
15

Chapter 2

From QuickDraw to Quartz 2D

Before launching into an in-depth discussion of the features of Quartz 2D or a
set of drawing techniques, this chapter begins by placing the library in context.
The Quartz 2D library has a long legacy behind it and understanding that lega-
cy may help you to recognize some of the idiosyncrasies of the library’s imaging
model. Moreover, Quartz 2D is a single part in a larger graphics architecture on
Mac OS X. This architecture was designed from its inception to take advan-
tage of advances in the graphics hardware of modern personal computers. This
chapter begins with a historical perspective of the Mac OS X graphics system
and the evolution of technology behind Quartz 2D. We then explore crucial
aspects of the graphics technology that is shaping the graphics architecture of
the Macintosh.

The Legacy of QuickDraw and the Rise of PDF

The QuickDraw graphics library stands to this day as testament to the origi-
nal Macintosh computer and its creators. The library was the fundamental
technology that made the original Macintosh graphical user interface possible.
QuickDraw was brought to life by the ingenuity and skill of software design-
ers such as Bill Atkinson and Andy Herzfeld. Apple created QuickDraw in the
late 1970’s and early 1980s, an era in which “real” computer graphics were the
province of large, powerful mainframe computers, and personal computers
were just making the transition from novelty to necessity.

The Legacy of QuickDraw and the Rise of PDF

Chapter2i.indd 15Chapter2i.indd 15 2/10/06 4:08:52 PM2/10/06 4:08:52 PM

16
Chapter 2: From QuickDraw To Quartz 2D

QuickDraw had very modest beginnings. In various forms, the original code ran
on computers like the Apple Lisa and the original Macintosh. The high resolu-
tion bitmapped displays of these computers was considered a revolution when
compared to the character terminals of the previous computer generation. In
spite of their sophistication, however, the computers could only display graphics
in black and white.

QuickDraw was fl exible enough to produce impressive graphics on both the
screen and on printer. The library incorporated a number of revolutionary ad-
vances, features that were not found on personal computers prior to the Macin-
tosh. Among these were the support for pixel regions, drawing operations that
could be recorded into a meta-fi le (the infamous PICT fi le format), the ability to
scale the drawings in a meta-fi le on playback, and drawing primitives for ovals,
curves, and rounded rectangles.

 Although QuickDraw and its immediate ancestors ran on computers that could only display
black and white, the API actually supported several colors. Even though the computers
could not display those colors on screen, QuickDraw could print in color to some printers.

The 9-inch black and white display of the original Macintosh quickly became
a thing of the past. Computers evolved, as did the sophistication and require-
ments of applications and users. Apple evolved QuickDraw along with its
computers. As displays became capable of reproducing millions of colors and
two tone dot-matrix printers evolved into high-resolution, photo quality ink jet
printers, QuickDraw both kept up the pace and pushed the envelope of graph-
ics evolution. The era of QuickDraw ended, however, when Apple deprecated
the technology in Mac OS X 10.4 Tiger. The QuickDraw library came of age as
an important building block for vital graphics technologies like QuickTime and
ColorSync. Along the way it not only served the graphics industry, but also took
a hand in shaping it.

PostScript and Desktop Publishing

QuickDraw was not the only technology born in 1984 to have a profound
impact both the graphics industry and the Mac OS X platform. In the same
year, Chuck Geschke and John Warnock incorporated a new company, Adobe
Systems Inc. Adobe released the fi rst version of their PostScript graphics system
that same year.

Chapter2i.indd 16Chapter2i.indd 16 2/10/06 4:08:53 PM2/10/06 4:08:53 PM

17

The PostScript graphics system grew out of research Adobe’s founders performed
while working at Xerox. That research centered around innovative ways to
write control software for laser printers. The PostScript system combines a rich
graphics model, a simple programming language, and a run-time environment.
At the time of its introduction, the system’s ability to repurpose graphics on a
broad number of printers with very different capabilities was a clarion call for
the graphics industry.

PostScript was unusual because of the device independence inherit in the
system. A PostScript program could send the same drawing commands to two
printers with very different capabilities, and both would reproduce the same
graphic to the best of their abilities. One printer might draw the graphic with
a low resolution and in black and white, while the same program on another
printer might generate a high-resolution color image. This was in stark contrast
to the fi xed resolution, device dependent nature of QuickDraw and other
graphics libraries.

The paths of QuickDraw and PostScript were destined to converge. Apple
and Adobe brought these two technologies together when they developed the
LaserWriter printer. In spite of the fact that QuickDraw had one drawing mod-
el, and PostScript a completely different one, application developers combined
the on-screen drawing with QuickDraw and the printing might of PostScript.
This synthesis led to the creation of creative applications such as Aldus Page-
Maker and Adobe Illustrator. Applications like these freed document editors
from the proprietary typesetting systems that had dominated the industry. The
Desktop Publishing revolution had arrived.

