CHAPTER 3

Testing Calculations with
ColumnFixture Tables

We often want to test that calculations are being carried out correctly, according
to some business rule. Tables of concrete examples help us to understand business
needs and communicate what’s required. Here, we will focus on how to read such
Fit tests; later, we will show how to write them.

We begin with two simple examples that test calculations by using tables of
type ColumnFixture, which is designed to do this.

These tests are rather abstract in that they say nothing about how someone
using the system under test will see the consequences of this business rule. In
Chapter 4, we’ll see tests that are more aligned to the step-by-step use of the
system under test.

3.1 Calculating Discount

The business rule for our first example follows.

A 5 percent discount is provided whenever the total purchase is greater
than $1,000.

We use examples in a table to help define the relationship between the amount
and the discount for several cases. For example, when the amount is $1,100, the
discount is $55. Figure 3.1 shows a simple set of tests for the part of a system that
calculates discounts.

The fizture, CalculateDiscount, is named in the first row of the table. The
fixture determines how the examples in the table are to be tested automatically
against the system under test.

As this is a ColumnFixture table, the second row is a header row, which labels
the given and calculated value columns. Here, the amount column holds the given
values, and the discount () column holds the calculated results that are expected.!

1 The label for a calculated result column has () after the name.

13

14 Chapter 3 Testing Calculations with ColumnFixture Tables

Column labels in the header row serve two purposes.

1. They help us to understand the examples in the table.

2. They are used when the examples are automatically tested by Fit.

CalculateDiscount
amount | discount()
0.00 0.00
100.00 0.00
999.00 | 0.00
1000.00 | 0.00

1010.00 | 50.50
1100.00 | 55.00
1200.00 | 60.00
2000.00 | 100.00

Figure 3.1 Fit Table for Testing Discount (with an Error)

The remaining eight test rows of the table are our test cases, which are checked
one at a time. For the first test case, the given value under amount is 0, and
so a calculated value of 0 under discount () is expected. The second test case is
independent of the first; the given amount is 100, and so the calculated discount ()
is expected to be 0. And so on.

Fit runs the tests, one row at a time, against the system under test. Fit begins
with the third row of the table, providing the given value of 0.00 to the application.
Fit checks that the result calculated by the application, based on that amount, is
0.00, as expected.

3.2 Reports: Traffic Lights

When Fit is run, it produces a report. The table cells are colored to show the results
of the tests, so that we can tell which tests passed and which failed. This makes it
easy to see which tests went right and which went wrong. Fit uses a traffic light
metaphor for the colors in the report.

e Green: Test passed.

e Red: Test failed to meet expectations. Additional information may be pro-
vided.

e Yellow: Part of a test is not completely implemented, or something else went
wrong.

e Gray: Parts of tables that have not been processed for some known reason,
perhaps because a test is not completely implemented.

3.2 Reports: Traffic Lights 15

Other cells are left unmarked unless something goes wrong. A reported table may
have rows added to it to provide extra information about failing tests.

The results of the tests in Figure 3.1 are reported as shown in Figure 3.2
(see also Plate 1). The passing tests, whose calculated value of discount() is as
expected, are green. The report contains a single failing test. This failed test is red
because the system under test is incorrect when the amount is 1,000.00. The actual
value that was calculated by the system under test (50.0) is added to the report.

[¥ TestDiscount ... g@|@|

bt | b

CalculateDiscount

amount |discount()
0.00 0.00
100.00 (0.00
999.00 |0.00

0.00 expected
1000.00
50.0 aciual

1010.00|50.50
1100.00 |55.00
1200.00 {60.00
2000.00{100.00

Figure 3.2 Fit Report for TestDiscount

Tip

The ordering of the test rows in this particular table is not important
for automated testing, as the tests are independent. However, the order is
important to the people who read and write such tests.

Are there any questions at this stage?

Questions & Answers

Are these tests, or are they requirements?

They’re both. The concrete examples help us to think about and communicate the
important requirements to software developers. As the examples are in a suitable
form, they can also be used to automatically test that the resulting software
application does what’s expected.

16 Chapter 3 Testing Calculations with ColumnFixture Tables

But the tests can’t define all situations.

That’s right; we use concrete examples to give an idea of the general case. They
need to be augumented with other forms of communication: general statements of
the underlying business rules and discussion between the people concerned.

What if the business rules are not well understood or are changing?

Creating the examples helps to focus on the essence of the rules. Examples serve
as a way to sort out how we want to talk about the important issues that a system
has to deal with. It can be easier to discuss business issues in the context of specific
examples rather than trying to deal with generalities. The examples help to break
down the important cases so that we don’t have to deal with everything all at once.
(We cover the dynamics of this process in detail in Part II.)

If the business rules are changing, we need a way to express those changes and
to talk about them. That may mean simply adding new examples to cover new
cases. Or it may mean changing our terminology because the essence of the rules
has to be altered. Either way, as we see in Chapter 18, it’s important that we can
change the Fit tests as the world changes.

