
401

C H A P T E R 1 5

Patterns for Successful
Framework Development

Andreas Rüping

Introduction
Object-oriented frameworks play an important role in many IT projects these
days. Frameworks allow us to reuse not only code, but abstractions and de-
signs as well. Projects typically build a framework with the intention of large-
scale reuse.

It’s a difficult job, though. There are things that make framework develop-
ment particularly hard. Reuse may be a promising goal, but finding abstractions
is difficult. Frameworks can easily become too generic and, as a consequence,
too complex and difficult to understand. Framework development can use up a
lot of time and resources before it pays off.

Moreover, the context for framework development can be difficult. Ideally, a
framework evolves from long-term experience acquired while building several
similar applications [Brugali+1997] [Johnson+1998]. It’s fairly common, how-
ever, for a software development project to decide to build a framework after
identifying a potential for reuse across several applications that are going to be
developed, although this means that the framework and the applications will
have to be developed more or less simultaneously.

Is this even possible? Is there a chance that a framework developed in such a
difficult context can live up to its promise—the reuse of code and design?

Manolescu_book.fm Page 401 Thursday, March 30, 2006 4:30 PM

402 Part V ARCHITECTURE PATTERNS

This chapter presents a collection of patterns that address these questions. It
is targeted at software architects and developers who consider building a
framework to meet requirements for reuse. The patterns assume an overall con-
text in which framework and application development take place, at least to
some extent, simultaneously. Many of the solutions that the patterns recom-
mend actually apply to framework development in general, but they are partic-
ularly useful in this specific context.

The patterns address a framework’s architecture, its development process,
and questions of team collaboration. I have observed the patterns throughout
many projects. The collection isn’t necessarily complete, but it does represent a
useful set of core strategies.

Project Background
I’d like to explain the patterns by using my experience with two projects that
both decided to build a framework in order to facilitate application develop-
ment. My experience in these projects were both positive and negative, and I’ll
use the projects as running examples throughout this chapter. Let’s therefore
first take a look at the two projects.

The Data Access Layer Framework
An insurance company faced the problem of having a large number of legacy
systems that didn’t work together well. The company felt it was time for a
change and decided to build several new applications, including new policy
systems for health insurance, life insurance, and property insurance, as well as
new customer, payment, commission, and workflow systems. It was a huge en-
deavor involving several teams, ranging from 8 to 40 people each, working on
the various applications more or less simultaneously.

Early on, the project established a team that worked on what was called the
“horizontal tasks”: the specification, design, and coding of modules that many—
and perhaps all—other teams could use. The motivation was to save time and
costs, and to ensure a consistent architecture across the new applications.

It soon became clear that providing database access would be among these
horizontal tasks. All applications required database access, and in order to hide
the objects’ physical representations from the applications, all applications were
supposed to introduce a data access layer into their architecture.

The team decided to build a framework that would provide the data access
layer. The framework had to abstract over the individual applications’ data

Manolescu_book.fm Page 402 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 403

models and therefore allowed application developers to specify a mapping
from domain-specific objects onto database tables. The framework also pro-
vided a mechanism for object versioning that was quite powerful. Application
developers could tailor the framework to the individual needs of their projects
by configuring the extent of object versioning that they needed.

The framework offered the advantage that the application programmers
didn’t have to bother with the details of database access, including the intricate
versioning mechanisms.

The Web Portal Framework
The goal of this project was to develop a Web portal for the financial industry.
The portal included both Web content and applications, and was used by a
bank to sell insurance products. The Web content covered general information
about the available products, while the applications provided access to different
insurance systems running on various back-end servers that stored and pro-
cessed contracts and customer information.

Several of these applications had existed for a while when the plans for the
portal were made, but a few still had to be developed. The project’s main task
was to integrate old and new applications into the portal. The team decided to
develop a J2EE-based framework that would provide a reusable infrastructure
for all applications that had to be integrated into the portal.

The framework extended over the Web server and application server layers.
Its task was to take user requests, forward them to the back-end applications,
transform the results into HTML and integrate them into a Web presentation.
The framework also managed the use cases for the entire portal and performed
the necessary session handling.

Application developers essentially had to define the use cases their applica-
tion required, and to provide a mapping from client requests onto application
calls. They could then rely on the mechanisms the framework provided. The
definition of the use cases required a bit of programming, but the bulk of inte-
gration work was done by the framework and hidden from the application
developers.

Roadmap
Figure 15–1 gives an overview of the patterns presented in this chapter and
briefly sketches the relationships between them.

Manolescu_book.fm Page 403 Thursday, March 30, 2006 4:30 PM

404 Part V ARCHITECTURE PATTERNS

1. Concrete Evidence for Reuse
Problem

How can you make sure that in your project building a framework is justified?

Context
You’re working on a project that will see the development of several applica-
tions. You have identified some functionality that all applications will probably
require. The question of whether it would be useful to have a framework that
could provide this functionality arises.

Multiple Change
Requests

Framework User
Involvement

Concrete Evidence
For Reuse

The Beauty of
Simplicity

Small
Objects

Pilot-Based
Tests

Pilot
Applications

accept

retains

implements

envisions

facilitates

backup

lead

aim at

are a kind of

helpshape

seeks
initiates

Skilled
Team

Figure 15–1 Overview

Manolescu_book.fm Page 404 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 405

Forces
It is of course tempting to design a framework—the framework could provide a
set of common abstractions and could serve as a blueprint for functionality that
could then be reused many times. Building a framework can be attractive
whenever there is some functionality that several applications will require,
though in slightly different ways.

But reuse isn’t the only aspect that lets a framework appear attractive. If you
decide to build a framework, many design decisions will be made only once,
leading to a consistent architecture across all applications.

Moreover, not all application developers will have to be concerned with all
aspects of the software architecture if some of these aspects can be assigned to
the framework. In this case, the framework designers can provide an imple-
mentation that all applications can inherit. This is particularly useful when it
comes to intricate techniques that not all developers have the skill to use.

On the other hand, there is no way to deny that building a framework takes
significantly more time than building a normal application. A rough estimate is
that developing a framework takes about three times longer than developing an
application, though the exact figure depends upon the framework’s size and its
degree of abstraction.

In a similar vein, the literature on reuse has a “rule of three,” which says that
an effort to make software reusable is worth it only when the software is reused
at least three times [Jacobsen+1997] [Tracz1995]. A framework needs to be used
for three different applications before the break-even point is reached and the
investment pays off.

