
C H A P T E R 5

Object-Oriented
Programming Applied:
A Custom Data Class

In Chapter 1, “The Object Model,” I gave you an analogy that compares
the concept of a class to that of a car. A class encapsulates some kind of
functionality into one neat and simple package.

Many Web coders who have used other platforms such as PHP or Cold
Fusion are a little surprised at the number of steps required to get data in
and out of a database in .NET. Just to get a few values out of the database,
you need to create a connection object, a command object, and then at the
very least a DataReader. (In all fairness, you get back much of your time
when data binding!) Sounds like the perfect place to build a useful class!

If we put all of our database logic into one class, we can write the SQL
statements once and manipulate the data with far less code throughout our
application. You’ll also benefit from having just one place to change code if
you decide to use a different database (such as Oracle). Best of all, imple-
menting a data-caching scheme is that much easier when all of your data
code is in one place.

To help you see the benefit of this write-once, use-everywhere class,
Listing 5.1 shows a code sample that creates a row in our database, reads
the row, and then deletes it, all via a class that we’ll build in this chapter.

Listing 5.1 A class in action

C#
// Instantiate the Customer class using the default constructor

Customer customer = new Customer();

// Assign some of its properties

61

(Continues)

05_Putz.qxd 2/7/05 9:21 AM Page 61

Listing 5.1 A class in action (Continued)

customer.LastName = "Jones";

customer.FirstName = "Jeff";

// Call its Create() method to save the values in the database,

// and get its new primary key (CustomerID) value

int customerID = customer.Create();

// Instantiate the Customer class using the constructor that takes

// the CustomerID as a parameter

Customer customer2 = new Customer(customerID);

Trace.Write("LastName: " + customer2.LastName);

Trace.Write("FirstName: " + customer2.FirstName);

// Change the value of the first name then save the changes

// to the database

customer2.FirstName = "Stephanie";

customer2.Update();

// On second thought, let's just delete the record entirely

customer2.Delete();

VB.NET
' Instantiate the Customer class using the default constructor

Dim customer As New Customer()

' Assign some of its properties

customer.LastName = "Jones"

customer.FirstName = "Jeff"

' Call its Create() method to save the values in the database,

' and get its new primary key (CustomerID) value

Dim customerID As Integer = customer.Create()

' Instantiate the Customer class using the constructor that takes

' the CustomerID as a parameter

Dim customer2 As New Customer(customerID)

Trace.Write(("LastName: " + customer2.LastName))

Trace.Write(("FirstName: " + customer2.FirstName))

' Change the value of the first name then save the changes

' to the database

customer2.FirstName = "Stephanie"

customer2.Update()

' On second thought, let's just delete the record entirely

customer2.Delete()

62 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 62

You can see by these few lines of code that we didn’t go through the
entire process of creating connection, command, and other data objects. A
few simple method calls are all we need to manipulate the data. Imagine
how much time you’d save if you had to manipulate the data in dozens of
places around your application!

Analyzing Design Requirements

The first step in designing any class is to identify your needs in human
terms before writing code. In our case, we want to make it easy to get,
update, and delete data from a table called Customers in SQL Server.
None of the columns in our table allows null values.

This is a good place to mention that, in terms of n-tier architecture
(see Chapter 4, “Application Architecture”), this sample class we’re
about to build does not create the discrete layers often representa-
tive of such architectures. We’re going to combine data container
classes and data access into one package. That isn’t wrong per se,
and in fact it might be just what you need in your own application.

Analyzing Design Requirements 63

Table 5.1 The Customers table

CustomerID (primary key/identity) int
LastName nvarchar
FirstName nvarchar
Address nvarchar
City nvarchar
State nvarchar
Zip nvarchar
Phone nvarchar
SignUpDate datetime

05_Putz.qxd 2/7/05 9:21 AM Page 63

We know that the Customers table has nine columns that we can
manipulate. We also know that we want to create, update, and delete
records in this table. The most obvious need we’ll have is to get data from
the table. After we have the basics of our class nailed down, we’ll revise the
class to cache data and explore ways to get a number of records at one
time.

Choosing Our Properties

Let’s start writing our class by declaring it and creating the necessary ref-
erences that we’ll need in Listing 5.2. We’ll also set up the properties and
corresponding private variables.

Listing 5.2 The start of our data class

C#
using System;

using System.Data;

using System.Data.SqlClient;

using System.Web;

namespace UberAspNet

{

public class Customer

{

private int _CustomerID;

public int CustomerID

{

get {return _CustomerID;}

}

Why are we using nvarchar instead of varchar? The difference is that
nvarchar uses Unicode, the generally accepted standard of character
encoding that includes a much larger character set. Using Unicode in
your Web application means there’s less chance of getting weird
characters generated by users in other countries. The tradeoff is that
it takes up twice as much disk space, but in an age of giant inexpen-
sive hard drives, this should hardly be a concern.

