
Item 2 ❘ Polymorphism

The topic of polymorphism is given mystical status in some program-
ming texts and is ignored in others, but it’s a simple, useful concept that
the C++ language supports. According to the standard, a “polymorphic
type” is a class type that has a virtual function. From the design perspec-
tive, a “polymorphic object” is an object with more than one type, and a
“polymorphic base class” is a base class that is designed for use by poly-
morphic objects.

Consider a type of financial option, AmOption, as shown in Figure 1.

An AmOption object has four types: It is simultaneously an AmOption, an
Option, a Deal, and a Priceable. Because a type is a set of operations
(see Data Abstraction [1, 1] and Capability Queries [27, 93]), an AmOption
object can be manipulated through any one of its four interfaces. This
means that an AmOption object can be manipulated by code that is written
to the Deal, Priceable, and Option interfaces, thereby allowing the
implementation of AmOption to leverage and reuse all that code. For a
polymorphic type such as AmOption, the most important things inherited
from its base classes are their interfaces, not their implementations. In

Figure 1 ❘ Polymorphic leveraging in a financial option hierarchy. An American option
has four types.

Option

AmOption EurOption

Deal Priceable

3

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 3

fact, it’s not uncommon, and is often desirable, for a base class to consist
of nothing but interface (see Capability Queries [27, 93]).

Of course, there’s a catch. For this leveraging to work, a properly designed
polymorphic class must be substitutable for each of its base classes. In
other words, if generic code written to the Option interface gets an
AmOption object, that object had better behave like an Option!

This is not to say that an AmOption should behave identically to an
Option. (For one thing, it may be the case that many of the Option base
class’s operations are pure virtual functions with no implementation.)
Rather, it’s profitable to think of a polymorphic base class like Option as a
contract. The base class makes certain promises to users of its interface;
these include firm syntactic promises that certain member functions can
be called with certain types of arguments and less easily verifiable seman-
tic promises concerning what will actually occur when a particular mem-
ber function is called. Concrete derived classes like AmOption and
EurOption are subcontractors that implement the contract Option has
established with its clients, as shown in Figure 2.

For example, if Option has a pure virtual price member function that
gives the present value of the Option, both AmOption and EurOption
must implement this function. It obviously won’t implement identical
behavior for these two types of Option, but it should calculate and return
a price, not make a telephone call or print a file.

Figure 2 ❘ A polymorphic contractor and its subcontractors. The Option base class
specifies a contract.

Option

price()

update()

EurOption

price()

AmOption

price()

code
written to
Option
interface

4 ❘ Item 2 Polymorphism

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 4

On the other hand, if I were to call the price function of two different
interfaces to the same object, I’d better get the same result. Essentially,
either call should bind to the same function:

AmOption *d = new AmOption;

Option *b = d;

d->price(); // if this calls AmOption::price...

b->price(); // ...so should this!

This makes sense. (It’s surprising how much of advanced object-oriented
programming is basic common sense surrounded by impenetrable syntax.)
If I were to ask you, “What’s the present value of that American option?”
I’d expect to receive the same answer if I’d phrased my question as,
“What’s the present value of that option?”

The same reasoning applies, of course, to an object’s nonvirtual functions:

b->update(); // if this calls Option::update...

d->update(); // ...so should this!

The contract provided by the base class is what allows the “polymorphic”
code written to the base class interface to work with specific options while
promoting healthful ignorance of their existence. In other words, the
polymorphic code may be manipulating AmOption and EurOption
objects, but as far as it’s concerned they’re all just Options.Various concrete
Option types can be added and removed without affecting the generic
code that is aware only of the Option base class. If an AsianOption
shows up at some point, the polymorphic code that knows only about
Options will be able to manipulate it in blissful ignorance of its specific
type, and if it should later disappear, it won’t be missed.

By the same token, concrete option types such as AmOption and EurOption
need to be aware only of the base classes whose contracts they implement
and are independent of changes to the generic code. In principle, the base
class can be ignorant of everything but itself. From a practical perspec-
tive, the design of its interface will take into account the requirements of
its anticipated users, and it should be designed in such a way that derived
classes can easily deduce and implement its contract (see Template
Method [22, 77]). However, a base class should have no specific knowledge
of any of the classes derived from it, because such knowledge inevitably
makes it difficult to add or remove derived classes in the hierarchy.

In object-oriented design, as in life, ignorance is bliss (see also Virtual
Constructors and Prototype [29, 99] and Factory Method [30, 103]).

Item 2 Polymorphism ❘ 5

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 5

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 40

Item 12 ❘ Assignment and Initialization
Are Different

Initialization and assignment are different operations, with different uses
and different implementations.

