
Index

Symbols
64-bit operations

nonatomic nature of; 36

A
ABA problem; 336
abnormal thread termination

handling; 161–163
abort saturation policy; 174

See also lifecycle; termination;
abrupt shutdown

limitations; 158–161
triggers for; 164
vs. graceful shutdown; 153

AbstractExecutorService
task representation use; 126

abstractions
See models/modeling; representa-

tion;
AbstractQueuedSynchronizer

See AQS framework;
access

See also encapsulation; sharing; visi-
bility;

exclusive
and concurrent collections; 86

integrity
nonblocking algorithm use; 319

mutable state
importance of coordinating; 110

remote resource
as long-running GUI task; 195

serialized
WorkerThread example; 227li
vs. object serialization; 27fn

visibility role in; 33
AccessControlContext

custom thread factory handling; 177

acquisition of locks
See locks, acquisition;

action(s)
See also compound actions; condi-

tion, predicate; control flow;
task(s);

barrier; 99
JMM specification; 339–342
listener; 195–197

activity(s)
See also task(s);
cancellation; 135, 135–150
tasks as representation of; 113

ad-hoc thread confinement; 43
See also confinement;

algorithm(s)
See also design patterns; idioms; rep-

resentation;
comparing performance; 263–264
design role of representation; 104
lock-free; 329
Michael-Scott nonblocking queue;

332
nonblocking; 319, 329, 329–336

backoff importance for; 231fn
synchronization; 319–336
SynchronousQueue; 174fn

parallel iterative
barrier use in; 99

recursive
parallelizing; 181–188

Treiber’s
nonblocking stack; 331li

work stealing
deques and; 92

alien method; 40
See also untrusted code behavior;
deadlock risks posed by; 211
publication risks; 40

359



360 Index

allocation
advantages vs. synchronization; 242
immutable objects and; 48fn
object pool use

disadvantages of; 241
scalability advantages; 263

Amdahl’s law; 225–229
See also concurrent/concurrency;

performance; resource(s);
throughput; utilization;

lock scope reduction advantage; 234
qualitative application of; 227

analysis
See also instrumentation; measure-

ment; static analysis tools;
deadlock

thread dump use; 216–217
escape; 230
for exploitable parallelism; 123–133
lock contention

thread dump use; 240
performance; 221–245

annotations; 353–354
See also documentation;
for concurrency documentation; 6
@GuardedBy; 28, 354

synchronization policy docu-
mentation use; 75

@Immutable; 353
@NotThreadSafe; 353
@ThreadSafe; 353

AOP (aspect-oriented programming)
in testing; 259, 273

application(s)
See also frameworks(s); service(s);

tools;
-scoped objects

thread safety concerns; 10
frameworks, and ThreadLocal; 46
GUI; 189–202

thread safety concerns; 10–11
parallelizing

task decomposition; 113
shutdown

and task cancellation; 136
AQS (AbstractQueuedSynchronizer)

framework; 308, 311–317
exit protocol use; 306
FutureTask implementation

piggybacking use; 342

ArrayBlockingQueue; 89
as bounded buffer example; 292
performance advantages over

BoundedBuffer; 263
ArrayDeque; 92
arrays

See also collections; data struc-
ture(s);

atomic variable; 325
asymmetric two-party tasks

Exchanger management of; 101
asynchrony/asynchronous

events, handling; 4
I/O, and non-interruptable block-

ing; 148
sequentiality vs.; 2
tasks

execution, Executor framework
use; 117

FutureTask handling; 95–98
atomic variables; 319–336

and lock contention; 239–240
classes; 324–329
locking vs.; 326–329
strategies for use; 34
volatile variables vs.; 39, 324–326

atomic/atomicity; 22
See also invariant(s); synchroniza-

tion; visibility;
64-bit operations

nonatomic nature of; 36
and compound actions; 22–23
and multivariable invariants; 57,

67–68
and open call restructuring; 213
and service shutdown; 153
and state transition constraints; 56
caching issues; 24–25
client-side locking support for; 80
field updaters; 335–336
immutable object use for; 48
in cache implementation design; 106
intrinsic lock enforcement of; 25–26
loss

risk of lock scope reduction; 234
Map operations; 86
put-if-absent; 71–72
statistics gathering hooks use; 179
thread-safety issues

in servlets with state; 19–23



Index 361

AtomicBoolean; 325
AtomicInteger; 324

nonblocking algorithm use; 319
random number generator using;

327li
AtomicLong; 325
AtomicReference; 325

nonblocking algorithm use; 319
safe publication use; 52

AtomicReferenceFieldUpdater; 335
audit(ing)

See also instrumentation;
audit(ing) tools; 28fn
AWT (Abstract Window Toolkit)

See also GUI;
thread use; 9

safety concerns and; 10–11

B
backoff

and nonblocking algorithms; 231fn
barging; 283

See also fairness; ordering; synchro-
nization;

and read-write locks; 287
performance advantages of; 284

barrier(s); 99, 99–101
See also latch(es); semaphores; syn-

chronizers;
-based timer; 260–261
action; 99
memory; 230, 338
point; 99

behavior
See also activities; task(s);

bias
See testing, pitfalls;

bibliography; 355–357
binary latch; 304

AQS-based; 313–314
binary semaphore

mutex use; 99
Bloch, Joshua

(bibliographic reference); 69
block(ing); 92

bounded collections
semaphore management of; 99
testing; 248

context switching impact of; 230
interruptible methods and; 92–94
interruption handling methods; 138

methods
and interruption; 143

non-interruptable; 147–150
operations

testing; 250–252
thread pool size impact; 170

queues; 87–94
See also Semaphore;
and thread pool management;

173
cancellation, problems; 138
cancellation, solutions; 140
Executor functionality com-

bined with; 129
producer-consumer pattern and;

87–92
spin-waiting; 232
state-dependent actions; 291–308

and polling; 295–296
and sleeping; 295–296
condition queues; 296–308
structure; 292li

threads, costs of; 232
waits

timed vs. unbounded; 170
BlockingQueue; 84–85

and state-based preconditions; 57
safe publication use; 52
thread pool use of; 173

bound(ed)
See also constraints; encapsulation;
blocking collections

semaphore management of; 99
buffers

blocking operations; 292
scalability testing; 261
size determination; 261

queues
and producer-consumer pattern;

88
saturation policies; 174–175
thread pool use; 172
thread pool use of; 173

resource; 221
boundaries

See also encapsulation;
task; 113

analysis for parallelism; 123–133
broken multi-threaded programs

strategies for fixing; 16



362 Index

BrokenBarrierException
parallel iterative algorithm use; 99

buffer(s)
See also cache/caching;
bounded

blocking state-dependent opera-
tions with; 292

scalability testing; 261
size determination; 261

BoundedBuffer example; 249li
condition queue use; 297
test case development for; 248

BoundedBufferTest example; 250li
capacities

comparison testing; 261–263
testing; 248

bug pattern(s); 271, 271
See also debugging; design patterns;

testing;
detector; 271

busy-waiting; 295
See also spin-waiting;

C
cache/caching

See also performance;
atomicity issues; 24–25
flushing

and memory barriers; 230
implementation issues

atomic/atomicity; 106
safety; 104

misses
as cost of context switching; 229

result
building; 101–109

Callable; 126li
FutureTask use; 95
results handling capabilities; 125

callbacks
testing use; 257–259

caller-runs saturation policy; 174
cancellation; 135–150

See also interruption; lifecycle; shut-
down;

activity; 135
as form of completion; 95
Future use; 145–147
interruptible lock acquisition; 279–

281
interruption relationship to; 138

long-running GUI tasks; 197–198
non-standard

encapsulation of; 148–150
reasons and strategies; 147–150

points; 140
policy; 136

and thread interruption policy;
141

interruption advantages as im-
plementation strategy; 140

reasons for; 136
shutdown and; 135–166
task

Executor handling; 125
in timed task handling; 131

timed locks use; 279
CancellationException

Callable handling; 98
CAS (compare-and-swap) instructions;

321–324
See also atomic/atomicity, variables;
Java class support in Java 5.0; 324
lock-free algorithm use; 329
nonblocking algorithm use; 319, 329

cascading effects
of thread safety requirements; 28

cellular automata
barrier use for computation of; 101

check-then-act operation
See also compound actions;
as race condition cause; 21
atomic variable handling; 325
compound action

in collection operations; 79
multivariable invariant issues; 67–68
service shutdown issue; 153

checkpoint
state

shutdown issues; 158
checksums

safety testing use; 253
class(es)

as instance confinement context; 59
extension

strategies and risks; 71
with helper classes; 72–73

synchronized wrapper
client-side locking support; 73

thread-safe
and object composition; 55–78



Index 363

cleanup
See also lifecycle;
and interruption handling

protecting data integrity; 142
in end-of-lifecycle processing; 135
JVM shutdown hooks use for; 164

client(s)
See also server;
requests

as natural task boundary; 113
client-side locking; 72–73, 73

See also lock(ing);
and compound actions; 79–82
and condition queues; 306
class extension relationship to; 73
stream class management; 150fn

coarsening
See also lock(ing);
lock; 231, 235fn, 286

code review
as quality assurance strategy; 271

collections
See also hashtables; lists; set(s);
bounded blocking

semaphore management of; 99
concurrent; 84–98

building block; 79–110
copying

as alternative to locking; 83
lock striping use; 237
synchronized; 79–84

concurrent collections vs.; 84
Collections.synchronizedList

safe publication use; 52
Collections.synchronizedXxx

synchronized collection creation; 79
communication

mechanisms for; 1
compare-and-swap (CAS) instructions

See CAS;
comparison

priority-ordered queue use; 89
compilation

dynamic
and performance testing; 267–

268
timing and ordering alterations

thread safety risks; 7
completion; 95

See also lifecycle;
notification

of long-running GUI task; 198
service

Future; 129
task

measuring service time variance;
264–266

volatile variable use with; 39
CompletionService

in page rendering example; 129
composition; 73

See also delegation; encapsulation;
as robust functionality extension

mechanism; 73
of objects; 55–78

compound actions; 22
See also atomic/atomicity; concur-

rent/concurrency, collec-
tions; race conditions;

atomicity handling of; 22–23
concurrency design rules role; 110
concurrent collection support for; 84
examples of

See check-then-act operation;
iteration; navigation; put-
if-absent operation; read-
modify-write; remove-if-
equal operation; replace-if-
equal operation;

in cache implementation; 106
in synchronized collection class use

mechanisms for handling; 79–82
synchronization requirements; 29

computation
compute-intensive code

impact on locking behavior; 34
thread pool size impact; 170

deferred
design issues; 125

thread-local
and performance testing; 268

Concurrent Programming in Java; 42,
57, 59, 87, 94, 95, 98, 99, 101,
124, 201, 211, 279, 282, 304

concurrent/concurrency
See also parallelizing/parallelism;

safety; synchroniza-
tion/synchronized;

and synchronized collections; 84
and task independence; 113
annotations; 353–354
brief history; 1–2



364 Index

building blocks; 79–110
cache implementation issues; 103
collections; 84–98
ConcurrentHashMap locking strategy

advantages; 85
debugging

costs vs. performance optimiza-
tion value; 224

design rules; 110
errors

See deadlock; livelock; race con-
ditions; starvation;

fine-grained
and thread-safe data models; 201

modifying
synchronized collection prob-

lems with; 82
object pool disadvantages; 241
poor; 30
prevention

See also single-threaded;
single-threaded executor use;

172, 177–178
read-write lock advantages; 286–289
testing; 247–274

ConcurrentHashMap; 84–86
performance advantages of; 242

ConcurrentLinkedDeque; 92
ConcurrentLinkedQueue; 84–85

algorithm; 319–336
reflection use; 335
safe publication use; 52

ConcurrentMap; 84, 87li
safe publication use; 52

ConcurrentModificationException
avoiding; 85
fail-fast iterators use; 82–83

ConcurrentSkipListMap; 85
ConcurrentSkipListSet; 85
Condition; 307li

explicit condition object use; 306
intrinsic condition queues vs.

