A Cocoa Application: Views

Now that the model is taken care of, we turn to the other end of the application: the
views. Our design for the application relies on standard elements in the Mac OS X
Aqua interface.

Interface Builder (IB) is the indispensible tool for laying out human interfaces
for Mac OS X applications. It edits Nib files, which are archives of human-interface
objects that are reconstituted by your application when the files are loaded. All Cocoa
application have a main Nib file, which the Xcode application template names Main-
Menu.nib. This file contains at least the main menu bar for the application and may
contain other applicationwide windows and views.

An application can have more than one Nib, and a Nib can be loaded and its con-
tents instantiated more than once. For instance, the Xcode template for a document-
based Cocoa application includes a MyDocument.nib file. The file contains a trivial
window for documents of the MyDocument class, and the template for the MyDocument
class implementation specifies MyDocument.nib as the Nib to load when creating a
new document.

Because our design calls for a window that displays the data points and regression
statistics for each document, we want to edit the window in MyDocument.nib to
match our design. In the Groups & Files list, click the triangle next to Resources
to open that group. You should see MyDocument.nib, with the gold icon of a Nib
file, in that group. Double-clicking this item launches Interface Builder and opens
MyDocument.nib for editing.

61

62

A Cocoa Application: Views

G’ Interface Builder File Edit Classes Format Layout Tools Window Help

Window

000

5 |=®= Tex

—— N [~
Button) ()

T Y

® Radio
O Radio
(O switch

[item1

Cocoa-Controls =)

= IO [Tey [

—=
4ay >

— S funm

Button —

™

S

- o

Your document contents here

8en0e6 23 MyDocument.nib

{instances | Classes Images Sounds Nib |

Window

® 1

Figure 6.1 Interface Builder on opening MyDocument.nib. The window that represents
the Nib is at lower left; above it is the simple window, with some filler text, that comes in
MyDocument.nib as provided in the template. To the right is the palette containing standard
Aqua controls that can be dragged into windows.

6.1 Interface Builder

The newly opened Interface Builder will show you three windows (Figure 6.1). (Use
Hide Others in the Interface Builder application menu to reduce the clutter.) The
largest, named Window, contains a text element saying ‘““Your document contents here”
in the middle. Close this window.

The window at the lower left, MyDocument.nib, shows the Nib file as a file opened
by Interface Builder (Figure 6.2). It shows three icons. The first two—File’s Owner
and First Responder—are placeholders for certain objects outside the Nib. Any other
icons are for objects in the Nib—in this case, a window named Window.

Double-click the Window icon. The window we’re building for the MyDocument
class opens again.

6.2 Layout 63

(@06 | MyDocument.nib

[Instances | Classes Images Sounds Nib '

e 1L -

F Window

i

Figure 6.2 The window for the MyDocument.nib file contains icons for File’s Owner and
First Responder, which are placeholders for objects outside the Nib, along with an icon for
every top-level object in the Nib. In this case, MyDocument .nib contains only a window, named
Window.

I’ll have to be careful with my terminology here. At the bottom of your
screen is the window for the MyDocument . nib file. You opened that file with
Interface Builder, you’re editing the file, and you’ll save it when you’re
done. Above it is a window you’re building for the use of the MyDocument
class. In a sense, you’re opening, editing, saving, and closing it, too, but
the window is inside the MyDocument.nib file. I'll try to be as explicit as
posssible in distinguishing the Nib window from the prototype document
window, but you may have to watch out for the distinction.

The third window, to the right, is a utility window embodying a series of palettes
containing objects you can add to a Nib file. We’ll be using this window a lot.

6.2 Layout

First, we will use Interface Builder as a pure layout tool for our human interface. We’ll
start by getting rid of that “Your document contents here” placard. Click it, and press
the Delete key. It’s gone.