Let’s get it absolutely straight. Assignment occurs when you assign. All the
other copying you run into is initialization, including initialization in a
declaration, function return, argument passing, and catching exceptions.

Assignment and initialization are essentially different operations not only
because they’re used in different contexts but also because they do differ-
ent things. This difference in operation is not so obvious in the built-in
types such as int or double, because, in that case, both assignment and
initialization consist simply of copying some bits (but see also References
Are Aliases, Not Pointers [5, 13]):

int a = 12; // initialization, copy 0X000C to a

a = 12; // assignment, copy 0X000C to a

However, things can be quite different for user-defined types. Consider
the following simple, nonstandard string class:

class String {

public:

String(const char *init); // intentionally not explicit!

~String();

String(const String &that);

String &operator =(const String &that);

String &operator =(const char *str);

void swap(String &that);

friend const String // concatenate

operator +(const String &, const String &);

friend bool operator <(const String &, const String &);

//...

private:

String(const char *, const char *); // computational

41

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 41

char *s_;

};

Initializing a String object with a character string is straightforward. We
allocate a buffer big enough to hold a copy of the character string and
then copy.

String::String(const char *init) {

if(!init) init = "";

s_ = new char[strlen(init)+1];

strcpy(s_, init);

}

The destructor does what it does:

String::~String() { delete [] s_; }

Assignment is a somewhat more difficult job than construction:

String &String::operator =(const char *str) {

if(!str) str = "";

char *tmp = strcpy(new char[strlen(str)+1], str);

delete [] s_;

s_ = tmp;

return *this;

}

An assignment is somewhat like destruction followed by a construction.
For a complex user-defined type, the target (left side, or this) must be
cleaned up before it is reinitialized with the source (right side, or str). In
the case of our String type, the String’s existing character buffer must
be freed before a new character buffer is attached. See Exception Safe
Functions [39, 135] for an explanation of the ordering of the statements.
(By the way, just about every week somebody reinvents the bright idea of
implementing assignment with an explicit destructor call and using
placement new to call a constructor. It doesn’t always work, and it’s not
exception safe. Don’t do it.)

Because a proper assignment operation cleans up its left argument, one
should never perform a user-defined assignment on uninitialized storage:

String *names = static_cast<String *>(::operator new(BUFSIZ));

names[0] = "Sakamoto"; // oops! delete [] uninitialized pointer!

42 ❘ Item 12 Assignment and Initialization Are Different

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 42

In this case, names refers to uninitialized storage because we called
operator new directly, avoiding implicit initialization by String’s
default constructor; names refers to a hunk of memory filled with random
bits. When the String assignment operator is called in the second line, it
will attempt to perform an array delete on an uninitialized pointer. (See
Placement New [35, 119] for a safe way to perform an operation similar to
such an assignment.)

Because a constructor has less work to do than an assignment operator
(in that a constructor can assume it’s working with uninitialized storage),
an implementation will sometimes employ what’s known as a “computa-
tional constructor” for efficiency:

const String operator +(const String &a, const String &b)

{ return String(a.s_, b.s_); }

The two-argument computational constructor is not intended to be part
of the interface of the String class, so it’s declared to be private.

String::String(const char *a, const char *b) {

s_ = new char[strlen(a)+strlen(b)+1];

strcat(strcpy(s_, a), b);

}

Item 12 Assignment and Initialization Are Different ❘ 43

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 43

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 44

Item 27 ❘ Capability Queries

Most times when an object shows up for work, it’s capable of performing
as required, because its capabilities are advertised explicitly in its inter-
face. In these cases, we don’t ask the object if it can do the job; we just tell
it to get to work:

class Shape {

public:

virtual ~Shape();

virtual void draw() const = 0;

//...

};

//...

Shape *s = getSomeShape(); // get a shape, and tell it to...

s->draw(); // ...get to work!

Even though we don’t know precisely what type of shape we’re dealing
with, we know that it is-a Shape and, therefore, can draw itself. This is a
simple and efficient—and therefore desirable—state of affairs.

However, life is not always that straightforward. Sometimes an object
shows up for work whose capabilities are not obvious. For example, we
may have a need for a shape that can be rolled:

class Rollable {

public:

virtual ~Rollable();

virtual void roll() = 0;

};

A class like Rollable is often called an “interface class” because it specifies
an interface only, similar to a Java interface. Typically, such a class has no
non-static data members, no declared constructor, a virtual destructor,
and a set of pure virtual functions that specify what a Rollable object is

93

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 93

capable of doing. In this case, we’re saying that anything that is-a Rollable
can roll. Some shapes can roll; others can’t:

class Circle : public Shape, public Rollable { // circles roll

//...

void draw() const;

void roll();

//...

};

class Square : public Shape { // squares don't

//...

void draw() const;

//...