What happens if you put something other than a number in a cell?
When the wrong sort of data is in a table cell, an error is marked with yellow in
the report that Fit produces.

Can we use values other than numbers?
Yes; in general, a cell table can contain any sort of values, such as text strings,
dates, times, and simple lists. See Section 3.4 for an example that uses simple lists.

Programmers: The fixture code for the tests here is given in Section
21.1 on p. 179.

3.3 Calculating Credit

Here’s the business rule for our second example of using a ColumnFixture table to
test calculations.

Credit is allowed, up to an amount of $1,000, for a customer who has
been trading with us for more than 12 months, has paid reliably over
that period, and has a balance owing of less than $6,000.

Again, we use a table to define whether credit will be extended, based on the values
of the various given characteristics of our customers. A small set of tests for this
business rule is shown in Figure 3.3.

The first row of the table names CalculateCredit, the fizture, which determines
how the examples in the table are to be tested automatically against the system
under test. In this book, we follow a convention that fixtures that test calculations
have Calculate in their name.

3.3 Calculating Credit 17

CalculateCredit

months | reliable | balance | allow credit() | credit limit()
14 true 5000.00 | true 1000.00

0 true 0.00 false 0.00

24 false 0.00 false 0.00

18 true 6000.00 | false 0.00

12 true 5500.00 | true 1000.00

Figure 3.3 Fit Table for Testing Credit

The second (header) row of this table, as usual, labels the given and calculated
value columns for testing creditworthiness. Two columns have calculated values:
allow credit() and credit limit(). The given value of reliable and the
calculated value of allow credit() will be either true or false. As is usual with
ColumnFixture tables, the test rows are independent of one another.

In Figure 3.3, the four cell values in dtalics indicate that credit is refused. Test
writers can format Fit tables to better organize them, as we’ll see later, and format
cells values of special interest to highlight them.

Fit reports the results as shown in Figure 3.4 (see also Plate 2). In each test row
of the report, the two cells for the calculated results that are expected are marked.
The tests in the first four rows are right and are marked in green. The last row of
the table fails, with two cells marked wrong, in red.

[TestCredit - Mozilla

paizziizis| ez

CalculateCredit
months |reliable |balance |allow credit(} | credit lunit()
14 true 5000.00 tiue 1000.00
o true |0.00 false 0.00
24 false 10.00 false 0.00
18 true |6000.00| false 0.00
true expecied |1000.00 expected
i2 true 5500.00
false acinal |0.0 actual

Figure 3.4 Fit Report for TestCredit

In general, a test can fail for several reasons. For example, in the report in
Figure 3.4, the failing test itself could be incorrect, or the business rule may be
stated incorrectly for the case of exactly 12 months.

18 Chapter 3 Testing Calculations with ColumnFixture Tables

Looking Ahead

Note that we don’t test the business rule with specific customers; we
have abstracted away from the table how we determine those character-
istics for particular customers. We discuss such design issues for tables in
Chapter 18.

This set of examples is fine for giving a sense of the business rule. However,
they are incomplete from a tester’s perspective. We’d need more tests to make
sure that the business rule has been understood and implemented correctly
in software. Testers have expertise in the art of choosing such test cases.

These tests are also badly organized. It’s not easy to see what the rows
are testing and what is missing. We take up this issue in Chapter 18.

You may have noticed the subtle redundancy between the two calculated
fields. The value of credit limit () always depends, effectively, on the value
of allow credit (). Redundancy, and why we want to avoid it in the design
of tables, is discussed in Chapter 18.

Finally, in some situations, the rows of a ColumnFixture table are not
independent, by choice, as we show in Section 4.1 on p. 23 and in Chapter 13.

Questions & Answers

What if we want to use yes and no instead of true and false?
They can be used instead in FitNesse (Chapter 8), where yes, y, 1, and + can also
be used for true. Anything else is false.

What if a given number is negative, which is not valid in the application?
We take up this issue in Chapter 9.

What’s a fixture?

A fixture is the “glue” that connects the tests in a Fit table to your application.
From a programmer’s point of view, a fixture names the software that is

responsible for running the tests in the table against the system under test. Different

fixtures may do different sorts of tests. Part III covers this in detail.

Will a whole test sequence be included in one table? Some of our tests go on for
many pages.

No, not necessarily. We'll see in Chapter 6 that a test sequence may consist of many
tables of varying types.

Programmers: The fixture code for the tests here is given in Section
21.2 on p. 182.

3.4 Selecting a Phone Number 19

3.4 Selecting a Phone Number

Our third example illustrates the use of simple lists in tests. The business rule for
this example is very simple.

The first phone number in the list of supplied phone numbers will
normally be used for communicating with the client.

A single test is shown in Figure 3.5. The phones column contains a comma-
separated list of phone numbers. The calculated column first() selects the first
one in the list.

CalculateFirstPhoneNumber

phones first()
(209)373 7453, (209)373 7454 | (209)373 7453

Figure 3.5 Fit Table for Testing First Phone

When the elements of a list are more complex, such as containing details of each
order item within an order, this approach doesn’t work. A RowFixture table can
be used instead, as discussed in Chapter 5.

