding is specified.

THE I/O PACKAGE 565

UTFDataFormatException extends IOException
Thrown by DataInputStream.readUTF when the string it is reading has
malformed UTF syntax.

WriteAbortedException extends ObjectStreamException
Thrown when an exception occurred during a serialization write operation.

In addition to these specific exceptions, other exceptional conditions in
java.io are signaled with an IOException containing a string that describes the
specific error encountered. For example, using a Piped stream object that has
never been connected throws an exception object with a detail string such as
"Pipe not connected", and trying to push more than the allowed number of
characters onto a PushbackReader throws an exception with the string
"Pushback buffer overflow". Such exceptions are difficult to catch explicitly,
so this style of exception reporting is not in favor. Specific exception subtypes
should be created for each category of exceptional circumstance.

20.10 A Taste of New I/O

The java.nio package (“New I/O”) and its subpackages give you access to high
performance I/O, albeit with more complexity. Instead of a simple stream model
you have control over buffers, channels, and other abstractions to let you get max-
imum speed for your I/O needs. This is recommended only for those who have a
demonstrated need.

The model for rapid I/O is to use buffers to walk through channels of primitive
types. Buffers are containers for data and are associated with channels that con-
nect to external data sources. There are buffer types for all primitive types: A
FloatBuffer works with float values, for example. The ByteBuffer is more
general; it can handle any primitive type with methods such as getFloat and
putLong. MappedByteBuffer helps you map a large file into memory for quick
access. You can use character set decoders and encoders to translate buffers of
bytes to and from Unicode.

Channels come from objects that access external data, namely files and sock-
ets. FileInputStream has a getChannel method that returns a channel for that
stream, as do RandomAccessFile, java.net.Socket, and others.

Here is some code that will let you efficiently access a large text file in a spec-
ified encoding:

public static int count(File file, String charSet, char ch)
 throws IOException
{
 Charset charset = Charset.forName(charSet);

A TASTE OF NEW I/O566

 CharsetDecoder decoder = charset.newDecoder();
 FileInputStream fis = new FileInputStream(file);
 FileChannel fc = fis.getChannel();

 // Get the file's size and then map it into memory
 long size = fc.size();
 MappedByteBuffer bb =
 fc.map(FileChannel.MapMode.READ_ONLY, 0, size);
 CharBuffer cb = decoder.decode(bb);
 int count = 0;
 for (int i = 0; i < size && i < Integer.MAX_VALUE; i++)
 if (cb.charAt(i) == ch)
 count++;
 fc.close();
 return count;
}

We use a FileInputStream to get a channel for the file. Then we create a
mapped buffer for the entire file. What a “mapped buffer” does may vary with the
platform, but for large files (greater than a few tens of kilobytes) you can assume
that it will be at least as efficient as streaming through the data, and nearly cer-
tainly much more efficient. We then get a decoder for the specified character set,
which gives us a CharBuffer from which to read.4

The CharBuffer not only lets you read (decoded) characters from the file, it
also acts as a CharSequence and, therefore, can be used with the regular expres-
sion mechanism.

In addition to high-performance I/O, the new I/O package also provides a dif-
ferent programming model that allows for non-blocking I/O operations to be per-
formed. This is an advanced topic well beyond the scope of this book, but suffice
it to say that this allows a small number of threads to efficiently manage a large
number of simultaneous I/O connections.

There is also a reliable file locking mechanism: You can lock a FileChannel
and receive a java.nio.channels.FileLock object that represents either a
shared or exclusive lock on a file. You can release the FileLock when you are
done with it.

Nothing has really happened until it has been recorded.
—Virginia Woolf

4 Note that there is an unfortunate discrepancy between the ability to map huge files and the
fact that the returned buffer has a capacity that is limited to Integer.MAX_VALUE.