PostScript on the Screen

The rift between the graphics model of the screen and the graphics model of the
printer continued for some time. In fact, this was not limited to the Macintosh
platform. Microsoft Windows, for example, used the GDI graphics library when
drawing on screen. On many UNIX systems, applications used the XLib library
of the X11 windowing system to create graphics on the screen. Both GDI and
XLib are graphics libraries very similar to QuickDraw. Each of these environ-
ments also supported PostScript as a tool for creating high-quality
graphics on the printer.

The Legacy of QuickDraw and the Rise of PDF

Chapter2i.indd 17Chapter2i.indd 17 2/10/06 4:08:53 PM2/10/06 4:08:53 PM

18
Chapter 2: From QuickDraw To Quartz 2D

In this environment, application developers applied their creativity and inge-
nuity to bridge the gap between libraries and create WYSIWYG applications.
It wasn’t long before enterprising developers realized the potential benefi t of
using PostScript for graphics on the screen as well. In fact, one of the earliest
implementations of this idea came when Sun Microsystems created an entire
windowing system based on PostScript! That windowing system was called
NeWS, the Network extensible Windowing System.

NeWS was unusual because it used PostScript as more than just a graphics
library. The windowing system itself was implemented on top of a custom-
ized PostScript interpreter. Developers could extend the system or write NeWS
applications in PostScript. In spite of the novelty and innovation in NeWS,
however, it never gained much of a foothold in the industry. Eventually it faded
from view.

 The lead engineer of NeWS was Jim Gosling. After working on NeWS, he turned his atten-
tion to Java where he designed the original language, compiler, and virtual machine.

The engineers at Sun were not the only group to bring PostScript to the screen.
One of the most successful environments to integrate PostScript into its graph-
ics architecture was the NeXT Computer operating system. Steve Jobs started
NeXT Inc. shortly after leaving Apple. The computers that company created
were revolutionary in a number of ways. The NeXT operating system included
an optimized PostScript interpreter. Applications created their graphics in win-
dows by calling routines invoked the PostScript interpreter.

 NeXT sold a PostScript laser printer that didn’t include a PostScript interpreter! The system
relied on the computer to process the PostScript and then sent the resulting graphics to
the printer over a high-speed communication line.

The success of the NeXT graphics library caused other industry leaders to take
notice. Adobe collaborated with NeXT to create a standard called Display Post-
Script for PostScript graphics on the screen. Display PostScript incorporated a
small set of extensions to the basic PostScript language. In time, Adobe licensed
Display PostScript for use in other computing environments. The X11 applica-
tions on some UNIX computers could create windows that contained Display

Chapter2i.indd 18Chapter2i.indd 18 2/10/06 4:08:53 PM2/10/06 4:08:53 PM

19

PostScript graphics. Display PostScript, like the NeWS window system, never
gained a broad acceptance in the industry. When Apple purchased NeXT Com-
puter, in 1996, it acquired all of its technologies, including its implementation
of Display PostScript.

PDF to Quartz 2D

Even though Display PostScript enjoyed limited popularity, the appeal of Post-
Script continues to this day. There is, however, one evolution that is particularly
relevant to the Macintosh and Quartz 2D.

The PostScript system includes both an imaging model and a programming
language. While the fl exibility of the imaging model continues to this day, the
programming language aspects of PostScript have proven to be problematic.

PostScript interpreters run PostScript programs. Like most programs, PostScript
code must execute sequentially. This can lead to diffi culty when printing docu-
ments. For example, if a press operator wants to print page 99 of a 100-page
document, the PostScript interpreter must execute the code that draws the fi rst
98 pages. The results of that drawing take time, and the resulting graphics are
merely discarded. This is obviously a waste of time and resources.

Furthermore, because PostScript drawings are actually programs, they are
susceptible to programming bugs. To continue the example just discussed, a
logic error on page 97 might cause the printer to abandon the entire print job.
As these problems came to light, Adobe added some features to PostScript. The
new features helped to alleviate problems but did not eliminate them. In the end
Adobe recognized the limitations of PostScript and took another tack on the
problem.

The Portable Document Format (PDF) works around many of the limitations
of PostScript. At its heart, PDF is a fi le format that includes the graphics fea-
tures of PostScript (with a few minor changes). At the same time, the standard
removes most of the programming language aspects of PostScript. A PDF docu-
ment is not an executable program so much as it is a structured container for
drawing commands and related metadata. The fi le format continues PostScript’s
advantages of device and resolution independence. In short, PDF retains the
graphical power of PostScript but eliminates some of its less reliable aspects.

The Legacy of QuickDraw and the Rise of PDF

Chapter2i.indd 19Chapter2i.indd 19 2/10/06 4:08:53 PM2/10/06 4:08:53 PM

20
Chapter 2: From QuickDraw To Quartz 2D

Apple evaluated the technologies they purchased for NeXT with a eye toward
creating Mac OS X. They looked at the evolution of PostScript and the PDF
strategy. Combining these elements with their own unique fl air, Apple devel-
oped a new graphics library for Mac OS X that combined the richness of the
Adobe Imaging Model with alpha channel support in the high-performance
graphics library we know today as Quartz 2D.