All this suggests that building a framework is justified only if the project can
name at least three applications that are going to use it.

A higher number of applications sounds even more promising, but then, there
is also a drawback if too many applications are supposed to use the framework:
the number of stakeholders can increase to a point where reaching an agreement
on the framework’s scope and functionality becomes extremely difficult. The
larger the number of potential framework users, the more you need to ensure
that using the framework isn’t just an abstract idea, but a concrete possibility.

The dilemma, however, is that you must make the decision for (or against) a
framework at the beginning of the project. The application development teams
must know as early as possible whether or not there will be a framework they
can use. At the beginning of the project, however, the architecture of the indi-
vidual applications might still be unclear. Perhaps there is even uncertainty
about what applications are going to be developed. In other words, you may
have to make a decision for or against a framework without knowing much
about the applications that might possibly use it.

Manolescu_book.fm Page 405 Thursday, March 30, 2006 4:30 PM

406 Part V ARCHITECTURE PATTERNS

Solution

Build a framework only if there is concrete evidence that several applications
are going to use it.

The emphasis here is on the word concrete. If all you know is that there are sev-
eral applications that might use the framework, all you can conclude is that
framework development might pay off. Or perhaps it won’t.

Therefore, before you decide to build a framework, you must make sure that
the preconditions are met:

• Three expected uses is a must. If there are four or five applications that you
can expect to use the framework, that’s even better, since as a project goes on,
things can change, applications may be cancelled, and you may lose a poten-
tial user of your framework more quickly than you might think.

• Checking for concrete evidence includes seeking an agreement with all stake-
holders of the application programs.

• The teams who build the applications must make a commitment to using the
framework. This is not so much a protection against the not-invented-here
syndrome, but a cross-check that using the framework is indeed appropriate.
Only the application developers can evaluate how much they could benefit
from the framework-to-be.

If you choose to build the framework, calculate about three times the budget
you would need to build a single application. If you have concrete evidence for
reuse, you can explain why the expected benefits will outweigh the costs.

Examples
The Data Access Layer Framework At first it looked as if six applications were go-
ing to use the database access framework. In the end, one of them didn’t use it
for “political” reasons—a consequence of teams from many companies with
conflicting goals working on one large project. With five applications remaining
(and more expected), building a framework was still justified.

It took the team about 30 person months to complete the database access
layer framework. The team estimated that it would have taken about 12 person
months to develop a database access layer for one specific application that is
equally powerful with respect to business objects and versioning. (However, ex-
act figures would depend on the size of the application’s data model.) Given the
fact that building an application using the framework also takes some time,
three instances of reuse seemed to be the break-even point in this project.

Manolescu_book.fm Page 406 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 407

The Web Portal Framework When the project started, the decision to build a
framework was motivated by the perspective that a number of applications
were going to be integrated into the Web portal. After all, the portal was sup-
posed to offer a rich functionality to its users. Work on the framework began
quickly, and soon the life insurance system and the customer system were inte-
grated into the portal.

After a while, however, it was recognized that not as many applications were
going to be integrated into the portal as had originally been planned, and that
for some of these applications a less powerful solution was sufficient. The po-
tential for reuse turned out much smaller than the project had assumed. As of
now, the framework has only been used twice, and so far, hasn't paid off. The
budget calculation says the framework might pay off in the future, but only if at
least one more application is going to use it which, at this time, is uncertain.

Discussion
In their patterns for evolving frameworks, Don Roberts and Ralph Johnson sug-
gest that THREE EXAMPLES [Johnson+1998] be developed before building a frame-
work. This recommendation intends to prevent you from not finding the right
abstractions or generally heading in the wrong direction with your frame-
work—an easy consequence of a lack of experience.

Yet in many practical scenarios, there are no three examples on which you
could possibly rely since the applications will be developed more or less simul-
taneously to the framework. Is there anything you can do instead to make sure
that the framework benefits from experience with application development?

Yes, there is. Because you have concrete evidence for reuse, you must have a
good idea of applications that can benefit from the framework, and how. If you
choose one or two of those as PILOT APPLICATIONS (4), you can incorporate feed-
back from application development into the framework development.

Next, a SKILLED TEAM (3) is certainly helpful. Ideally, team members have de-
veloped a framework in such a context before. The more the team members are
aware of typical pitfalls in framework development, the better.

Finally, a larger framework will have a higher risk of wrong abstractions and
hopes for reuse that won’t materialize. Aim at THE BEAUTY OF SIMPLICITY (2).

2. The Beauty of Simplicity
Problem

How can you prevent your framework from becoming unmanageable?

Manolescu_book.fm Page 407 Thursday, March 30, 2006 4:30 PM

408 Part V ARCHITECTURE PATTERNS

Context
You have come to the conclusion that building a framework in your project is
justified. Several applications are going to be developed and it’s clear that they
will benefit from the framework. You are now in discussions with the potential
framework users about what functionality the framework should cover.

Forces
Obviously, the application development teams will come up with requirements
for the framework. After all, they are supposed to use the framework, so the
framework better meet the requirements they have. However, application de-
velopers are sometimes inclined to place more and more requirements on the
framework; greater functionality offered by the framework means more time
and effort the application development teams can save.

Moreover, framework developers sometimes flirt with wanting to build the
perfect framework. Just one more abstraction here, and another generic parame-
ter there, and the framework can grow incredibly powerful.

All these things easily lead to the framework’s architecture becoming rather
complex. However, there is much danger in complexity.

First, a complex architecture is difficult to build, maintain, understand, and
use. Excessively complex frameworks can therefore create a challenge for de-
signers and users alike, perhaps more of a challenge than they can meet.

Second, complexity, in the context of framework development, often means
additional abstractions that are often reflected by generic algorithms and data
structures. Genericity, however, is often the enemy of efficiency, and too many
abstractions can easily lead you into efficiency problems you cannot resolve.

Third, the more complex the framework is, the longer it takes to build it. If
the framework is supposed to “solve all problems on earth,” it won’t be avail-
able anytime soon.

This, however, is unacceptable. You don’t have much time to build your
framework. The teams that build the applications rely on the framework, and
they won’t be willing to wait for you. A specification of the framework has to be
available when the other teams start designing, and a first version of the frame-
work has to be completed before the other teams start coding. If you don’t man-
age to get the framework ready in time, this will turn out extremely expensive
for the entire project.