64 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 64

private string _LastName;

public string LastName

{

get {return _LastName;}

set {_LastName = value;}

}

private string _FirstName;

public string FirstName

{

get {return _FirstName;}

set {_FirstName = value;}

}

private string _Address;

public string Address

{

get {return _Address;}

set {_Address = value;}

}

private string _City;

public string City

{

get {return _City;}

set {_City = value;}

}

private string _State;

public string State

{

get {return State;}

set {_State = value;}

}

private string _Zip;

public string Zip

{

get {return _Zip;}

set {_Zip = value;}

}

Choosing Our Properties 65

(Continues)

05_Putz.qxd 2/7/05 9:21 AM Page 65

Listing 5.2 The start of our data class (Continued)

private string _Phone;

public string Phone

{

get {return _Phone;}

set {_Phone = value;}

}

private DateTime _SignUpDate;

public DateTime SignUpDate

{

get {return _SignUpDate;}

set {_SignUpDate = value;}

}

}

}

VB.NET
Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Web

Namespace UberAspNet

Public Class Customer

Private _CustomerID As Integer

Public ReadOnly Property CustomerID() As Integer

Get

Return _CustomerID

End Get

End Property

Private _LastName As String

Public Property LastName() As String

Get

Return _LastName

End Get

Set

_LastName = value

End Set

End Property

66 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 66

Private _FirstName As String

Public Property FirstName() As String

Get

Return _FirstName

End Get

Set

_FirstName = value

End Set

End Property

Private _Address As String

Public Property Address() As String

Get

Return _Address

End Get

Set

_Address = value

End Set

End Property

Private _City As String

Public Property City() As String

Get

Return _City

End Get

Set

_City = value

End Set

End Property

Private _State As String

Public Property State() As String

Get

Return State

End Get

Set

_State = value

End Set

End Property

Private _Zip As String

Public Property Zip() As String

Get

Choosing Our Properties 67

(Continues)

05_Putz.qxd 2/7/05 9:21 AM Page 67

Listing 5.2 The start of our data class (Continued)

Return _Zip

End Get

Set

_Zip = value

End Set

End Property

Private _Phone As String

Public Property Phone() As String

Get

Return _Phone

End Get

Set

_Phone = value

End Set

End Property

Private _SignUpDate As DateTime

Public Property SignUpDate() As DateTime

Get

Return _SignUpDate

End Get

Set

_SignUpDate = value

End Set

End Property

End Class

End Namespace

The code is fairly straightforward. We’ve created a property to corre-
spond to each of the columns in our database table, matching the data
types. We’ve also created a private variable for each column for internal
use in our class. The only unusual thing here is that we’ve made the
CustomerID property read-only. That’s because our database table is
designed to make this a primary key and an identity field, meaning that
SQL Server will number the column automatically when we add new rows.
For that reason, we don’t want the class to have the ability to alter this
property. This read-only strategy also protects other developers (or your-
self if you can’t remember every detail about what you’ve written) from
doing something that could break the program.

68 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 68

You could declare default values for each private variable, but we’re
going to defer those assignments to our constructors. We might want to
assign different default values depending on the overload of the construc-
tor called.

The Constructors

Now that we know what pieces of data our class should contain, it’s time to
set up that data when we instantiate the class. There are two scenarios:
We’ll populate the properties with default values, or we’ll populate them
with values from our database. To do this, we’ll create two constructors by
way of overloading.

In writing our constructors, we’ll have to decide up front how we’ll dis-
tinguish between default data and data we’ve entered or retrieved from the
database. We could simply allow each property to return a null value, but
that wouldn’t correspond well to the fact that our database table doesn’t
allow null values. Instead, we’ll make all of our string values equal empty
strings, our SignUpDate value will equal January 1, 2000, and our
CustomerID will be set to 0.

The CustomerID is perhaps the stickiest point in our class design.
Although the chances are that we’ll always know exactly what we’re doing
in our code (I know, you can stop laughing), we need to know and docu-
ment how we’re going to know if the instantiated Customer object actual-
ly corresponds to an existing database record or not. Again, we could just
keep CustomerID null until we’ve created a record, but for our case, we’ll
decide right now that a value of 0 means that either no record exists or
we’ve created a new object with default values. This leaves the potential for
populating our object with default values from both constructors, so we’ll
create a private method just for this purpose in Listing 5.3.

In our case we’ve named the private variables with the same name
as the properties, only with an underscore character in front of them.
There are a number of different ways to name these according to var-
ious academic standards and recommendations, but ultimately it’s
up to you. Be consistent in your naming conventions. If they confuse
you, imagine what they might do to other developers who need to edit
your code!

The Constructors 69

05_Putz.qxd 2/7/05 9:21 AM Page 69

Listing 5.3 The private PopulateDefault() method

C#
private void PopulateDefault()

{

_CustomerID = 0;

_LastName = "";

_FirstName = "";

_Address = "";

_City = "";

_State = "";

_Zip = "";

_Phone = "";

_SignUpDate = new DateTime(2000,1,1);

}

VB.NET
Private Sub PopulateDefault()

_CustomerID = 0

_LastName = ""

_FirstName = ""

_Address = ""

_City = ""

_State = ""

_Zip = ""

_Phone = ""

_SignUpDate = New DateTime(2000, 1, 1)

End Sub

Now that we have that issue out of the way, our default constructor is
a piece of cake, as shown in Listing 5.4.