Next, let’s add the buttons. If the palette window doesn’t show “Cocoa — Controls”
as its title, click the second toolbar icon—the one that shows a button and a slider.
At the top left of the palette is a regular Aqua-style button labeled Button. Drag this

64 A Cocoa Application: Views

File Edit Classes Format Layout Tool

®ne Window

[_Bugon)

Figure 6.3 Placing a button in Interface Builder. Drag the button from the Cocoa—Controls
palette to the window being built. Lines will appear in the window when the button is placed
properly according to the Aqua human-interface guidelines.

button from the palette into the window we’re building for MyDocument (Figure 6.3). As
you drag the button into the upper-left corner of the target window, blue lines appear at
the window’s margins. The Aqua human-interface guidelines specify certain margins
between controls and within windows, and Interface Builder puts up guides to help
you place your elements properly.

Button is not an especially informative title for a control. Our design calls for
this button to be named Add. The easiest way to change the label is to double-click
the button, making the text editable, and replace the title. Instead, we’ll take this
opportunity to have our first look at Interface Builder’s Inspector. Select Show Info
from the Tools menu. A new utility window opens, offering a number of options
for configuring the current selection—in this case, the button we just dragged in
(Figure 6.4). The field at the top of the inspector is labeled Title: and shows the current
value, Button. Edit this to say Add, and press Tab or Enter to complete the edit. The
button is now named Add.

Leave the Inspector window open. It will change to keep up with the currently
selected element in the Nib, and we’ll be needing it later.

Repeat the button-dragging twice more, for the Remove and Compute buttons.
Name the new buttons accordingly.

Next, we add the table of data to the window. Click the fifth icon at the top of the
palette to reveal Interface Builder’s repertoire of data-display views. The table view
(NSTableView) is in the lower-left of the Cocoa—Data palette. Drag this view into the
window we’re building. Lines will appear that allow you to place the table view a short
distance below the buttons and just off the left edge of the window. Small blue knobs
appear at the edges and corners of the view to let you resize it. Make the view wide

6.2 Layout 65

000 NSButton Info
Attributes e
Title: | Add
Alt. Title:
Sound:
Key Equiv: | <no key> @
Key Mod: [%8 0o 0~
Type: Push Button &
Behavior: Mor vy Push In
Size: | Regular [$] Inset:
Tag: 0
Alignment: |<— -]4- —»’ -ea “/[rdered
| Transparent
. [_] Continuous
feon Fos: 8 & é Enabled
-olg O - Sglected
| Hidden

Figure 6.4 The Interface Builder Inspector, as a simple push button is selected. The default
label for the button (Button) is replaced by Add.

enough to display two columns of numbers comfortably and deep enough to trigger
a line at the bottom of the window.

What you’ve added to your document window is much more than simply an NSTa-
bleView. Look at the main Nib MyDocument window, which should be at the lower
left of your screen if you haven’t moved it. Make sure that the Instances tab is selected.
At the top of the scroll bar at the right edge of window are two small buttons. The
upper one, with four small boxes in it, is now highlighted; click the other one, with
horizontal lines, to highlight it.

The Instances view changes to a hierarchical display of the Nib contents. MyDoc-
ument and First Responder come first, followed by an NSWindow with a disclosure
triangle next to it. Clicking the disclosure triangle shows that a Cocoa window con-
tains one NSView, the content view, which, because it contains other views, also
has a disclosure triangle. If we open all the disclosure triangles we see, we end up
with something like Figure 6.5. What we last dragged into the window was in fact
an NSScrol1View, containing an NSTabTeView, which in turn contained two NSTable-
CoTumns.

66 A Cocoa Application: Views

(6 06 2 MyDocument

{ Instances | Classes Images = Sounds = Nib '

NSObject oo
FirstResponder
¥ NSWindow (Window)
¥ NsView (Content View)
NSButton (Add)
NSButton (Rermove)
NSButton (Calculate)
¥ NSScrollView (NSTableView)
W NSTableView (,)
NSTableColumn
NSTableColumn

2

Figure 6.5 The hierarchical view of the MyDocument Nib in progress. You reach this view
by selecting the Instances tab and then the list-view button just above the scroll bar at the
right edge of the window. It can sometimes be easier to select views in this list than in the
window display. The yellow caution badges on the screen indicate that “outlets”—links to
other objects—in the flagged views have not yet been filled.