performance considerations; 308
condition

predicate; 299, 299–300
lock and condition variable rela-

tionship; 308
queues; 297

See also synchronizers;
AQS support for; 312

blocking state-dependent opera-
tions use; 296–308

explicit; 306–308
intrinsic; 297
intrinsic, disadvantages of; 306
using; 298

variables
explicit; 306–308

waits
and condition predicate; 299
canonical form; 301li
interruptible, as feature of Con-

dition; 307
uninterruptable, as feature of

Condition; 307
waking up from, condition

queue handling; 300–301
conditional

See also blocking/blocks;
notification; 303

as optimization; 303
subclassing safety issues; 304
use; 304li

read-modify-writer operations
atomic variable support for; 325

configuration
of ThreadPoolExecutor; 171–179
thread creation

and thread factories; 175
thread pool

post-construction manipulation;
177–179

confinement
See also encapsulation; single-

thread(ed);
instance; 59, 58–60
stack; 44, 44–45
thread; 42, 42–46

ad-hoc; 43
and execution policy; 167
in Swing; 191–192
role, synchronization policy

specification; 56
serial; 90, 90–92
single-threaded GUI framework

use; 190
ThreadLocal; 45–46

Connection
thread confinement use; 43
ThreadLocal variable use with; 45



Index 365

consistent/consistency
copy timeliness vs.

as design tradeoff; 62
data view timeliness vs.

as design tradeoff; 66, 70
lock ordering

and deadlock avoidance; 206
weakly consistent iterators; 85

constraints
See also invariant(s); post-conditions;

pre-conditions;
state transition; 56
thread creation

importance of; 116
construction/constructors

See also lifecycle;
object

publication risks; 41–42
thread handling issues; 41–42

partial
unsafe publication influence; 50

private constructor capture idiom;
69fn

starting thread from
as concurrency bug pattern; 272

ThreadPoolExecutor; 172li
post-construction customization;

177
consumers

See also blocking, queues; producer-
consumer pattern;

blocking queues use; 88
producer-consumer pattern

blocking queues and; 87–92
containers

See also collections;
blocking queues as; 94
scoped

thread safety concerns; 10
contention/contended

as performance inhibiting factor; 263
intrinsic locks vs. ReentrantLock

performance considerations;
282–286

lock
costs of; 320
measurement; 240–241
reduction impact; 211
reduction, strategies; 232–242
scalability impact; 232
signal method reduction in; 308

locking vs. atomic variables; 328
resource

and task execution policy; 119
deque advantages; 92

scalability under
as AQS advantage; 311

scope
atomic variable limitation of; 324

synchronization; 230
thread

collision detection help with; 321
latches help with; 95

throughput impact; 228
unrealistic degrees of

as performance testing pitfall;
268–269

context switching; 229
See also performance;
as cost of thread use; 229–230
condition queues advantages; 297
cost(s); 8
message logging

reduction strategies; 243–244
performance impact of; 221
reduction; 243–244
signal method reduction in; 308
throughput impact; 228

control flow
See also event(s); lifecycle; MVC

(model-view-controller) pat-
tern;

coordination
in producer-consumer pattern;

94
event handling

model-view objects; 195fg
simple; 194fg

latch characteristics; 94
model-view-controller pattern

and inconsistent lock ordering;
190

vehicle tracking example; 61
convenience

See also responsiveness;
as concurrency motivation; 2

conventions
annotations

concurrency documentation; 6
Java monitor pattern; 61



366 Index

cooperation/cooperating
See also concurrent/concurrency;

synchronization;
end-of-lifecycle mechanisms

interruption as; 93, 135
model, view, and controller objects

in GUI applications
inconsistent lock ordering; 190

objects
deadlock, lock-ordering; 212li
deadlock, possibilities; 211
livelock possibilities; 218

thread
concurrency mechanisms for; 79

coordination
See also synchronization/synchro-

nized;
control flow

producer-consumer pattern,
blocking queues use; 94

in multithreaded environments
performance impact of; 221

mutable state access
importance of; 110

copying
collections

as alternative to locking; 83
data

thread safety consequences; 62
CopyOnWriteArrayList; 84, 86–87

safe publication use; 52
versioned data model use

in GUI applications; 201
CopyOnWriteArraySet

safe publication use; 52
synchronized Set replacement; 86

core pool size parameter
thread creation impact; 171, 172fn

correctly synchronized program; 341
correctness; 17

See also safety;
testing; 248–260

goals; 247
thread safety defined in terms of; 17

corruption
See also atomic/atomicity; encapsu-

lation; safety; state;
data

and interruption handling; 142
causes, stale data; 35

cost(s)
See also guidelines; performance;

safety; strategies; tradeoffs;
thread; 229–232

context switching; 8
locality loss; 8

tradeoffs
in performance optimization

strategies; 223
CountDownLatch; 95

AQS use; 315–316
puzzle-solving framework use; 184
TestHarness example use; 96

counting semaphores; 98
See also Semaphore;
permits, thread relationships; 248
SemaphoreOnLock example; 310li

coupling
See also dependencies;
behavior

blocking queue handling; 89
implicit

between tasks and execution
policies; 167–170

CPU utilization
See also performance;
and sequential execution; 124
condition queues advantages; 297
impact on performance testing; 261
monitoring; 240–241
optimization

as multithreading goal; 222
spin-waiting impact on; 295

creation
See also copying; design; policy(s);

representation;
atomic compound actions; 80
class

existing thread-safe class reuse
advantages over; 71

collection copy
as immutable object strategy; 86

of immutable objects; 48
of state-dependent methods; 57
synchronizer; 94
thread; 171–172

explicitly, for tasks; 115
thread factory use; 175–177
unbounded, disadvantages; 116

thread pools; 120
wrappers



Index 367

during memoization; 103
customization

thread configuration
ThreadFactory use; 175

thread pool configuration
post-construction; 177–179

CyclicBarrier; 99
parallel iterative algorithm use; 102li
testing use; 255li, 260li

D
daemon threads; 165
data

See also state;
contention avoidance

and scalability; 237
hiding

thread-safety use; 16
nonatomic

64-bit operations; 36
sharing; 33–54

See also page renderer examples;
access coordination; 277–290, 319
advantages of threads; 2
shared data models; 198–202
synchronization costs; 8

split data models; 201, 201–202
stale; 35–36
versioned data model; 201

data race; 341
race condition vs.; 20fn

data structure(s)
See also collections; object(s);

queue(s); stack(s); trees;
handling

See atomic/atomicity; confine-
ment; encapsulation; itera-
tors/iteration; recursion;

protection
and interruption handling; 142

shared
as serialization source; 226

testing insertion and removal han-
dling; 248

database(s)
deadlock recovery capabilities; 206
JDBC Connection

thread confinement use; 43
thread pool size impact; 171

Date
effectively immutable use; 53

dead-code elimination
and performance testing; 269–270

deadline-based waits
as feature of Condition; 307

deadlock(s); 205, 205–217
See also concurrent/concurrency,

errors; liveness; safety;
analysis

thread dump use; 216–217
as liveness failure; 8
avoidance

and thread confinement; 43fn
nonblocking algorithm advan-

tages; 319, 329
strategies for; 215–217

cooperating objects; 211
diagnosis

strategies for; 215–217
dynamic lock order; 207–210
in GUI framework; 190
lock splitting as risk factor for; 235
locking during iteration risk of; 83
recovery

database capabilities; 206
polled and timed lock acquisi-

tion use; 279, 280
timed locks use; 215

reentrancy avoidance of; 27
resource; 213–215
thread starvation; 169, 168–169, 215

deadly embrace
See deadlock;

death, thread
abnormal, handling; 161–163

debugging
See also analysis; design; documenta-

tion; recovery; testing;
annotation use; 353
concurrency

costs vs. performance optimiza-
tion value; 224

custom thread factory as aid for; 175
JVM optimization pitfalls; 38fn
thread dump use; 216fn
thread dumps

intrinsic lock advantage over
ReentrantLock; 285–286

unbounded thread creation risks;
116



368 Index

decomposition
See also composition; delegation;

encapsulation;
producer-consumer pattern; 89
tasks-related; 113–134

Decorator pattern
collection class use for wrapper fac-

tories; 60
decoupling

of activities
as producer-consumer pattern

advantage; 87
task decomposition as represen-

tation of; 113
of interrupt notification from han-

dling in Thread interruption
handling methods; 140

task submission from execution
and Executor framework; 117

delayed tasks
See also time/timing;
handling of; 123

DelayQueue
time management; 123

delegation
See also composition; design; safety;
advantages

class extension vs.; 314
for class maintenance safety; 234

thread safety; 234
failure causes; 67–68
management; 62

dependencies
See also atomic/atomicity; invari-

ant(s); postconditions; pre-
conditions; state;

code
as removal, as producer-

consumer pattern advantage;
87

in multiple-variable invariants
thread safety issues; 24

state
blocking operations; 291–308
classes; 291
classes, building; 291–318
managing; 291–298
operations; 57
operations, condition queue han-

dling; 296–308

task freedom from, importance
of; 113

task
and execution policy; 167
thread starvation deadlock; 168

task freedom from
importance; 113

Deque; 92
deques

See also collections; data structure(s);
queue(s);

work stealing and; 92
design

See also documentation; guidelines;
policies; representation;
strategies;

class
state ownership as element of;

57–58
concurrency design rules; 110
concurrency testing; 250–252
condition queue encapsulation; 306
condition queues

and condition predicate; 299
control flow

latch characteristics; 94
execution policy

influencing factors; 167
GUI single-threaded use

rationale for; 189–190
importance

in thread-safe programs; 16
of thread-safe classes

guidelines; 55–58
parallelism

application analysis for; 123–133
parallelization criteria; 181
performance

analysis, monitoring, and im-
provement; 221–245

performance tradeoffs
evaluation of; 223–225

principles
simplicity of final fields; 48

producer-consumer pattern
decoupling advantages; 117
Executor framework use; 117

program
and task decomposition; 113–134

result-bearing tasks
representation issues; 125



Index 369

strategies
for InterruptedException; 93

thread confinement; 43
thread pool size

relevant factors for; 170
timed tasks; 131–133
tradeoffs

collection copying vs. locking
during iteration; 83

concurrent vs. synchronized
collections; 85

copy-on-write collections; 87
synchronized block; 34
timeliness vs. consistency; 62,

66, 70
design patterns

antipattern example
double-checked locking; 348–349

examples
See Decorator pattern; MVC

(model-view-controller) pat-
tern; producer-consumer
pattern; Singleton pattern;

destruction
See teardown;

dining philosophers problem; 205
See also deadlock;

discard saturation policy; 174
discard-oldest saturation policy; 174
documentation

See also debugging; design; good
practices; guidelines; pol-
icy(s);

annotation use; 6, 353
concurrency design rules role; 110
critical importance for conditional

notification use; 304
importance

for special execution policy re-
quirements; 168

stack confinement usage; 45
of synchronization policies; 74–77
safe publication requirements; 54

double-checked locking (DCL); 348–
349

as concurrency bug pattern; 272
downgrading

read-write lock implementation
strategy; 287

driver program
for TimedPutTakeTest example; 262

dynamic
See also responsiveness;
compilation

as performance testing pitfall;
267–268

lock order deadlocks; 207–210

E
EDT (event dispatch thread)

GUI frameworks use; 5
single-threaded GUI use; 189
thread confinement use; 42

Effective Java Programming Language
Guide; 46–48, 73, 166, 257,
292, 305, 314, 347

efficiency
See also performance;
responsiveness vs.

