
C H A P T E R 1

DEFINING A BUILD

Philosophy: The build is a piece of software and should be treated as
such. The build is among the most heavily used and complex pieces
of software in the development group and should be treated as such.
—Danny Glasser, Microsoft developer in the Systems Group,
March 9, 1991

The first thing we should do is define what a build is. What Danny describes
in the previous quotation is important. The purpose of a build is to trans-
form code written in any computer language into an executable binary. The
end result of a software build is a collection of files that produce a product
in a distributable package. In this case, package can mean a standalone
application, Web service, compact disc, hotfix, or bug fix.

If you do not think it is worthwhile to spend resources on a good build
process, your product will not be successful. I have been on a couple of
product teams at Microsoft that have failed, and I have seen many others
fail because they were not able to consistently build and test all of the
product’s code. I also see this at customer sites when I am reviewing their
build process. The companies that have clean, crisp, reliable build and
release processes are more successful than the ones with ad hoc, insuf-
ficient processes.

The Two Types of Builds: Developers and Project

I like to say that there are really only two types of builds: ones that work
and ones that don’t. Seriously, though, when you’re shipping a product, you
should consider these two different types of builds:

 ■ Developers’ (local machine builds)—These types of builds often
happen within an editor such as Visual Studio, Emaqs, Slick, or VI.
Usually, this is a fast compile/link of code that the developer is cur-
rently working on.

1

 ■ Project (central build process)—This type of build typically
involves several components of an application, product, or a large
project, such as Windows, or in some cases several projects included
in a product, such as Microsoft Office.

The developer’s build process should be optimized for speed, but the
project build process should be optimized for debugging and releases. I am
talking about optimizing the process, not compiler or linker optimization
switches. Although speed and debugging are important to everyone who is
writing code, you must design a project build process to track build breaks
and the offender(s) as quickly as possible because numerous people are
waiting for a build to be released. For a developer, what seems to be most
important is clicking some type of Build and Run button to make sure the
code compiles without errors and then checking it in. For the build team,
building without errors and having the ability to track down the person
who broke the build is the most important thing.

NOTE In some simple scenarios, these two build cases can use the same
process. If this is the case, the team—what I refer to as the Central Build Team—
should dictate the build process. This team—not the developers—should design
the project build process. All too often, the developers design the project build
process, which causes problems. Because developers usually build just the code
modules that they work on and not the whole project on a regular basis, they
look for shortcuts that are not necessarily in the best interest of building
the entire project. For example, they might use file references instead of project
references.

If a developer specifically references a file in Visual Studio and the sources
of that file change, they are not automatically picked up because a specific ver-
sion of the file was referenced instead of the project that builds the referenced
file. In the interest of saving time, developers use file references. They are not
interested in picking up the latest sources of the specified file, but it is not recom-
mended to use file references in a project build.

The Central Build Team should never be at the mercy of mandatory build
environment settings for building a specific component. If such a setting is neces-
sary to build a component, it should be proposed to the Central Build Team for
inclusion. Then the CBT can determine the impact of the addition or change to
the entire project and approve or disapprove the proposal.

2 Chapter 1 Defining a Build

Building from the Inside Out

One of my favorite questions to ask a customer’s development or build
manager when I go onsite is how often they release a new build process.
I usually get long pauses or funny looks and then finally get the answer
“Every day.” Of course, as you might suspect, I am not talking about releas-
ing a daily build, but a new build process. The fact that so many companies
do not release new build processes on a regular basis does not surprise me.
This is because traditionally creating a build process is an afterthought
when all of the specifications of a project have been written. Many project
and program managers think that the actual building of a project is pretty
trivial. Their attitude is that they can simply have the developer throw
his code over the wall and hire someone to press a Build button, and
everything will be fine. At Microsoft, we understand that whether you’re
building the smallest application or something huge and complicated like
Windows, you should plan and think through the process thoroughly in
advance.

Again, I recommend that you consider the build process a piece of
software that you regularly revise and deploy throughout your product
team. You should also add to your project schedule some “cushion time”
to allow for unforeseen build breaks or delays, I would at least pad the
milestone dates one week for build issues.