};

Of course, other types of objects in addition to shapes may be rollable:

class Wheel : public Rollable { ... };

Ideally, our code should be partitioned in such a way that we always know
whether we are dealing with objects that are Rollable before we attempt
to roll them, just as we earlier knew we were dealing with Shapes before
we attempted to draw them.

vector<Rollable *> rollingStock;

//...

for(vector<Rollable *>::iterator i(rollingstock.begin());

i != rollingStock.end(); ++i)

(*i)->roll();

Unfortunately, we occasionally run up against situations where we simply
do not know if an object has a required capability. In such cases, we are
forced to perform a capability query. In C++, a capability query is typi-
cally expressed as a dynamic_cast between unrelated types (see New
Cast Operators [9, 29]).

Shape *s = getSomeShape();

Rollable *roller = dynamic_cast<Rollable *>(s);

This use of dynamic_cast is often called a “cross-cast,” because it
attempts a conversion across a hierarchy, rather than up or down a hierar-
chy, as shown in Figure 6.

94 ❘ Item 27 Capability Queries

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 94

Figure 6 ❘ A capability query: “May I tell this shape to roll?”

If s refers to a Square, the dynamic_cast will fail (result in a null pointer),
letting us know that the Shape to which s refers is not also Rollable. If s
refers to a Circle or to some other type of Shape that is also derived
from Rollable, then the cast will succeed, and we’ll know that we can
roll the shape.

Shape *s = getSomeShape();

if(Rollable *roller = dynamic_cast<Rollable *>(s))

roller->roll();

Capability queries are occasionally required, but they tend to be overused.
They are often an indicator of bad design, and it’s best to avoid making
runtime queries about an object’s capabilities unless no other reasonable
approach is available.

Is this Shape Rollable?

Shape Rollable

Square Circle

Item 27 Capability Queries ❘ 95

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 95

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 96

Item 55 ❘ Template Template Parameters

Let’s pick up the Stack template we considered in Specializing for Type
Information [52, 183]. We decided to implement it with a standard deque,
which is a pretty good compromise choice of implementation, though in
many circumstances a different container would be more efficient or
appropriate. We can address this problem by adding an additional template
parameter to Stack for the container type used in its implementation.

template <typename T, class Cont>

class Stack;

For simplicity, let’s abandon the standard library (not usually a good idea,
by the way) and assume we have available a set of nonstandard container
templates: List, Vector, Deque, and perhaps others. Let’s also assume
these containers are similar to the standard containers but have only a
single template parameter for the element type of the container.

Recall that the standard containers actually have at least two parameters:
the element type and an allocator type. Containers use allocators to allocate
and free their working memory so that this behavior may be customized.
In effect, the allocator specifies a memory management policy for
the container (see Policies [56, 205]). The allocator has a default so it’s
easy to forget it’s there. However, when you instantiate a standard
container like vector<int>, you’re actually getting vector< int,

std::allocator<int> >.

For example, the declaration of our nonstandard List would be

template <typename> class List;

Notice that we’ve left out the name of template parameter in the declara-
tion of List, above. Just as with a formal argument name in a function dec-
laration, giving a name to a template parameter in a template declaration is
optional. As with a function definition, the name of a template parameter
is required only in a template definition and only if the parameter name is

199

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 199

used in the template. However, as with formal arguments in function dec-
larations, it’s common to give names to template parameters in template
declarations to help document the template.

template <typename T, class Cont>

class Stack {

public:

~Stack();

void push(const T &);

//...

private:

Cont s_;

};

A user of Stack now has to provide two template arguments, an element
type and a container type, and the container has to be able to hold objects
of the element type.

Stack<int, List<int> > aStack1; // OK

Stack<double, List<int> > aStack2; // legal, not OK

Stack<std::string, Deque<char *> > aStack3; // error!

The declarations of aStack2 and aStack3 show we have a potential
problem in coordination. If the user selects the incorrect type of con-
tainer for the element type, we’ll get a compile-time error (in the case of
aStack3, because of the inability to copy a string to a char *) or a sub-
tle bug (in the case of aStack2, because of loss of precision in copying a
double to an int). Additionally, most users of Stack don’t want to be
bothered with selection of its underlying implementation and will be sat-
isfied with a reasonable default. We can improve the situation by provid-
ing a default for the second template parameter.

template <typename T, class Cont = Deque<T> >

class Stack {

//...

};

This helps in cases where the user of a Stack is willing to accept a Deque
implementation or doesn’t particularly care about the implementation.