polling frequency; 143
result cache, building; 101–109

elision
lock; 231fn

JVM optimization; 286
encapsulation

See also access; atomic/atomicity;
confinement; safety; state;
visibility;

breaking
costs of; 16–17

code
as producer-consumer pattern

advantage; 87
composition use; 74
concurrency design rules role; 110
implementation

class extension violation of; 71
instance confinement relationship

with; 58–60
invariant management with; 44
locking behavior

reentrancy facilitation of; 27
non-standard cancellation; 148–150
of condition queues; 306
of lifecycle methods; 155
of synchronization

hidden iterator management
through; 83

publication dangers for; 39
state



370 Index

breaking, costs of; 16–17
invariant protection use; 83
ownership relationship with; 58
synchronizer role; 94
thread-safe class use; 23

synchronization policy
and client-side locking; 71

thread ownership; 150
thread-safety role; 55
thread-safety use; 16

end-of-lifecycle
See also thread(s);
management techniques; 135–166

enforcement
locking policies, lack of; 28

entry protocols
state-dependent operations; 306

Error
Callable handling; 97

error(s)
as cancellation reason; 136
concurrency

See deadlock; livelock; race con-
ditions;

escape; 39
analysis; 230
prevention

in instance confinement; 59
publication and; 39–42
risk factors

in instance confinement; 60
Ethernet protocol

exponential backoff use; 219
evaluation

See also design; measurement; test-
ing;

of performance tradeoffs; 223–225
event(s); 191

as cancellation reason; 136
dispatch thread

GUI frameworks use; 5
handling

control flow, simple; 194fg
model-view objects; 195fg
threads benefits for; 4

latch handling based on; 99
main event loop

vs. event dispatch thread; 5
notification

copy-on-write collection advan-
tages; 87

sequential processing
in GUI applications; 191

timing
and liveness failures; 8

example classes
AtomicPseudoRandom; 327li
AttributeStore; 233li
BackgroundTask; 199li
BarrierTimer; 261li
BaseBoundedBuffer; 293li
BetterAttributeStore; 234li
BetterVector; 72li
Big; 258li
BoundedBuffer; 248, 249li, 297, 298li
BoundedBufferTest; 250li
BoundedExecutor; 175
BoundedHashSet; 100li
BrokenPrimeProducer; 139li
CachedFactorizer; 31li
CancellableTask; 151li
CasCounter; 323li
CasNumberRange; 326li
CellularAutomata; 102li
Computable; 103li
ConcurrentPuzzleSolver; 186li
ConcurrentStack; 331li
ConditionBoundedBuffer; 308, 309li
Consumer; 256li
Counter; 56li
CountingFactorizer; 23li
CrawlerThread; 157li
DelegatingVehicleTracker; 65li,

201
DemonstrateDeadlock; 210li
Dispatcher; 212li, 214li
DoubleCheckedLocking; 349li
ExpensiveFunction; 103li
Factorizer; 109li
FileCrawler; 91li
FutureRenderer; 128li
GrumpyBoundedBuffer; 292, 294li
GuiExecutor; 192, 194li
HiddenIterator; 84li
ImprovedList; 74li
Indexer; 91li
IndexerThread; 157li
IndexingService; 156li
LazyInitRace; 21li
LeftRightDeadlock; 207li
LifecycleWebServer; 122li
LinkedQueue; 334li



Index 371

ListHelper; 73, 74li
LogService; 153, 154li
LogWriter; 152li
Memoizer; 103li, 108li
Memoizer2; 104li
Memoizer3; 106li
MonitorVehicleTracker; 63li
MutableInteger; 36li
MutablePoint; 64li
MyAppThread; 177, 178li
MyThreadFactory; 177li
Node; 184li
NoVisibility; 34li
NumberRange; 67li
OneShotLatch; 313li
OneValueCache; 49li, 51li
OutOfTime; 124li, 161
PersonSet; 59li
Point; 64li
PossibleReordering; 340li
Preloader; 97li
PrimeGenerator; 137li
PrimeProducer; 141li
PrivateLock; 61li
Producer; 256li
PutTakeTest; 255li, 260
Puzzle; 183li
PuzzleSolver; 188li
QueueingFuture; 129li
ReaderThread; 149li
ReadWriteMap; 288li
ReentrantLockPseudoRandom; 327li
Renderer; 130li
SafeListener; 42li
SafePoint; 69li
SafeStates; 350li
ScheduledExecutorService; 145li
SemaphoreOnLock; 310li
Sequence; 7li
SequentialPuzzleSolver; 185li
ServerStatus; 236li
SimulatedCAS; 322li
SingleThreadRenderer; 125li
SingleThreadWebServer; 114li
SleepyBoundedBuffer; 295, 296li
SocketUsingTask; 151li
SolverTask; 186li
StatelessFactorizer; 18li
StripedMap; 238li
SwingUtilities; 191, 192, 193li
Sync; 343li

SynchronizedFactorizer; 26li
SynchronizedInteger; 36li
TaskExecutionWebServer; 118li
TaskRunnable; 94li
Taxi; 212li, 214li
TestHarness; 96li
TestingThreadFactory; 258li
ThisEscape; 41li
ThreadDeadlock; 169li
ThreadGate; 305li
ThreadPerTaskExecutor; 118li
ThreadPerTaskWebServer; 115li
ThreeStooges; 47li
TimedPutTakeTest; 261
TimingThreadPool; 180li
TrackingExecutorService; 159li
UEHLogger; 163li
UnsafeCachingFactorizer; 24li
UnsafeCountingFactorizer; 19li
UnsafeLazyInitialization; 345li
UnsafeStates; 40li
ValueLatch; 184, 187li
VisualComponent; 66li
VolatileCachedFactorizer; 50li
WebCrawler; 160li
Widget; 27li
WithinThreadExecutor; 119li
WorkerThread; 227li

exceptions
See also error(s); interruption; lifecy-

cle;
and precondition failure; 292–295
as form of completion; 95
Callable handling; 97
causes

stale data; 35
handling

Runnable limitations; 125
logging

UEHLogger example; 163li
thread-safe class handling; 82
Timer disadvantages; 123
uncaught exception handler; 162–

163
unchecked

catching, disadvantages; 161
Exchanger

See also producer-consumer pattern;
as two-party barrier; 101
safe publication use; 53



372 Index

execute
submit vs., uncaught exception han-

dling; 163
execution

policies
design, influencing factors; 167
Executors factory methods; 171
implicit couplings between tasks

and; 167–170
parallelism analysis for; 123–133

task; 113–134
policies; 118–119
sequential; 114

ExecutionException
Callable handling; 98

Executor framework; 117li, 117–133
and GUI event processing; 191, 192
and long-running GUI tasks; 195
as producer-consumer pattern; 88
execution policy design; 167
FutureTask use; 97
GuiExecutor example; 194li
single-threaded

deadlock example; 169li
ExecutorCompletionService

in page rendering example; 129
Executors

factory methods
thread pool creation with; 120

ExecutorService
and service shutdown; 153–155
cancellation strategy using; 146
checkMail example; 158
lifecycle methods; 121li, 121–122

exhaustion
See failure; leakage; resource exhaus-

tion;
exit protocols

state-dependent operations; 306
explicit locks; 277–290

interruption during acquisition; 148
exponential backoff

and avoiding livelock; 219
extending

existing thread-safe classes
and client-side locking; 73
strategies and risks; 71

ThreadPoolExecutor; 179

external locking; 73

F
factory(s)

See also creation;
methods

constructor use with; 42
newTaskFor; 148
synchronized collections; 79, 171
thread pool creation with; 120

thread; 175, 175–177
fail-fast iterators; 82

See also iteration/iterators;
failure

See also exceptions; liveness, failure;
recovery; safety;

causes
stale data; 35

graceful degradation
task design importance; 113

management techniques; 135–166
modes

testing for; 247–274
precondition

bounded buffer handling of; 292
propagation to callers; 292–295

thread
uncaught exception handlers;

162–163
timeout

deadlock detection use; 215
fairness

See also responsiveness; synchroniza-
tion;

as concurrency motivation; 1
fair lock; 283
nonfair lock; 283
nonfair semaphores vs. fair

performance measurement; 265
queuing

intrinsic condition queues; 297fn
ReentrantLock options; 283–285
ReentrantReadWriteLock; 287
scheduling

thread priority manipulation
risks; 218

’fast path’ synchronization
CAS-based operations vs.; 324
costs of; 230



Index 373

feedback
See also GUI;
user

in long-running GUI tasks; 196li
fields

atomic updaters; 335–336
hot fields

avoiding; 237
updating, atomic variable ad-

vantages; 239–240
initialization safety

final field guarantees; 48
FIFO queues

BlockingQueue implementations; 89
files

See also data; database(s);
as communication mechanism; 1

final
and immutable objects; 48
concurrency design rules role; 110
immutability not guaranteed by; 47
safe publication use; 52
volatile vs.; 158fn

finalizers
JVM orderly shutdown use; 164
warnings; 165–166

finally block
See also interruptions; lock(ing);
importance with explicit locks; 278

FindBugs code auditing tool
See also tools;
as static analysis tool example; 271
locking failures detected by; 28fn
unreleased lock detector; 278fn

fire-and-forget event handling strategy
drawbacks of; 195

flag(s)
See mutex;
cancellation request

as cancellation mechanism; 136
interrupted status; 138

flexibility
See also responsiveness; scalability;
and instance confinement; 60
decoupling task submission from

execution, advantages for;
119

immutable object design for; 47
in CAS-based algorithms; 322
interruption policy; 142
resource management

as blocking queue advantage; 88
task design guidelines for; 113

task design role; 113
flow control

communication networks, thread
pool comparison; 173fn

fragility
See also debugging; guidelines; ro-

bustness; safety; scalability;
testing;

issues and causes
as class extension; 71
as client-side locking; 73
interruption use for non-

standard purposes; 138
issue; 43
piggybacking; 342
state-dependent classes; 304
volatile variables; 38

solutions
composition; 73
encapsulation; 17
stack confinement vs. ad-hoc

thread confinement; 44
frameworks

See also AQS framework; data struc-
ture(s); Executor framework;
RMI framework; Servlets
framework;

application
and ThreadLocal; 46

serialization hidden in; 227
thread use; 9
thread use impact on applications; 9
threads benefits for; 4

functionality
extending for existing thread-safe

classes
strategies and risks; 71

tests
vs. performance tests; 260

Future; 126li
cancellation

of long-running GUI task; 197
strategy using; 145–147

characteristics of; 95
encapsulation of non-standard can-

cellation use; 148
results handling capabilities; 125
safe publication use; 53
task lifecycle representation by; 125



374 Index

task representation
implementation strategies; 126

FutureTask; 95
AQS use; 316
as latch; 95–98
completion notification

of long-running GUI task; 198
efficient and scalable cache imple-

mentation with; 105
example use; 97li, 108li, 151li, 199li
task representation use; 126

G
garbage collection

as performance testing pitfall; 266
gate

See also barrier(s); conditional;
latch(es);

as latch role; 94
ThreadGate example; 304

global variables
ThreadLocal variables use with; 45

good practices
See design; documentation; encap-

sulation; guidelines; perfor-
mance; strategies;

graceful
degradation

and execution policy; 121
and saturation policy; 175
limiting task count; 119
task design importance; 113

shutdown
vs. abrupt shutdown; 153

granularity
See also atomic/atomicity; scope;
atomic variable advantages; 239–240
lock

Amdahl’s law insights; 229
reduction of; 235–237

nonblocking algorithm advantages;
319

serialization
throughput impact; 228

timer
measurement impact; 264

guarded
objects; 28, 54
state

locks use for; 27–29

@GuardedBy; 353–354
and documenting synchronization

policy; 7fn, 75
GUI (Graphical User Interface)

See also event(s); single-thread(ed);
Swing;

applications; 189–202
thread safety concerns; 10–11

frameworks
as single-threaded task execu-

tion example; 114fn
long-running task handling; 195–198
MVC pattern use

in vehicle tracking example; 61
response-time sensitivity

and execution policy; 168
single-threaded use

rationale for; 189–190
threads benefits for; 5

guidelines
See also design; documentation; pol-

icy(s); strategies;
allocation vs. synchronization; 242
atomicity

definitions; 22
concurrency design rules; 110
Condition methods

potential confusions; 307
condition predicate

documentation; 299
lock and condition queue rela-

tionship; 300
condition wait usage; 301
confinement; 60
deadlock avoidance

alien method risks; 211
lock ordering; 206
open call advantages; 213
thread starvation; 169

documentation
value for safety; 16

encapsulation; 59, 83
value for safety; 16

exception handling; 163
execution policy

design; 119
special case implications; 168

final field use; 48
finalizer precautions; 166
happens-before use; 346
immutability



Index 375

effectively immutable objects; 53
objects; 46
requirements for; 47
value for safety; 16

initialization safety; 349, 350
interleaving diagrams; 6
interruption handling

cancellation relationship; 138
importance of interruption pol-

icy knowledge; 142, 145
interrupt swallowing precau-

tions; 143
intrinsic locks vs. ReentrantLock;

285
invariants

locking requirements for; 29
thread safety importance; 57
value for safety; 16

lock
contention, reduction; 233
contention, scalability impact;

231
holding; 32
ordering, deadlock avoidance;