Understanding this legacy can be an important part of understanding why the
Quartz 2D imaging model behaves as it does. For example, Quartz 2D does not
provide an easy mechanism for erasing graphics you have already drawn. The
reason is that when you are drawing to a printer, the graphics may not be going
to a frame buffer, and there is no way to erase graphics. Instead of erasing graph-
ics, in Quartz 2D you create a mask, or clipping area, and draw the graphics you
want the user to see relying on the mask to remove parts of the image you don’t
want to display. This is a simple example but very illustrative of how the draw-
ing model of the library can affect how it is used.

Graphics Programming in the Modern Age

One advance in technology that contributed to the demise of QuickDraw was
the trend in modern personal computers to move more of the graphics capabili-
ties of the system to video cards. Indeed the advent of video cards with dedicated
graphics processing units has ushered in a new age of computer graphics. Quartz
2D and Core Image take advantage of these recent developments to improve
their functionality and performance. Core Image in particular is a direct bene-
factor of the power of modern graphics hardware. The evolution of the graphics
system in personal computers is extending the reach of those machines to new
and exciting fi elds of endeavor. The Mac OS X graphics system is at the fore-
front of this technologies wave. By using modern graphics APIs like Quartz 2D,
your application can take advantage of the work Apple has done, and you can
enjoy the benefi ts of the hardware while concentrating on a simple interface.

By way of an example, consider the impact that modern personal computers
have had on video production. We live in an age where studios use computer
graphics to create full-length, animated feature fi lms. In the past, digital video
production houses used expensive, dedicated workstations to produce their
fi lms.

Chapter2i.indd 20Chapter2i.indd 20 2/10/06 4:08:53 PM2/10/06 4:08:53 PM

21

Just as PostScript shifted print publishing from proprietary systems to the desk-
top, the development of software such as Final Cut Pro has professional quality
video editing onto consumer computers. This transition works because of a
combination of hardware improvements and the advancement of the graphics
systems on personal computers.

In recent past, images that used 32 bits per pixel and alpha channels could only
be manipulated by high-end applications. Today, however, these images are
commonplace. The CCT chips in modern digital cameras can capture images
using 12 bits per color channel or more. Storing these images in an 8 bit per
channel image drops valuable color information. The high-end applications of
today may choose to use a full 32-bit fl oating point value to represent just one
color channel. Each pixel, therefore, requires 128 bits. An image with the same
dimensions may require four times the storage just to hold the additional color
information! Processing such an image requires the computer to sift through
four times the data.

Shuffl ing around large volumes of pixel data is one diffi culty. The color channels
in these images are stored in fl oating point representations. Correspondingly,
performing calculations on those pixels requires fl oating point math. Comput-
ing at this level requires signifi cant processing horsepower and effi cient use of
graphics resources. Computer scientists have answered the demand for greater
graphics processing power by adding dedicated computer graphics hardware to
personal computers.

General Purpose Vector Processors for Graphics

A good example of the evolution of hardware with a corresponding impact on
graphics is the addition of vector processing units to general purpose micro-
processors. On the Macintosh platform, for example, the G4 and G5 PowerPC
processors have a vector processor known as the Velocity Engine. Developers will
recognize it by its geeky name, AltiVec. Intel-based processors include SIMD
technologies like MMX or SSE.

AltiVec will serve as a good example of a general purpose vector processor. The
registers of the AltiVec unit store quantities that are 128 bit wide. The proces-
sors instructions treat those bits as vectors. Depending on the instruction, the
processor will interpret the 128 bits as a vector whose components have different

Graphics Programming in the Modern Age

Chapter2i.indd 21Chapter2i.indd 21 2/10/06 4:08:54 PM2/10/06 4:08:54 PM

22
Chapter 2: From QuickDraw To Quartz 2D

lengths. Figure 2.1 shows the different ways that AltiVec processors can interpret
128 bits.

Each 128-bit AltiVec Register can represent:

Four 32-bit values or

Eight 16-bit values or

Sixteen 8-bit values

Figure 2.1 AltiVec Register Configurations

When interpreting a vector of four 32-bit values, the processor can treat those
bits as either a 32-bit integer or a 32-bit fl oating point value. A graphics applica-
tion might feed the AltiVec unit with 16 pixels of an 8-bit grayscale image all
at once. The program could then lighten all 16 pixels at once using a single
AltiVec command.

Using different instructions, a program could also load an AltiVec register with
the four 32-bit fl oating point numbers that make up a single fl oating point
ARGB pixel. The AltiVec processor could combine two fl oating point ARGB
pixels in a single operation. From these two examples, it’s easy to see how the
processing muscle of a vector unit like AltiVec can improve graphics perfor-
mance.

One shadow that complicates the use of vector processing units for graphics
is the fact that the AltiVec unit is not dedicated to graphics alone. Computer
games are popular clients of the graphics system. Many games contain comput-
ing engines that handle physics calculations. Physics involves working with vec-
tor-valued quantities like velocities and accelerations. These calculations are also
a good fi t for implementation with the vector processor. Scientifi c visualization
applications also rely heavily on the graphics system and include algorithms that
benefi t from the vector processor. In many applications, the vector processor is
shared between the graphics systems and other computation engines.

