
3

1

Problem to Attack

Component-based development is a widely used approach to build com-
plex systems. Basically, you allocate requirements to components of some
kind—classes, packages, services, and so forth. Although many require-
ments can be effectively localized to individual components, you find
many requirements that cannot be localized to an individual component
and that sometimes even impact many components. In aspect-speak,
these requirements cut across components and are called crosscutting
concerns. The inability to keep such concerns separate during design and
implementation makes a system difficult to understand and maintain. It
inhibits parallel development and makes a system difficult to extend and
results in many of the problems that plague so many projects today. A suc-
cessful solution to this problem involves two things: an engineering tech-
nique to separate such concerns from requirements all the way to code
and a composition mechanism to merge the design and implementation
for each concern to result in the desired system. With aspect orientation
under the guidance of an appropriate methodology, you do have such a
solution today.

1.1 The Use of Components Today

Software systems are important to businesses today. Most, if not all, busi-
nesses today cannot run without the help of software to conduct business

Jacobson_Ch01.fm Page 3 Wednesday, December 8, 2004 3:16 PM

4 PROBLEM TO ATTACK

operations. As we all know, software systems are complex and when we
design such complex systems our limited minds cannot possibly consider
everything and solve everything at once.

Our natural inclination is to break the problem into smaller parts and
solve them one by one. This is why we have components. Each component
plays its specific role and has specific responsibilities and purposes. We
assemble components of various kinds to form the complete system. This
is basically how we develop any kind of product: electronic devices, cars,
and more.

In a generic sense, components are elements that conform to well-defined
interfaces, and if you invoke them through their interfaces, they produce
some well-defined responses. For example, a computer chip is a compo-
nent. It has pins through which you can send electric signals. Upon receiv-
ing the signal, the chip performs some actions and possibly returns some
response through some other pins. Your video projector is also a compo-
nent. If you plug in a video cable from your laptop to the projector, you
can make images appear on the wall.

A component encapsulates its contents. Its internals are all hidden from
you. As a user of the component, you do not need to know how it really
works on the inside. All you need to know is that you send the correct sig-
nals to it through its interfaces in some acceptable sequence and you get
your desired response. This characteristic of components is very attractive
because as long as the interfaces do not change, you can replace them
with other components that conform to those same interfaces. This sub-
stitutability is extremely useful if you want to extend the system with some
new capabilities—all you need to do is replace an existing component
with a better one that conforms to the same interface. Even if you have to
change an interface, you may delimit the changes to a few components. It
allows you to gracefully grow a complex system.

1.1.1 Building a System with Components
The usual approach to building systems in terms of components is as fol-
lows: You begin by first understanding what the system is supposed to do:
What are the stakeholder concerns? What are the requirements? Next, you
explore and identify the parts (i.e., components) that will constitute the
system. You then map the world of requirements to the world of compo-

Jacobson_Ch01.fm Page 4 Wednesday, December 8, 2004 3:16 PM

1.1 THE USE OF COMPONENTS TODAY 5

nents. This is an M-to-N mapping and, normally, M is much larger than N.
For example, you might have 1,000 requirements and maybe 50 compo-
nents. The common approach to mapping is as follows: You identify a set
of candidate components and check that each requirement will be imple-
mented with these components. In this process, you may learn more
about the requirements and, provided that the requirements are not too
critical, change them so that they are easier to implement. Alternately, you
might modify components to improve the fit. Once the required set of
components is found, they are connected to form the desired system.

Figure 1-1 shows the components for a Hotel Management System. We use
this system as an example here and throughout the rest of the book.
Briefly, this system provides the functionalities to Reserve Room, Check In,
and Check Out to be used by both customers and hotel staff.

Figure 1-1 shows components of various kinds. The Customer Screen and
Staff Screen components deal with presenting information to the users
and accepting and validating input from them. The Reserve Room, Check
In, and Check Out components encapsulate the business and control logic
for the respective functionalities. The reservation and the room compo-
nents maintain information in a data store. This separation of roles and
responsibilities across components is essential to a system that is resil-
ient—one that will not easily break when changes are introduced.

Figure 1-1 Hotel Management System made up of interconnected components.

Reserve
Room

Check In

Check Out

Customer
Screen

Staff
Screen

Reservation

Room

Jacobson_Ch01.fm Page 5 Wednesday, December 8, 2004 3:16 PM

6 PROBLEM TO ATTACK

1.1.2 Benefits of Components
Components are useful and important because they represent the static
structure of a system such as that depicted in Figure 1-1. They are essential
to understanding, designing, implementing, distributing, testing, and
configuring the system. They are the most important asset for reuse in
practice. Components contain things that change together. They keep
concerns about a kind of object or an abstraction of a real-world phenom-
ena separate.