206
measurement

importance; 224
notification; 303
objects

stateless, thread-safety of; 19
operation ordering

synchronization role; 35
optimization

lock contention impact; 231
premature, avoidance of; 223

parallelism analysis; 123–133
performance

optimization questions; 224
simplicity vs.; 32

postconditions; 57
private field use; 48
publication; 52, 54
safety

definition; 18
testing; 252

scalability; 84
attributes; 222
locking impact on; 232

sequential loops
parallelization criteria; 181

serialization sources; 227

sharing
safety strategies; 16

sharing objects; 54
simplicity

performance vs.; 32
starvation avoidance

thread priority precautions; 218
state

consistency preservation; 25
managing; 23
variables, independent; 68

stateless objects
thread-safety of; 19

synchronization
immutable objects as replace-

ment for; 52
shared state requirements for; 28

task cancellation
criteria for; 147

testing
effective performance tests; 270
timing-sensitive data races; 254

this reference
publication risks; 41

threads
daemon thread precautions; 165
handling encapsulation; 150
lifecycle methods; 150
pools; 174
safety; 18, 55

volatile variables; 38

H
hand-over-hand locking; 282
happens-before

JMM definition; 340–342
piggybacking; 342–344
publication consequences; 244–249

hardware
See also CPU utilization;
concurrency support; 321–324
JVM interaction

reordering; 34
platform memory models; 338
timing and ordering alterations by

thread safety risks; 7
hashcodes/hashtables

See also collections;
ConcurrentHashMap; 84–86

performance advantages of; 242
Hashtable; 79



376 Index

safe publication use; 52
inducing lock ordering with; 208
lock striping use; 237

heap inspection tools
See also tools;
measuring memory usage; 257

Heisenbugs; 247fn
helper classes

and extending class functionality;
72–73

heterogeneous tasks
parallelization limitations; 127–129

hijacked signal
See missed signals;

Hoare, C. A. R.
Java monitor pattern inspired by

(bibliographic reference); 60fn
hoisting

variables
as JVM optimization pitfall; 38fn

homogeneous tasks
parallelism advantages; 129

hooks
See also extending;
completion

in FutureTask; 198
shutdown; 164

JVM orderly shutdown; 164–165
single shutdown

orderly shutdown strategy; 164
ThreadPoolExecutor extension; 179

hot fields
avoidance

scalability advantages; 237
updating

atomic variable advantages; 239–
240

HotSpot JVM
dynamic compilation use; 267

’how fast’; 222
See also GUI; latency; responsive-

ness;
vs. ’how much’; 222

’how much’; 222
See also capacity; scalability;

throughput;
importance for server applications;

223
vs. ’how fast’; 222

HttpSession
thread-safety requirements; 58fn

I
I/O

See also resource(s);
asynchronous

non-interruptable blocking; 148
message logging

reduction strategies; 243–244
operations

thread pool size impact; 170
sequential execution limitations; 124
server applications

task execution implications; 114
synchronous

non-interruptable blocking; 148
threads use to simulate; 4

utilization measurement tools; 240
idempotence

and race condition mitigation; 161
idioms

See also algorithm(s); conventions;
design patterns; documen-
tation; policy(s); protocols;
strategies;

double-checked locking (DCL)
as bad practice; 348–349

lazy initialization holder class; 347–
348

private constructor capture; 69fn
safe initialization; 346–348
safe publication; 52–53

IllegalStateException
Callable handling; 98

@Immutable; 7, 353
immutable/immutability; 46–49

See also atomic/atomicity; safety;
concurrency design rules role; 110
effectively immutable objects; 53
initialization safety guarantees; 51
initialization safety limitation; 350
objects; 46

publication with volatile; 48–49
requirements for; 47

role in synchronization policy; 56
thread-safety use; 16

implicit coupling
See also dependencies;
between tasks and execution poli-

cies; 167–170



Index 377

improper publication; 51
See also safety;

increment operation (++)
as non-atomic operation; 19

independent/independence; 25
See also dependencies; encapsula-

tion; invariant(s); state;
multiple-variable invariant lack of

thread safety issues; 24
parallelization use; 183
state variables; 66, 66–67

lock splitting use with; 235
task

concurrency advantages; 113
inducing lock ordering

for deadlock avoidance; 208–210
initialization

See also construction/constructors;
lazy; 21

as race condition cause; 21–22
safe idiom for; 348li
unsafe publication risks; 345

safety
and immutable objects; 51
final field guarantees; 48
idioms for; 346–348
JMM support; 349–350

inner classes
publication risks; 41

instance confinement; 59, 58–60
See also confinement; encapsulation;

instrumentation
See also analysis; logging; monitor-

ing; resource(s), manage-
ment; statistics; testing;

of thread creation
thread pool testing use; 258

potential
as execution policy advantage;

121
service shutdown use; 158
support

Executor framework use; 117
thread pool size requirements deter-

mination use of; 170
ThreadPoolExecutor hooks for; 179

interfaces
user

threads benefits for; 5

interleaving
diagram interpretations; 6
generating

testing use; 259
logging output

and client-side locking; 150fn
operation; 81fg
ordering impact; 339
thread

dangers of; 5–8
timing dependencies impact on

race conditions; 20
thread execution

in thread safety definition; 18
interrupted (Thread)

usage precautions; 140
InterruptedException

flexible interruption policy advan-
tages; 142

interruption API; 138
propagation of; 143li
strategies for handling; 93
task cancellation

criteria for; 147
interruption(s); 93, 135, 138–150

See also completion; errors; lifecycle;
notification; termination;
triggering;

and condition waits; 307
blocking and; 92–94
blocking test use; 251
interruption response strategy

exception propagation; 142
status restoration; 142

lock acquisition use; 279–281
non-cancellation uses for; 143
non-interruptable blocking

handling; 147–150
reasons for; 148

policies; 141, 141–142
preemptive

deprecation reasons; 135fn
request

strategies for handling; 140
responding to; 142–150
swallowing

as discouraged practice; 93
bad consequences of; 140
when permitted; 143

thread; 138
volatile variable use with; 39



378 Index

intransitivity
encapsulation characterized by; 150

intrinsic condition queues; 297
disadvantages of; 306

intrinsic locks; 25, 25–26
See also encapsulation; lock(ing);

safety; synchronization;
thread(s);

acquisition, non-interruptable block-
ing reason; 148

advantages of; 285
explicit locks vs.; 277–278
intrinsic condition queue relation-

ship to; 297
limitations of; 28
recursion use; 237fn
ReentrantLock vs.; 282–286
visibility management with; 36

invariant(s)
See also atomic/atomicity; post-

conditions; pre-conditions;
state;

and state variable publication; 68
BoundedBuffer example; 250
callback testing; 257
concurrency design rules role; 110
encapsulation

state, protection of; 83
value for; 44

immutable object use; 49
independent state variables require-

ments; 66–67
multivariable

and atomic variables; 325–326
atomicity requirements; 57, 67–

68
locking requirements for; 29
preservation of, as thread safety

requirement; 24
thread safety issues; 24

preservation of
immutable object use; 46
mechanisms and synchroniza-

tion policy role; 55–56
publication dangers for; 39
specification of

thread-safety use; 16
thread safety role; 17

iostat application
See also measurement; tools;
I/O measurement; 240

iterators/iteration
See also concurrent/concurrency;

control flow; recursion;
as compound action

in collection operations; 79
atomicity requirements during; 80
fail-fast; 82

ConcurrentModificationExcep-
tion exception with; 82–83

hidden; 83–84
locking

concurrent collection elimination
of need for; 85

disadvantages of; 83
parallel iterative algorithms

barrier management of; 99
parallelization of; 181
unreliable

and client-side locking; 81
weakly consistent; 85

J
Java Language Specification, The; 53,

218fn, 259, 358
Java Memory Model (JMM); 337–352

See also design; safety; synchroniza-
tion; visibility;

initialization safety guarantees for
immutable objects; 51

Java monitor pattern; 60, 60–61
composition use; 74
vehicle tracking example; 61–71

Java Programming Language, The; 346
java.nio package

synchronous I/O
non-interruptable blocking; 148

JDBC (Java Database Connectivity)
Connection

thread confinement use; 43
JMM (Java Memory Model)

See Java Memory Model (JMM);
join (Thread)

timed
problems with; 145

JSPs (JavaServer Pages)
thread safety requirements; 10

JVM (Java Virtual Machine)
See also optimization;
deadlock handling limitations; 206
escape analysis; 230–231
lock contention handling; 320fn



Index 379

nonblocking algorithm use; 319
optimization pitfalls; 38fn
optimizations; 286
service shutdown issues; 152–153
shutdown; 164–166

and daemon threads; 165
orderly shutdown; 164

synchronization optimization by;
230

thread timeout interaction
and core pool size; 172fn

thread use; 9
uncaught exception handling; 162fn

K
keep-alive time

thread termination impact; 172

L
latch(es); 94, 94–95

See also barriers; blocking;
semaphores; synchroniz-
ers;

barriers vs.; 99
binary; 304

AQS-based; 313–314
FutureTask; 95–98
puzzle-solving framework use; 184
ThreadGate example; 304

layering
three-tier application

as performance vs. scalability
illustration; 223

lazy initialization; 21
as race condition cause; 21–22
safe idiom for; 348li
unsafe publication risks; 345

leakage
See also performance;
resource

testing for; 257
thread; 161

Timer problems with; 123
UncaughtExceptionHandler

prevention of; 162–163
lexical scope

as instance confinement context; 59
library

thread-safe collections
safe publication guarantees; 52

Life cellular automata game
barrier use for computation of; 101

lifecycle
See also cancellation; completion;

construction/constructors;
Executor; interruption; shut-
down; termination; thread(s);
time/timing;

encapsulation; 155
Executor

implementations; 121–122
management strategies; 135–166
support

Executor framework use; 117
task

and Future; 125
Executor phases; 125

thread
performance impact; 116
thread-based service manage-

ment; 150
lightweight processes

See threads;
linked lists

LinkedBlockingDeque; 92
LinkedBlockingQueue; 89

performance advantages; 263
thread pool use of; 173–174

LinkedList; 85
Michael-Scott nonblocking queue;

332–335
nonblocking; 330

List
CopyOnWriteArrayList as concur-

rent collection for; 84, 86
listeners

See also event(s);
action; 195–197
Swing

single-thread rule exceptions;
190

Swing event handling; 194
lists

See also collections;
CopyOnWriteArrayList

safe publication use; 52
versioned data model use; 201

LinkedList; 85
List

CopyOnWriteArrayList as con-
current replacement; 84, 86



380 Index

Little’s law
lock contention corollary; 232fn

livelock; 219, 219
See also concurrent/concurrency,

errors; liveness;
as liveness failure; 8

liveness
See also performance; responsiveness

failure;
causes

See deadlock; livelock; missed
signals; starvation;

failure
avoidance; 205–220

improper lock acquisition risk of; 61
nonblocking algorithm advantages;

319–336
performance and

in servlets with state; 29–32
safety vs.

See safety;
term definition; 8
testing

criteria; 248
thread safety hazards for; 8

local variables
See also encapsulation; state; vari-

ables;
for thread confinement; 43
stack confinement use; 44

locality, loss of
as cost of thread use; 8

Lock; 277li, 277–282
and Condition; 307
interruptible acquisition; 148
timed acquisition; 215

lock(ing); 85
See also confinement; encapsulation;

@GuardedBy; safety; synchro-
nization;

acquisition
AQS-based synchronizer opera-

tions; 311–313
improper, liveness risk; 61
interruptible; 279–281
intrinsic, non-interruptable

blocking reason; 148
nested, as deadlock risk; 208
polled; 279
protocols, instance confinement

use; 60

reentrant lock count; 26
timed; 279

and instance confinement; 59
atomic variables vs.; 326–329
avoidance

immutable objects use; 49
building

AQS use; 311
client-side; 72–73, 73

and compound actions; 79–82
condition queue encapsulation

impact on; 306
stream class management; 150fn
vs. class extension; 73

coarsening; 231
as JVM optimization; 286
impact on splitting synchronized

blocks; 235fn
concurrency design rules role; 110
ConcurrentHashMap strategy; 85
ConcurrentModificationException

avoidance with; 82
condition variable and condition

predicate relationship; 308
contention

measurement; 240–241
reduction, guidelines; 233
reduction, impact; 211
reduction, strategies; 232–242
scalability impact of; 232

coupling; 282
cyclic locking dependencies

as deadlock cause; 205
disadvantages of; 319–321
double-checked

as concurrency bug pattern; 272
elision; 231fn

as JVM optimization; 286
encapsulation of

reentrancy facilitation; 27
exclusive

alternative to; 239–240
alternatives to; 321
inability to use, as Concurrent-

HashMap disadvantage; 86
timed lock use; 279

explicit; 277–290
interruption during lock acquisi-

tion use; 148
granularity

Amdahl’s law insights; 229



Index 381

reduction of; 235–237
hand-over-hand; 282
in blocking actions; 292
intrinsic; 25, 25–26

acquisition, non-interruptable
blocking reason; 148

advantages of; 285
explicit locks vs.; 277–278
intrinsic condition queue rela-

tionship to; 297
limitations of; 28
private locks vs.; 61
recursion use; 237fn
ReentrantLock vs., performance

considerations; 282–286
iteration

concurrent collection elimination
of need for; 85

disadvantages of; 83
monitor

See intrinsic locks;
non-block-structured; 281–282
nonblocking algorithms vs.; 319
open calls

for deadlock avoidance; 211–213
ordering

deadlock risks; 206–213
dynamic, deadlocks resulting

from; 207–210
inconsistent, as multithreaded

GUI framework problem; 190
private

intrinsic locks vs.; 61
protocols

shared state requirements for; 28
read-write; 286–289

implementation strategies; 287
reentrant

semantics; 26–27
semantics, ReentrantLock capa-

bilities; 278
ReentrantLock fairness options;