Select the header of the first column of the table. Using your mouse, click once to
select the scroll view, double-click to get inside to the table view, double-click again
to get down to the header view, and click once more to bring up the text field editor.
Alternatively, simply keep clicking rapidly on the header until it turns white and a
blinking insertion point appears. Type X. In the second header, type y. Putting the
mouse between the headers will allow you to drag the boundary between them, so
you can resize the columns to equal size.

The last element we’ll put in the window is an NSForm, a simple array of labeled
text fields that we’ll use for the results of the regression. Find the form element in
the third panel of the IB palette (Cocoa—Text), at bottom center. Drag it into the right
half of the window you’re building, under the Compute button. As supplied, the form
has two big defects: It’s too narrow, and it shows only two items. The width problem
is easy to solve: Drag the handles on the sides of the form until they hit the spacing
guidelines.

Dragging the handles on the top and bottom, however, gets you a taller form with
two entries (Undo is your friend here). NSForm turns out to be a subclass of NSMatrix,
a Cocoa class that manages an array of controls. You can add rows or columns to an
NSMatrix in Interface Builder by dragging a resize handle while holding the Option
key down. An Option-drag downward on the bottom handle of the form gets us our
third row.

6.3 Sizing 67

Click repeatedly on the labels in the form until they become editable, and change
them to Slope:, Intercept:, and Correlation:. You’ll probably have to resize the form
when you’re done.

6.3 Sizing

At this point, the layout of the window is almost done. Why “almost”? Pull down the
File menu and select Test Interface (or press command-R). Your window now “goes
live,” using the components you put into it. There’s nothing behind them, but you can
click the buttons and work the other controls.

Now try resizing the window. The contents of the window ride the lower-left
corner, sliding into and out of view as the window resizes (Figure 6.6). This is not
what we want. Near the right end of your menu bar is an icon resembling an old-
fashioned double-throw electrical switch. Click this icon to exit the interface-testing
mode. None of the changes you made during testing are permanent.

Cocoa views can be set to resize or simply to stay put as their containers change
size and shape. Click the Add button in the window we’re constructing to select it. If

fe a0 Window
T\ AUO | RETUVE ey
i i Slope:
Intercept:
Correlation:

.

Figure 6.6 As supplied, Cocoa controls do not automatically size and position themselves
in a window as the window resizes. You have to specify sizing and positioning behavior
yourself.

68

A Cocoa Application: Views

B

pNSEURon InspecEir .

| Size

] |'/;\|

ry
-

_Fame I Layout

S

1 Lock

Bottom /Left: 4

x

20

y: (320

" Width/Height:

=
s

w

70

g

Figure 6.7 The Size Inspector for a view that should stay put, relative to the top left of its
enclosing view. The inside struts are all straight, meaning that it never resizes. The outside struts
below and to the right are springy, meaning that they don’t influence the view’s placement.

the Inspector panel is not showing, select Show Inspector (or press command-shift-
I) from the Tools menu. In the pop-up menu at the top of the Inspector window, select
the third item, Size. (Note that you can bring the Inspector forward with the Size panel
visible by pressing command-3.)

The Size panel (Figure 6.7) is dominated by a diagram showing the behavior of
the selected view when its enclosing view is resized. The square inside the diagram
represents the view itself. The various lines in the diagram switch between “struts”
(straight lines) and “springs” (curling lines) when you click them. A view whose inner
box contains rigid struts in both directions does not resize; if it has a spring in either
direction or both, it can resize in that direction.

When the outer lines are struts, the view will try to maintain the same distance
from the corresponding edge of the container. (If both lines are struts and the view
isn’t resizable, lower and left wins over upper and right, which is why the contents of
our window “rode” the lower-left corner out of sight when you resized the window.)

6.3 Sizing 69

(-
Autosizing

g

\ >

Figure 6.8 This view maintains its position relative to the top right of its enclosing view.
The outside struts to the top and right are rigid.

If an outer line is a spring and the view is not resizable in that direction, the view
will ignore the movement of that edge of the container. If the view is resizable and an
outer line is a spring, the view will resize to a degree proportional to its position in
the window. Two side-by-side views that obey this rule will maintain their respective
shares of the window when it is resized and will not run into each other.