And no, you cannot rescue the situation by adding more people to the frame-
work team when the deadline is approaching and the schedule is getting tight.
We all know that adding people to a late project makes the project later
[Brooks1995].

Manolescu_book.fm Page 408 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 409

Solution

Design your framework to be small and to focus on a few concrete tasks.

Try to limit the scope of the framework to what is truly necessary:

• Focus on a small number of core concepts. Avoid too much abstraction. A
framework that embodies too much abstraction tries to do too much and is
likely to end up doing little.

• Perhaps your framework can be a framelet [Pree+1999]. A framelet is a very
small framework that defines an abstract architecture that’s not for an entire
application but for some well-defined part of an application. It follows the
“don’t call us, we’ll call you” principle, but only for that part of the application.

Much in the vein of agile development methods [Ambler2002][Cockburn2002],
try “the simplest thing that could possibly work” [Beck2000]. Go with a small
solution that works, rather than with a complex solution that promises more
than it can deliver.

Examples
The Data Access Layer Framework When assembling the requirements for the da-
tabase access framework, the team had to work hard to exclude any application
logic from the framework. Many applications were going to use the frame-
work’s versioning features, but all had different ideas on how to use them. The
team had to fight to avoid a versioning system that could be used in many dif-
ferent modes. Had the framework team agreed to include all the features that
some of the other teams desired, it would have blown up the framework to in-
credible proportions.

In order to not overcomplicate the framework, the team also had to restrict
the mapping of logical entities onto physical tables. Only simple mappings
were possible; advanced techniques such as overflow tables had to be left to the
applications. Generating the database access functions would otherwise have
become unmanageable.

Nonetheless, the data access layer framework did suffer from too much com-
plexity. The composition of business objects from smaller entities turned out to
be extremely complicated. The team managed to implement it properly in the
end, but only after much unexpected work. In addition, this complexity made
the framework more difficult to use than had been intended. Looking back, the
team felt the framework should have done without this mechanism, which re-
quired much effort and did little good.

Manolescu_book.fm Page 409 Thursday, March 30, 2006 4:30 PM

410 Part V ARCHITECTURE PATTERNS

To summarize, the team was successful in keeping the framework simple in
many instances but felt they should have made simplicity an even more impor-
tant issue.

The Web Portal Framework Providing a portal infrastructure is a concrete task,
and certainly one that can be addressed by a framework. Like so many other
frameworks, however, this Web portal framework suffered from becoming too
powerful and, as a consequence, too complex. For instance, parameters need to
be passed between the Web browser and the applications running on the main-
frame, and the framework includes a mechanism that manages parameter pass-
ing in an entirely generic way. It’s powerful, but it’s difficult to understand and
rather inefficient. A simpler mechanism would have been better.

But there is a success story as well. The framework wasn’t only supposed to
provide an infrastructure for the Web portal; it was also supposed to provide
one for integrating Web services (which don’t expect results from the applica-
tions to be represented as HTML). The framework team managed to meet these
requirements in a simple and elegant way. The framework features a layered ar-
chitecture: presentation issues are dealt with only in the servlet engine, while
use-case management is concentrated on the application server layer. Web ser-
vices can use the application server layer exactly as the portal does and simply
not make use of any HTML generation.

Discussion
Reducing a framework’s complexity is a strategy generally approved of in the
literature. For instance, Art Jolin recommends that frameworks be simple and
modeless [Jolin1999]. And in our particular context—time constraints along
with framework and application development happening simultaneously—
keeping the framework simple was crucial.

Simplicity also contributes to longevity. For instance, Brian Foote and Joseph
Yoder propose THE SELFISH CLASS [Foote+1998]—a class that represents an arti-
fact that reliably solves a useful problem in a direct and comprehensible fash-
ion. In a similar vein, a framework that focuses on a set of core abstractions has
a relatively high ability to evolve gracefully and therefore stands the best
chance for longevity [Foote+1996].

In order to keep the framework simple as the project goes on, you must be
careful with change requests that other teams might have, as they might intro-
duce more, and unwanted, complexity. As a general rule of thumb, only accept
MULTIPLE CHANGE REQUESTS (8)—change requests that are made by several, at
least two, application development teams.

Manolescu_book.fm Page 410 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 411

And of course a SKILLED TEAM (3) is critical to keeping the framework simple.
Framework development requires a team that is aware of the problems com-
plexity brings and that is able to see the beauty of simplicity.

3. Skilled Team
Problem

How can you make sure that the framework is designed in a clear and consis-
tent way?

Context
You are going to develop a framework in your project. You now have to assem-
ble a team that can perform the requirements analysis for the framework, define
its architecture, and ultimately design and implement it.

Forces
Framework development is hard. But when framework and application devel-
opment are strongly interwoven, things are even harder.

First, you have only a little time to develop your framework, because the other
teams of the project are already counting on it. If your team is either inexperi-
enced with framework development or with the application domain, there is no
chance for success. The team would need too much time for familiarization.

Second, the framework team will have to take care of not only framework de-
velopment and maintenance, but coaching as well. A crucial part of the frame-
work team’s job is to explain to the users how to work with the framework
properly, which represents quite some time and effort.

Third, several applications are going to use the framework, so it is likely that
many different parties would like to put their stake in it. You have to expect
many different requirements and requests to influence the framework’s design
and scope.

And while such influences can give the framework designers valuable input,
there is also the danger that the framework evolves into more and more varia-
tions. If different parties are free to request functionality as they see fit, the
framework is likely not only to become complex, but to also split into inconsis-
tent variations.

Solution

One team of skilled individuals must take care of framework design and
development.

Manolescu_book.fm Page 411 Thursday, March 30, 2006 4:30 PM

412 Part V ARCHITECTURE PATTERNS

A skilled team is important in every development project, but it is crucial to
framework development and even more crucial if framework and application
development happen simultaneously.

Check the following, carefully and in detail, when assembling the framework
team:

• The team members must have the necessary skills to design a framework. Ex-
perience with framework design and managing abstraction are required.

• The team members must adopt a strategy to keep the framework reasonably
simple and to avoid unnecessary complexity.

• The team must have the experience and the skill to ensure that the frame-
work’s scope stays on target.

• The team must have the communication skills that are necessary to collabo-
rate closely with the framework users and to incorporate feedback the users
may have into the design.

• At least some team members must be familiar with the application domain.