283–285
release

in hand-over-hand locking; 282
intrinsic locking disadvantages;

278
preference, in read-write lock

implementation; 287
role

synchronization policy; 56

scope
See also lock(ing), granularity;
narrowing, as lock contention

reduction strategy; 233–235
splitting; 235

Amdahl’s law insights; 229
as lock granularity reduction

strategy; 235
ServerStatus examples; 236li

state guarding with; 27–29
striping; 237

Amdahl’s law insights; 229
ConcurrentHashMap use; 85

stripping; 237
thread dump information about; 216
thread-safety issues

in servlets with state; 23–29
timed; 215–216
unreleased

as concurrency bug pattern; 272
visibility and; 36–37
volatile variables vs.; 39
wait

and condition predicate; 299
lock-free algorithms; 329
logging

See also instrumentation;
exceptions

UEHLogger example; 163li
service

as example of stopping a thread-
based service; 150–155

thread customization example; 177
ThreadPoolExecutor hooks for; 179

logical state; 58
loops/looping

and interruption; 143

M
main event loop

vs. event dispatch thread; 5
Map

ConcurrentHashMap as concurrent
replacement; 84

performance advantages; 242
atomic operations; 86

maximum pool size parameter; 172
measurement

importance for effective optimiza-
tion; 224

performance; 222



382 Index

profiling tools; 225
lock contention; 240

responsiveness; 264–266
strategies and tools

profiling tools; 225
ThreadPoolExecutor hooks for; 179

memoization; 103
See also cache/caching;

memory
See also resource(s);
barriers; 230, 338
depletion

avoiding request overload; 173
testing for; 257
thread-per-task policy issue; 116

models
hardware architecture; 338
JMM; 337–352

reordering
operations; 339

shared memory multiprocessors;
338–339

synchronization
performance impact of; 230–231

thread pool size impact; 171
visibility; 33–39

ReentrantLock effect; 277
synchronized effect; 33

Michael-Scott nonblocking queue;
332–335

missed signals; 301, 301
See also liveness;
as single notification risk; 302

model(s)/modeling
See also Java Memory Model

(JMM); MVC (model-view-
controller) design pattern;
representation; views;

event handling
model-view objects; 195fg

memory
hardware architecture; 338
JMM; 337–352

model-view-controller pattern
deadlock risk; 190
vehicle tracking example; 61

programming
sequential; 2

shared data
See also page renderer examples;
in GUI applications; 198–202

simplicity
threads benefit for; 3

split data models; 201, 201–202
Swing event handling; 194
three-tier application

performance vs. scalability; 223
versioned data model; 201

modification
concurrent

synchronized collection prob-
lems with; 82

frequent need for
copy-on-write collection not

suited for; 87
monitor(s)

See also Java monitor pattern;
locks

See intrinsic locks;
monitoring

See also instrumentation; perfor-
mance; scalability; testing;
tools;

CPU utilization; 240–241
performance; 221–245
ThreadPoolExecutor hooks for; 179
tools

for quality assurance; 273
monomorphic call transformation

JVM use; 268fn
mpstat application; 240

See also measurement; tools;
multiple-reader, single-writer locking

and lock contention reduction; 239
read-write locks; 286–289

multiprocessor systems
See also concurrent/concurrency;
shared memory

memory models; 338–339
threads use of; 3

multithreaded
See also safety; single-thread(ed);

thread(s);
GUI frameworks

issues with; 189–190
multivariable invariants

and atomic variables; 325–326
atomicity requirements; 57, 67–68
dependencies, thread safety issues;

24
locking requirements for; 29



Index 383

preservation of, as thread safety
requirement; 24

mutable; 15
objects

safe publication of; 54
state

managing access to, as thread
safety goal; 15

mutexes (mutual exclusion locks); 25
binary semaphore use as; 99
intrinsic locks as; 25
ReentrantLock capabilities; 277

MVC (model-view-controller) pattern
deadlock risks; 190
vehicle tracking example use of; 61

N
narrowing

lock scope
as lock contention reduction

strategy; 233–235
native code

finalizer use and limitations; 165
navigation

as compound action
in collection operations; 79

newTaskFor; 126li
encapsulating non-standard cancel-

lation; 148
nonatomic 64-bit operations; 36
nonblocking algorithms; 319, 329, 329–

336
backoff importance for; 231fn
synchronization; 319–336
SynchronousQueue; 174fn
thread-safe counter use; 322–324

nonfair semaphores
advantages of; 265

notification; 302–304
See also blocking; condition, queues;

event(s); listeners; notify;
notifyAll; sleeping; wait(s);
waking up;

completion
of long-running GUI task; 198

conditional; 303
as optimization; 303
use; 304li

errors
as concurrency bug pattern; 272

event notification systems

copy-on-write collection advan-
tages; 87

notify
as optimization; 303
efficiency of; 298fn
missed signal risk; 302
notifyAll vs.; 302
subclassing safety issues

documentation importance; 304
usage guidelines; 303

notifyAll
notify vs.; 302

@NotThreadSafe; 6, 353
NPTL threads package

Linux use; 4fn
nulling out memory references

testing use; 257

O
object(s)

See also resource(s);
composing; 55–78
condition

explicit; 306–308
effectively immutable; 53
guarded; 54
immutable; 46

initialization safety; 51
publication using volatile; 48–49

mutable
safe publication of; 54

pools
appropriate uses; 241fn
bounded, semaphore manage-

ment of; 99
disadvantages of; 241
serial thread confinement use; 90

references
and stack confinement; 44

sharing; 33–54
state; 55

components of; 55
Swing

thread-confinement; 191–192
objects

guarded; 28
open calls; 211, 211–213

See also encapsulation;
operating systems

concurrency use
historical role; 1



384 Index

operations
64-bit, nonatomic nature of; 36
state-dependent; 57

optimistic concurrency management
See atomic variables; CAS; nonblock-

ing algorithms;
optimization

compiler
as performance testing pitfall;

268–270
JVM

pitfalls; 38fn
strategies; 286

lock contention
impact; 231
reduction strategies; 232–242

performance
Amdahl’s law; 225–229
premature, avoidance of; 223
questions about; 224
scalability requirements vs.; 222

techniques
See also atomic variabless; non-

blocking synchronization;
condition queues use; 297
conditional notification; 303

order(ing)
See also reordering; synchronization;
acquisition, in ReentrantRead-

WriteLock; 317fn
checksums

safety testing use; 253
FIFO

impact of caller state depen-
dence handling on; 294fn

lock
deadlock risks; 206–213
dynamic deadlock risks; 207–210
inconsistent, as multithreaded

GUI framework problem; 190
operation

synchronization role; 35
partial; 340fn

happens-before, JMM definition;
340–342

happens-before, piggybacking;
342–344

happens-before, publication con-
sequences; 244–249

performance-based alterations in
thread safety risks; 7

total
synchronization actions; 341

orderly shutdown; 164
OutOfMemoryError

unbounded thread creation risk; 116
overhead

See also CPU utilization; measure-
ment; performance;

impact of
See performance; throughput;

reduction
See nonblocking algorithms; op-

timization; thread(s), pools;
sources

See blocking/blocks; contention;
context switching; multi-
threaded environments;
safety; suspension; synchro-
nization; thread(s), lifecycle;

ownership
shared; 58
split; 58
state

class design issues; 57–58
thread; 150

P
page renderer examples

See also model(s)/modeling, shared
data;

heterogenous task partitioning; 127–
129

parallelism analysis; 124–133
sequential execution; 124–127

parallelizing/parallelism
See also concurrent/concurrency;

Decorator pattern;
application analysis; 123–133
heterogeneous tasks; 127–129
iterative algorithms

barrier management of; 99
puzzle-solving framework; 183–188
recursive algorithms; 181–188
serialization vs.

Amdahl’s law; 225–229
task-related decomposition; 113
thread-per-task policy; 115

partial ordering; 340fn
happens-before

and publication; 244–249
JMM definition; 340



Index 385

piggybacking; 342–344
partitioning

as parallelizing strategy; 101
passivation

impact on HttpSession thread-
safety requirements; 58fn

perfbar application
See also measurement; tools;
CPU performance measure; 261
performance measurement use; 225

perfmon application; 240
See also measurement; tools;
I/O measurement; 240
performance measurement use; 230

performance; 8, 221, 221–245
See also concurrent/concurrency;

liveness; scalability; through-
put; utilization;

and heterogeneous tasks; 127
and immutable objects; 48fn
and resource management; 119
atomic variables

locking vs.; 326–329
cache implementation issues; 103
composition functionality extension

mechanism; 74fn
costs

thread-per-task policy; 116
fair vs. nonfair locking; 284
hazards

See also overhead; priority(s),
inversion;

JVM interaction with hardware
reordering; 34

liveness
in servlets with state; 29–32

locking
during iteration impact on; 83

measurement of; 222
See also capacity; efficiency; la-

tency; scalability; service
time; throughput;

locks vs. atomic variables; 326–
329

memory barrier impact on; 230
notifyAll impact on; 303
optimization

See also CPU utilization; piggy-
backing;

Amdahl’s law; 225–229
bad practices; 348–349

CAS-based operations; 323
reduction strategies; 232–242

page renderer example with Com-
pletionService

improvements; 130
producer-consumer pattern advan-

tages; 90
read-write lock advantages; 286–289
ReentrantLock vs. intrinsic locks;

282–286
requirements

thread-safety impact; 16
scalability vs.; 222–223

issues, three-tier application
model as illustration; 223

lock granularity reduction; 239
object pooling issues; 241

sequential event processing; 191
simplicity vs.

in refactoring synchronized
blocks; 34

synchronized block scope; 30
SynchronousQueue; 174fn
techniques for improving

atomic variables; 319–336
nonblocking algorithms; 319–336

testing; 247–274
criteria; 248
goals; 260
pitfalls, avoiding; 266–270

thread pool
size impact; 170
tuning; 171–179

thread safety hazards for; 8
timing and ordering alterations for

thread safety risks; 7
tradeoffs

evaluation of; 223–225
permission

codebase
and custom thread factory; 177

permits; 98
See also semaphores;

pessimistic concurrency management
See lock(ing), exclusive;

piggybacking; 344
on synchronization; 342–344

point(s)
barrier; 99
cancellation; 140



386 Index

poison
message; 219

See also livelock;
pill; 155, 155–156

See also lifecycle; shutdown;
CrawlerThread; 157li
IndexerThread; 157li
IndexingService; 156li
unbounded queue shutdown

with; 155
policy(s)

See also design; documentation;
guidelines; protocol(s);
strategies;

application
thread pool advantages; 120

cancellation; 136
for tasks, thread interruption

policy relationship to; 141
interruption advantages as im-

plementation strategy; 140
execution

design, influencing factors; 167
Executors, for ThreadPoolExec-

utor configuration; 171
implicit couplings between tasks

and; 167–170
parallelism analysis for; 123–133
task; 118–119
task, application performance

importance; 113
interruption; 141, 141–142
saturation; 174–175
security

custom thread factory handling;
177

sequential
task execution; 114

sharing objects; 54
synchronization; 55

requirements, impact on class
extension; 71

requirements, impact on class
modification; 71

shared state requirements for; 28
task scheduling

sequential; 114
thread pools; 117
thread pools advantages over

thread-per-task; 121
thread-per-task; 115

thread confinement; 43
polling

blocking state-dependent actions;
295–296

for interruption; 143
lock acquisition; 279

pool(s)
See also resource(s);
object

appropriate uses; 241fn
bounded, semaphore use; 99
disadvantages of; 241
serial thread confinement use; 90

resource
semaphore use; 98–99
thread pool size impact; 171

size
core; 171, 172fn
maximum; 172

thread; 119–121
adding statistics to; 179
application; 167–188
as producer-consumer design; 88
as thread resource management

mechanism; 117
callback use in testing; 258
combined with work queues, in

Executor framework; 119
configuration post-construction

manipulation; 177–179
configuring task queue; 172–174
creating; 120
deadlock risks; 215
factory methods for; 171
sizing; 170–171
uncaught exception handling;