For instance, a component (e.g., the Room and Reservation components
in Figure 1-1) may encapsulate the manipulation of data structures cap-
turing room and reservation information. If you change the data structure,
you change the operations that touch these data. There are also compo-
nents encapsulating the specifics of user interfaces. If you want to change
the look and feel of the system, you simply change the screen compo-
nents. Thus, you see that components make a system resilient to changes
as you add new requirements to the system.

You can also meet customers’ new demands by configuring the system
using the components. New features or use-cases are usually provided by
adding a new component and changing some already existing compo-
nents.

In recent years, component frameworks such as J2EE and .Net have
evolved and gained widespread popularity. Basically, all new software
being developed is componentized.

1.2 Limitation of Components

To understand the limitations of components, we start with concerns. The
goal of a system is to meet requirements or, more generally, concerns. A
concern is anything that is of interest to a stakeholder, whether an end
user, project sponsor, or developer. For example, a concern can be a func-
tional requirement, a nonfunctional requirement, or a design constraint
on the system. It can be more than a requirement of the system. It can
even be a low-level concern such as caching or buffering.

Jacobson_Ch01.fm Page 6 Wednesday, December 8, 2004 3:16 PM

1.2 LIMITATION OF COMPONENTS 7

Breaking down a problem into smaller parts is called separation of con-
cerns in computer science. Ideally, we want to be able to cleanly separate
the different concerns into modules of some kind and explore and develop
each in isolation, one at a time. Thereafter, you compose these software
modules to yield the complete system. Thus, the concept of separation of
concerns and the concept of modularity are two sides of a coin—you sep-
arate concerns into modules, and each module solves or implements
some distinct set of concerns.

Successful separation of concerns must start early. You begin software
development by attempting to understand the stakeholder concerns. You
explore and collect the requirements for the system according to stake-
holder concerns. Although some concerns can be realized by distinct and
separate components, in general, you find many concerns for which com-
ponents are not adequate. These are known as crosscutting concerns—
concerns that impact multiple components. There are different kinds of
crosscutting concerns: infrastructure concerns are crosscutting concerns
to meet nonfunctional requirements—for instance, logging, distribution,
and transaction management. Some crosscutting concerns deal with
functional requirements as well. You frequently find that the realization of
functional requirements (which can be specified as use-cases) cut across
multiple components. Thus, even use-cases are crosscutting concerns.

Sidebar 1-1 How Does Aspect Orientation Impact Object
Orientation?

Aspect orientation is established precisely to overcome the limitation of object
orientation. Conventional modularity such as classes and services suffer from
their inability to keep crosscutting concerns separate. It does not matter
whether or not you are implementing your system using object-oriented pro-
gramming languages: they are all inadequate in dealing with crosscutting con-
cerns.

As we write this book, we find that having to list all the conventional modules
(components, classes, services, etc.) every time we talk about their limitations
can be quite lengthy. So, for brevity, we simply use the term components as a
representative of conventional modularity. So, when we say a “crosscutting con-
cern can cut across classes,” it applies to components as well.

Jacobson_Ch01.fm Page 7 Wednesday, December 8, 2004 3:16 PM

8 PROBLEM TO ATTACK

1.2.1 Inability to Keep Peers Separate
We particularly want to highlight two kinds of crosscutting concerns. The
first is what we call peers. These are concerns that are distinct from each
other. No one peer is more important than another. If you consider the
familiar ATM example, cash withdrawal, fund transfer, and cash deposit
are all peers. In our hotel management example, Reserve Room, Check In
Customer, and Check Out Customer are peers. These concerns do not
need each other to exist. In fact, you can build separate systems for each
one. However, when you start to implement peers in the same system, you
find significant overlap between them. This is illustrated in Figure 1-2.

Figure 1-2 depicts concerns in different shades on the left-hand side. The
right-hand side shows the components with multiple shades. Each shade
represents the codes that implement the respective concerns. The limita-
tion of components to keep peers separate is evident in Figure 1-2. It results
in two effects, which in aspect-speak are known as tangling and scattering.

Tangling. You find that each component contains the implementation (i.e.,
code) to satisfy different concerns. For example, in Figure 1-2, you see that
the Room component is involved in the realization of three different con-
cerns. This means that as a developer/owner of a component, you need to
understand a diverse set of concerns. The component, instead of single-
mindedly fulfilling a particular concern, participates in many. This hinders
understandability and makes the learning curve steeper for developers.