In order to collaborate smoothly, the team should be large enough to accom-
plish the task, but no larger. Interestingly, a small team is sometimes more effec-
tive than a large team.

Examples
The Data Access Layer Framework Five people were involved in building the data
access layer framework, although some only with a small percentage of their
time. A stable core team of two people worked on the framework full-time for
more than a year. When it came to introducing the framework into the applica-
tions, these two people were faced with the problem of doing three things at a
time: maintaining the just-released version, preparing a new version, and
coaching. Though they eventually managed this, there were some delays.

In retrospect, it became clear that a team of three or four people would have
been necessary for timely releases and appropriate user support. A still larger
team, however, wouldn’t have done any good; the fact that only a handful of
people designed the framework added much to its consistency.

The Web Portal Framework The good news here was that framework designers
brought the necessary skills; they had developed frameworks before on other
projects. The team size was also appropriate; about five people worked on the
Web portal framework, which allowed for efficient teamwork.

However, a number of ad hoc corrections were made to the framework by
people outside the framework team. This led to some irritation, since at some

Manolescu_book.fm Page 412 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 413

point responsibility for the framework wasn’t clearly defined. After a major re-
factoring, the framework’s consistency was reestablished, and responsibility for
the framework was reassigned to the framework team.

Discussion

If too many people work on the framework, it’s hard to develop one consistent
architectural vision, which is what your framework needs. A small team can en-
vision THE BEAUTY OF SIMPLICITY (2).

Likewise, a small team can take responsibility for how the framework
evolves by making sure only MULTIPLE CHANGE REQUESTS (8) are accepted.

In his generative development-process pattern language, Jim Coplien explains
that it is important to SIZE THE ORGANIZATION [Coplien1995] and to SIZE THE SCHED-

ULE [Coplien1995] when building a software development organization in gen-
eral. The importance of having the right number of people, as well as the right
people from the start, is even more true for building frameworks since the addi-
tional level of abstraction makes adding people to the project even more difficult.

4. Pilot Applications
Problem

How can you detail the requirements for your framework?

Context
Work on the framework has begun. You’re in the process of defining the frame-
work’s functionality. At the same time, some application development teams
have already kicked off, while others perhaps haven’t started yet.

Forces
There is some functionality that several of the applications-to-be will have in
common. They will use it in slightly different ways, but they will share a set of
common abstractions. However, none of these applications have been built so far.

You’re locked in some kind of chicken-and-egg problem: The framework
team needs to know quite a bit about the applications to be able to define the
framework’s functionality, while the application development teams rely on the
framework to build the applications. It’s hard to come up with the requirements
for the framework in such a context.

Still, you have to find the right abstractions for your framework.

Manolescu_book.fm Page 413 Thursday, March 30, 2006 4:30 PM

414 Part V ARCHITECTURE PATTERNS

What makes things even more difficult is that different application develop-
ment teams will place many, possibly conflicting, requirements on your frame-
work. You’ll have to prioritize those requirements in order to achieve a
consistent framework design. If you try to please everybody, the framework
will become very complex and might ultimately become a failure.

Solution

Discuss the framework’s functionality with several pilot applications that are
going to use the framework.

The pilot applications will use the first versions of the framework as soon as
they are released. This may well include versions that feature only a partial
functionality or that are otherwise still constrained in their usage. In a way, the
pilot application developers act as beta testers and provide valuable feedback to
the framework team.

In most cases, two pilot applications are appropriate. One pilot application
alone might not be representative, and perhaps you cannot say whether a re-
quired function is crucial or just nice to have. On the other hand, three or more
pilots might simply become difficult to handle. Two pilot applications still seem
manageable, and it’s unlikely that important requirements go unnoticed.

Keep in mind the following when choosing pilot applications:

• The pilot applications must be fairly typical of others that might use the
framework.

• The pilot applications should be significant, so that the framework team
keeps in close touch with some of the framework’s premier users.

• The pilot applications must be applications that are being built relatively
early in the time frame of the overall project.

Collaborating with the teams who work on the pilot applications will in-
crease the knowledge exchange in both directions; you’ll get feedback on how
good your framework is, and the other teams will learn how to use it. Pilot ap-
plications will also force you to adopt a policy of early delivery, which is a well-
established strategy for project risk reduction [Cockburn1998].

Unfortunately, pilot users can get the impression that they’re doing your
work when they use the framework at a very early stage, when its functionality
is still incomplete and has a few bugs. Be aware of this, and make clear to the pi-
lot users that in return they have the chance to influence the system they’ll have
to use.

Manolescu_book.fm Page 414 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 415

Examples
The Data Access Layer Framework Among the new systems, the health insurance
system was a very typical one. The framework team had many discussions with
the team that built this system. These discussions particularly helped shape the
understanding of two-dimensional versioning of application data—versioning
that makes a difference between when a change becomes effective and when it
becomes known. It’s a subtle topic, and it was quite significant for the require-
ments analysis and for the framework design in the earliest stage of the project.
The framework didn’t feel on safe ground, though, until they got into detailed
discussions with the team who built the new customer system. The new cus-
tomer system had slightly different requirements on application data versioning.
Both systems complemented each other well as far as architectural requirements
were concerned.

The Web Portal Framework The life insurance system and customer system served
as pilot applications for the Web portal framework. This was clearly a good
choice, since these applications were typical for the portal’s usage. For instance,
a typical use case is that of a bank assistant who looks up a customer in the cus-
tomer system and recommends certain life insurance products to back up a
bank credit. This typical use case involves exactly the two applications that
were chosen as pilot applications. The framework designers received a lot of in-
put from collaborating with the application developers.

Discussion
Collaborating with the pilot users is a kind of FRAMEWORK USER INVOLVEMENT (7),
but it’s actually more than that. Involving the framework users has the primary
goal of achieving a better understanding of the framework among the users
once the framework is released, whereas the knowledge exchange with the pilot
users is bi-directional.

Prototyping is a strategy generally approved of in the literature on reusable
software. Brian Foote and William Opdyke recommend to PROTOTYPE A FIRST-
PASS DESIGN [Foote+1995] when the goal is to design software that is usable to-
day and reusable tomorrow, as is certainly the case with frameworks that are
developed with large-scale reuse in mind.