Computers with two or more microprocessors often have the added luxury of
a second vector processing unit, and applications can employ that to alleviate
some of the congestion. Unfortunately, there is a practical limit that prevents
computers from scaling performance through the addition of processing units.

Chapter2i.indd 22Chapter2i.indd 22 2/10/06 4:08:54 PM2/10/06 4:08:54 PM

23

The complexity of a general-purpose vector processor means that they also take
up quite a lot of space on silicon chips. Correspondingly, the amount of power
they require and the amount of heat they generate increases with each additional
unit. Issues like these make it very hard to scale the performance of a general
vector processor by simply adding additional cores. As will be shown, however,
if we reduce the complexity of the core, limit the operations it can perform, and
focus it on a specifi c task, the idea of scaling vector processing power this way
actually works quite well.

The Emergence of the GPU

Another common technique to boost the graphics performance of a computer
is to augment the CPU with an additional processor that is dedicated graphics.
On the personal computer systems of today, that additional processor is usually
found on the computer’s video card.

Many of the earliest models of graphics coprocessors, particularly in the personal
computer space, were simply tools to speed up some very specifi c parts of the
3D graphics pipeline. The cards had algorithms for applying lighting and shad-
ing models to simple geometric primitives like triangles. The algorithms were
hard-wired into the video card and could not be changed. Communication with
these cards fl owed in one direction only, from the main computer to the video
card. The cards were useful for rendering 3D graphics effi ciently but could not
be used in more general graphics applications.

As time progressed, the services provided by the video card’s processor expanded
to include more general purpose routines. The data path between the main CPU
and the graphics card widened and became bidirectional. With those innova-
tions, programs gained the ability to use the graphics processor to perform cal-
culations and retrieve the results to main memory. This allowed the video card
to behave as a graphics computation engine, not just a display mechanism.

Collectively, these more powerful processors have come to be known as Graphics
Processing Units or GPUs. They play a signifi cant role in boosting the graphics
capabilities of modern computers. Along with the GPU, a typical video card will
also contain a block of dedicated memory (called Video RAM or VRAM) and
some kind of hardware that converts bits in the cards display buffer into video
signals for a computer display. In many respects, the video card resembles a

Graphics Programming in the Modern Age

Chapter2i.indd 23Chapter2i.indd 23 2/10/06 4:08:54 PM2/10/06 4:08:54 PM

24
Chapter 2: From QuickDraw To Quartz 2D

self-contained graphics computer. Like other computers, graphics hardware
continues to advance. To give you some idea of how rapidly video cards have
evolved, consider the graph shown in Figure 2.2.

Figure 2.2 GPU fill rate by year

Figure 2.2 shows how the fi ll rate of graphics processors has grown over the
years. A graphics card fi ll rate is roughly the number of pixels that the GPU can
draw into video RAM in a single second. While the true processing power of the
GPU varies for different tasks, this graph is a dramatic example of the advances
that have been made in graphics processing power of GPUs.

The growth of graphics processing power actually exceeds the predictions of
industry professionals. In 1965, Gordon Moore made a famous observation that
the number of transistors on a single chip would double approximately every 18
months. This prediction has come to be known as Moore’s Law. The comput-
ing industry has taken Moore’s law to imply that the processing capabilities of
silicon chips would grow at the same rate.

For many years the transistor counts and performance of CPUs has tracked this
prediction with frightening accuracy. The graph in Figure 2.2 shows that the

Chapter2i.indd 24Chapter2i.indd 24 2/10/06 4:08:55 PM2/10/06 4:08:55 PM

25

performance of GPUs has been growing faster than Moore’s Law would predict.
In general terms, this means that the processing power of dedicated graphics
processors is growing faster than that of general purpose CPUs like the PowerPC
or the Intel x86 family. Applications that tap into that processing power enjoy
dramatic performance improvements.

One of the reasons that graphics processors follow this performance curve is be-
cause the performance of the processor is easier to scale by throwing more silicon
at the problem. Many of the algorithms that the GPU runs are what computer
scientists call “embarrassingly parallel.” An embarrassingly parallel problem is
one in which a computer can easily work up a solution breaking it into smaller
pieces and computing each piece along a parallel path.

Astute readers will recognize how a program might apply an SIMD vector
processor, like the aforementioned Velocity Engine, to calculate a solution to an
embarrassingly parallel problem. But graphics processors don’t need to solve the
same problems that general purpose vector units must solve. Because it can focus
on solving graphics problems, the GPU requires fewer operations. For example,
general purpose processors must deal with branches, loops, and error checking.
In contrast, the GPU pushes its vectors through sequentially without branches
and loops. Each of the parallel units in a GPU is much simpler than its counter-
part in a more general vector processor. Hardware engineers can add more vector
units, and therefore more parallel computation paths, in the same area. More
computation paths mean more operations completed each cycle.