Listing 5.4 The default constructor

C#
public Customer()

{

PopulateDefault();

}

VB.NET
Public Sub New()

PopulateDefault()

End Sub

70 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 70

Within our calling code, creating the object and assigning values to its
properties is as easy as the first fragment of code we showed you in this
chapter.

Our second overload for the constructor, shown in Listing 5.5, has the
familiar database code you’ve been waiting for. It takes a single parameter,
the CustomerID, and populates our object’s properties based on a match
in the database.

Listing 5.5 The record-specific constructor

C#
private string _ConnectionString =

"server=(local);database=test;Integrated Security=SSPI";

public Customer(int CustomerID)

{

SqlConnection connection = new SqlConnection(_ConnectionString);

connection.Open();

SqlCommand command = new SqlCommand("SELECT CustomerID, "

+ "LastName, FirstName, Address, City, State, Zip, Phone, "

+ "SignUpDate WHERE CustomerID = @CustomerID",

connection);

command.Parameters.AddWithValue("@CustomerID", CustomerID);

SqlDataReader reader = command.ExecuteReader();

if (reader.Read())

{

_CustomerID = reader.GetInt32(0);

_LastName = reader.GetString(1);

_FirstName = reader.GetString(2);

_Address = reader.GetString(3);

_City = reader.GetString(4);

_State = reader.GetString(5);

_Zip = reader.GetString(6);

_Phone = reader.GetString(7);

_SignUpDate = reader.GetDateTime(8);

}

In our examples in this chapter, we’re using the AddWithValue()
method of the SqlParameterCollection. This method is new to
v2.0 of the .NET Framework. Earlier versions can simply use Add()
with the same two parameters.

The Constructors 71

(Continues)

05_Putz.qxd 2/7/05 9:21 AM Page 71

Listing 5.5 The record-specific constructor (Continued)

else PopulateDefault();

reader.Close();

connection.Close();

}

VB.NET
Private _ConnectionString As String = _

"server=(local);database=test;Integrated Security=SSPI"

Public Sub New(CustomerID As Integer)

Dim connection As New SqlConnection(_ConnectionString)

connection.Open()

Dim command As New SqlCommand("SELECT CustomerID, LastName, "_

& "FirstName, Address, City, State, Zip, Phone, SignUpDate "_

& "WHERE CustomerID = @CustomerID", connection)

command.Parameters.AddWithValue("@CustomerID", CustomerID)

Dim reader As SqlDataReader = command.ExecuteReader()

If reader.Read() Then

_CustomerID = reader.GetInt32(0)

_LastName = reader.GetString(1)

_FirstName = reader.GetString(2)

_Address = reader.GetString(3)

_City = reader.GetString(4)

_State = reader.GetString(5)

_Zip = reader.GetString(6)

_Phone = reader.GetString(7)

_SignUpDate = reader.GetDateTime(8)

Else

PopulateDefault()

End If

reader.Close()

connection.Close()

End Sub

The methods we’re using to populate our properties from the
SqlDataReader might seem strange to you now, but we’ll explain why this
is the best way to do it in terms of performance in a later chapter (and
because you’re crafting this nifty data class, you only have to do it once).

First we create our connection object using a connection string we’ve
added to the class. (In real life, you would probably store your connection
string in web.config, but we include it here for simplicity.) When open, we
create a command object that has our SQL query, including the parameter
in the WHERE clause that we’ll use to choose the record. In the next line,

72 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 72

we add a parameter to our command object, setting its value from the
parameter of the constructor. We create a SqlDataReader, and if it can
read, we populate our properties with the values from the database. If no
record is found, we populate our object with the default values, using the
standalone method we created earlier.

So far, we’ve got all of our properties and a means to create a
Customer object with default values or values from an existing database
record. Next we need ways to create, update, and delete that data.

Create, Update, and Delete Methods

In the example we gave at the beginning of the chapter, we created a
Customer object using the default constructor, assigned some properties,
and then called a Create() method. This Create() method takes all of
the current property values and inserts them into their corresponding
columns in a new row in the Customers table. Again, the code in Listing
5.6 should be very familiar to you.