The importance of feedback from users is generally acknowledged. In his gen-
erative development-process pattern language, Jim Coplien stresses that it is im-
portant to ENGAGE CUSTOMERS [Coplien1995], in particular, for quality assurance,
mainly during the analysis stage of a project but also during the design and
implementation stages. Along similar lines, speaking of customer interaction,

Manolescu_book.fm Page 415 Thursday, March 30, 2006 4:30 PM

416 Part V ARCHITECTURE PATTERNS

Linda Rising emphasizes that IT’S A RELATIONSHIP NOT A SALE [Rising2000]. Speak-
ing openly with customers—the framework users in this case—will give you
valuable feedback about your product.

The pilot applications are not only useful for finding out the requirements
for the framework; they also form the precondition for setting up PILOT-BASED

TESTS (6).

5. Small Objects
Problem

How can you increase the framework’s flexibility while restricting its
complexity?

Context
The overall scope and functionality for the framework is clear. You’re now in
the process of breaking the overall functionality down into smaller pieces, such
as individual objects or functions that applications can use.

Forces
Maybe your framework offers an interface to the applications that use it. Maybe
it offers abstract classes that the concrete applications have to implement. Either
way, it provides a certain amount of functionality to the applications. This func-
tionality is typically expressed by a set of objects or methods—or functions, de-
pending on the underlying technology. This invites the question of how these
artifacts should be designed.

There are essentially two opposite approaches you can take. You can choose
either a larger number of less powerful objects or a smaller number of more
powerful objects.

From the application programmer’s viewpoint, both a smaller number of ob-
jects and simpler objects are desirable, because both make the framework easier
to understand. But because you have to offer a certain amount of functionality,
you cannot reduce both the number of objects and the individual objects’ com-
plexity. You have to choose one and sacrifice the other.

Which option should be preferred?
You have to keep in mind that different applications will probably use your

framework in slightly different ways. Combinatorics tell us that a larger num-
ber of less complex objects can be combined in many more different ways than
a small number of very powerful objects. This flexibility represents a clear
advantage.

Manolescu_book.fm Page 416 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 417

In addition, complex objects are generally difficult to understand and diffi-
cult to reuse. This is true especially for objects with huge interfaces and meth-
ods that require many parameters.

Solution

When breaking down functionality into individual objects, favor a larger
number of less powerful objects over a smaller number of more powerful
objects.

Applications can then combine several objects to obtain a behavior that is tai-
lored to their specific needs. This policy offers several advantages:

• The objects the framework offers will be better understood.

• Smaller objects have a better chance of meeting the users’ needs, since they
are less specific to a certain context.

• A larger number of smaller, somewhat atomic, objects allows for more combi-
nations, and hence for an increased configurability of the application.

The price you have to pay for this strategy is that you cannot minimize the
number of objects, but as long as the objects are fairly easy to understand, this
seems a reasonable price to pay.

Examples
The Data Access Layer Framework The data access layer framework allows the
loading of business objects into its cache where they can be processed. Typically,
an application loads a policy object and changes it, thereby also changing the
policy’s state, which can be active, under revision, or offered to customers.

What happens when a policy object, one that is already in the cache, is re-
quested? Should it be updated? Should the version in the cache be used in-
stead? Different applications had different requirements. Some applications
even needed to define a priority among states; for instance, an active object
should be replaced by an object under revision but not vice versa. The frame-
work team refused to include such a logic into the framework’s function for
loading objects. Instead, they implemented two smaller functions: one that tells
applications whether a certain object is already available in the cache, and an-
other that loads objects. Applications can combine these functions to implement
their specific logic.

Another example: The data access layer keeps track of which objects have
been changed. At the end of a session, applications can commit all or some of the
changes to the database. The team decided not to implement a complex function

Manolescu_book.fm Page 417 Thursday, March 30, 2006 4:30 PM

418 Part V ARCHITECTURE PATTERNS

that saved all changed objects, but again decided to offer two functions: one that
listed all changed objects, and one that saved individual objects to the database.
Applications can combine these functions to implement their strategies of which
changes should be committed to the database as they see fit.

The Web Portal Framework The Web portal framework allows the applications to
define certain use cases that specify the order in which user requests are pro-
cessed and mapped onto calls of the back-end systems. The framework team
decided to let the use cases’ objects consist of smaller entities—so-called “user-
steps”—that the application developers could aggregate to full-fledged use
cases according to their specific needs.

This solution turned out quite successfully. The definition of use cases was
easy to understand, and the flexibility of the use case definitions made the con-
cept useful for many applications.

Discussion
A framework should display THE BEAUTY OF SIMPLICITY (2). Less functionality is
often better than more functionality. But at some point we know that a certain
functionality is not debatable, but strictly necessary. This pattern deals with the
question of how this functionality can be implemented in such a way that dif-
ferent applications can use it most easily.

The suggestion to have small objects is similar to Don Roberts’ and Ralph
Johnson’s suggestion to build frameworks from FINE-GRAINED OBJECTS [Johnson+
1998] and Brian Foote’s and Joseph Yoder’s recommendation to design objects
with a LOW SURFACE-TO-VOLUME RATIO [Foote+1998], that is, objects with small ex-
ternal interfaces.

The benefit of using small objects is also related to the observation that small
modules are more likely to be reusable, because smaller modules make fewer as-
sumptions about the architectural structure of the overall system [Garlan+1995];
hence the risk of an architectural mismatch between components is reduced.

6. Pilot-Based Tests
Problem

How can you test the framework sufficiently and reliably?

Context
You are in the process of coding the framework. Tests are necessary to make
sure that the framework works correctly and reliably.

Manolescu_book.fm Page 418 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 419

Forces
Testing is an important aspect of quality assurance. Testing is particularly im-
portant when you build a framework, since bugs would quickly manifest in all
applications that use the framework.

However, testing a framework is difficult [Fayad+1999]. A framework alone
is just an abstract architecture, not something that can be executed. In order to
test the framework, you need a sample application that uses the framework and
so acts as a test driver.

Moreover, when you test software, you need test cases with sufficient cover-
age. Using just one application as a test driver is probably insufficient, because
this one application might not use all the features the framework offers.

In addition, it can be difficult to find realistic test scenarios when there are no
precursor applications that you could use.

Solution

Set up tests based on the pilot applications.

These tests can take different forms:

• Identify core components from the pilot applications that call the framework,
and then use these components as test drivers for the framework.

• Find typical use cases from the pilot applications and maintain them as a test
suite.

• Shape these test cases into regression tests that you can run before every re-
lease of a new version of your framework.