Because the vector units in the GPUs are dedicated to graphics, they don’t suffer
the resource contention issues that plague general purpose vector processors.
There aren’t as many parts of applications competing for processor time.

The Programmable Graphics Card

Computers have spent many years sending data to graphics cards, but the ability
to send programs to the GPU is a relatively recent innovation. Graphics cards
that accept GPU programs from the main computer are known as programma-
ble graphics cards. This ability to program the graphics card is the feature that
lends power to graphics systems like Quartz 2D and, in particular, Core Image.

Graphics Programming in the Modern Age

Chapter2i.indd 25Chapter2i.indd 25 2/10/06 4:08:56 PM2/10/06 4:08:56 PM

26
Chapter 2: From QuickDraw To Quartz 2D

 Even though the parallel execution units of graphics cards can only perform a limited num-
ber of operations, those operations can be applied to solve problems that have nothing
to do with graphics. Some computer scientists are investigating techniques for using the
video hardware to run computations that are unrelated to Graphics. The field is known as
“General Processing on GPUs,” and a number of enthusiasts host a Web site dedicated to
the topic at http://www.gpgpu.org/.

At it’s heart, Core Image is a system for feeding GPU programs to program-
mable video cards. The programs it submits usually apply special effects to
images. By using the power of the parallel processing paths on the hardware,
the computer can calculate those effects much faster than the main CPU could.
Another interesting aspect of Core Image is that it can run its effects even if
no programmable graphics card is available on the system. This demonstrates
another advantage of the Mac OS X graphics architecture. It helps your applica-
tions produce improved performance without undue complexity.

Managing Hardware Complexity

The challenge to today’s applications is fi nding a way to conveniently take
advantage of the power afforded by modern hardware. For example, applica-
tion programmers who want to use the Velocity Engine must learn the AltiVec
instruction set. They must also develop “vectorized” algorithms for solving the
application’s problems. The applications often must rearrange data structures so
that the vector processor can access them effi ciently. All of these issues require
specialized knowledge and add complexity to the resulting application.

In a similar way, making direct use of the GPU requires an application to under-
stand some of intimate details about the video card. Some cards accept longer
graphics programs than others, and some card have special instructions that
simplify GPU code. Writing code that is general enough to support the diverse
range of graphics hardware from different vendors is quite diffi cult. If you’re
writing your application directly to the hardware, you will have to immerse
yourself in the minutiae of every hardware combination, or you must limit your
application to only that small set of hardware you are willing to support.

 This same problem applies even in computers that don’t have video cards. Even
tasks that appear simple, like copying pixel buffers in main memory effi ciently,
require a detailed knowledge of the processors’ cache behavior and the system’s

Chapter2i.indd 26Chapter2i.indd 26 2/10/06 4:08:56 PM2/10/06 4:08:56 PM

27

virtual memory architecture. While these are all interesting topics, writing
graphics programs this “close to the metal” can be complicated and error prone.
Providing a rich, full-featured graphics system that allows applications to plug
into the performance of the computer, while allowing programmers to focus on
creating graphics and not hardware issues, is one of the toughest challenges the
operating system vendor must face.

Quartz 2D and Core Image are both excellent technologies in this regard. They
insulate applications from the complexity of the hardware but take advantage
of that hardware in their own implementations. For example, Apple includes
a compatibility mechanism inside of Core Image that allows the system to run
GPU programs on any system. If a program uses Core Image on a computer
without a programmable GPU, the program will continue to run correctly. The
effects of applying a fi lter will take longer to achieve, but the results should be
the same even without the dedicated hardware. The application programmer
limits his attention to working with the interface of Core Image instead the de-
tails of the GPU. Similar arguments can be made with respect to the features of
Quartz 2D. The graphics architecture of the system insulates applications from
hardware details and is easier to use.

Mac OS X Graphics Architecture

Mac OS X, in general, is built as a layered software system. The lower layers
are the ones closer to the hardware. These layers include software like hardware
drivers and routines for accessing processor specifi c features such as AltiVec. The
higher layers build upon the functionality beneath them and offer applications
services that are easier to use. The challenge of the application designer is to
decide at what level he needs to access the graphics system. It is a balancing act
between application complexity and performance.

Figure 2.3 illustrates the layers of the Mac OS X graphics system.

Mac OS X Graphics Architecture

Chapter2i.indd 27Chapter2i.indd 27 2/10/06 4:08:57 PM2/10/06 4:08:57 PM

28
Chapter 2: From QuickDraw To Quartz 2D

QuickTime

Core
Graphics

Core
Video

Core
Image

OpenGL

Kernel and Hardware

Figure 2.3 Mac OS X Graphics Architecture Overview

Figure 2.3 is meant to convey the layers of the graphics system and the ways that
they are built on top of one another in the most general terms. Strictly speaking,
the QuickTime software layer might interact more directly with the hardware,
bypassing the layers beneath it, than this diagram would suggest. Nevertheless,
the diagram is useful for describing the Mac OS X architecture. In the following
sections, we will describe each layer in the Mac OS X graphics architecture and
their roles in creating graphics.