The concept of “building from the inside out” tends to confuse custom-
ers who are not familiar with a centralized build process. The idea is that
the Central Build Team determines what the build process is for a product
and then publishes the policies to an internal build site. All development
teams in the project must comply with the Central Build Team process;
otherwise, their code check-in is not accepted and built. Unfortunately,
this concept is usually the complete opposite of how a build system for a
project actually evolves over time. The Central Build Team for a project
usually goes out of its way to accommodate the way developers build their
code. “Building from the inside out” means that the Central Build Team
figures out the best way to get daily builds released, and everyone uses that
process independently or in parallel with the way his specific development
team builds. This total change in development philosophy or religion can
be a culture shock to some groups. I talk more about changing a company’s
culture or philosophy in Chapter 18, “Future Build Tools from Microsoft.”
For now, let’s stay on the topic of builds.

Building from the Inside Out 3

1. D
EFINING A BUILD

4 Chapter 1 Defining a Build

What we did in the past in the Windows group—and what they still do
today—is to deploy new releases of the build process at major milestones
in the project life cycle. Sometimes the new releases involve tool changes
such as compilers, linkers, and libraries. At other times, there are major
changes such as a new source code control tool or a bug tracker.

Because a build lab tends to have some downtime while the build team
waits for compiles, links, and tests to finish, it should take advantage of
these slow times to work on improvements to the build process. After the
lab tests the improvements and confirms they are ready for primetime, it
rolls out the changes. One way to deploy a new build process after a ship-
ping cycle is to send a memo to the whole team pointing to an internal Web
site that has directions on the new process that the Central Build Team will
be using in future product builds.

Microsoft Sidenote: Developers in a Build Lab

Today, the Windows build lab has its own development team working on writing
and maintaining new and old project tools. The development team also works
on deploying new build processes. Conversely, of the more than 200 custom-
ers I’ve spoken to, only one or two of them have developers working in a build
team.

Remember Danny’s quote at the beginning of this chapter and notice the
date—1991. In 1991, Windows NT had only a few hundred thousand lines of
code, unlike the more than 40 million lines of code that Windows XP has today.
Even in the early stages of developing Windows NT, Microsoft recognized the
importance of a good build process.

Chapter 3, “Daily, Not Nightly, Builds,” covers in more detail the
importance of the build team being the driving force to successfully ship
a product.

More Important Build Definitions

I need to define some common build terms that are used throughout this
book. It is also important for groups or teams to define these terms on a
project-wide basis so that everyone is clear on what he is getting when a
build is released.

1. D
EFINING A BUILD

 ■ Pre-build—Steps taken or tools run on code before the build is
run to ensure zero build errors. Also involved are necessary steps to
prepare the build and release machines for the daily build, such as
checking for appropriate disk space.

 ■ Post-build—Includes scripts that are run to ensure that the proper
build verification tests (BVTs) are run. This also includes security
tests to make sure the correct code was built and nothing was fused
into the build.

 ■ Clean build—Deleting all obj files, resource files, precompiled
headers, generated import libraries, or other byproducts of the
build process. I like to call this cleaning up the “build turds.” This
is the first part of a clean build definition. Most of the time, build
tools such as NMake.exe or DevEnv.exe handle this procedure
automatically, but sometimes you have to specify the file exten-
sions that need to be cleaned up. The second part of a clean build
definition is rebuilding every component and every piece of code in
a project. Basically the perfect clean build would be building on a
build machine with the operating system and all build tools freshly
installed.

Microsoft Sidenote: Clean Build Every Night

While working in the Windows NT build lab on NT 3.51, I remember reading
in a trade magazine that the Windows NT group ran clean builds every night.
The other builders and I laughed at this and wondered where this writer got his
facts. We would take a certain number of check-ins (usually between 60 and
150 per day) and build only those files and projects that depended on those
changes. Then one of us would come in over the weekend and do a clean build
of the whole Windows NT tree, which took about 12 hours. We did the clean
builds on the weekend because it took so long, and there were usually not as
many check-ins or people waiting on the daily build to be released.

Today, with the virtual build lab model that I talk about in Chapter 2,
“Source Tree Configuration for Multiple Sites and Parallel (Multi-Version)
Development Work,” the Windows NT team can perform clean builds every
night in about 5 or 6 hours.

More Important Build Definitions 5

6 Chapter 1 Defining a Build

 ■ Incremental build—The secret to getting out a daily build to the
test team, regardless of circumstances, is to perform incremental
builds instead of daily clean builds. This is also the best way that you
can maintain quality and a known state of a build. An incremental
build includes only the code of the source tree that has changed
since the previous build. As you can guess, the build time needed for
an incremental build is just a fraction of what a clean build takes.