However, you can’t rely on the pilot applications alone. You also have to in-
clude some exotic scenarios in your test suite, ones that take your framework to
its limits and that can detect more unexpected bugs.

In addition, you need test cases that test the time, performance, and stability
of your framework under load.

Examples
The Data Access Layer Framework The two-dimensional versioning of application
data had to be tested with real-world examples. The first time the framework
team performed such realistic tests was in a two-week workshop together with
the team that developed the health insurance system. In this workshop, the
framework team learned some subtle details about two-dimensional versioning
that they had not yet implemented. The framework team was therefore able to
do some fine-tuning at a relatively early stage. Overall, these tests were very

Manolescu_book.fm Page 419 Thursday, March 30, 2006 4:30 PM

420 Part V ARCHITECTURE PATTERNS

successful, because the few changes that were necessary could quickly be made.
These tests would not have been possible without the pilot users—the health in-
surance application team.

Moreover, the realistic examples that were used in the workshop represented
typical use cases for the health insurance system. The framework team used
these scenarios as a test suite for a series of future framework versions.

The customer system acted as the second pilot application. The framework
team occasionally tested together with the customer system team, since this re-
duced the necessary testing effort for both teams. Everybody was able to fix
problems very quickly, which was equally good for both teams.

The Web Portal Framework Tests of the Web portal framework were always per-
formed using the pilot applications. It was extremely convenient to have two
applications at hand that provided realistic test cases. New versions of the
framework were only released after they had been approved by test teams that
had checked whether the integration of the life insurance system and the cus-
tomer system worked smoothly.

In addition to this, performance tests were carried out from time to time to
check the portal’s time performance.

Discussion
Testing is an activity where the PILOT APPLICATIONS (4) are particularly helpful.
Finding real-world test scenarios would otherwise be very difficult.

Joining efforts with the users for testing is a particular kind of FRAMEWORK

USER INVOLVEMENT (7) from which both the framework developers and users can
benefit. The framework developers receive valuable test scenarios, while the
framework users can run tests with the framework developers readily available
for immediate bug fixing, if necessary.

7. Framework User Involvement
Problem

How can you make sure that members of the other teams will be able to use
your framework when they build their applications?

Context
You have completed a first version of the framework. It’s now the application
developers’ turn to use the framework in their applications.

Manolescu_book.fm Page 420 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 421

Forces
Other teams depend on your framework in order to complete their applica-
tions—that is, to be successful in what they’re doing. They want to know what
the framework does and how it works. That’s fair enough; you should let them
know.

Empirical studies have shown that most people are willing to reuse software
if it fits their needs [Frakes+1995]. You can therefore assume that the other
teams are generally willing to use the framework as long as you can convince
them that the framework offers the necessary functionality and that using the
framework is easier than developing the functionality from scratch.

Moreover, frameworks often trade efficiency for flexibility, at least to some
degree [Fayad+1999]. When efficiency is critical, applications built with the
framework may need some fine-tuning. They may also have to replace certain
generic mechanisms with more concrete and more efficient ones. In any case,
users might need help using the framework or even customizing it a bit.

Ultimately, it’s your goal that the other teams use the framework successfully.
If they don’t, the failure will be blamed on you, the framework team, rather
than on them, the application team.

Solution

Involve the teams that use your framework.

You must show the users how they should use the framework. The users must
get an understanding of the framework’s feel, so that they understand what
they can and what they cannot expect from the framework and how they can in-
tegrate it into their applications.

Possible actions include:

• Run common workshops. Explain the steps that users have to take when they
build applications with the framework.

• If possible, provide tools that support the framework’s instantiation process
and demonstrate how to use these tools.

• Provide examples of how an application and your framework collaborate.

• If necessary, show the users how to optimize the applications they are build-
ing using the framework.

• Prepare tutorials and documentation and make them available early. Make
sure the documentation directly addresses the framework users as its TARGET

READERS [Rüping2003] and maintains a FOCUS ON LONG-TERM RELEVANCE

Manolescu_book.fm Page 421 Thursday, March 30, 2006 4:30 PM

422 Part V ARCHITECTURE PATTERNS

[Rüping2003]—things that application developers will need to know in the
long term, when the framework team might not be available anymore on a
day-to-day basis.

• Combine written documentation and interactive workshops with the appli-
cation developers to establish an atmosphere in which team members can
share information of different kinds and formats—an atmosphere that can be
described as an INFORMATION MARKETPLACE [Rüping2003].

The drawback is that involving the users a lot costs a lot of time and will proba-
bly take place while the framework is still developed further. You must make
sure that framework development doesn’t grind to a halt while you’re busy
running workshops.

Examples
The Data Access Layer Framework After the release of the first version of the
framework, the framework team had a two-week workshop together with the
team that developed the health insurance system. The health insurance team
wanted to know what they had let themselves in for—how they could use the
framework. The framework team showed them and at the same time had the
opportunity to fine-tune the two-dimensional versioning of application data,
since it was tested with real-life examples for the first time.

At some point, the framework team learned that the commission system had
special efficiency requirements. The commission system team had to define a
sophisticated mapping of business objects onto database tables—more sophisti-
cated than could be defined in the framework’s meta information. Both teams
discussed a way to extend the data access layer of the application with a special
module that implemented the special mapping.

The framework team provided a usage document that explained the neces-
sary steps that application developers had to take to configure the framework
and to use it in their specific context. The document was helpful, especially in
combination with workshops like the ones just mentioned, in which the appli-
cation programmers were shown how to do what was written in the document.

The Web Portal Framework The project managed to integrate the life insurance
system and the customer system into the Web portal, despite the portal’s rela-
tive complexity. Crucial for this success was the fact that the framework team
and the application development team had offices next door to one another and
that they were able and willing to collaborate closely. Informal communication
was no problem, and communication channels were fast. The framework devel-
opers were available all the time to answer questions from the application de-

Manolescu_book.fm Page 422 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 423

velopers. Actually, the framework developers and the application developers
felt they were one team, sharing the common goal of bringing the portal to life.

Discussion
Unlike the collaboration with the PILOT APPLICATIONS (4), this pattern doesn’t put
the emphasis on how the framework team can learn from the framework’s users
(although it’s fine if they do). The focus here is to provide a service to the users
and help them.