Questions & Answers

What if an element in the list contains a comma (,)?

In that case, a RowFixture tables could be used, as covered in Chapter 5. If you
wanted to use such lists in a ColumnFixture, a programmer would need to write
some fixture code to handle that specially, as we discuss in Chapter 25.

What happens if the phone list is empty?

The business rule doesn’t cover that situation, but it does need to be defined. We
take up this issue in Chapter 9, when we talk about handling various expected
erTors.

Programmers: The fixture code for the tests here is given in Section
21.3 on p. 184.

20 Chapter 3 Testing Calculations with ColumnFixture Tables

3.5 Summary

e F'it tests are defined in tables.

e ColumnFixture tables are good for specifying the expected calculated value
based on the given value in a row.

e The test writer gets to choose the names of the labels in the header row, such
as phones and first().

e EKEach row of a ColumnFixture table represents an independent test when
it’s used for testing the same calculations on different data. We’ll see
ColumnFixture tables in Section 4.1, where the rows are not independent,
and so their order is important.

e When Fit runs a test, it produces a report. This report gives feedback on the
test by marking parts of the input table according to what passed.

e We've seen several examples of ColumnFixture tables; the second table had
two calculated columns.

The next chapter introduces action-style tables. However, if you'd like to start
using Fit on ColumnFixture examples first, you may like to look now at Chapter 7.

Questions & Answers

We have lots of tests in text files. We wouldn’t want to make tables from them.
You don’t need to do so. As we’ll see in Chapter 7, tests in other input formats can
be fed into Fit. However, some straightforward programming will be required for
custom data formats (as discussed in Chapter 39).

Our existing tests all center on the process of using the system. There are no
“calculation” tests.

Often, tests are written in this way because the only way to check them has been
to run the system through the user interface and carry out a sequence of steps.
When we look more closely at those tests, we often get an inkling of the underlying
business rules.

As discussed in Part II and especially Chapter 18, we aim to extract those
essential business rules and express them independently of the work flow. That
extraction has several benefits. We gain clarity about the rules. By expressing them
succinctly, we can more easily discuss the rule and see what cases (examples) we
may need to add or change as the business changes. It is much faster to create the
(short) examples, as they can ignore the workflow. The tests are not dependent on
the user interface, which is often the part of a system that changes the most. Those
tests can be made to run much faster, if necessary.

But that assumes that we can test the business rules in isolation!
Yes, it seems to assume that. We discuss various ways for programmers to manage
this in Chapter 33.

3.6 Exercises 21

How do we decide on suitable tests for our application?
We'll cover that in some depth in Part I, once we’ve seen several examples of various
sorts of tests. The process of writing tests usually starts from thinking about the
important things in your business domain and what you want to say about them.
That’s what we’re calling “business rules.” In some cases, they’re quite obvious;
in others, they come out of clear thinking about what’s needed by exploring with
concrete examples.

If you now want to see how Fit tests are created, skip ahead and read Chapters 12
and 13. The chapters after those two may not make complete sense; you will
probably need to come back and read more of the chapters in this part first.

How do the programmers know what to do with a Fit table I've written?
To write the fixture code, they may need to talk to you about what you intend with
the test. After that, they’ll know what to do with similar tables.

3.6 Exercises

Answers to selected exercises are available on the book Web site; see Appendix B
for details.

1. The business rule from Section 3.1 on p. 13 is as follows: “A 5 percent discount
is provided whenever the total purchase is greater than $1,000.” Using this
business rule, color in Figure 3.6, based on the traffic light colors in Section
3.2 on p. 14. Do so as it would be reported by Fit, according to whether the
tests pass. You don’t need to bother to insert actual values where a test value

is wrong.
CalculateDiscount
amount | discount()
1.00 0.00
10.00 0.50

1400.00 | 75.00
20000.00 | 200.00

Figure 3.6 Color in the Table

2. The business rule from Section 3.3 on p. 16 is as follows: “Credit is allowed,
up to an amount of $1,000, for a customer who has been trading with us for
more than 12 months, has paid reliably over that period, and has a balance
owing of less than $6,000.” Color in Figure 3.7, using this business rule, as in
the previous exercise.

3. Create a ColumnFixture table for the following.

Percentages of dollar amounts are rounded to the nearest cent.

22 Chapter 3 Testing Calculations with ColumnFixture Tables

CalculateCredit

months | reliable | balance | allow credit() | credit limit()
13 true 5900.00 | true 1000.00

12 true 0.00 false 1000.00

24 false 1000.00 | false 0.00

18 false 6000.00 | true 1000.00

Figure 3.7 Color in the Table

4. Create a ColumnFixture table for this business rule.

We charge for time, based on the charge rate of the consultant, in
units of whole hours and with a minimum charge of $5,000.

5. Create a ColumnFixture table for a simple business rule that is relevant to
you and that involves simple calculations.