 ■ Continuous integration build—This term is borrowed from the
extreme programming (XP) practice. It means that software is built
and tested several times per day as opposed to the more traditional
daily builds. A typical setup is to perform a build every time a code
check-in occurs.

 ■ Build break—In the simplest definition, a build break is when a
compiler, linker, or other software development tool (such as a help
file generator) outputs an error caused by the source code it was
run against.

 ■ Build defect—This type of problem does not generate an error
during the build process; however, something is checked into the
source tree that breaks another component when the application
is run. A build break is sometimes referred to or subclassed as a
build defect.

 ■ Last known good (LKG) or internal developers workstation
(IDW) builds—These terms are used as markers to indicate that
the build has reached a certain quality assurance criterion and that it
contains new high-priority fixes that are critical to the next baseline
of the shipping code. The term LKG originated in the Visual Studio
team, and IDW came from the Windows NT organization. LKG
seems to be the more popular term at Microsoft.

Microsoft Sidenote: Test Chart Example

The best way to show how Microsoft tracks the quality of the product is through
an example of the way the Windows team would release its version of a high-
quality build. Again, the Windows team uses the term internal developers work-
station (IDW), and other teams use last known good (LKG).

In the early days of the Windows NT group, we had a chart similar to the
one in Figure 1.1 on the home page of the build intranet site. Most people on
the project kept our build page as their default home page so that whenever
they opened Internet Explorer (IE), the first thing they would see was the status of
the project; then they would check the Microsoft (MSFT) stock price.

1. D
EFINING A BUILD

FIGURE 1.1 Sample quality chart.

The way to read Figure 1.1 is that any build we released that passed more
than 90 percent of the basic product functionality tests—what we called regres-
sions tests—and did not introduce new bugs was considered an IDW build.
This quality bar was set high so that when someone retrieved a build that was
stamped IDW, he knew he had a good, trustworthy build of the product. As you
can imagine, when the shipping date got closer, every build was of IDW quality.

Furthermore, when a new IDW build was released to the Windows team, it
was everyone’s responsibility to load the IDW build on the machine in his office
and run automated stress tests in the evening. Managers used to walk to their
employees’ offices and ask them to type winver to verify that they had the lat-
est IDW build installed before they went home for the evening. Today, managers
have automated ways to make sure that everyone is complying with the common
test goal. This is also where the term “eating our own dog food” originated. Paul
Maritz, general manager of the Windows team at that time, coined that phrase.
It simply means that we test our software in-house on our primary servers and
development machines before we ship it to our customers. Dogfooding is a cor-
nerstone philosophy at Microsoft that will never go away.

01Fig01.eps
5/02/05

Scan Group/pab

0321332059

Daily Quality Chart

% Regression
Tests Pass

Build Number

Daily Build
IDW Baseline

100

90

80

70

60

50

40

30

20

10

0

1 2 3 4 5 6 7 8 9 10 11

More Important Build Definitions 7

8 Chapter 1 Defining a Build

The build team would get the data for the quality chart from the test
teams and publish it as soon as it was available. This is how we controlled the
flow of the product. In a “looser” use of the word build, the quality became
part of the definition of a build number. For example, someone might say,
“Build 2000 was an excellent build” or “Build 2000 was a crappy build,”
depending on the test results and personal experience using the build.

How Your Product Should Flow

Never mistake activity for achievement.
—Coach John Wooden, UCLA basketball legend

Recently, while I was at a popular application development site going
through a build architect review, I noticed how extra busy everyone was.
Everyone was running around like he was on the floor of the New York
Stock Exchange trying to sell some worthless stock before the market
closed. People barely had enough time to stop and talk to me about their
top five build or SCM pain points. They didn’t have time for chitchat
because they were too preoccupied with putting out fires such as build
breaks, administrating tools and permissions, and reacting to new bugs
coming from their customers. Their explanation was that they did not have
enough resources to do what the upper managers wanted them to do. This
might have been partially true, but it was not the complete truth. They
were equating this busy work as their job duties and why they got paid.
This was later confirmed when I gave them my final trip report of how
to improve their processes such that everything would be fixed and auto-
mated. The first question their build team asked was “If all of this is fixed
and automated, then what will we do?” I was shocked. These guys were so
used to being in reactive mode that they seemed to think that if they were
not constantly putting out fires, their position was not needed.