We reexamine the views in the window with an eye to how they should behave
when the window resizes. The buttons should never resize and should stay where
they are relative to the nearest corner—top left for Add and Remove, top right for
Compute. Select each in turn, making Size Inspector for the Add and Remove buttons
look like the one in Figure 6.7 and for the Compute button, like Figure 6.8.

How do we want the form at the right of the window to behave? We certainly
don’t want it to shrink or stretch vertically with the window, but we wouldn’t mind
its growing if the window were to get wider. So the vertical internal strut should be
rigid, and the horizontal strut should be springy. We want it to keep its position near
the right edge of the window, so the right strut remains rigid. We also want it to stay
an inch or so below the title bar, so the top strut is rigid. The bottom strut becomes
a spring, allowing the form to float free of that edge. The left strut also becomes a
spring, indicating that the form will expand to take a share of the window rather than
maintain a rigid margin from the left edge. See Figure 6.9.

The data table should be freest of all, widening with the window and also growing
vertically to show more points if the window grows. Both internal struts should be
turned into springs. We anchor the view to the top left of the window by leaving those
outer struts rigid; we also leave the bottom strut rigid. That way, when the window gets
taller or shorter, the table will keep a constant distance of 20 pixels from the bottom

70 A Cocoa Application: Views

(v
Autosizing

00000 100 —

i

Figure 6.9 The resizing specification for the form at the right side of the window. We
don’t want it to stretch vertically, so the inside vertical strut is straight. It would be nice if

this view could take advantage of more room horizontally, so its inside horizontal strut is
springy, allowing resizing in that direction. It is strictly bound to the top and the right side of
the surrounding view. Being resizable horizontally and loosely bound to the left, this view will
resize itself proportionately as the window resizes.

of the window. The right-horizontal strut is made springy, so the table view will grow
horizontally only to maintain its share of the horizontal space. See Figure 6.10.

Now press command-R to try out the window. Now resizing does not shove views
out the window. You may want to experiment with other sizing options and see their
effects. Remember, you can exit the interface test mode by clicking the switch icon
in the menu bar.

Figure 6.10 The resizing specification for the scroll view enclosing the data table. It resizes
in both directions along with the window. It is strictly bound to the top, left, and bottom edges
of its enclosing view, so it will resize to maintain its present distance from those edges; it is
loosely bound to the right, so it will take only a proportionate share of growth in that direction.

6.5 Summary 71

(Add) (Remove) (Compute)

¥ Slope
Cupertino

San Jose Intercept
Santa Clara
San Francisco
Palo Alto

San Carlos

Los Gatos
Sunnyvale
Mountain View
Redwood City

Correlation

[T=R - - R = Y s i = 4

Figure 6.11 Adding a split view. Selecting two side-by-side views, and using the menu
command Layout — Make subviews of — Split View encloses the views in an NSSp1itView,
with the splitter between them.

6.4 A Split View

Our idea of how much space to allocate between the table of data points and the form
containing the output statistics might not be the one that should control. The user may
have other ideas. It would be better to put the two views inside a split view so the user
can drag the border between them back and forth.

Interface Builder does not provide an NSSplitView or an NSScrollView in its
palettes, except for the ones prebuilt around other views. To get a split view, select
the views you want to be in the split view—in this case, the scroll view containing the
data table and the NSForm for the results. Then select the menu item Layout — Make
subviews of — Split View to wrap the views in a split view big enough to contain
them and oriented so the split comes between them. See Figure 6.11.

Try out the new view by pressing command-R. The halves of the split view should
resize as you drag the dimpled bar between them. The new split view comes with no
automatic resizing, so when you return Interface Builder to its normal editing mode,
you’ll want to set the split view’s internal struts to springs so it can resize with the
window.

6.5 Summary

This chapter introduced Interface Builder, a tool no less important to Cocoa develop-
ment than Xcode itself. We used IB as a straightforward tool for laying out windows

72 A Cocoa Application: Views

and views. We saw how to set the many options for automatic sizing of embedded
views and how to use Interface Builder’s own simulation mode to verify that our
layout and sizing choices work.

This does not end our work with Interface Builder. Because it is a constructor for
networks of Cocoa objects, Interface Builder will have a big role to play as we move
on to the controller layer of our design.