Figure 1-2 Tangling and scattering when realizing peers.

Reserve
Room

Check In
Customer

Check Out
Customer

Reserve
Room

Check In

Check Out

Customer
Screen

Staff
Screen

Reservation

Room

Concerns
Components

Jacobson_Ch01.fm Page 8 Wednesday, December 8, 2004 3:16 PM

1.2 LIMITATION OF COMPONENTS 9

Do not confuse tangling with reuse. Reuse implies that the same code or
behaviors are useable under different contexts. Definitely, some parts of
the Room component will be reusable without changes. However, in many
cases, as highlighted in Figure 1-2, each concern demands additional and
distinct behaviors on the Room component not needed to realize other
concerns. There is no reuse among them, and they result in tangling.

Scattering. You also find codes that realize a particular concern are spread
across multiple components. For example, in Figure 1-2, you see that the
realization of Check In Customer imposes additional behaviors on four
components. So, if ever the requirements about that concern change, or if
the design of that concern changes, you must update many components.

More importantly, scattering means that it is not easy to understand the
internals of a system. For instance, it is not easy to uncover requirements
by reading the source code of each component or a set of components. If
the requirement for a particular concern changes, different classes need to
be updated as well. Poor understandability leads to poor maintainability,
and it is not easy to make enhancements, especially for large systems.

1.2.2 Inability to Keep Extensions Separate
The second kind of crosscutting concern is what we call extensions. Exten-
sions are components that you define on top of a base. They represent
additional service or features. For example, the Hotel Management System
has a waiting list for room reservations. If there are no rooms, the system
puts the customer on a waiting list. Thus, the provision of a waiting list is
an extension of Reserve Room. Keeping extensions separate is a technique
to make a complex problem understandable. You do not want to be entan-
gled by too many issues, so you keep them separate as extensions.

Although it is natural to describe the base and extension separately, there
is a problem when it comes to implementing the extension, as exemplified
in Figure 1-3.

Figure 1-3 shows the Reserve Room component, which serves as the base.
To incorporate the Waiting List extension, a corresponding component is
added (shown in a darker shade). But in addition, you need to add some
code fragments in the Reserve Room component at a particular location,

Jacobson_Ch01.fm Page 9 Wednesday, December 8, 2004 3:16 PM

10 PROBLEM TO ATTACK

which we call an extension point. The purpose of this code fragment is to
connect or invoke the Waiting List component.

The problem is this: some code has been added to a place that didn’t really
need it before we added the new feature. It is there for the purpose of
hooking the new component onto the existing component. This code frag-
ment is affectionately known as glue code. In aspect-speak, such a change
is known as intrusive.

No matter how good your design is, you still need glue code, and if you
need to extend the system at another location, you must add the glue code
there too. For example, if you need to support different payment methods
for the Hotel Reservation System, you need additional glue code to open
up an extension point in the system.

Adding all this glue code and making all these changes to existing code
definitely makes the original classes harder to comprehend. But a greater
problem exists: you cannot possibly identify all the extension points a pri-
ori. Thus, what is really needed is a way for you to designate extension
points on demand at any time during the system’s life cycle. Although this
is a significant advantage, there is a limit to how far you can go. If a system
is poorly designed, designating extension points is definitely not easy. In
addition, after adding several enhancements, you have a better picture of
the whole system and you might want to separate concerns differently. In
this case, you might dispense some effort to refine the base.

Figure 1-3 Extensions inserted intrusively.

Reserve Room

Waiting List

Base Extension

Code fragment added to
invoke Waiting List component

Jacobson_Ch01.fm Page 10 Wednesday, December 8, 2004 3:16 PM

1.3 APPROACHING A SOLUTION 11

1.3 Approaching a Solution

So, you find that even though components are excellent tools to structure
a complex system in some hierarchical fashion, they are nevertheless
insufficient. Components cannot keep crosscutting concerns separate all
the way down to code. Adding a new concern (a set of requirements) to the
system becomes very painful.

The search is on for a new kind of modularity, one that can keep crosscut-
ting concerns separate throughout the life cycle of the module—from
requirements to analysis, design, code, and test. To achieve this modular-
ity, you must also have a corresponding way to integrate or compose the
new modularity into a coherent whole to get executable code. The new
modularity must also help you collect all work on a concern, not just the
code, but requirements, analysis, design, implementation, and test for
that concern.

To achieve this new modularity, you need two things: a concern separa-
tion technique and a concern composition technique.