Kernel and Hardware

The kernel and hardware layer represents the lowest levels of the operating
system. The hardware includes both the components of the main computer and
the chips on the video card. In terms of the main computer, the graphics system
must often interact with the CPU, any vector processing units, and the memory
system. This layer of the system handles the complexity of processor cache lines
and complexities like processor-specifi c instructions. Hardware on the video
card includes the presence of a programmable GPU, the amount of video ram,
and the interconnection between the video card and main memory.

The kernel layer includes the video card drivers and other software that interacts
directly with the hardware.

The software interfaces exported from the kernel and hardware layer encapsulate
a tremendous amount of complexity. Applications that need the absolute highest
level of performance may need to connect to the system at this level, but that is
likely to be a very rare occurrence.

Chapter2i.indd 28Chapter2i.indd 28 2/10/06 4:08:57 PM2/10/06 4:08:57 PM

29

OpenGL

OpenGL was fi rst released in the early 1990’s and is widely known as an indus-
try standard graphics library for creating 3D graphics images. Given its associa-
tion with graphics accelerators, OpenGL is also a valuable tool for accessing
the full capabilities of the video card. OpenGL is a cross-platform standard. A
commission known as the OpenGL Architecture Review Board (ARB) oversees
and steers the technology’s development. The ARB’s web site is http://www.
opengl.org. It s a valuable repository for resources related to writing OpenGL
code. The ARB site also contains innumerable links to other site, which makes
it an excellent jumping off point for graphics programmers who want to know
more about OpenGL.

Mac OS X includes a terrifi c implementation of OpenGL. Many 3D games and
scientifi c visualization applications take advantage of the 3D graphics features
of OpenGL. Interest in OpenGL in this volume, however, does not focus on its
3D graphics features. Nor will it concern itself with OpenGL’s ability to serve
as a fi rst-rate 2D graphics library. Instead, the focus is on OpenGL as a rather
direct interface to the kernel and hardware layers.

We already mentioned how early graphics cards were little more than shading
engines and rasterizers for 2D and 3D graphics primitives. Applications would
submit their primitives to the hardware through OpenGL. The library has
evolved, in lock-step with the progress of video cards. As video card vendors add
new capabilities to their hardware and drivers, the OpenGL community modi-
fi es their code to make those capabilities accessible to applications. Likewise, as
OpenGL developers discover new and innovative graphics techniques, they fi rst
implement them in software. The most useful and popular may be bolstered
with hardware implementation on future video cards.

When working with Quartz 2D, the system can use OpenGL to effi ciently
copy images onto the main display. OpenGL also submits GPU programs to
the video card on behalf of Core Image. These are just two examples of how
higher layers in the system can turn the features of OpenGL to their advantage.
Applications that need to create 3D graphics will use OpenGL as a matter of
course. 2D applications with very specifi c, high performance needs might also
use OpenGL to communicate to the video hardware.

Mac OS X Graphics Architecture

Chapter2i.indd 29Chapter2i.indd 29 2/10/06 4:08:57 PM2/10/06 4:08:57 PM

30
Chapter 2: From QuickDraw To Quartz 2D

Core Graphics

As its name suggests, Core Graphics is one of the fundamental graphics systems
on Mac OS X. Core Graphics is the proper name of the system, but it is also
known by the marketing friendly term Quartz. Quartz has two primary subsys-
tems—the window server and the Quartz 2D library.

The window server collects images of all the windows on the system, composites
them together, and is responsible for the images displayed on all the computer
screens. This system is also responsible for working with the computer hardware
to collect user events from the mouse and keyboard and see that they fi nd their
way to the proper applications. For example, when you click the mouse, the
window server determines which window the mouse is over and dispatches the
event to the application that owns the window.

Quartz Extreme is a technology that pairs the hardware of the video card with the
functionality of the Core Graphics layer. The Quartz Extreme initiative was origi-
nally applied to the window server. The Quartz Extreme compositor takes the
window images generated by applications and maps them onto OpenGL textures
on the video card. The window server draws upon the power of the GPU to com-
bine the window images on to the display. This saves the main CPU from having
to do the alpha blending calculations needed to combine the window images.

The second part of Core Graphics, the Quartz 2D library, will occupy most of
this book. Quartz 2D is a high-performance, general purpose library for creating
2D graphics that uses an imaging model very similar to the one used by Post-
Script and PDF. The library supports a wide variety of output devices and takes
advantage of hardware acceleration for improved performance.

Core Video

Core Video, which Apple created after many years of experience with
QuickTime, helps applications that want to present motion graphics. In its cur-
rent implementations, Core Video provides two main services. It handles buffer
management and timing services. In presenting movies, a computer typically
must decompress the frames and then present those images on screen. In the
past, QuickTime would usually complete each of these steps at the same time
by decoding the image directly into the display buffer. This limited performance
because the computer couldn’t decompress an image into the buffer until the

Chapter2i.indd 30Chapter2i.indd 30 2/10/06 4:08:57 PM2/10/06 4:08:57 PM

31

previous frame had been displayed. Quicktime’s handling of buffers also made
it diffi cult to support video encoding techniques which require the computer to
decode several frames of the animation at once.