Listing 5.6 The Create() method

C#
public int Create()

{

SqlConnection connection = new SqlConnection(_ConnectionString);

connection.Open();

SqlCommand command = new SqlCommand("INSERT INTO Customers "

+ "(LastName, FirstName, Address, City, State, Zip, Phone, "

+ "SignUpDate) VALUES (@LastName, @FirstName, @Address, "

+ "@City, @State, @Zip, @Phone, @SignUpDate)",

connection);

command.Parameters.AddWithValue("@LastName", _LastName);

command.Parameters.AddWithValue("@FirstName", _FirstName);

command.Parameters.AddWithValue("@Address", _Address);

command.Parameters.AddWithValue("@City", _City);

command.Parameters.AddWithValue("@State", _State);

command.Parameters.AddWithValue("@Zip", _Zip);

command.Parameters.AddWithValue("@Phone", _Phone);

command.Parameters.AddWithValue("@SignUpDate", _SignUpDate);

command.ExecuteNonQuery();

command.Parameters.Clear();

command.CommandText = "SELECT @@IDENTITY";

Create, Update, and Delete Methods 73

(Continues)

05_Putz.qxd 2/7/05 9:21 AM Page 73

Listing 5.6 The Create() method (Continued)

int newCustomerID = Convert.ToInt32(command.ExecuteScalar());

connection.Close();

_CustomerID = newCustomerID;

return newCustomerID;

}

VB.NET
Public Function Create() As Integer

Dim connection As New SqlConnection(_ConnectionString)

connection.Open()

Dim command As New SqlCommand("INSERT INTO Customers " _

& "(LastName, FirstName, Address, City, State, Zip, Phone, "_

& "SignUpDate) VALUES (@LastName, @FirstName, @Address, @City, "_

& "@State, @Zip, @Phone, @SignUpDate)", connection)

command.Parameters.AddWithValue("@LastName", _LastName)

command.Parameters.AddWithValue("@FirstName", _FirstName)

command.Parameters.AddWithValue("@Address", _Address)

command.Parameters.AddWithValue("@City", _City)

command.Parameters.AddWithValue("@State", _State)

command.Parameters.AddWithValue("@Zip", _Zip)

command.Parameters.AddWithValue("@Phone", _Phone)

command.Parameters.AddWithValue("@SignUpDate", _SignUpDate)

command.ExecuteNonQuery()

command.Parameters.Clear()

command.CommandText = "SELECT @@IDENTITY"

Dim newCustomerID As Integer = _

Convert.ToInt32(command.ExecuteScalar())

connection.Close()

_CustomerID = newCustomerID

Return newCustomerID

End Function

Generally when we create a record in the database, we’re done with it,
and we move on to other things. However, just in case, we’ve added an
extra step to our Create() method. We’re going back to the database to
see what the value is in the CustomerID column of the new record we’ve
created, using the SQL statement “SELECT @@IDENTITY.” We’re assign-
ing that value to the CustomerID property of our class and sending it back
as the return value of our method. Given the design parameter decision we
made earlier, changing the CustomerID value to anything other than 0
means that it corresponds to an actual record in the database.

74 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 74

Going back again to the first code sample, we’ll use a method called
Update() to change the data in a specific row of our database table. That
method is shown in Listing 5.7.

Listing 5.7 The Update() method

C#
public bool Update()

{

if (_CustomerID == 0) throw new Exception("Record does not exist in

Customers table.");

SqlConnection connection = new SqlConnection(_ConnectionString);

connection.Open();

SqlCommand command = new SqlCommand("UPDATE Customers SET "

+ "LastName = @LastName, FirstName = @FirstName, "

+ "Address = @Address, City = @City, State = @State, "

+ "Zip = @Zip, Phone = @Phone, SignUpDate = @SignUpDate "

+ "WHERE CustomerID = @CustomerID", connection);

command.Parameters.AddWithValue("@LastName", _LastName);

command.Parameters.AddWithValue("@FirstName", _FirstName);

command.Parameters.AddWithValue("@Address", _Address);

command.Parameters.AddWithValue("@City", _City);

command.Parameters.AddWithValue("@State", _State);

command.Parameters.AddWithValue("@Zip", _Zip);

command.Parameters.AddWithValue("@Phone", _Phone);

command.Parameters.AddWithValue("@SignUpDate", _SignUpDate);

command.Parameters.AddWithValue("@CustomerID", _CustomerID);

bool result = false;

if (command.ExecuteNonQuery() > 0) result = true;

connection.Close();

return result;

}

VB.NET
Public Function Update() As Boolean

If _CustomerID = 0 Then Throw New Exception("Record does not exist in

Customers table.")

Dim connection As New SqlConnection(_ConnectionString)

connection.Open()

Dim command As New SqlCommand("UPDATE Customers SET "_

& "LastName = @LastName, FirstName = @FirstName, "_

& "Address = @Address, City = @City, State = @State, "_

Create, Update, and Delete Methods 75

(Continues)

05_Putz.qxd 2/7/05 9:21 AM Page 75

Listing 5.7 The Update() method (Continued)

& "Zip = @Zip, Phone = @Phone, SignUpDate = @SignUpDate "_

& "WHERE CustomerID = @CustomerID", connection)

command.Parameters.AddWithValue("@LastName", _LastName)

command.Parameters.AddWithValue("@FirstName", _FirstName)

command.Parameters.AddWithValue("@Address", _Address)

command.Parameters.AddWithValue("@City", _City)

command.Parameters.AddWithValue("@State", _State)

command.Parameters.AddWithValue("@Zip", _Zip)

command.Parameters.AddWithValue("@Phone", _Phone)

command.Parameters.AddWithValue("@SignUpDate", _SignUpDate)

command.Parameters.AddWithValue("@CustomerID", _CustomerID)

Dim result As Boolean = False

If command.ExecuteNonQuery() > 0 Then result = True

connection.Close()

Return result

End Function

We start our Update() method with a check of the CustomerID
value. If it’s 0, we know that the object does not correspond to an existing
record in the database, so we throw an exception. If the code is allowed to
continue, the rest includes the familiar connection and command objects,
as well as parameters that take the current values of our properties and use
them to update our database record.