Sidebar 1-2 The Difference Between Concerns and
Requirements

You might be wondering what the difference between a concern and a require-
ment is. They are not the same. Developing a system involves specifying
requirements, which are then refined into design and subsequently to imple-
mentation. So, requirements are only part of the software development life
cycle. A concern represents something of importance to some stakeholder, and
it encompasses everything: you must specify concerns, design them, and
implement them. So, requirements are simply for specifying concerns.

In general, for each concern, you will have many requirement statements to clar-
ify what the concern is. For example, the Reserve Room functionality is a concern.
There will be many requirement statements because the system deals with the
Reservation of kinds of Rooms, different Reservation schemes, and so on.

In addition to specifying the concern, you must design and implement it. When
we talk about separating concerns, we mean separating at requirements time
and keeping the separation during design and implementation.

Jacobson_Ch01.fm Page 11 Wednesday, December 8, 2004 3:16 PM

12 PROBLEM TO ATTACK

Concern Separation Technique. In order to keep concerns separate, you
must model and structure concerns. The use-case technique is quite help-
ful in modeling concerns during requirements and analysis. We discuss
use-cases in greater detail in Chapter 3, “Today with Use-cases,” and in
further depth in Part 2 of the book. Separating peer use-cases is easy (that
is how use-cases are normally defined). Separating extension use-cases
requires new language constructs. On top of that, you also need tech-
niques to preserve the separation during design and implementation.

Concern Composition Mechanism. At some point in time, you need to
compose the concerns. This can happen during compile time, post-com-
pilation time, or even during execution. Composing normal extensions is
relatively easy, since all that is needed is some automated way to monitor
the execution of the base and execute the extension when required.

Composing peer use-cases is much harder—you must deal with overlap-
ping behavior, conflicts, and other problems. Thus, the early efforts have
been to keep extensions separate. In the next section, we discuss some of
these early efforts to highlight that crosscutting concerns is not a new
problem. Keeping extensions separate is also not a technique that is
invented only recently. But certainly, aspect orientation (which we discuss
in Chapter 2, “Attacking the Problem with Aspects”) provides an elegant
solution and hence a renewed interest in the problem of dealing with
crosscutting concerns. Another reason we highlight earlier works is to
show that aspect thinking is very much in line with use-case thinking and,
hence, use-case–driven development is a strong candidate for conducting
aspect-oriented software development.

1.3.1 Early Support for Extensions
The idea of keeping extensions separate dates back a long way and
appeared in a 1986 paper discussing “Language Support for Changeable
Large Real-Time Systems” [Jacobson 1986]. Jacobson introduced several
terms in that paper; see Figure 1-4. The original program, that is, the base,
is termed an existion. The new functionalities to be added to the existion
are termed extensions. Extensions are inserted at designated execution
points in the existion. These execution points are known as extension
points.

Jacobson_Ch01.fm Page 12 Wednesday, December 8, 2004 3:16 PM

1.3 APPROACHING A SOLUTION 13

The key idea behind the approach is that you insert extensions into the
existions during compilation or execution—not during coding. Thus, the
source code of the existing system and even possibly its binaries remain
clean and free of any extensions.

Structuring a system as shown in Figure 1-4 has several advantages. First,
it makes extending an existing system a lot easier. When you want to intro-
duce an extension, all you need to do is designate the extension point
where the extension needs to be inserted. But this is no excuse for poor
programming and design practices. Good development and programming
practices make it easier for you to specify extension points.

Second, and even more fundamentally, structuring a system this way
makes systems much more understandable. You structure the system
from a base and then add more functionality in chunks that are not neces-
sary to understanding the base. This allows our limited minds to focus on
a particular concern at a time in isolation without the disturbance of other
concerns. You can apply this approach to structure almost anything
beyond codes. You can even apply it to requirement specifications and
design.

How is support for extensions achieved? It can be achieved in several
ways—during compilation time or runtime. One of the possible ways to do
so during runtime is through a much earlier work by Jacobson. It is known
as a sequence variator, and its operation is depicted in Figure 1-5 [Jacob-
son 1981].

Figure 1-4 Existions, extension points, and extensions.

ext pt. 3

Existion

Extensions

ext pt. 1

ext pt. 2

Jacobson_Ch01.fm Page 13 Wednesday, December 8, 2004 3:16 PM

14 PROBLEM TO ATTACK

The sequence variator works at microprogram level. The program consists
of a list of statements, and each statement has a bit flag to indicate
whether an extension occurs at that point. In typical operation, the
sequence variation takes a statement from memory and executes it, then
takes and executes the next statement, then the next, and so on. If the
extension bit flag is set, the sequence variator looks for an extension that
references the current statement and proceeds to execute the statements
in the extension. When all the statements in the extension have been exe-
cuted, the sequence variator resumes with the statement at the existion
and continues.