Core Video assists an application in managing several frames of animation at
once. The library effi ciently moves the buffers to the graphics hardware where
the computer can display them on-screen. This decouples the decoding and
display stages of the animation loop, allowing each to run as quickly as it can.
This also allows the graphics hardware to handle the display of frames, freeing
the CPU to decode subsequent frames at the same time.

Core Video also handles timing services. In the complex graphics environments
available on the Macintosh, it can be diffi cult to get the timing of animation
just right so that it looks as smooth as possible on the display. Core Video runs a
high-priority thread on behalf of the application and uses a callback mechanism
that allows the operating system to request animation frames from the applica-
tion. By doing so, the computer can get the frames of the animation in such a
way that it can present them on screen at the optimal time. Applications that
present animations can use Core Video to their advantage in the performance
benefi ts it offers.

Core Image

Core Image is a fi lter-based image processing API. The system allows applica-
tions to build chains of fi lters (actually a directed, acyclic graph), combine them,
and apply them to an image all in a single step. The kinds of fi lters found in
Core Image are also often found in popular image processing applications such
as Adobe Photoshop or The GIMP (GNU Image Manipulation Program). Core
Image includes dozens of image processing fi lters with the installation of Mac
OS X. Application developers can provide their own image fi lters and can even
package those fi lters so that other applications can use them.

As with Core Video, one of the attractive features of Core Image is its ability
to take advantage of the graphics hardware. Many of the fi lters in Core Image
are implemented as GPU programs, and the library can run those fi lters on a
programmable graphics card if one is available. As has been said, however, Core
Image does not require programmable graphics hardware to run; it can run its
fi lter effects on the main CPU. The code will take advantage of other hardware
features like AltiVec or SSE if they are available.

Mac OS X Graphics Architecture

Chapter2i.indd 31Chapter2i.indd 31 2/10/06 4:08:57 PM2/10/06 4:08:57 PM

32
Chapter 2: From QuickDraw To Quartz 2D

Applications can use Core Image to add a variety of effects and transitions to
both user interfaces and application content.

QuickTime

QuickTime is a cross-platform architecture for working with a wide variety
of media formats. It began as a system for presenting synchronized sound and
video. Over the years, however, the extensible architecture of QuickTime has
broadened its scope to include quite a lot more. At its heart, QuickTime is an
excellent base for presenting any kind of time-based media. With the proper
components, for example, QuickTime could even be used to present the experi-
mental data captured from chemistry experiments.

QuickTime is a bit unusual in the way it touches on so many other aspects of
the system. At the lowest level, QuickTime includes components for working
with the video, audio, and data storage hardware on the system. At the highest
level, QuickTime provides routines and components that present user interfaces
and interact with the user—with lots of other functionality in between.

Of particular interest to 2D graphics developers is the fact that QuickTime con-
tains components that make it easy to import images from popular fi le formats
such as JPEG, GIF, and TIFF. QuickTime includes image processing fi lters and
transitions that are somewhat similar to the ones found in Core Image, although
the architecture is older and doesn’t employ hardware technology as effec-
tively. QuickTime also can transform 2D graphics and perform alpha channel
compositing. In many respects QuickTime is a jack of all trades.

If QuickTime suffers from anything, it is a disconcerting dependence on
QuickDraw. Apple is carefully freeing QuickTime from this anchor over time.
Some of the features that have traditionally been the province of QuickTime
are emerging as dedicated systems in Mac OS X. Core Image has already been
described, which handles functionality analogous to the effects and transitions
components from QuickTime. Core Video supplements QuickTime’s video
presentation abilities, and Quartz 2D can transform graphics and composite
images with alpha channels. Image I/O is a new architecture for importing and
exporting images to fi les. I/O is a dedicated system for importing and export-
ing images designed to take the place of QuickTime’s image import and export
components.

Chapter2i.indd 32Chapter2i.indd 32 2/10/06 4:08:58 PM2/10/06 4:08:58 PM

33

Application users that want to play movies and sounds or integrate a variety of
different media should consider working with QuickTime. Some of the newer
technologies, like Image I/O and Core Image are only available on newer ver-
sions of the Mac OS X. Applications that want to provide the same functionality
on older systems can use the similar functionality in QuickTime.

Other Graphics Libraries

The libraries just discussed form the core functionality of the Mac OS X graph-
ics system. Mac OS X also contains a number of additional libraries that are
worth a brief mention here. For more information on these libraries you can
consult Apple’s developer documentation.

ATSUI and Cocoa Text

The Apple Type System for Unicode Imaging (ATSUI) and Cocoa Text systems
play a vital role in the creation of graphics that contain text. Both ATSUI and the
Cocoa Text system are graphics libraries for combining a block of characters, text
style information related to those characters, and a region in which the text can be
drawn to create a complete image of the text. These libraries are vital to the correct
layout and rendering of Unicode text on the Macintosh system. While we will
touch upon ATSUI and Cocoa Text in this exploration of Quartz 2D, the richness
of these text layout engines would warrant an entire book in their own right.