The last few lines are used to check for a successful update of the data-
base. The ExecuteNonQuery() method of the command object returns
an integer indicating the number of rows affected by our command.
Because our WHERE clause is matching the CustomerID column, a column
that we know must have a unique value, the only thing we’re interested in
knowing is that at least one row was affected. If a value greater than 0 is
returned from ExecuteNonQuery(), then we return a Boolean true value
back to the calling code. This enables us to confirm that the data was
indeed updated.

Where we can create and update data, we can also delete it. Enter our
Delete() method in Listing 5.8, the simplest of the lot.

Listing 5.8 The Delete() method

C#
public void Delete()

{

SqlConnection connection = new SqlConnection(_ConnectionString);

76 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 76

connection.Open();

SqlCommand command = new SqlCommand("DELETE FROM Customers "

+ "WHERE CustomerID = @CustomerID", connection);

command.Parameters.AddWithValue("@CustomerID", _CustomerID);

command.ExecuteNonQuery();

connection.Close();

_CustomerID = 0;

}

VB.NET
Public Sub Delete()

Dim connection As New SqlConnection(_ConnectionString)

connection.Open()

Dim command As New SqlCommand("DELETE FROM Customers "_

& "WHERE CustomerID = @CustomerID", connection)

command.Parameters.AddWithValue("@CustomerID", _CustomerID)

command.ExecuteNonQuery()

connection.Close()

_CustomerID = 0

End Sub

There isn’t anything complex about this code. We create our connec-
tion object and command objects, use the current value of the
CustomerID property to make our match in our SQL statement, and exe-
cute the command. Just in case the calling code decides it wants to do
something with the data, such as call the object’s Update() method
against a record that no longer exists, we set the CustomerID property
back to 0.

Caching the Data for Better Performance

Modern servers, even the cheap ones, generally have a ton of memory,
much of which goes unused. The data that you’re sucking out of the data-
base and serving to hundreds or thousands of users over and over might
not change much, but it does take a bit of time to search for it and extract
it from the database. That means reading data off of a hard drive and drag-
ging it through the database’s process and then piping it through drivers to
.NET so you can display it. Why not store it in memory? It’s considerably
faster to retrieve the data from memory.

Caching the Data for Better Performance 77

05_Putz.qxd 2/7/05 9:21 AM Page 77

The System.Web.Caching.Cache class provides us with a powerful
means to keep objects in memory so that they can be quickly retrieved and
used throughout our application.

Part of the power of this class is its ability to decide when the object in
memory is no longer needed. It makes this decision based on the type of
cache dependency that you choose. You can base the dependency on
changes to a file or directory, which is great if you’re using some file-based
resource, but it’s a problem for us because our data isn’t coming from a file
(not in the literal sense, anyway).

We can also kill off our cached items after a certain amount of time has
passed or if the object hasn’t been accessed for a certain amount of time.

All these methods make data caching difficult because our data might
be changed in the meantime by another page or some other process.
Obviously we want only the current data to be served to people visiting our
site. The key to maintaining this data integrity while caching our data is to
only access the database via our data class.

To cache the data, we’ll add a few lines of code to our constructor and
our Update() and Delete() methods. We don’t have to add any code to
the Create() method because at that point, we have no idea if the data
will be retrieved by some other page or process.

Cached objects are organized and retrieved by a key, much in the same
way that you find the right portion of a query string or access a column by
name from a DataReader. We’ll name our cached customer objects
“UberCustomer” plus the primary key of the record we retrieve. So for
example, if my customer record’s CustomerID column has a value of 216,
the cached object will be named “UberCustomer216.”

We’ll start by adding a single “if” statement to our constructor, check-
ing to see if the cached object exists. If it does, we’ll load those values into
our properties. If it doesn’t exist, we’ll get the data from the database and
insert it into the cache. The revised constructor looks like the code in
Listing 5.9.