From the existion programmer’s viewpoint, you only view the statements,
not the extension bit flag. When an extension must be added later on, all
that is needed is to code the extension statements and turn on the appro-
priate extension bit flags in the existion. The existion programmer does
not have to worry about extensions that are added later. You can easily add
extension after extension without breaking the modularity of the existion.
There is no tangling or scattering.

Jacobson filed a patent for this approach in 1981, but the patent was not
accepted. The idea was too close to a patented patching technique for
which his proposal would have been an infringement, so Jacobson always
had to apologize for this closeness before explaining the idea.

A common fear about adopting aspect orientation is that practitioners feel
that it is like patching. Definitely, if used in an ad hoc manner, it indeed is
like patching. But aspect orientation is not for patching. It is for you to
achieve better separation of crosscutting concerns. It is for you to achieve
better modularity. The goal of this book is to provide you with sound tech-
niques and practical guidelines to achieve this.

Figure 1-5 Sequence variator.

Statement 1

Statement 2

Statement N

Statement 1

Statement 2

Statement M

Existion Extension

Extension
Point

Jacobson_Ch01.fm Page 14 Wednesday, December 8, 2004 3:16 PM

1.3 APPROACHING A SOLUTION 15

1.3.2 Support for Extensions in UML
Even though the patent was not accepted, the concept of keeping exten-
sions separate persists. It manifests as extension use-cases, which made it
to the Unified Modeling Language. In fact, for those of you who have
applied use-cases, you should be quite familiar with the use-case exten-
sion concept. We go into the details later, but what we want to say is that
the idea of keeping extensions separate is not new. Briefly, use-case exten-
sions permit us to describe additional behaviors that can be inserted into
an existing use-case. For example, you have an existing use-case called
Reserve Room, and you want to add some waiting list functionality, as
exemplified earlier. With the use-case modeling technique, you simply
add an extension use-case, which is modeled as the Handle Waiting List
use-case in Figure 1-6. In use-case modeling terminology, the Reserve
Room use-case would be a base use-case, and the Handle Waiting List
would be an extension use-case.

The use-case technique provides the means to specify how behaviors
described in the extension use-case are inserted at the extension points
defined in the base use-case.

Nevertheless, the idea of keeping extensions separate remains a specifica-
tion technique as opposed to an implementation technique. In Object-
Oriented Software Engineering [Jacobson et al. 1992], there are techniques
to keep extensions separate during analysis and during use-case model-
ing. However, there are no techniques to keep extensions separate during
design, since there was no aspect-oriented programming language avail-
able when the book was written. In Software Reuse [Jacobson 1997], the
authors generalize the concept of extension points into variation points,
and many of these ideas have been carried over to the Reusable Asset
Specification (RAS).

Figure 1-6 Waiting list as an extension use-case.

Reserve Room

Handle Waiting List

«extend»

Jacobson_Ch01.fm Page 15 Wednesday, December 8, 2004 3:16 PM

16 PROBLEM TO ATTACK

The first serious attempt to implement extensions was done in the early
1990s at Ericsson in the development of a new generation of switches.
The people who adopted extensions took them into a new development
environment called Delos, which supported extensions all the way down
to code. Nevertheless, support for extensions in mainstream program-
ming languages did not appear until the advent of aspect orientation
technologies.

1.4 Keeping Concerns Separate

Being able to keep concerns separate is extremely important in software
development. It helps you break down a complex problem into smaller
parts and solve them individually. When it comes to large systems, it is the
only way for you to build them. If you cannot keep concerns separate, the
complexity of the system increases exponentially as you add enhance-
ment after enhancement. By keeping concerns separate, on the other
hand, the system is much easier to understand, maintain, and extend.

Existing modularity such as classes and components do help you keep
concerns separate, at least to a certain extent. Each class keeps the specif-
ics of a kind of object or real-world phenomenon separate; each compo-
nent encapsulates the computation and data related for some
functionality; and so on. However, when it comes to crosscutting con-
cerns—concerns that cut across classes and components—you need
another approach to modularity.

Moving ahead, in Chapter 2, we demonstrate how to maintain the separa-
tion of crosscutting concerns during implementation (i.e., code) using
aspect orientation. In Chapter 3, we show how use-cases help us capture
and model concerns. In Chapter 4, we show how, with use-cases and
aspects, we can achieve separation of concerns from requirements to
code, and we explain the steps necessary to get there.

Jacobson_Ch01.fm Page 16 Wednesday, December 8, 2004 3:16 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