Involving the users and working jointly on their tasks is generally acknowl-
edged as a successful strategy to use to achieve this goal. In particular, this is
true of frameworks, due to the additional level of abstraction and the some-
times non-trivial instantiation process [Eckstein1999].

Moreover, listening to the users, running common workshops, and so forth,
helps to BUILD TRUST [Rising2000]. Trust is important because the users will
view your framework as a third-party component; they will only be successful
building their application if the framework works as it is supposed to.

When you explain how to use the framework, using design patterns is often
useful, since they describe typical ways in which application programs can be
put together [Johnson1997]. If you consider developing a tool that helps users
build applications, keep in mind that a complicated mechanism is probably not
justified. However, a simple script, perhaps based on object-oriented scripting
languages, might save a lot of work [Ousterhout1999].

8. Multiple Change Requests
Problem

How can you prevent the framework from growing too complex as a conse-
quence of change requests?

Context
Several applications use your framework. Application developers approach
you with requests for additional functionality.

Forces
Regardless of how much functionality you have already included in your
framework, some people will always ask you to include more. After all, if you
add functions to the framework, the members of the other teams won’t have to
implement these functions themselves.

Manolescu_book.fm Page 423 Thursday, March 30, 2006 4:30 PM

424

Part V

ARCHITECTURE PATTERNS

But if you accept all change requests, the framework might end up over-
loaded with functionality. Worse yet, different users might come up with con-
flicting change requests, and if you accept all of them, you put the framework’s
consistent architecture at risk.

You absolutely must keep the framework simple. In particular, you should
avoid building the framework to run in different modes [Jolin1999]. So what
should you do?

If only one application is interested in the additional functionality, that appli-
cation’s team can implement the desired functions on a concrete level at a much
lower cost than would result if you implement them on an abstract level.

However, if several applications need additional functionality, it’s probably
useful to include that functionality—for all the reasons that justify a framework
in the first place.

Solution

Accept change requests only if several teams will use the additional functionality.

What the
word

several

 means will depend on the concrete situation. If a framework is
used by just three or four applications, the fact that a change request is sup-
ported by two of them can be evidence enough to show that the change request
is justified. If there are more applications that use the framework, the threshold
might be higher. Either way, you must make sure that you add functionality
only if it is of general use, not just useful in rare cases.

The following guidelines are helpful for dealing with change requests:

• Be active. Once you have received a change request, it’s your job to figure out
if it could be useful for more than just one team.

• Help users of the framework to add application-specific functions when their
change request is rejected and they need to find an individual solution to
solve their problem.

When a change request is accepted, make sure that it doesn’t invalidate the
framework’s design. Apply refactoring techniques if necessary [Fowler1999].

Examples

The Data Access Layer Framework

The data access layer framework normally al-
lows committing changes to the database only at the end of a session. After a
while, it turned out that both the workflow system and the printing system re-
quired an exception to this rule; certain changes had to be visible on the data-
base immediately. Given the fact that two applications requested the change,
the framework team decided to offer an additional function that commits

Manolescu_ch15.fm Page 424 Friday, March 31, 2006 1:08 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 425

changes to the database immediately as long as these changes are atomic and
consistent.

The customer system needed special search functions that allowed searching
for a person with an arbitrary combination of name, phone number, address,
and other data. The data access layer framework never included such arbitrary
queries, since they would have been very complex to implement and they
might have easily ruined the system’s time performance. Because no other team
needed such queries, the framework team decided not to extend the framework
but to show the customer system team how to extend their concrete application
with the necessary functionality.

At some point, the framework team received several requests from different
teams for extending the two-dimensional versioning. It turned out that what
those teams needed could already be expressed. The desired extensions would
have made things a little more comfortable for the other teams. However, every-
body requested different comfort functions that, if implemented together,
would have overcomplicated the framework. The framework team thus de-
clined the change requests.

The Web Portal Framework Of all the change requests concerning the Web portal,
the first thing the project had to decide was whether they addressed the frame-
work or any of the applications. The rule of thumb was this: Only if both appli-
cations would benefit would the change request be justified. Only a change
request made by both applications was thus a candidate that the framework
team would consider. This policy avoided having the applications’ functionality
intrude into the framework.

Discussion
We know that building a framework is justified only when there is CONCRETE EV-

IDENCE FOR REUSE (1). This pattern is in sync with the principle that functionality
should be added to a framework only if at least two applications can use it. It
can be acceptable to bend the rule of three a little if a technically plausible
change request is made by two applications, but if the requested functionality is
useful only for one individual application, it certainly doesn’t belong in the
framework.

Conclusions
I’d like to conclude this chapter by considering the patterns and the core princi-
ples expressed by them from a slightly different perspective.

Manolescu_book.fm Page 425 Thursday, March 30, 2006 4:30 PM

426 Part V ARCHITECTURE PATTERNS

Over the last couple of years there have been many successful frameworks in
the world of open source software. Examples include, but aren’t limited to,
frameworks that have emerged from the Apache Software Foundation
[www.apache.org], such as Struts and Cocoon. Let’s take a brief look at the
characteristics of these frameworks and see if we can find evidence for why
they have been (and still are) so successful.

• The frameworks keep a clear focus on their core tasks. You can say what
these framework do in just a few words. Struts is a framework for the imple-
mentation of the model view controller pattern. Cocoon is a framework for
XML-processing organized in a pipeline style. None of these frameworks
tries to solve every problem on earth. Instead, the developers worked hard to
retain the frameworks’ scope.

• The frameworks address areas with a concrete potential for reuse. Web devel-
opment is central to today’s world of software, and you can find the aspects
that the frameworks address in many applications worldwide.

• The frameworks are relatively easy to use. This doesn’t mean they’re trivial
to use, but the frameworks aim to avoid unnecessary complexity and keep an
eye on a straightforward usage process.

• There is a strong collaboration between the framework developers and the
framework users. These frameworks haven’t been developed in an ivory
tower. We speak of the open source community—the word community alone
suggests that there is a massive exchange of information involved. It’s this
community that gives the framework developers much useful feedback on
what they do and what they plan to do.

Keeping a clear focus, aiming for straightforward solutions, avoiding complex-
ity whenever possible—these appear to be key factors in many success stories
on frameworks. I think it’s important to understand that to achieve these things,
a certain frame of mind is required to be shared among the project team mem-
bers that gives preference to smaller and practical solutions over higher, but un-
achievable, goals. In addition, a strong collaboration between framework
developers and users seems to be an equally important ingredient to successful
framework development.