Listing 5.9 Revised constructor with caching

C#
public Customer(int CustomerID)

{

HttpContext context = HttpContext.Current;

if ((context.Cache["UberCustomer" + CustomerID.ToString()] == null))

{

78 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 78

SqlConnection connection = new SqlConnection(_ConnectionString);

connection.Open();

SqlCommand command = new SqlCommand("SELECT CustomerID, "

+ "LastName, FirstName, Address, City, State, Zip, "

+ "Phone, SignUpDate WHERE CustomerID = @CustomerID",

connection);

command.Parameters.AddWithValue("@CustomerID", CustomerID);

SqlDataReader reader = command.ExecuteReader();

if (reader.Read())

{

_CustomerID = reader.GetInt32(0);

_LastName = reader.GetString(1);

_FirstName = reader.GetString(2);

_Address = reader.GetString(3);

_City = reader.GetString(4);

_State = reader.GetString(5);

_Zip = reader.GetString(6);

_Phone = reader.GetString(7);

_SignUpDate = reader.GetDateTime(8);

}

else PopulateDefault();

reader.Close();

connection.Close();

context.Cache.Insert("UberCustomer" +

_CustomerID.ToString(), this, null,

DateTime.Now.AddSeconds(60), new TimeSpan.Zero);

}

else

{

Customer customer = (Customer)context.Cache["UberCustomer" +

CustomerID.ToString()];

_CustomerID = customer.CustomerID;

_LastName = customer.LastName;

_FirstName = customer.FirstName;

_Address = customer.Address;

_City = customer.City;

_State = customer.State;

_Zip = customer.Zip;

_Phone = customer.Phone;

_SignUpDate = customer.SignUpDate;

}

}

Caching the Data for Better Performance 79

(Continues)

05_Putz.qxd 2/7/05 9:21 AM Page 79

Listing 5.9 Revised constructor with caching (Continued)

VB.NET
Public Sub New(CustomerID As Integer)

Dim context As HttpContext = HttpContext.Current

If context.Cache(("UberCustomer" + CustomerID.ToString())) Is Nothing

Then

Dim connection As New SqlConnection(_ConnectionString)

connection.Open()

Dim command As New SqlCommand("SELECT CustomerID, LastName, "_

& "FirstName, Address, City, State, Zip, Phone, "_

& " SignUpDate WHERE CustomerID = @CustomerID", connection)

command.Parameters.AddWithValue("@CustomerID", CustomerID)

Dim reader As SqlDataReader = command.ExecuteReader()

If reader.Read() Then

_CustomerID = reader.GetInt32(0)

_LastName = reader.GetString(1)

_FirstName = reader.GetString(2)

_Address = reader.GetString(3)

_City = reader.GetString(4)

_State = reader.GetString(5)

_Zip = reader.GetString(6)

_Phone = reader.GetString(7)

_SignUpDate = reader.GetDateTime(8)

Else

PopulateDefault()

End If

reader.Close()

connection.Close()

context.Cache.Insert("UberCustomer" + _CustomerID.ToString(), _

Me, Nothing, DateTime.Now.AddSeconds(60), TimeSpan.Zero)

Else

Dim customer As Customer = _

CType(context.Cache(("UberCustomer" + CustomerID.ToString())), _

Customer)

_CustomerID = customer.CustomerID

_LastName = customer.LastName

_FirstName = customer.FirstName

_Address = customer.Address

_City = customer.City

_State = customer.State

_Zip = customer.Zip

_Phone = customer.Phone

_SignUpDate = customer.SignUpDate

End If

End Sub

80 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 80

We start the new version of the constructor by checking to see if an
existing cache object corresponds to the record we’re looking for. Because
our class has absolutely no clue that it’s being used in a Web application,
we first create an HttpContext object to reference, in this case,
HttpContext.Current, which provides a reference to the current
request.

If there is no cached object, everything proceeds as before, except for
the very last line. We call the Insert() method of the cache object, which
takes a number of parameters. (There are a number of overloads for the
Insert method, but this one offers the most control for our purposes.
Consult the .NET documentation for more information.)

context.Cache.Insert("UberCustomer" + _CustomerID.ToString(),

this, null, DateTime.Now.AddSeconds(60), TimeSpan.Zero);

The first parameter is a string to name the cache entry. As we men-
tioned earlier, it’s a combination of the "UberCustomer" and the
CustomerID value. The second parameter is this (or Me in VB), which is
the instance of the class itself. That means that all of the values assigned to
the class’ properties are stored in memory. The third parameter is for a
CacheDependency object, and in our case we’re using null (Nothing in
VB) because we’re not tying any dependency to the cached object.

The fourth parameter is the time at which we want the cached object
to be removed from memory, which is an absolute expiration time. The
fifth parameter is a sliding expiration time expressed as the TimeSpan that
passes without the cached object being accessed. That means an object
could live indefinitely if it’s accessed over and over. Because we’ve already
set an absolute expiration, we must set this to a TimeSpan object that indi-
cates zero time.

You must experiment with these values to decide how much memory
you want to use (see Chapter 15, “Performance, Scalability, and Metrics”).
If you write a number of different data classes similar to this one, you may
want to store a value in web.config that indicates the number of seconds
(or minutes, hours, or whatever you want) so that you can change the set-
ting all from one place.

If the object has been cached, it’s easy enough to retrieve those values
and assign them to our private class members. We create a new Customer
object and fill it with the cached version. We have to cast the object to the
Customer type because the type returned by the Cache object is
System.Object.

Caching the Data for Better Performance 81

05_Putz.qxd 2/7/05 9:21 AM Page 81

This is a point of confusion for some developers because we’re creat-
ing an instance of the class from within the class and then assigning its
properties to the private members of the class in which we’re working.