The rest of this chapter outlines a smooth flow of how your product
development should go. As Kent Beck, author of Test Driven Development
and several Extreme Programming books, points out, flow is what the build
team should encourage and try to achieve. The build team drives the
product forward. I put together Figure 1.2 to show how this works at
Microsoft because I don’t think this concept is always clear. I don't think
this concept is always clear, as this is the underlying philosophy of this
book.

1. D
EFINING A BUILD

Figure 1.2 Software development flow.

Software Development Flow
The three boxes at the top of Figure 1.2 represent the respective teams
listed. The members of each team meet to discuss the progress of its code
development.

After the teams discuss the issues, they mark their priority in a bug
database, or work item tracker. Sometimes at Microsoft we call every-
thing (features, requirements, bugs, tasks, risks, wish list) a bug, but work
item is more accurate.

Teams must enter every type of code implementation or necessary fix
on the project into the work item tracker and assign it a tracking number.

Some Work Item Field Definitions
With the internal Microsoft work item tracker more than 46 fields
are available in each item, although not all are used all the time. For
Microsoft confidentiality reasons, I cannot include a graphic of our
tracking tool here. However, the following are some of the fields that are
included in a work item.

TriageTriage

Assign Bug
Needs implementing

Approved
WAR Meeting

Set Pri/Sev

Not approved Re-assign
priority/

schedule

Happens everyday
or as needed.

Happens
everyday

religiously!

Feature/Bug
Database

(store
everything)

Implemented
Check-in OK

Propagate Build

Send email Build is out

01Fig02.eps
5/02/05

Scan Group/pab

0321332059

Development
team

Test team
Program/
Product

Managers

Triage

Build team
picks up
changes

Release
Daily Build

Staging
Server

How Your Product Should Flow 9

10 Chapter 1 Defining a Build

Setting work item priority and severity:

 ■ Priority—This field communicates overall importance and deter-
mines the order in which bugs should be attacked. A bug’s priority
takes severity and other project-related factors into account.

 ■ Pri 0—Fix before the build is released; drop everything you
are doing and fix this immediately.

 ■ Pri 1—Fix by the next build.
 ■ Pri 2—Fix soon; specific timing should be based on the test/

customer cost of the workaround.
 ■ Pri 3—Fix by the next project milestone.
 ■ Pri 4—Consider the fix by the upcoming release, but post-

ponement is acceptable.
 ■ Severity—This communicates how damaging a bug is if or when it

is encountered.
 ■ Sev 1—This involves an application crash, product instability, a

major test blockage, a broken build, or a failed BVT.
 ■ Sev 2—The feature is unusable, a bug exists in a major feature

and has a complex workaround, or test blockage is moderate.
 ■ Sev 3—A minor feature problem exists, or the feature problem

has a simple workaround but small test impact.
 ■ Sev 4—Very minor problems exist, such as misspelled words,

incorrect tab order in the UI, broken obscure features, and so
on. Sev 4 has little or no test impact.

Following are other work item or bug field definitions:

 ■ Status—Active, Resolved, or Closed
 ■ Substatus—Fix Available
 ■ Assigned To—The most critical field, because this is the owner of

the item
 ■ FixBy—The project due date for the bug fix

Each work item has two build fields:

 ■ Build (1)—The build number that the bug was found on
 ■ Build (2)—The build number that the bug was resolved on

1. D
EFINING A BUILD

Microsoft Sidenote: How Visual Studio Resolves
and Closes Bugs

Testers close bugs.
—Deep thought of the day.

I once was asked by a test manager to summarize everything I learned about
builds in one sentence. I told him that “there are no free lunches, especially
in the build lab, but there might be free beer.” He told me that he was disap-
pointed that I did not have anything deeper than that. He then said his motto
was “Testers close bugs.” I knew what he meant, so I said with tongue-in-cheek,
“Wow, that’s deep.” I’m not sure if he took that as a compliment or just thought I
was not very funny. Regardless, he did have a good point.

Let’s break down the details of “a bug’s life…”
When a developer fixes a bug on his machine, he marks the bug’s substatus

as Fix Available and keeps it assigned to himself. After he checks in the change
to the team branch or tree, he resolves the bug (changing the status from Active
to Resolved) and reassigns the bug to the original bug opener or a tester who
owns that area of the product.