QuickDraw

The same QuickDraw library that was vital to the continued success of the Ma-
cintosh is still available on Mac OS X. QuickDraw includes the same drawing
capabilities today that it has in the past. While Apple plans to maintain binary
compatibility with applications that use QuickDraw, the library is now depre-
cated technology. Apple is no longer changing the QuickDraw code, and the
library may become unavailable in future versions of the operating system.

This fact has a profound implication for developers who use the Carbon API.
Their applications are probably using QuickDraw as their primary graphics
library. If these applications are to grow with the system, developers will have to

Other Graphics Libraries

Chapter2i.indd 33Chapter2i.indd 33 2/10/06 4:08:58 PM2/10/06 4:08:58 PM

34
Chapter 2: From QuickDraw To Quartz 2D

convert their drawing routines to use Quartz 2D or one of the other libraries in
the Mac OS X graphics system.

 In classic Macintosh operating systems, QuickDraw played an important role in the
windowing system, not only as a graphics library, but also as a collection of routines for
dealing with “graphical situations.” For example, QuickDraw could tell you if a given point
was to be found inside of a particular pixel region. QuickDraw also managed things like the
set of displays on the system or the current system cursor. In general terms, QuickDraw
provided several of services that were not related to drawing graphics.

In Mac OS X, these same services have migrated to other libraries that are in a better
position to run them efficiently. Quartz 2D is, by-in-large, a drawing API and leaves non-
drawing tasks to other systems. If you have code that makes use of any of QuickDraw’s
non-drawing related services, you may need to look to services other than Quartz 2D to
find equivalent functionality on Mac OS X.

vImage

The vImage library is part of the Accelerate framework and is another image
processing library on the system. While the focus of Core Image is on visual
image effects and transitions, vImage contains routines related to more scientifi c
image processing tasks. Here are some of the features found in vImage:

• Conversion of image data between several different pixel types including
conversion between planar and interleaved pixel formats.

• General Convolution on image data.

• Apply Fourier Transforms (one and two dimensional, real and complex
valued) to a block of data. (The Fourier Transform is a mathematical
operation that occurs often in image and signal processing).

• Apply “morphological” operations on data. Morphological operations
manipulate images so that items pictured in the image change their
shapes. Usually the items in the image will expand, shrink, or take on
other aspects of a bitmap called the morphological kernel.

• Perform geometric operations on an image (such as scaling and resam-
pling, rotations, and refl ections).

Chapter2i.indd 34Chapter2i.indd 34 2/10/06 4:08:58 PM2/10/06 4:08:58 PM

35

• Generate histograms for the samples in an image. A histogram tells you
how many of the pixels in an image are of a given intensity. Histograms
play an important role, for example, in some image enhancement code.

• Alpha channel compositing. (Combining translucent and partially trans-
lucent images together)

Looking at this list, you may see many operations that are found in other graph-
ics libraries in Mac OS X. Both Quartz 2D and QuickTime, for example, can be
used to rotate an image or perform alpha channel compositing. vImage is a low-
level library upon which some of those higher-level libraries are built. Because of
this, using the routines in the vImage requires a bit more care on the part of the
programmer. vImage can take advantage of multiple processors if they are avail-
able and use the SIMD units in those processors as well if they are available.

Java 2D

Mac OS X is an excellent platform for Java development. The Java system avail-
able on Mac OS X includes an impressive collection of technologies including
the Java graphics library, Java 2D. Java 2D shares a large number of features
with Quartz 2D. Both include graphics services for line art, text, and images
and include support for alpha channel compositing. The two libraries have some
abstractions in common, and many of the drawing techniques that are effective
in one library have close analogs in the other library. With so many similarities,
it should not surprise you to learn that the Java 2D implementation on Mac OS
X relies on Quartz 2D for much of its functionality. In spite of the similarities in
their feature sets, Quartz 2D and the Java 2D API use very different program-
ming interfaces. Because it is a completely separate API, one that happens to be
implemented using Quartz 2D, but which does not directly expose the func-
tionality of that library, Java 2D is not explored in this book. However, there are
a number of excellent resources available on the web and in books to help Java
programmers get the most out of Java 2D.

This chapter has covered a lot of ground. Understanding where Quartz 2D fi ts
into the graphics system, both historically and architecturally can help you make
effective use of the system. Some time has been spent discussing other graphics
technologies that may be of interest, and we encourage you to explore them at
your leisure. Writing good graphics code on Mac OS X is often a question of
fi nding the services on the system that most closely match your needs. Hope-
fully this brief discussion will help you fi nd the services that benefi t you.

Other Graphics Libraries

Chapter2i.indd 35Chapter2i.indd 35 2/10/06 4:08:58 PM2/10/06 4:08:58 PM

Chapter2i.indd 36Chapter2i.indd 36 2/10/06 4:08:58 PM2/10/06 4:08:58 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