You can find all this advice running like an undercurrent through the pat-
terns presented in this chapter and in the solutions they suggest. In this sense,
the patterns should help you with your decision if you’re considering building
a framework and should provide you with much useful experience in running
your framework projects successfully.

Manolescu_book.fm Page 426 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 427

Acknowledgments
First, I’d like to thank the people who shared their ideas on framework develop-
ment with me throughout the last couple of years. Special thanks go to the col-
leagues of sd&m software design & management AG, Germany, with whom I
was happy to collaborate on the two projects described in this chapter.

Sending a paper to a pattern conference always gives you a huge amount of
valuable feedback. This chapter has gone through the process twice. Neil Harri-
son was the shepherd for an earlier version at PLoP 2000, and Dragos
Manolescu shepherded the current version for EuroPLoP 2003. Both provided
useful comments and suggestions, and they helped me improve the chapter.
Thanks also go to the participants of the PLoP 2000 and EuroPLoP 2003 work-
shops in which this chapter was discussed.

References
[www.apache.org] Apache Software Foundation. www.apache.org.

[Ambler2002] S. Ambler. Agile Modeling: Effective Practices for eXtreme Program-
ming and the Unified Process. New York: John Wiley & Sons, 2002.

[Beck2000] K. Beck. Extreme Programming Explained: Embrace Change. Boston:
Addison-Wesley, 2000.

[Brooks1995] F. P. Brooks. The Mythical Man-Month. Reading, MA: Addison
Wesley, 1995.

[Brugali+1997] D. Brugali, G. Menga, and A. Aarsten. “The Framework Life
Span.” In Communications of the ACM, Vol. 40, No. 10. ACM Press, October
1997.

[Cockburn1998] A. Cockburn. Surviving Object-Oriented Projects—A Manager’s
Guide. Reading, MA: Addison-Wesley, 1998.

[Cockburn2002] A. Cockburn. Agile Software Development. Boston: Addison-
Wesley, 2002.

[Coplien1995] J. O. Coplien. “A Generative Development-Process Pattern Lan-
guage.” In J. Coplien and D. Schmidt (eds.), Pattern Languages of Program De-
sign. Reading, MA: Addison-Wesley, 1995.

[Eckstein1999] J. Eckstein. “Empowering Framework Users.” In M. Fayad,
R. Johnson, and D. Schmidt (eds.), Building Application Frameworks—Object-
Oriented Foundations of Framework Design. New York: John Wiley & Sons,
1999.

Manolescu_book.fm Page 427 Thursday, March 30, 2006 4:30 PM

428 Part V ARCHITECTURE PATTERNS

[Fayad+1999] M. E. Fayad, R. E. Johnson, and D. C. Schmidt. “Application
Frameworks.” In M. Fayad, R. Johnson, and D. Schmidt (eds.), Building Appli-
cation Frameworks—Object-Oriented Foundations of Framework Design. New
York: John Wiley & Sons, 1999.

[Foote+1995] B. Foote and W. F. Opdyke. “Lifecycle and Refactoring Patterns
That Support Evolution and Reuse.” In J. Coplien and D. Schmidt (eds.), Pat-
tern Languages of Program Design. Reading, MA: Addison-Wesley, 1995.

[Foote+1996] B. Foote and J. Yoder. “Evolution, Architecture, and Metamorpho-
sis.” In J. Vlissides, J. Coplien, and N. Kerth (eds.), Pattern Languages of Pro-
gram Design 2. Reading, MA: Addison-Wesley, 1996.

[Foote+1998] B. Foote and J. Yoder. “The Selfish Class.” In R. Martin, D. Riehle,
and F. Buschmann (eds.), Pattern Languages of Program Design 3. Reading,
MA: Addison-Wesley, 1998.

[Fowler1999] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[Frakes+1995] W. B. Frakes and C. J. Fox. “Sixteen Questions About Reuse.” In
Communications of the ACM, Vol. 38, No. 6. ACM Press, June 1995.

[Garlan+1995] D. Garlan, R. Allen, and J. Ockerbloom. “Architectural Mis-
match, or Why it’s Hard to Build Systems out of Existing Parts.” In Proceed-
ings of the International Conference on Software Engineering, ICSE 17. ACM
Press, 1995.

[Jacobsen+1997] I. Jacobsen, M. Griss, and P. Jonsson. Software Reuse: Architec-
ture, Process and Organization for Business Success. ACM Press, 1997.

[Johnson1997] R. E. Johnson. “Frameworks = (Components + Patterns).” In
Communications of the ACM, Vol. 40, No. 10. ACM Press, October 1997.

[Johnson+1998] R. Johnson and D. Roberts. “Patterns for Evolving Frame-
works.” In R. Martin, D. Riehle, and F. Buschmann (eds.), Pattern Languages of
Program Design 3. Reading, MA: Addison-Wesley, 1998.

[Jolin1999] A. Jolin. “Usability and Framework Design.” In M. Fayad,
R. Johnson, and D. Schmidt (eds.), Building Application Frameworks—Object-
Oriented Foundations of Framework Design. New York: John Wiley & Sons,
1999.

[Ousterhout1999] J. K. Ousterhout. “Scripting: Higher Level Programming for
the 21st Century.” In IEEE Computer, Vol. 32, No. 3, March 1999.

[Pree+1999] W. Pree and K. Koskimies. “Framelets—Small is Beautiful.” In
M. Fayad, R. Johnson, and D. Schmidt (eds.), Building Application Frame-

Manolescu_book.fm Page 428 Thursday, March 30, 2006 4:30 PM

Chapter 15 PATTERNS FOR SUCCESSFUL FRAMEWORK DEVELOPMENT 429

works—Object-Oriented Foundations of Framework Design. New York: John
Wiley & Sons, 1999.

[Rising2000] L. Rising. “Customer Interaction Patterns.” In N. Harrison,
B. Foote, and H. Rohnert (eds.), Pattern Languages of Program Design 4, Bos-
ton: Addison-Wesley, 2000.

[Rüping2003] A. Rüping. Agile Documentation—A Pattern Guide to Producing
Lightweight Documents for Software Projects. New York: John Wiley & Sons,
2003.

[Tracz1995] W. Tracz. Confessions of a Used Program Salesman. Reading, MA:
Addison-Wesley, 1995.

Manolescu_book.fm Page 429 Thursday, March 30, 2006 4:30 PM