The original bug opener or tester then waits until an official build comes out
that contains the bug fix. He then walks through the repro steps to ensure that
the bug has truly been fixed. If it has, he closes the bug by changing the status
from Resolved to Closed. If the issue still exists, the bug opener or tester reacti-
vates the bug by resetting the status to Active and reassigning it to the develop-
er. This continues until the bug is fixed or gets postponed for the next milestone
or release.

WAR or Ship Meeting
Known as WAR, Central WAR, or Ship (the softer, more friendly Visual
Studio Team System term), this meeting is focused on tracking and con-
trolling the main product build. Its goal is to ship the product at a high
quality according to its schedule by dealing with day-to-day project issues,
test reports, and metric tracking.

How Your Product Should Flow 11

12 Chapter 1 Defining a Build

Figure 1.3 WAR team.

The WAR team and—everyone attending the WAR meeting—must
approve every work item before it can get built and shipped in the product.
After the WAR team approves a work item, a field in the bug tracker gets
set so that everyone on the build team knows that it’s okay to accept this
check-in into the main build lab.

If the WAR team does not approve the work item, the work item is
reassigned to the person who opened it or to Active, which means that no
specific person owns the bug, just a team. At this point, if the person who
opened the bug thinks it should be fixed sooner than the people in the WAR
meeting determine, it is his responsibility to push back with a solid busi-
ness justification. If the person pushes back to the WAR team with a solid
business justification and the WAR team still doesn’t accept the change
into the build, the work item is marked as Won’t Fix or Postponed.

Upon the item’s WAR team approval, the developer works with the
build team to get his code changes into the next build. After the build team
compiles and links all the source code, the code goes through the congeal
process, which brings all the pieces of the project together. This includes
files that don’t need to be compiled, such as some HELP, DOC, HTML,
and other files.

Then the post-build process starts (more on post-build in Chapter 14,
“Ship It!”), which in some cases takes just as long or longer than the build
process.

War Room
Agenda

Kill
Bugs!

“This guy is taking project
management a little too far…”

“and a little too literal.”

1. D
EFINING A BUILD

Microsoft Sidenote: How the Visual Studio Team Controls All
Check-Ins and “Tell and Ask Mode”

The Visual Studio team controls check-ins in another way: the “tell and ask” pro-
cess. Project managers use this process to slow the rate of code churn and force
teams to deliberate about what work items or bugs are fixed or open. This is
called triage.

Scott Guthrie is the product unit manager in Visual Studio. He explains tri-
age in his blog:

During tell mode, teams within our division are still given discretion to fix
any bugs they want—they just need to be prepared to present and explain
why they chose the ones they did to the central division ship room. This
ends up ensuring a common bar across the division, slows the rate of fixes,
and slowly brings up build quality. You might naturally wonder how not
fixing bugs could possibly bring up build quality, since this obviously seems
counterintuitive. Basically, the answer lies in the regression percentage I
talked about earlier for check-ins. Even with a low regression number,
you end up introducing new bugs in the product. (And when you have a
division of over 1,000 developers, even a low percentage regression rate
can mean lots of bugs introduced per week.) By slowing the rate of check-
ins, you slow the number of regressions. And if you focus the attention on
bad bugs and add [an] additional review process to make sure these fixes
don’t introduce regressions, the quality will go up significantly.

During ask mode, teams within our division then need to ask permission
of our central ship room committee before making a check-in—which
adds additional brakes to slow the check-in rate. In addition, all bugs
in ask mode must go through a full nightly automation run and buddy
testing (which takes at least 12 hours) to further guard against introducing
problems. Ask mode will also be the time when we’ll drive our stress-
passing numbers up to super-high levels, and we’ll use the low rate of
check-ins to find and fix pesky, hard-to-find stress failures.

You can read the entire entry at http://weblogs.asp.net/scottgu.
I talk more about processes to control all check-ins into the source tree in
Chapter 10, “Building Managed Code.”