Stack<int> aStack1; // container is Deque<int>

Stack<double> aStack2; // container is Deque<double>

200 ❘ Item 55 Template Template Parameters

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 200

This is more or less the approach employed by the standard container
adapters stack, queue, and priority_queue.

std::stack<int> stds; // container is

// deque< int, allocator<int> >

This approach is a good compromise of convenience for the casual user of
the Stack facility and of flexibility for the experienced user to employ any
(legal and effective) kind of container to hold the Stack’s elements.

However, this flexibility comes at a cost in safety. It’s still necessary to
coordinate the types of element and container in other specializations,
and this requirement of coordination opens up the possibility of misco-
ordination.

Stack<int, List<int> > aStack3;

Stack<int, List<unsigned> > aStack4; // oops!

Let’s see if we can improve safety and still have reasonable flexibility. A tem-
plate can take a parameter that is itself the name of a template. These param-
eters have the pleasingly repetitious name of template template parameters.

template <typename T, template <typename> class Cont>

class Stack;

This new template parameter list for Stack looks unnerving, but it’s not
as bad as it appears. The first parameter, T, is old hat. It’s just the name of
a type. The second parameter, Cont, is a template template parameter. It’s
the name of a class template that has a single type name parameter. Note
that we didn’t give a name to the type name parameter of Cont, although
we could have:

template <typename T, template <typename ElementType> class Cont>

class Stack;

However, such a name (ElementType, above) can serve only as docu-
mentation, similar to a formal argument name in a function declaration.
These names are commonly omitted, but you should feel free to use them
where you think they improve readability. Conversely, we could take the
opportunity to reduce readability to a minimum by eliminating all tech-
nically unnecessary names in the declaration of Stack:

template <typename, template <typename> class>

class Stack;

Item 55 Template Template Parameters ❘ 201

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 201

But compassion for the readers of our code does impose constraints on
such practices, even if the C++ language does not.

The Stack template uses its type name parameter to instantiate its tem-
plate template parameter. The resulting container type is used to imple-
ment the Stack:

template <typename T, template <typename> class Cont>

class Stack {

//...

private:

Cont<T> s_;

};

This approach allows coordination between element and container to be
handled by the implementation of the Stack itself, rather than in all the
various code that specializes Stack. This single point of specialization
reduces the possibility of miscoordination between the element type and
the container used to hold the elements.

Stack<int,List> aStack1;

Stack<std::string,Deque> aStack2;

For additional convenience, we can employ a default for the template
template argument:

template <typename T, template <typename> class Cont = Deque>

class Stack {

//...

};

//...

Stack<int> aStack1; // use default: Cont is Deque

Stack<std::string,List> aStack2; // Cont is List

This is often a good approach for dealing with coordination of a set of
arguments to a template and a template that is to be instantiated with the
arguments.

It’s common to confuse template template parameters with type name
parameters that just happen to be generated from templates. For example,
consider the following class template declaration:

template <class Cont> class Wrapper1;

202 ❘ Item 55 Template Template Parameters

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 202

The Wrapper1 template needs a type name for its template argument.
(We used the keyword class instead of typename in the declaration of
the Cont parameter of Wrapper1 to tell the readers of our code that we’re
expecting a class or struct rather than an arbitrary type, but it’s all the
same to the compiler. In this context typename and class mean exactly
the same thing technically. See Optional Keywords [63, 231].) That type
name could be generated from a template, as in Wrapper1<List<int>>,
but List<int> is still just a class name, even though it was generated
from a template.

Wrapper1< List<int> > w1; // fine, List<int> is a type name

Wrapper1< std::list<int> > w2; // fine, list<int> is a type

Wrapper1<List> w3; // error! List is a template name

Alternatively, consider the following class template declaration:

template <template <typename> class Cont> class Wrapper2;

The Wrapper2 template needs a template name for its template argu-
ment, and not just any template name. The declaration says that the tem-
plate must take a single type argument.

Wrapper2<List> w4; // fine, List is a template one type

Wrapper2< List<int> > w5; // error! List<int> isn't a template

Wrapper2<std::list> w6; // error! std::list takes 2+ arguments

If we want to have a chance at being able to specialize with a standard
container, we have to do the following:

template <template <typename Element,

class Allocator> class Cont>

class Wrapper3;

or equivalently:

template <template <typename,typename> class Cont>

class Wrapper3;

Item 55 Template Template Parameters ❘ 203

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 203

This declaration says that the template must take two type name arguments:

Wrapper3<std::list> w7; // might work...

Wrapper3< std::list<int> > w8; // error! list<int> is a class

Wrapper3<List> w9; // error! List takes one type argument

However, the standard container templates (like list) may legally be
declared to take more than two parameters, so the declaration of w7 above
may not work on all platforms. Well, we all love and respect the STL, but
we never claimed it was perfect.

204 ❘ Item 55 Template Template Parameters

dewhurst_chapters.qxd 1/1/04 12:23 AM Page 204