163
portal

timed task example; 131–133
postconditions

See also invariant(s);
preservation of

mechanisms and synchroniza-
tion policy role; 55–56

thread safety role; 17
precondition(s)

See also dependencies, state; invari-
ant(s);

condition predicate as; 299
failure

bounded buffer handling of; 292



Index 387

propagation to callers; 292–295
state-based

in state-dependent classes; 291
management; 57

predictability
See also responsiveness;
measuring; 264–266

preemptive interruption
deprecation reasons; 135fn

presentation
See GUI;

primitive
local variables, safety of; 44
wrapper classes

atomic scalar classes vs.; 325
priority(s)

inversion; 320
avoidance, nonblocking algo-

rithm advantages; 329
thread

manipulation, liveness hazards;
218

when to use; 219
PriorityBlockingQueue; 89

thread pool use of; 173–174
PriorityQueue; 85
private

constructor capture idiom; 69fn
locks

Java monitor pattern vs.; 61
probability

deadlock avoidance use with timed
and polled locks; 279

determinism vs.
in concurrent programs; 247

process(es); 1
communication mechanisms; 1
lightweight

See threads;
threads vs.; 2

producer-consumer pattern
and Executor functionality

in CompletionService; 129
blocking queues and; 87–92
bounded buffer use; 292
control flow coordination

blocking queues use; 94
Executor framework use; 117
pathological waiting conditions;

300fn
performance testing; 261

safety testing; 252
work stealing vs.; 92

profiling
See also measurement;
JVM use; 320fn
tools

lock contention detection; 240
performance measurement; 225
quality assurance; 273

programming
models

sequential; 2
progress indication

See also GUI;
in long-running GUI task; 198

propagation
of interruption exception; 142

protocol(s)
See also documentation; policy(s);

strategies;
entry and exit

state-dependent operations; 306
lock acquisition

instance confinement use; 60
locking

shared state requirements for; 28
race condition handling; 21
thread confinement

atomicity preservation with
open calls; 213

pthreads (POSIX threads)
default locking behavior; 26fn

publication; 39
See also confinement; documenta-

tion; encapsulation; sharing;
escape and; 39–42
improper; 51, 50–51
JMM support; 244–249
of immutable objects

volatile use; 48–49
safe; 346

idioms for; 52–53
in task creation; 126
of mutable objects; 54
serial thread confinement use; 90

safety guidelines; 49–54
state variables

safety, requirements for; 68–69
unsafe; 344–346



388 Index

put-if-absent operation
See also compound actions;
as compound action

atomicity requirements; 71
concurrent collection support for; 84

puzzle solving framework
as parallelization example; 183–188

Q
quality assurance

See also testing;
strategies; 270–274

quality of service
measuring; 264
requirements

and task execution policy; 119
Queue; 84–85
queue(s)

See also data structures;
blocking; 87–94

cancellation, problems; 138
cancellation, solutions; 140
CompletionService as; 129
producer-consumer pattern and;

87–92
bounded

saturation policies; 174–175
condition; 297

blocking state-dependent opera-
tions use; 296–308

intrinsic; 297
intrinsic, disadvantages of; 306

FIFO; 89
implementations

serialization differences; 227
priority-ordered; 89
synchronous

design constraints; 89
thread pool use of; 173

task
thread pool use of; 172–174

unbounded
poison pill shutdown; 156

using; 298
work

in thread pools; 88, 119

R
race conditions; 7, 20–22

See also concurrent/concurrency,
errors; data, race; time/tim-
ing;

avoidance
immutable object use; 48
in thread-based service shut-

down; 153
in GUI frameworks; 189
in web crawler example

idempotence as mitigating cir-
cumstance; 161

random(ness)
livelock resolution use; 219
pseudorandom number generation

scalability; 326–329
test data generation use; 253

reachability
publication affected by; 40

read-modify-write operation
See also compound actions;
as non-atomic operation; 20

read-write locks; 286–289
ReadWriteLock; 286li

exclusive locking vs.; 239
reaping

See termination;
reclosable thread gate; 304
recovery, deadlock

See deadlock, recovery;
recursion

See also control flow; iterators/itera-
tion;

intrinsic lock acquisition; 237fn
parallelizing; 181–188

See also Decorator pattern;
reentrant/reentrancy; 26

and read-write locks; 287
locking semantics; 26–27

ReentrantLock capabilities; 278
per-thread lock acquisition; 26–27
ReentrantLock; 277–282

ReentrantLock
AQS use; 314–315
intrinsic locks vs.

performance; 282–286
Lock implementation; 277–282
random number generator using;

327li
Semaphore relationship with; 308



Index 389

ReentrantReadWriteLock
AQS use; 316–317
reentrant locking semantics; 287

references
stack confinement precautions; 44

reflection
atomic field updater use; 335

rejected execution handler
ExecutorService post-termination

task handling; 121
puzzle-solving framework; 187

RejectedExecutionException
abort saturation policy use; 174
post-termination task handling; 122
puzzle-solving framework use; 187

RejectedExecutionHandler
and saturation policy; 174

release
AQS synchronizer operation; 311
lock

in hand-over-hand locking; 282
intrinsic locking disadvantages;

278
preferences in read-write lock

implementation; 287
unreleased lock bug pattern; 271

permit
semaphore management; 98

remote objects
thread safety concerns; 10

remove-if-equal operation
as atomic collection operation; 86

reordering; 34
See also deadlock; optimization; or-

der(ing); ordering; synchro-
nization; time/timing;

initialization safety limitation; 350
memory

barrier impact on; 230
operations; 339

volatile variables warning; 38
replace-if-equal operation

as atomic collection operation; 86
representation

See also algorithm(s); design; docu-
mentation; state(s);

activities
tasks use for; 113

algorithm design role; 104
result-bearing tasks; 125
task

lifecycle, Future use for; 125
Runnable use for; 125
with Future; 126

thread; 150
request

interrupt
strategies for handling; 140

requirements
See also constraints; design; docu-

mentation; performance;
concrete

importance for effective perfor-
mance optimization; 224

concurrency testing
TCK example; 250

determination
importance of; 223

independent state variables; 66–67
performance

Amdahl’s law insights; 229
thread-safety impact; 16

synchronization
synchronization policy compo-

nent; 56–57
synchronization policy documenta-

tion; 74–77
resource exhaustion, preventing

bounded queue use; 173
execution policy as tool for; 119
testing strategies; 257
thread pool sizing risks; 170

resource(s)
See also CPU; instrumentation; mem-

ory; object(s); pool(s); utiliza-
tion;

accessing
as long-running GUI task; 195

bound; 221
consumption

thread safety hazards for; 8
deadlocks; 213–215
depletion

thread-per-task policy issue; 116
increase

scalability relationship to; 222
leakage

testing for; 257
management

See also instrumentation; testing;
dining philosophers prob-
lem;



390 Index

blocking queue advantages; 88
execution policy as tool for; 119
Executor framework use; 117
finalizer use and limitations; 165
graceful degradation, saturation

policy advantages; 175
long-running task handling; 170
saturation policies; 174–175
single-threaded task execution

disadvantages; 114
testing; 257
thread pools; 117
thread pools, advantages; 121
thread pools, tuning; 171–179
thread-per-task policy disadvan-

tages; 116
threads, keep-alive time impact

on; 172
timed task handling; 131

performance
analysis, monitoring, and im-

provement; 221–245
pools

semaphore use; 98–99
thread pool size impact; 171

utilization
Amdahl’s law; 225
as concurrency motivation; 1

response-time-senstive tasks
execution policy implications; 168

responsiveness
See also deadlock; GUI; livelock; live-

ness; performance;
as performance testing criteria; 248
condition queues advantages; 297
efficiency vs.

polling frequency; 143
interruption policy

InterruptedException advan-
tages; 142

long-running tasks
handling; 170

measuring; 264–266
page renderer example with Com-

pletionService
improvements; 130

performance
analysis, monitoring, and im-

provement; 221–245
poor

causes and resolution of; 219

safety vs.
graceful vs. abrupt shutdown;

153
sequential execution limitations; 124
server applications

importance of; 113
single-threaded execution disad-

vantages; 114
sleeping impact on; 295
thread

pool tuning, ThreadPoolExecut-
or use; 171–179

request overload impact; 173
safety hazards for; 8

restoring interruption status; 142
result(s)

-bearing latches
puzzle framework use; 184

cache
building; 101–109

Callable handling of; 125
Callable use instead of Runnable;

95
dependencies

task freedom from, importance
of; 113

Future handling of; 125
handling

as serialization source; 226
irrelevancy

as cancellation reason; 136, 147
non-value-returning tasks; 125
Runnable limitations; 125

retry
randomness, in livelock resolution;

219
return values

Runnable limitations; 125
reuse

existing thread-safe classes
strategies and risks; 71

RMI (Remote Method Invocation)
thread use; 9, 10

safety concerns and; 10
threads benefits for; 4

robustness
See also fragility; safety;
blocking queue advantages; 88
InterruptedException advantages;

142
thread pool advantages; 120



Index 391

rules
See also guidelines; policy(s); strate-

gies;
happens-before; 341

Runnable
handling exceptions in; 143
task representation limitations; 125

running
ExecutorService state; 121
FutureTask state; 95

runtime
timing and ordering alterations by

thread safety risks; 7
RuntimeException

as thread death cause; 161
Callable handling; 98
catching

disadvantages of; 161

S
safety

See also encapsulation; immutable
objects; synchronization;
thread(s), confinement;

cache implementation issues; 104
initialization

guarantees for immutable ob-
jects; 51

idioms for; 346–348
JMM support; 349–350

liveness vs.; 205–220
publication

idioms for; 52–53
in task creation; 126
of mutable objects; 54

responsiveness vs.
as graceful vs. abrupt shutdown;

153
split ownership concerns; 58
subclassing issues; 304
testing; 252–257

goals; 247
tradeoffs

in performance optimization
strategies; 223–224

untrusted code behavior
protection mechanisms; 161

saturation
policies; 174–175

scalability; 222, 221–245
algorithm

comparison testing; 263–264
Amdahl’s law insights; 229
as performance testing criteria; 248
client-side locking impact on; 81
concurrent collections vs. synchro-

nized collections; 84
ConcurrentHashMap advantages; 85,

242
CPU utilization monitoring; 240–241
enhancement

reducing lock contention; 232–
242

heterogeneous task issues; 127
hot field impact on; 237
intrinsic locks vs. ReentrantLock

performance; 282–286
lock scope impact on; 233
locking during iteration risk of; 83
open call strategy impact on; 213
performance vs.; 222–223

lock granularity reduction; 239
object pooling issues; 241
three-tier application model as

illustration; 223
queue implementations

serialization differences; 227
result cache

building; 101–109
serialization impact on; 228
techniques for improving

atomic variables; 319–336
nonblocking algorithms; 319–336

testing; 261
thread safety hazards for; 8
under contention

as AQS advantage; 311
ScheduledThreadPoolExecutor

as Timer replacement; 123
scheduling

overhead
performance impact of; 222

priority manipulation risks; 218
tasks

sequential policy; 114
thread-per-task policy; 115

threads as basic unit of; 3
work stealing

deques and; 92



392 Index

scope/scoped
See also granularity;
containers

thread safety concerns; 10
contention

atomic variable limitation of; 324
escaping

publication as mechanism for; 39
lock

narrowing, as lock contention
reduction strategy; 233–235

synchronized block; 30
search

depth-first
breadth-first search vs.; 184
parallelization of; 181–182

security policies
and custom thread factory; 177

Selector
non-interruptable blocking; 148

semantics
See also documentation; representa-

tion;
atomic arrays; 325
binary semaphores; 99
final fields; 48
of interruption; 93
of multithreaded environments