How Your Product Should Flow 13

14 Chapter 1 Defining a Build

Release to Staging Servers
After the build is complete and has no errors, it is propagated to the daily
build servers, where at least 15 to 20 builds are stored with all the sources
and tools necessary to build. Milestone releases also are kept on the server.
This is where the test team picks up the build. This is the “secret” to fast
development and keeping your developers happy. I realize that most if not
all SCC tools can retrieve sources of a certain build but sometimes those
tools are clumsy or the labels on the trees are not accurate. So we came
up with this staging server with massive amounts of diskspace available
and stored our releases on it. It is a lot easier for the development and test
teams to search that server than the SCC database.

From the staging servers, the build can go to production. This process
is covered in Chapter 14.

Important Definitions
The following sections discuss terms that are specific to Visual Studio but
that are used all over the Web and at various companies I have visited.

Solution Files
If you are new to Visual Studio .NET, you probably are not familiar with
the term solution. A solution essentially represents everything you are
currently working on. Visual Studio .NET uses solutions as containers
for individual projects, which generate your system components (.NET
assemblies). Solution files maintain project dependency information and
are used primarily to control the build process.

Project
In the context of this book, projects are one of three types:

 ■ General development projects—The term project in its loosest
sense refers to your team’s current development effort.

 ■ Visual Studio .NET projects—Visual Studio .NET uses project
files as containers for configuration settings that relate to the gen-
eration of individual assemblies.

 ■ Visual SourceSafe (VSS) projects—A project in a VSS database
is a collection of files that are usually related logically. A VSS project
is similar to an operating system folder, with added version control
support.

1. D
EFINING A BUILD

Microsoft Solution Framework

It would not be proper to print a Microsoft book on Software Configuration
Management and not mention the Microsoft Solution Framework (MSF)
that has been publicly available for years. The origin of this process came
from the Microsoft Consulting Services (MCS) group and is based on
the terms and the way that Microsoft organizes its software development
groups. The funny thing is that many people on the Microsoft product
teams have never heard of MSF. They use the processes or know the
terms, but they do not realize that Microsoft has been teaching this to
customers for years.

That is a good example of how a documented process came from an
informal undocumented process. Now the documented process (MSF) is
the leader, and many new terms in the product teams come out of MSF.
MSF will be included in the upcoming Visual Studio Team System. It’s a
great high-level view of how Microsoft runs its product teams. Because a
ton of information about MSF is available on the Microsoft Developers
Network (MSDN http://msdn.microsoft.com), I will show just one
chart that sums up the whole process (see Figure 1.4).

Figure 1.4 MSF roles.

Satisfied
customers

Product
Management

User
Experience

Enhanced user
effectiveness

Delivering the solution
within project constraints

Program
Management

Communication

Smooth deployment and
ongoing operations

Building to
specification

Development

Test

Approval for release only
after all quality issues are
identified and addressed

The Goals of Each MSF Role

01Fig04.eps
5/02/05

Scan Group/pab

0321332059

Release
Management

Microsoft Solution Framework 15

16 Chapter 1 Defining a Build

Figure 1.4 is self-explanatory. The point of the graphic is to show that
there is not a hierarchical approach to shipping software at Microsoft, but
a “round table” one. Ideally the Build Master would be King Arthur.

Summary

Speaking the same language is important in any project or company.
Making sure everyone is clear on the terms or lingo in your group is espe-
cially important. For example, if you are talking about a build process or
bug to someone on your team and do not define the context, or if the terms
are not explicitly defined somewhere, you’ll miscommunicate your point or
vice versa. This can lead to project setbacks.

In the following chapters, I will continue to define terms that we use at
Microsoft and what seem to be industry standard terms. This is important
because there can be variations of a definition, and I want to make sure we
are all clear on the points being made. Also, it is the build team’s respon-
sibility to set these definitions for a group and publish them on an internal
Web site so that no one’s confused about what they mean and people who
are unfamiliar with the terms can reference them easily.

Recommendations

 ■ Define terms in your development process, and keep a glossary of
them on an internal build Web page. If you like, standardize on the
definitions in this chapter.

 ■ Clean build your complete product at least once per week, or every
day if possible.

 ■ Use incremental builds on a daily basis if clean builds are not pos-
sible or practical.

 ■ Start charting the quality of your product, and post it where every-
one involved in the project can see it.

 ■ Release LKG (or IDW) builds weekly; then switch to daily releases
toward the end of the shipping cycle.

 ■ Follow the Software Development Flow diagram.
 ■ As noted earlier, I will also post the definitions in this book to www.

thebuildmaster.com site so you can download them and publish
them to your group or company.