Getting this cached data will save many trips to the database, but we
need to devise a way to make sure that we always have current data. If
another user loads the data and changes it by calling Update() or deletes
it with the Delete() method, we must remove the cached data so that it
is sought from the database instead of being loaded from memory. This is
easy enough with a private method that uses the cache’s Remove()
method. Listing 5.10 demonstrates the cache removal.

Listing 5.10 Private DeleteCache() method

C#
private void DeleteCache()

{

if (HttpContext.Current.Cache["UberCustomer"

+ _CustomerID.ToString()] != null)

HttpContext.Current.Cache.Remove("UberCustomer"

+ _CustomerID.ToString());

}

VB.NET
Private Sub DeleteCache()

If Not (HttpContext.Current.Cache(("UberCustomer" & _

_CustomerID.ToString())) Is Nothing) Then

HttpContext.Current.Cache.Remove(("UberCustomer" & _

_CustomerID.ToString()))

End If

End Sub

Again, we reference the HttpContext.Current object. First we see
if the object exists, and if it does, we call the Remove() method, which
looks for the object by its key name.

We’ll need to call the DeleteCache() method from both the
Update() and Delete() methods. It’s as simple as adding one line to
both of the methods: DeleteCache().

As long as we access the database through this class only, we will always
have current data.

82 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 82

Getting More than One Record at a Time

This model for a data class might be great for getting one record, but what
happens when you need to get a group of records? Fortunately we can
group these data objects together in an ArrayList, a structure that is
often less complicated and less work for .NET to create and maintain than
a DataTable.

Continuing with our example, let’s say that we frequently need to look
up groups of customers by their Zip code. We’ll add a static (shared)
method to the class that takes a single parameter, the Zip code, and search-
es the database for matching records. The method will return an
ArrayList of Customer objects. The ArrayList class is in the
System.Collections namespace, so we need to add a using statement
(Imports in VB) to the top of our class file. Listing 5.11 shows our new
method.

Listing 5.11 The static method to get an ArrayList full of Customer objects

C#
public static ArrayList GetCustomersByZip(string Zip)

{

SqlConnection connection = new

SqlConnection("server=(local);database=test;Integrated

Security=SSPI");

connection.Open();

SqlCommand command = new SqlCommand("SELECT CustomerID, "

+ "LastName, FirstName, Address, City, State, Zip, Phone, "

+ "SignUpDate WHERE Zip = @Zip ORDER BY LastName, "

+ "FirstName ", connection);

Why are we using a static method? Simply put, this method doesn’t
require any of the class’s structure to function. We don’t need any of
its properties or functions to run, and we don’t want the calling code
to have to create an instance of the class first. We include the
method within the class anyway because its functionality is closely
related to the class.

Getting More than One Record at a Time 83

(Continues)

05_Putz.qxd 2/7/05 9:21 AM Page 83

Listing 5.11 The static method to get an ArrayList full of Customer objects
(Continued)

command.Parameters.AddWithValue("@Zip", Zip);

SqlDataReader reader = command.ExecuteReader();

// create the ArrayList that the method will return

ArrayList objList = new ArrayList();

while (reader.Read())

{

// create a new customer object

Customer customer = new Customer();

// assign the database values to the object's properties

customer.CustomerID = reader.GetInt32(0);

customer.LastName = reader.GetString(1);

customer.FirstName = reader.GetString(2);

customer.Address = reader.GetString(3);

customer.City = reader.GetString(4);

customer.State = reader.GetString(5);

customer.Zip = reader.GetString(6);

customer.Phone = reader.GetString(7);

customer.SignUpDate = reader.GetDateTime(8);

// add the customer object to the ArrayList

objList.Add(customer);

}

reader.Close();

connection.Close();

// return the finished ArrayList with customer objects

return objList;

}

VB.NET
Public Shared Function GetCustomersByZip(Zip As String) As ArrayList

Dim connection As New _

SqlConnection("server=(local);database=test;Integrated Security=SSPI")

connection.Open()

Dim command As New SqlCommand("SELECT CustomerID, LastName, "_

& "FirstName, Address, City, State, Zip, Phone, SignUpDate "_

& "WHERE Zip = @Zip ORDER BY LastName, FirstName", connection)

command.Parameters.AddWithValue("@Zip", Zip)

Dim reader As SqlDataReader = command.ExecuteReader()

' create the ArrayList that the method will return

Dim objList As New ArrayList()

While reader.Read()

' create a new customer object

Dim customer As New Customer()

84 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 84

' assign the database values to the object's properties

customer.CustomerID = reader.GetInt32(0)

customer.LastName = reader.GetString(1)

customer.FirstName = reader.GetString(2)

customer.Address = reader.GetString(3)

customer.City = reader.GetString(4)

customer.State = reader.GetString(5)

customer.Zip = reader.GetString(6)

customer.Phone = reader.GetString(7)

customer.SignUpDate = reader.GetDateTime(8)

' add the customer object to the ArrayList

objList.Add(customer)

End While

reader.Close()

connection.Close()

' return the finished ArrayList with customer objects

Return objList

End Function

At first glance, this new method looks a lot like our constructor. The
first difference is that we’re using a static method that returns an
ArrayList object populated with Customer objects by looping through
more than one record of data. We can call static methods without instanti-
ating the class. To look up customers in the 44114 Zip code, for example,
we’d need only one line:

ArrayList objList44114 = Customer.GetCustomersByZip("44114");

The next difference is in our SQL statement. This time we’re looking
for records where the Zip is matched to the parameter we’ve passed in.
Because the Zip column of the database is not our primary key and may
not be unique, we may get several records.