ThreadLocal variable considera-
tions; 46

reentrant locking; 26–27
ReentrantLock capabilities; 278
ReentrantReadWriteLock capa-

bilities; 287
undefined

of Thread.yield; 218
volatile; 39
weakly consistent iteration; 85
within-thread-as-if-serial; 337

Semaphore; 98
AQS use; 315–316
example use; 100li, 176li, 249li
in BoundedBuffer example; 248
saturation policy use; 175
similarities to ReentrantLock; 308
state-based precondition manage-

ment with; 57
semaphores; 98, 98–99

as coordination mechanism; 1
binary

mutex use; 99

counting; 98
permits, thread relationships;

248fn
SemaphoreOnLock example; 310li

fair vs. nonfair
performance comparison; 265

nonfair
advantages of; 265

sendOnSharedLine example; 281li
sequential/sequentiality

See also concurrent/concurrency;
asynchrony vs.; 2
consistency; 338
event processing

in GUI applications; 191
execution

of tasks; 114
parallelization of; 181

orderly shutdown strategy; 164
page renderer example; 124–127
programming model; 2
task execution policy; 114
tests, value in concurrency testing;

250
threads simulation of; 4

serialized/serialization
access

object serialization vs.; 27fn
timed lock use; 279
WorkerThread; 227li

granularity
throughput impact; 228

impact on HttpSession thread-
safety requirements; 58fn

parallelization vs.
Amdahl’s law; 225–229

scalability impact; 228
serial thread confinement; 90, 90–92
sources

identification of, performance
impact; 225

server
See also client;
applications

context switch reduction; 243–
244

design issues; 113
service(s)

See also applications; frameworks;
logging



Index 393

as thread-based service example;
150–155

shutdown
as cancellation reason; 136

thread-based
stopping; 150–161

servlets
framework

thread safety requirements; 10
threads benefits for; 4

stateful, thread-safety issues
atomicity; 19–23
liveness and performance; 29–32
locking; 23–29

stateless
as thread-safety example; 18–19

session-scoped objects
thread safety concerns; 10

set(s)
See also collection(s);
BoundedHashSet example; 100li
CopyOnWriteArraySet

as synchronized Set replace-
ment; 86

safe publication use; 52
PersonSet example; 59li
SortedSet

ConcurrentSkipListSet as con-
current replacement; 85

TreeSet
ConcurrentSkipListSet as con-

current replacement; 85
shared/sharing; 15

See also concurrent/concurrency;
publication;

data
See also page renderer examples;
access coordination, explicit lock

use; 277–290
models, GUI application han-

dling; 198–202
synchronization costs; 8
threads advantages vs. pro-

cesses; 2
data structures

as serialization source; 226
memory

as coordination mechanism; 1
memory multiprocessors

memory models; 338–339
mutable objects

guidelines; 54
objects; 33–54
split data models; 201–202
state

managing access to, as thread
safety goal; 15

strategies
ExecutorCompletionService

use; 130
thread

necessities and dangers in GUI
applications; 189–190

volatile variables as mechanism for;
38

shutdown
See also lifecycle;
abrupt

JVM, triggers for; 164
limitations; 158–161

as cancellation reason; 136
cancellation and; 135–166
ExecutorService state; 121
graceful vs. abrupt tradeoffs; 153
hooks; 164

in orderly shutdown; 164–165
JVM; 164–166

and daemon threads; 165
of thread-based services; 150–161
orderly; 164
strategies

lifecycle method encapsulation;
155

logging service example; 150–
155

one-shot execution service exam-
ple; 156–158

support
LifecycleWebServer example;

122li
shutdown; 121

logging service shutdown alterna-
tives; 153

shutdownNow; 121
limitations; 158–161
logging service shutdown alterna-

tives; 153
side-effects

as serialization source; 226
freedom from

importance for task indepen-
dence; 113



394 Index

synchronized Map implementations
not available from Concurrent-

HashMap; 86
signal

ConditionBoundedBuffer example;
308

signal handlers
as coordination mechanism; 1

simplicity
See also design;
Java monitor pattern advantage; 61
of modeling

threads benefit for; 3
performance vs.

in refactoring synchronized
blocks; 34

simulations
barrier use in; 101

single notification
See notify; signal;

single shutdown hook
See also hook(s);
orderly shutdown strategy; 164

single-thread(ed)
See also thread(s); thread(s), confine-

ment;
as Timer restriction; 123
as synchronization alternative; 42–46
deadlock avoidance advantages; 43fn
subsystems

GUI implementation as; 189–190
task execution

disadvantages of; 114
executor use, concurrency pre-

vention; 172, 177–178
Singleton pattern

ThreadLocal variables use with; 45
size(ing)

See also configuration; instrumenta-
tion;

as performance testing goal; 260
bounded buffers

determination of; 261
heterogeneous tasks; 127
pool

core; 171, 172fn
maximum; 172

task
appropriate; 113

thread pools; 170–171

sleeping
blocking state-dependent actions

blocking state-dependent ac-
tions; 295–296

sockets
as coordination mechanism; 1
synchronous I/O

non-interruptable blocking rea-
son; 148

solutions
See also interruption; results; search;

termination;
SortedMap

ConcurrentSkipListMap as concur-
rent replacement; 85

SortedSet
ConcurrentSkipListSet as concur-

rent replacement; 85
space

state; 56
specification

See also documentation;
correctness defined in terms of; 17

spell checking
as long-running GUI task; 195

spin-waiting; 232, 295
See also blocking/blocks; busy-

waiting;
as concurrency bug pattern; 273

split(ing)
data models; 201, 201–202
lock; 235

Amdahl’s law insights; 229
as lock granularity reduction

strategy; 235
ServerStatus examples; 236li

ownership; 58
stack(s)

address space
thread creation constraint; 116fn

confinement; 44, 44–45
See also confinement; encapsula-

tion;
nonblocking; 330
size

search strategy impact; 184
trace

thread dump use; 216
stale data; 35–36

improper publication risk; 51
race condition cause; 20fn



Index 395

starvation; 218, 218
See also deadlock; livelock; liveness;

performance;
as liveness failure; 8
locking during iteration risk of; 83
thread starvation deadlock; 169,

168–169
thread starvation deadlocks; 215

state(s); 15
See also atomic/atomicity; encapsu-

lation; lifecycle; representa-
tion; safety; visibility;

application
framework threads impact on; 9

code vs.
thread-safety focus; 17

dependent
classes; 291
classes, building; 291–318
operations; 57
operations, blocking strategies;

291–308
operations, condition queue han-

dling; 296–308
operations, managing; 291
task freedom from, importance

of; 113
encapsulation

breaking, costs of; 16–17
invariant protection use; 83
synchronizer role; 94
thread-safe class use; 23

lifecyle
ExecutorService methods; 121

locks control of; 27–29
logical; 58
management

AQS-based synchronizer opera-
tions; 311

managing access to
as thread safety goal; 15

modification
visibility role; 33

mutable
coordinating access to; 110

object; 55
components of; 55
remote and thread safety; 10

ownership
class design issues; 57–58

servlets with

thread-safety issues, atomicity;
19–23

thread-safety issues, liveness
and performance concerns;
29–32

thread-safety issues, locking;
23–29

space; 56
stateless servlet

as thread-safety example; 18–19
task

impact on Future.get; 95
intermediate, shutdown issues;

158–161
transformations

in puzzle-solving framework
example; 183–188

transition constraints; 56
variables

condition predicate use; 299
independent; 66, 66–67
independent, lock splitting; 235
safe publication requirements;

68–69
stateDependentMethod example; 301li
static

initializer
safe publication mechanism; 53,

347
static analysis tools; 271–273
statistics gathering

See also instrumentation;
adding to thread pools; 179
ThreadPoolExecutor hooks for; 179

status
flag

volatile variable use with; 38
interrupted; 138
thread

shutdown issues; 158
strategies

See also design; documentation;
guidelines; policy(s); rep-
resentation;

atomic variable use; 34
cancellation

Future use; 145–147
deadlock avoidance; 208, 215–217
delegation

vehicle tracking example; 64
design



396 Index

interruption policy; 93
documentation use

annotations value; 6
end-of-lifecycle management; 135–

166
InterruptedException handling; 93
interruption handling; 140, 142–150

Future use; 146
lock splitting; 235
locking

ConcurrentHashMap advantages;
85

monitor
vehicle tracking example; 61

parallelization
partitioning; 101

performance improvement; 30
program design order

correctness then performance; 16
search

stack size impact on; 184
shutdown

lifecycle method encapsulation;
155

logging service example; 150–
155

one-shot execution service exam-
ple; 156–158

poison pill; 155–156
split ownership safety; 58
thread safety delegation; 234–235
thread-safe class extension; 71

stream classes
client-side locking with; 150fn
thread safety; 150

String
immutability characteristics; 47fn

striping
See also contention;
lock; 237, 237

Amdahl’s law insights; 229
ConcurrentHashMap use; 85

structuring
thread-safe classes

object composition use; 55–78
subclassing

safety issues; 304
submit, execute vs.

uncaught exception handling; 163

suspension, thread
costs of; 232, 320
elimination by CAS-based concur-

rency mechanisms; 321
Thread.suspend, deprecation rea-

sons; 135fn
swallowing interrupts

as discouraged practice; 93
bad consequences of; 140
when permitted; 143

Swing
See also GUI;
listeners

single-thread rule exceptions;
192

methods
single-thread rule exceptions;

191–192
thread

confinement; 42
confinement in; 191–192
use; 9
use, safety concerns and; 10–11

untrusted code protection mecha-
nisms in; 162

SwingWorker
long-running GUI task support; 198

synchronization/synchronized; 15
See also access; concurrent/concur-

rency; lock(ing); safety;;
allocation advantages vs.; 242
bad practices

double-checked locking; 348–349
blocks; 25

Java objects as; 25
cache implementation issues; 103
collections; 79–84

concurrent collections vs.; 84
problems with; 79–82

concurrent building blocks; 79–110
contended; 230
correctly synchronized program; 341
data sharing requirements for; 33–39
encapsulation

hidden iterator management
through; 83

requirement for thread-safe
classes; 18

’fast path’
CAS-based operations vs.; 324
costs of; 230



Index 397

immutable objects as replacement;
52

inconsistent
as concurrency bug pattern; 271

memory
performance impact of; 230–231

memory visibility use of; 33–39
operation ordering role; 35
piggybacking; 342–344
policy; 55

documentation requirements;
74–77

encapsulation, client-side lock-
ing violation of; 71

race condition prevention with; 7
requirements, impact on class

extension; 71
requirements, impact on class

modification; 71
shared state requirements for; 28

ReentrantLock capabilities; 277
requirements

synchronization policy compo-
nent; 56–57

thread safety need for; 5
types

See barriers; blocking, queues;
FutureTask; latches;
semaphores;

uncontended; 230
volatile variables vs.; 38
wrapper

client-side locking support; 73
synchronizedList (Collections)

safe publication use; 52
synchronizer(s); 94, 94–101

See also Semaphore; CyclicBarrier;
FutureTask; Exchanger;
CountDownLatch;

behavior and interface; 308–311
building

with AQS; 311
with condition queues; 291–318

synchronous I/O
non-interruptable blocking; 148

SynchronousQueue; 89
performance advantages; 174fn
thread pool use of; 173, 174

T
task(s); 113

See also activities; event(s); lifecycle;
asynchronous

FutureTask handling; 95–98
boundaries; 113

parallelism analysis; 123–133
using ThreadLocal in; 168

cancellation; 135–150
policy; 136
thread interruption policy rela-

tionship to; 141
completion

as cancellation reason; 136
service time variance relation-

ship to; 264–266
dependencies

execution policy implications;
167

thread starvation deadlock risks;
168

execution; 113–134
in threads; 113–115
policies; 118–119
policies and, implicit couplings

between; 167–170
policies, application perfor-

mance importance; 113
sequential; 114

explicit thread creation for; 115
GUI

long-running tasks; 195–198
short-running tasks; 192–195

heterogeneous tasks
parallelization limitations; 127–

129
homogeneous tasks

parallelism advantages; 129
lifecycle

Executor phases; 125
ExecutorService methods; 121
representing with Future; 125

long-running
responsiveness problems; 170

parallelization of
homogeneous vs. heteroge-

neous; 129
post-termination handling; 121
queues

management, thread pool con-
figuration issues; 172–174



398 Index

thread pool use of; 172–174
representation

Runnable use for; 125
with Future; 126

response-time sensitivity
andexecution policy; 168

scheduling
thread-per-task policy; 115

serialization sources
identifying; 225

state
effect on Future.get; 95
intermediate, shutdown issues;