Just after we execute the SqlDataReader, we create an ArrayList
object. This will be the container for our Customer objects. Using a while
loop, we go through each record returned by the database, creating a
Customer object each time, assigning the database values to the object’s
properties, and then adding that Customer object to the ArrayList.
When we’re done and we’ve cleaned up our connection, we return the
ArrayList populated with Customer objects.

There are a few other changes we need to make. First, our
CustomerID property can’t be read-only because we need to assign data
to it when we execute these searches from static methods. We revise it to
include the “set” portion of the property in Listing 5.12

Getting More than One Record at a Time 85

05_Putz.qxd 2/7/05 9:21 AM Page 85

Listing 5.12 The revised CustomerID property

C#
public int CustomerID

{

get {return _CustomerID;}

set {_CustomerID = value;}

}

VB.NET
Public Property CustomerID() As Integer

Get

Return _CustomerID

End Get

Set

_CustomerID = value

End Set

End Property

The other change is that our static method doesn’t know anything
about the string _ConnectionString because the rest of the class hasn’t
been instantiated. We’ve included the string here right in the code, but a
better practice is to store it elsewhere, perhaps in web.config, instead of
hard-coding it.

The big surprise for many people is that your wonderful new
ArrayList can be bound to a Repeater control, and you can access the
properties of the Customer objects just as if you bound a SqlDataReader
or DataTable. That’s because the ArrayList implements the
IEnumerable interface, just like SqlDataReader and DataTable. As
long as your ArrayList contains all the same objects, in this case
Customer objects, there’s nothing more to do. Your Repeater’s
ItemTemplate might look something like this:

<ItemTemplate>

<p><%# DataBinder.Eval(Container.DataItem,"LastName") %>,

<%# DataBinder.Eval(Container.DataItem,"FirstName") %></p>

</ItemTemplate>

You can cache these result sets as well by putting the finished
ArrayList into the cache using a name such as “UberCustomerList44114”
in this case. However, you’ll have to add more plumbing to the Update()

86 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 86

and Delete() methods, as well as the Create() method to remove any
customer ArrayLists being cached if the Zip matches. Otherwise, the
cached ArrayList wouldn’t have a new record (or would include a delet-
ed record) of a customer with a 44114 Zip code.

Summary

Our custom data class represents a block of code that manipulates data in
our database. If you look back to the code samples at the beginning of the
chapter, you can see that a few simple properties and methods replace the
blocks of data access code that we would otherwise need to write over and
over again in our application, in any place that we would need to change
data in our database.

This encapsulation of common functionality gets to the core of writing
object-oriented code. We achieve code reuse, and we manipulate an object
with names we understand. The purpose of our Update() method is not
immediately apparent, based on the appearance of the code. Compare that
to the first code sample, where we create a Customer object, assign new
values to its properties, and then call its Update() method. This code is
much easier to deal with, and its purpose is almost immediately obvious.
Again, we can view the code from a “user” view and a “programmer” view,
the former concentrating on how it’s used, and the latter worrying about
the underlying implementation.

Data access is just one problem you can address with your own classes.
If you start to think in abstract terms of a tool that solves a problem, you
can apply similar concepts to virtually anything. For example, if you
needed a tool that checked loan balances for a bank customer service rep-
resentative, you might create a balance checking class that takes some
parameters or properties that represent the customer and some method or
property that indicates the balance due. You might also include methods

This is a good time to mention that you can implement a provider
design pattern similar to the one used for Membership and Profile,
which we’ll cover in Chapter 11, “Membership and Security,” and
Chapter 12, “Profiles, Themes, and Skins.”

Summary 87

05_Putz.qxd 2/7/05 9:21 AM Page 87

that verify the customer’s information or that check to see whether they’ve
paid on time or whether the customer service representative has permis-
sion to look up the balance. This tool might be used by a Web site or a
Windows application, or it might be used by another system, such as a sys-
tem that takes new loan applications and makes decisions based on the cus-
tomer’s payment history from your balance checking tool.

Microsoft has solved hundreds or thousands of problems like this. Take
our friend the TextBox control. Here Microsoft has created a tool, a class
just like one you might build, that renders HTML to the browser, stores
data in the control’s viewstate, and generates style information if it’s need-
ed, among other things. It’s a lot easier than having to do all that work over
and over again in the context of every page!

88 Chapter 5 Object-Oriented Programming Applied: A Custom Data Class

05_Putz.qxd 2/7/05 9:21 AM Page 88