158–161
thread(s) vs.

interruption handling; 141
timed

handling of; 123
two-party

Exchanger management of; 101
TCK (Technology Compatibility Kit)

concurrency testing requirements;
250

teardown
thread; 171–172

techniques
See also design; guidelines; strate-

gies;
temporary objects

and ThreadLocal variables; 45
terminated

ExecutorService state; 121
termination

See also cancellation; interruption;
lifecycle;

puzzle-solving framework; 187
safety test

criteria for; 254, 257
thread

abnormal, handling; 161–163
keep-alive time impact on; 172
reasons for deprecation of; 135fn

timed locks use; 279
test example method; 262li
testing

See also instrumentation; logging;
measurement; monitoring;
quality assurance; statistics;

concurrent programs; 247–274
deadlock risks; 210fn
functionality

vs. performance tests; 260
liveness

criteria; 248
performance; 260–266

criteria; 248
goals; 260

pitfalls
avoiding; 266–270
dead code elimination; 269
dynamic compilation; 267–268
garbage collection; 266
progress quantification; 248
proving a negative; 248
timing and synchronization arti-

facts; 247
unrealistic code path sampling;

268
unrealistic contention; 268–269

program correctness; 248–260
safety; 252–257

criteria; 247
strategies; 270–274

testPoolExample example; 258li
testTakeBlocksWhenEmpty example;

252li
this reference

publication risks; 41
Thread

join
timed, problems with; 145

getState
use precautions; 251

interruption methods; 138, 139li
usage precautions; 140

thread safety; 18, 15–32
and mutable data; 35
and shutdown hooks; 164
characteristics of; 17–19
data models, GUI application han-

dling; 201
delegation; 62
delegation of; 234
in puzzle-solving framework; 183
issues, atomicity; 19–23
issues, liveness and performance;

29–32
mechanisms, locking; 23–29
risks; 5–8

thread(s); 2
See also concurrent/concurrency;

safety; synchronization;



Index 399

abnormal termination of; 161–163
as instance confinement context; 59
benefits of; 3–5
blocking; 92
confinement; 42, 42–46

See also confinement; encapsula-
tion;

ad-hoc; 43
and execution policy; 167
in GUI frameworks; 190
in Swing; 191–192
role, synchronization policy

specification; 56
stack; 44, 44–45
ThreadLocal; 45–46

cost
context locality loss; 8
context switching; 8

costs; 229–232
creation; 171–172

explicit creation for tasks; 115
unbounded, disadvantages; 116

daemon; 165
dumps; 216

deadlock analysis use; 216–217
intrinsic lock advantage over

ReentrantLock; 285
lock contention analysis use; 240

factories; 175, 175–177
failure

uncaught exception handlers;
162–163

forced termination
reasons for deprecation of; 135fn

interleaving
dangers of; 5–8

interruption; 138
shutdown issues; 158
status flag; 138

leakage; 161
testing for; 257
Timer problems with; 123
UncaughtExceptionHandler

prevention of; 162–163
lifecycle

performance impact; 116
thread-based service manage-

ment; 150
overhead

in safety testing, strategies for
mitigating; 254

ownership; 150
pools; 119–121

adding statistics to; 179
and work queues; 119
application; 167–188
as producer-consumer design; 88
as thread resource management

mechanism; 117
callback use in testing; 258
creating; 120
deadlock risks; 215
factory methods for; 171
post-construction configuration;

177–179
sizing; 170–171
task queue configuration; 172–

174
priorities

manipulation, liveness risks; 218
priority

when to use; 219
processes vs.; 2
queued

SynchronousQueue management
of; 89

risks of; 5–8
serial thread confinement; 90, 90–92
services that own

stopping; 150–161
sharing

necessities and dangers in GUI
applications; 189–190

single
sequential task execution; 114

sources of; 9–11
starvation deadlock; 169, 168–169
suspension

costs of; 232, 320
Thread.suspend, deprecation

reasons; 135fn
task

execution in; 113–115
scheduling, thread-per-task pol-

icy; 115
scheduling, thread-per-task pol-

icy disadvantages; 116
vs. interruption handling; 141

teardown; 171–172
termination

keep-alive time impact on; 172
thread starvation deadlocks; 215



400 Index

thread-local
See also stack, confinement;
computation

role in accurate performance
testing; 268

Thread.stop
deprecation reasons; 135fn

Thread.suspend
deprecation reasons; 135fn

ThreadFactory; 176li
customizing thread pool with; 175

ThreadInfo
and testing; 273

ThreadLocal; 45–46
and execution policy; 168
for thread confinement; 43
risks of; 46

ThreadPoolExecutor
and untrusted code; 162
configuration of; 171–179
constructor; 172li
extension hooks; 179
newTaskFor; 126li, 148

@ThreadSafe; 7, 353
throttling

as overload management mecha-
nism; 88, 173

saturation policy use; 174
Semaphore use in BoundedExecutor

example; 176li
throughput

See also performance;
as performance testing criteria; 248
locking vs. atomic variables; 328
producer-consumer handoff

testing; 261
queue implementations

serialization differences; 227
server application

importance of; 113
server applications

single-threaded task execution
disadvantages; 114

thread safety hazards for; 8
threads benefit for; 3

Throwable
FutureTask handling; 98

time/timing
See also deadlock; lifecycle; or-

der/ordering; race condi-
tions;

-based task
handling; 123
management design issues; 131–

133
barrier handling based on; 99
constraints

as cancellation reason; 136
in puzzle-solving framework;

187
interruption handling; 144–145

deadline-based waits
as feature of Condition; 307

deferred computations
design issues; 125

dynamic compilation
as performance testing pitfall;

267
granularity

measurement impact; 264
keep-alive

thread termination impact; 172
LeftRightDeadlock example; 207fg
lock acquisition; 279
lock scope

narrowing, as lock contention
reduction strategy; 233–235

long-running GUI tasks; 195–198
long-running tasks

responsiveness problem han-
dling; 170

measuring
in performance testing; 260–263
ThreadPoolExecutor hooks for;

179
performance-based alterations in

thread safety risks; 7
periodic tasks

handling of; 123
progress indication

for long-running GUI tasks; 198
relative vs. absolute

class choices based on; 123fn
response

task sensitivity to, execution
policy implications; 168

short-running GUI tasks; 192–195
thread timeout

core pool size parameter impact
on; 172fn

timed locks; 215–216



Index 401

weakly consistent iteration seman-
tics; 86

TimeoutException
in timed tasks; 131
task cancellation criteria; 147

Timer
task-handling issues; 123
thread use; 9

timesharing systems
as concurrency mechanism; 2

tools
See also instrumentation; measure-

ment;
annotation use; 353
code auditing

locking failures detected by; 28fn
heap inspection; 257
measurement

I/O utilization; 240
importance for effective perfor-

mance optimization; 224
performance; 230

monitoring
quality assurance use; 273

profiling
lock contention detection; 240
performance measurement; 225
quality assurance use; 273

static analysis; 271–273
transactions

See also events;
concurrent atomicity similar to; 25

transformations
state

in puzzle-solving framework
example; 183–188

transition
See also state;
state transition constraints; 56

impact on safe state variable
publication; 69

travel reservations portal example
as timed task example; 131–133

tree(s)
See also collections;
models

GUI application handling; 200
traversal

parallelization of; 181–182

TreeMap
ConcurrentSkipListMap as concur-

rent replacement; 85
TreeSet

ConcurrentSkipListSet as concur-
rent replacement; 85

Treiber’s nonblocking stack algorithm;
331li

trigger(ing)
See also interruption;
JVM abrupt shutdown; 164
thread dumps; 216

try-catch block
See also exceptions;
as protection against untrusted code

behavior; 161
try-finally block

See also exceptions;
and uncaught exceptions; 163
as protection against untrusted code

behavior; 161
tryLock

barging use; 283fn
deadlock avoidance; 280li

trySendOnSharedLine example; 281li
tuning

See also optimization;
thread pools; 171–179

U
unbounded

See also bounded; constraints;
queue(s);

blocking waits
timed vs., in long-running task

management; 170
queues

nonblocking characteristics; 87
poison pill shutdown use; 155
thread pool use of; 173

thread creation
disadvantages of; 116

uncaught exception handlers; 162–163
See also exceptions;

UncaughtExceptionHandler; 163li
custom thread class use; 175
thread leakage detection; 162–163

unchecked exceptions
See also exceptions;
catching

disadvantages of; 161



402 Index

uncontended
synchronization; 230

unit tests
for BoundedBuffer example; 250
issues; 248

untrusted code behavior
See also safety;
ExecutorService code protection

strategies; 179
protection mechanisms; 161

updating
See also lifecycle;
atomic fields; 335–336
immutable objects; 47
views

in GUI tasks; 201
upgrading

read-write locks; 287
usage scenarios

performance testing use; 260
user

See also GUI;
cancellation request

as cancellation reason; 136
feedback

in long-running GUI tasks; 196li
interfaces

threads benefits for; 5
utilization; 225

See also performance; resource(s);
CPU

Amdahl’s law; 225, 226fg
optimization, as multithreading

goal; 222
sequential execution limitations;

124
hardware

improvement strategies; 222

V
value(s)

See result(s);
variables

See also encapsulation; state;
atomic

classes; 324–329
locking vs.; 326–329
nonblocking algorithms and;

319–336
volatile variables vs.; 39, 325–326

condition

explicit; 306–308
hoisting

as JVM optimization pitfall; 38fn
local

stack confinement use; 44
multivariable invariant requirements

for atomicity; 57
state

condition predicate use; 299
independent; 66, 66–67
independent, lock splitting use

with; 235
object data stored in; 15
safe publication requirements;

68–69
ThreadLocal; 45–46
volatile; 38, 37–39

atomic variable class use; 319
atomic variable vs.; 39, 325–326
multivariable invariants prohib-

ited from; 68
variance

service time; 264
Vector

as safe publication use; 52
as synchronized collection; 79
check-then-act operations; 80li, 79–

80
client-side locking management of

compound actions; 81li
vehicle tracking example

delegation strategy; 64
monitor strategy; 61
state variable publication strategy;

69–71
thread-safe object composition de-

sign; 61–71
versioned data model; 201
views

event handling
model-view objects; 195fg

model-view-controller pattern
deadlock risks; 190
vehicle tracking example; 61

reflection-based
by atomic field updaters; 335

timeliness vs. consistency; 66, 70
updating

in long-running GUI task han-
dling; 201

with split data models; 201



Index 403

visibility
See also encapsulation; safety; scope;
condition queue

control, explicit Condition and
Lock use; 306

guarantees
JMM specification of; 338

lock management of; 36–37
memory; 33–39

ReentrantLock capabilities; 277
synchronization role; 33

volatile reference use; 49
vmstat application

See also measurement; tools;
CPU utilization measurement; 240
performance measurement; 230
thread utilization measurement; 241

Void
non-value-returning tasks use; 125

volatile
cancellation flag use; 136
final vs.; 158fn
publishing immutable objects with;

48–49
safe publication use; 52
variables; 38, 37–39

atomic variable class use; 319
atomic variable vs.; 39, 325–326
atomicity disadvantages; 320
multivariable invariants prohib-

ited from; 68
thread confinement use with; 43

W
wait(s)

blocking
timed vs. unbounded; 170

busy-waiting; 295
condition

and condition predicate; 299
canonical form; 301li
errors, as concurrency bug pat-

tern; 272
interruptible, as feature of Con-

dition; 307
uninterruptable, as feature of

Condition; 307
waking up from, condition

queue handling; 300–301
sets; 297

multiple, as feature of Condi-
tion; 307

spin-waiting; 232
as concurrency bug pattern; 273

waiting to run
FutureTask state; 95

waking up
See also blocking/blocks; condition,

queues; notify; sleep; wait;
condition queue handling; 300–301

weakly consistent iterators; 85
See also iterators/iteration;

web crawler example; 159–161
within-thread usage

See stack, confinement;
within-thread-as-if-serial semantics;

337
work

queues
and thread pools, as producer-

consumer design; 88
in Executor framework use; 119
thread pool interaction, size tun-

ing requirements; 173
sharing

deques advantages for; 92
stealing scheduling algorithm; 92

deques and; 92
tasks as representation of; 113

wrapper(s)
factories

Decorator pattern; 60
synchronized wrapper classes

as synchronized collection
classes; 79

client-side locking support; 73


